KR20100016000A - 유한 레이트 피드백을 가진 mimo 방송 채널을 위한 다중 사용자 스케쥴링 - Google Patents

유한 레이트 피드백을 가진 mimo 방송 채널을 위한 다중 사용자 스케쥴링 Download PDF

Info

Publication number
KR20100016000A
KR20100016000A KR1020097022549A KR20097022549A KR20100016000A KR 20100016000 A KR20100016000 A KR 20100016000A KR 1020097022549 A KR1020097022549 A KR 1020097022549A KR 20097022549 A KR20097022549 A KR 20097022549A KR 20100016000 A KR20100016000 A KR 20100016000A
Authority
KR
South Korea
Prior art keywords
user
signal quality
feedback
receiving
scheduling
Prior art date
Application number
KR1020097022549A
Other languages
English (en)
Other versions
KR101286877B1 (ko
Inventor
웨이 장
레타이에프 칼레드 벤
Original Assignee
더 홍콩 유니버시티 오브 사이언스 앤드 테크놀러지
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 더 홍콩 유니버시티 오브 사이언스 앤드 테크놀러지 filed Critical 더 홍콩 유니버시티 오브 사이언스 앤드 테크놀러지
Publication of KR20100016000A publication Critical patent/KR20100016000A/ko
Application granted granted Critical
Publication of KR101286877B1 publication Critical patent/KR101286877B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0697Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using spatial multiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0632Channel quality parameters, e.g. channel quality indicator [CQI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0691Hybrid systems, i.e. switching and simultaneous transmission using subgroups of transmit antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0802Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using antenna selection
    • H04B7/0805Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using antenna selection with single receiver and antenna switching
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0602Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using antenna switching
    • H04B7/0608Antenna selection according to transmission parameters
    • H04B7/061Antenna selection according to transmission parameters using feedback from receiving side

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

다중 입력 다중 출력(multiple-input multiple-output: MIMO) 통신 시스템 내에서 다중 사용자 스케쥴링을 위한 시스템 및 방법론이 제공된다. 기술된 여러 가지 측면은 다중 사용자 스케쥴링이 각 사용자로부터의 안테나 선택 및 신호 대 간섭 및 잡음 비(signal-to-interference-plus-noise ratio: SINR) 피드백과 같은 신호 품질 피드백에 기반하여 수행되는 풀 피드백 스케쥴링을 용이하게 한다. 각 사용자로부터 수신된 정보에 기반하여, 독립 정보 스트림(stream)은 최고 신호 품질로 각 송신 안테나로부터 각 사용자로 송신될 수 있다. 수신 안테나 선택은 또한 각 사용자가 정보가 수신되는 단일 수신 안테나를 선택하도록 채용될 수 있다. 기술된 다른 측면은 스케쥴링이 각 사용자에 의해 유한한 수의 비트로 양자화된 신호 품질 피드백에 기반하여 수행되는 양자화된 피드백 스케쥴링을 용이하게 한다.
다중 입력 다중 출력, MIMO, 통신 시스템, 스케쥴링, 피드백, 양자화, 유한 레이트 피드백

Description

유한 레이트 피드백을 가진 MIMO 방송 채널을 위한 다중 사용자 스케쥴링{MULTIUSER SCHEDULING FOR MIMO BROADCAST CHANNELS WITH FINITE RATE FEEDBACK}
본 발명은 일반적으로 무선 통신 시스템에 관한 것이고, 특히 무선 통신 시스템에서 다중 사용자 스케쥴링을 위한 기술에 관한 것이다. 본 발명은, 2007년 4월 30일 출원되어, "유한 레이트 피드백을 가진 MIMO 방송 채널을 위한 다중 사용자 스케쥴링(MULTIUSER SCHEDULING FOR MIMO BROADCAST CHANNELS WITH FINITE RATE FEEDBACK)"의 제목을 갖는 미국 임시 출원 60/914,810호에 우선권을 주장한다.
다중 사용자 다양성은 기지국 및 다중 사용자 사이의 독립적인 페이딩(fading) 채널로부터 발생한 무선 통신 시스템내의 사용자들 사이의 다양성 선택의 한 형태이다. 다중 입력 다중 출력(multiple-input multiple-output: MIMO) 시스템 내의 다운링크(downlink) 전송을 위해 다중 사용자 다양성을 이용한 수많은 다중 사용자 스케쥴링 알고리즘이 제안되었다. 이러한 기존 접근법의 대부분은 시간 분할 다중 접속(time division multiple access: TDMA)에 기반한다. 하지만, 적어도 부분적으로, TDMA를 사용한 기지국은 한번에 단 하나의 사용자에게 송신할 수 있다는 사실 때문에, MIMO 방송 채널을 위한 이러한 접근법에 의해 달성 가능한 최 대 합 레이트(maximum sum-rate)는 MIMO 방송 채널의 총 합 레이트 량의 단지 작은 일부일 뿐이다.
더티 페이퍼 코딩(dirty paper coding: DPC)와 같은 다른 기존의 스케쥴링 알고리즘은 다중 사용자를 동시에 서비스함으로써 MIMO 방송 채널 량을 달성할 수 있다. 하지만 DPC와 같은 스케쥴링 알고리즘을 이용하여 최적 전송 정책을 달성하는 것은 계산이 복잡하다. 또한, 저(低) 복잡도 DPC 알고리즘이 제안되었지만, 이러한 알고리즘은 송신기의 채널 상태 정보(channel state information: CSI)의 완벽한 숙지를 요구한다. 하지만, 송신기의 CSI의 완벽한 숙지는 시스템의 한계로 인해, 일반적으로 실제로 얻기 불가능하다. 대신에, 제한된 CSI 피드백 로드(load)가 일반적으로 유한 레이트(rate)로 사용자로부터 기지국에 제공된다. 시스템의 이용 가능한 피드백 로드가 감소할수록, 종래의 다중 스케쥴링 알고리즘은 처리율(throughput)의 상당한 감소 및/또는 복잡도의 상당한 증가를 겪는다. 따라서, 유한 레이트 피드백을 가진 MIMO 방송 채널을 위한 저 복잡도, 고 처리율의 스케쥴링 알고리즘에 대한 요구가 있다.
이하에서는 본 발명의 몇몇 측면들의 기본적인 이해를 제공하기 위한 단순화된 요약을 제시한다. 이하의 요약은 본 발명의 광범위한 개요가 아니다. 또한 이하의 요약은 본 발명의 중요 또는 핵심 요소들을 밝히거나 본 발명의 범위를 묘사하기 위한 것이 아니다. 이하의 요약은 단지 후술하는 상세한 설명의 서문으로서 본 발명의 몇몇 개념들을 단순화된 형태로 제시하기 위한 것이다.
이하에서는 MIMO 통신 시스템에서 다중 사용자 스케쥴링을 위한 시스템 및 방법론을 제공한다. 본 명세서에 기술된 여러 가지 측면에 따르면, 모든 사용자로부터의 신호 품질 피드백을 이용하는 MIMO 방송 스케쥴링 알고리즘을 통해 다중 사용자 스케쥴링이 달성되는 풀(full) 피드백 스케쥴링이 제공된다. 일 예에서, 무선 통신 시스템의 기지국은, 시스템 내의 각 사용자로부터 안테나 선택 및 최대 신호 대 간섭 및 잡음비(signal-to-interference-plus-noise ratio: SINR) 피드백과 같은 신호 품질 피드백을 받을 수 있다. 이러한 정보에 기반하여, 기지국은 기지국의 각 송신 안테나로부터 각 사용자에게 최고 신호 품질로 독립적인 정보 스트림(stream)을 송신할 수 있다. 다른 예에서, 기지국으로부터 정보가 수신될 단일 수신 안테나를 각 사용자가 선택하도록 하기 위해 수신 안테나 선택이 채용될 수 있다. 따라서, 최적 다중 사용자 스케쥴링은, 가상 사용자로서 시스템의 모든 수신 안테나를 채용하는 것과 같은 종래의 다중 사용자 스케쥴링 접근법보다 적은 복잡도 및 전력을 요구하는 MIMO 통신 시스템을 위해 달성될 수 있다.
본 명세서에 기술된 다른 측면은, SINR 피드백과 같은 신호 품질 피드백이 각 사용자에 의해 유한한 수의 비트(bit)로 양자화(quantize)되고 기지국에 피드백으로서 돌려 보내지는 양자화된 피드백 스케쥴링을 제공한다. 이러한 접근법은 예를 들면, 유한 레이트 CSI 피드백을 가진 MIMO 통신 시스템에서 사용될 수 있다. 일 예에서, MIMO 통신 시스템의 달성 가능한 합 레이트 처리율은, 양자화된 CSI 피드백을 위해 단지 1 비트만 할당되는 경우라도, 본 명세서에 기술된 양자화된 피드백 스케쥴링을 이용함으로써 사용자의 수가 증가함에 따라 증가한다.
이하에서는, 상기 및 관련 목적을 달성하기 위하여, 본 발명의 몇몇 예시적인 측면이 상세한 설명 및 첨부된 도면을 참조로 설명된다. 그러나 이들 측면들은 본 발명이 원칙이 적용될 수 있는 다양한 방법들 중 몇몇만을 지시하는 것이며, 본 발명은 모든 측면 및 그 균등물을 포함한다. 본 발명의 다른 이점 및 새로운 기능들이 도면을 참조하여 후술하는 상세한 설명으로부터 명백해질 수 있다.
도 1은 여러 가지 측면에 따른 무선 통신 시스템의 상위 블록도이다.
도 2는 여러 가지 측면에 따라 기지국에 피드백을 생성 및 제공하기 위한 시스템의 블록도이다.
도 3은 여러 가지 측면에 따라 사용자 피드백에 기반한 통신을 위해 각 사용자를 스케쥴링하는 컴포넌트의 블록도이다.
도 4는 여러 가지 측면에 따라 통신 스케쥴에 기반하여 각 사용자에게 정보를 송신하기 위한 시스템의 블록도이다.
도 5는 여러 가지 측면에 따라 접속점(access point)에 제한된 피드백을 생성 및 제공하기 위한 시스템의 블록도이다.
도 6은 여러 가지 측면에 따라 양자화(quantize)된 사용자 피드백에 기반한 통신을 위해 각 사용자를 스케쥴링하는 컴포넌트의 블록도이다.
도 7은 무선 통신 시스템에서 다중 사용자 스케쥴링을 위한 방법의 순서도이다.
도 8은 양자화된 사용자 피드백에 기반한 무선 통신 시스템에서 통신을 위한 사용자의 스케쥴링을 위한 방법의 순서도인다.
도 9는 본 명세서에 기술된 여러 가지 측면이 실행될 수 있는 동작 환경의 일 예의 블록도이다.
도 10은 본 명세서에 기술된 여러 가지 측면에 의한 서비스(service)에 적합한 무선 네트워크 환경의 개략을 설명하는 도면이다.
본 발명이 도면을 참조로 지금 기술된다. 도면을 통틀어 유사 컴포넌트를 참조하기 위해 유사 참조 번호가 사용된다. 설명의 목적을 위한 아래의 기술에서 본 발명의 완전한 이해를 제공하기 위해 다수의 특정 세부 사항이 설명된다. 하지만, 본 발명이 이러한 특정 세부 사항 없이도 실시될 수 있다는 것은 명확하다. 다른 예에서, 잘 알려진 구조 및 장치가 본 발명의 기술을 용이하게 하기 위해 블록도의 형태로 보여진다.
본 명세서에 있어서, "컴포넌트(component)", "시스템" 등의 용어는 하드웨어, 하드웨어 및 소프트웨어의 조합, 소프트웨어, 또는 실행중인 소프트웨어와 같은 컴퓨터 관련 엔티티(entity)를 지칭하는 것으로 의도된다. 예를 들면, 컴포넌트는, 프로세서에서 수행되는 프로세스, 프로세서, 객체(object), 실행 파일(executable), 실행 스레드(thread), 프로그램, 및/또는 컴퓨터일 수 있으나 이에 한정되는 것은 아니다. 예시적으로, 서버에서 수행되는 어플리케이션(application) 및 서버가 모두 컴포넌트가 될 수 있다. 하나 이상의 컴포넌트는 프로세스 및/또는 실행 스레드에 위치할 수 있고, 컴포넌트는 하나의 컴퓨터에 배 치될 수 있고/있거나 둘 이상의 컴퓨터에 분배될 수 있다. 또한, 본 발명에 따른 방법 및 장치, 또는 그것의 특정 측면이나 부분은 플로피 디스켓, CD-ROM, 하드 드라이브 또는 다른 기계 판독 가능한 저장 매체와 같은 유형 매체에 포함되는 프로그램 코드(즉, 명령)의 형태를 취할 수 있다. 프로그램 코드가 컴퓨터와 같은 기계에 의해 로드(load)되고 실행될 때, 기계는 본 발명을 실시하기 위한 장치가 된다. 컴포넌트는 하나 이상의 데이터 패킷(예컨대, 로컬 시스템, 분산 시스템, 및/또는 인터넷 등 신호를 통한 다른 시스템들과의 네트워크를 통해 다른 컴포넌트와 상호 작용하는 컴포넌트로부터의 데이터)을 가지는 신호와 관련하는 등의 로컬 및/또는 원거리 프로세스를 통해 통신할 수 있다.
도 1을 참조하면, 본 명세서에 제시된 여러 가지 측면에 따른 무선 통신 시스템(100)의 상위 블록도가 도시된다. 일 측면에 따르면, 시스템(100)은, 데이터, 제어 신호 및/또는 다른 정보를 순방향 링크(forward link) 또는 "다운링크(downlink)"로 하나 이상의 수신 사용자(120, 130)에게 통신할 수 있는 하나 이상의 기지국(110)을 포함할 수 있다. 도 1에 도시되지 않았지만, 하나 이상의 수신 사용자(120 및/또는 130)는 부가적으로, 정보를 역방향 링크(reverse link) 또는 "업링크(uplink)"로 기지국(110)에 송신할 수 있다는 것이 인식되어야 한다. 또한, 시스템(100)은 임의의 수의 기지국(110) 및 임의의 수의 수신 사용자(120, 130)를 포함할 수 있다.
수신 사용자(120 및/또는 130)는 랩톱(laptop) 컴퓨터, 데스크톱(desktop) 컴퓨터 및/또는 휴대폰, 개인 휴대 단말기(personal digital assistant: PDA)와 같 은 일체 완비된(self-contained) 장치 또는 다른 적당한 장치와 연결될 수 있는 무선 단말기의 기능을 포함 및/또는 제공할 수 있다는 것이 부가적으로 인식되어야 한다. 무선 단말기는 또한 시스템, 가입자 유닛(subscriber unit), 가입자 국(subscriber station), 이동 국(mobile station), 모바일(mobile), 원격 지국(remote station), 원격 단말기(remote terminal), 접속 단말기, 사용자 단말기, 사용자 에이전트(agent), 사용자 장치, 사용자 장비 등으로 불리울 수 있다. 부가적으로 및/또는 선택적으로, 시스템(100) 내의 하나 이상의 기지국(110)은 예컨대, 하나 이상의 다른 스테이션(station) 및 접속점과 연관된 무선 접속 네트워크 사이의 라우터(router)로서 서비스하는 무선 접속점 또는 노드 B의 기능을 포함 및/또는 제공할 수 있다.
일 측면에 따르면, 시스템(100)은, 기지국(110)이 K명의 지리상으로 흩어진 사용자(120 및/또는 130)과 통신할 수 있는 M개의 송신(Tx) 안테나(112)를 갖는 단일 셀(single-cell) 무선 시스템을 포함할 수 있다. 사용자(120 및/또는 130)는 각각 N개의 수신(Rx) 안테나(122 및/또는 132)을 갖는다. 일 예에서, 사용자(120 및/또는 130)의 수는 기지국(110)의 송신 안테나(112)의 수보다 많을 수 있고, 기지국(110)은 적어도 사용자(120 및/또는 130)가 수신 안테나를 가지는 만큼 이용 가능한 송신 안테나(112)를 가질 수 있다. 다른 예에서, K명의 사용자(120 및/또는 130) 중 단지 J명만이 임의의 타임 슬롯(time slot) t에서 동시에 기지국(110)과 통신하도록 허용될 수 있다. 이러한 일 예에서, 타임 슬롯 t에서 기지국(110)과의 통신의 0이 아닌 레이트가 할당된 사용자(120 및/또는 130)의 세트(set)는 A(t)로 표시될 수 있다. A(t)의 카디널리티(cardinality)는
Figure 112009066066175-PCT00001
일 때,
Figure 112009066066175-PCT00002
로 표현될 수 있다. 만약 사용자(120 및/또는 130)의 k번째가 타임 슬롯 t에서 활성(active) 사용자이면, 상기 사용자에 의해 수신되는 신호는 다음의 수학식과 같이 주어질 수 있다.
Figure 112009066066175-PCT00003
여기서, X t는 타임 슬롯 t의 송신된 신호의 M x 1 벡터이고, Y k t는 타임 슬롯 t의 k번째 사용자(120 및/또는 130)에 수신된 신호의 N x 1 벡터이며, W k t는, 엔트리(entry)가 영 평균(zero mean) 및 분산(variance) N0를 가진 독립적이고 동일하게 분포된(i.i.d.) 복소(complex) 가우시안(Gaussian)인, 부가 잡음(additive noise)의 N x 1 벡터이다. 또한, 수학식 1에 사용된 바와 같이 H k t는 (n,m) 번째 엔트리
Figure 112009066066175-PCT00004
이 영 평균 및 단위(unit) 분산을 가진 i.i.d. 복소 가우시안이 되도록 구축된 N x M 채널 행렬이다. 이 때, 스칼라(scalar) hk t(n,m)은 타임 슬롯 t에서 기지국(110)의 m 번째 송신 안테나(112)로부터 k 번째 사용자(120 및/또는 130)의 n 번째 수신 안테나(122 및/또는 132)까지의 복소 채널 이득(complex channel gain)을 나타낸다. 수학식 1에서 사용된 스칼라 ak는 기지국(110)으로부터 k 번째 사용자(120 및/또는 130)까지의 전력 감쇠 계수(power attenuation coefficient)를 나타낸다. 일 예에서, 감쇠 계수 ak는 dk -c와 같다. 여기서 dk는 기지국(110)으로부터 k 번째 사용자(120)까지의 거리이고 c는 2와 4 사이의 상수이다.
다른 측면에 따르면, 시스템(100)의 총 송신된 전력은 1이 될 수 있다. 예컨대,
Figure 112009066066175-PCT00005
가 행렬의 트레이스(trace)를 나타낼 때,
Figure 112009066066175-PCT00006
이 될 수 있다. 따라서, 시스템(100)의 총 송신된 전력은 기지국(110)의 송신 안테나(112)의 수에 독립적일 수 있다. 일 예에서, 시스템(100)은 채널
Figure 112009066066175-PCT00007
가 타임 슬롯 t에서 준정적(quasi-static)이고 주파수 비선택적(non-selective)이지만 상이한 타임 슬롯에서는 독립적으로 변화하는 블록 페이딩 채널 모델을 이용할 수 있다. 부가적으로 및/또는 선택적으로, 채널 hk t(n,m)은 타임 슬롯 t에서 임의의
Figure 112009066066175-PCT00008
에 대해 다른 채널
Figure 112009066066175-PCT00009
과 비상관(uncorrelated)되도록 모델링(modeling)될 수 있다. 일 측면에 따르면, 시스템(100)은, MIMO 채널이 완전히 수신 사용자(120) 및 수신 사용자(130)에게 알려져 있지만 송신 기지국(110)에는 알려져 있지 않다는 가정 하에 동작할 수 있다.
일 예에서, 신호 x(m)은 주어진 타임 슬롯에서 m 번째 송신 안테나(112)를 통해 송신될 수 있다. 또한, m=1,..., M일 때, 모든 송신 안테나(m)(112)에 대해 서, 독립 신호 x(m)은 각 송신 안테나에 의해 송신될 수 있다. 이러한 예에서, 송신 안테나(112) 당 평균 송신 전력은
Figure 112009066066175-PCT00010
일 수 있다. 예컨대,
Figure 112009066066175-PCT00011
일 수 있다. 이 때문에, 전송 안테나(112)의 합쳐진 송신 전력은 1이라는 것이 확실하다. 이 예에서, 기지국(110)의 m 번째 송신 안테나(112)로부터 k 번째 수신 사용자(120 및/또는 130)의 n 번째 수신 안테나(122 및/또는 132)에 의해 수신되는 신호는 다음의 수학식과 같이 표현될 수 있다.
Figure 112009066066175-PCT00012
신호 x(m)을 k 번째 수신 사용자(120 및/또는 130)에 대한 원하는 신호라고 가정하고,
Figure 112009066066175-PCT00013
일 때, 다른 신호
Figure 112009066066175-PCT00014
를 간섭이라고 하면, 수신된 신호 yk(n)의 순간 SINR은 다음의 수학식과 같이 표현될 수 있다.
Figure 112009066066175-PCT00015
여기서,
Figure 112009066066175-PCT00016
는 k 번째 수신 사용자(120 및/또는 130)의 다운링크 신호 대 잡음비(signal-to-noise ratio: SNR)이다.
MIMO 네트워크 내의 SINR 피드백에 기반한 다운링크 스케쥴링에 대한 기존의 접근법은 일반적으로 각 수신자(120 및/또는 130)의 각 수신 안테나(122 및/또는 132)를 개별의 가상 사용자로 여겼다. 따라서, 각각 N개의 수신 안테나를 가진 K명의 사용자를 가진 MIMO 시스템에 대해서, 이러한 접근법은 시스템이 NK 단일 안테나 수신자를 가진 것처럼 효과적으로 취급하였다. 각 가상 사용자에 대한 최대 SINR을 달성하는 송신 안테나의 인덱스(index) m과 함께 이러한 가상 사용자 각각의 최대 SINR의 피드백에 기반하여, 기지국은 M개의 독립 신호를 M명의 가상 사용자에게 최고 SINR로 동시에 송신할 수 있다. 이러한 접근법을 통해 달성된 최대 처리율 R은 다음의 수학식에 의해 경계지워 질 수 있다.
Figure 112009066066175-PCT00017
여기서, St={1,..., M}, Sr={1,..., N}, Su={1,..., K}이다. 제공된 점근적(asymptotic) 분석은 이러한 접근법의 달성 가능한 처리율이 K가 무한대로 갈 때, M loglog(NK)임을 보여준다. 하지만 이러한 및/또는 다른 비슷한 기존의 접근법은 KN개의 SINR 값의 피드백을 요구하고, 피드백 로드가 수신 안테나의 수가 증가함에 따라 증가한다.
이러한 기존의 접근법과 대조적으로, 시스템(100)은 단지 K개의 실수 SINR 값의 피드백에 기반한 MIMO 다운링크 스케쥴링을 용이하게 할 수 있는 스케쥴링 컴포넌트(114)를 포함할 수 있다. 일 예에서, 스케쥴링 컴포넌트(114)는, 일반적으로 기존의 제한된 피드백 스케쥴링 알고리즘과 관련되는 처리율의 손실을 일으킴 없 이, 유한 레이트 피드백을 가진 시스템을 위한 다운링크 MIMO 스케쥴링을 용이하게 할 수 있다. 일 측면에 따르면 스케쥴링 컴포넌트는, 사용자(120 및/또는 130)에 의해 수신되는 피드백에 적어도 부분적으로 기반하여 각 수신 사용자(120 및/또는 130)로의 송신 안테나(112)의 하나 이상의 신호의 송신을 스케쥴링할 수 있다. 도 1에서 스케쥴링 컴포넌트(114)가 기지국(110) 내에 위치한 것처럼 도시되었지만, 스케쥴링 컴포넌트(114)는 스케쥴링 컴포넌트(114)가 송신 안테나(112)와 관련되어 동작할 수 있고 사용자(120 및/또는 130)로부터 피드백을 수신할 수 있도록 하는 통신 시스템(100) 내의 어느 곳이든 위치할 수 있음이 인식되어야 한다.
일 측면에 따르면, 스케쥴링 컴포넌트(114)는, 하나 이상의 사용자(120 및/또는 130)로부터의 풀 SINR 피드백에 기반한 MIMO 다운링크 전송을 위한 다중 사용자 스케쥴링 알고리즘을 실행하기 위해 동작할 수 있다. 일 예에서, 시스템(100)에 의해 실행될 수 있는 풀 피드백 스케쥴링 알고리즘은, 제1 단계에서 사용자(120 및/또는 130)에 의해 피드백이 생성 및 송신되고, 뒤이어 제2 단계에서 기지국(110)에서 스케쥴링하는 두 단계 과정으로 실행될 수 있다.
상기 알고리즘의 제1 단계에서 수행되는 피드백 생성 및 전송은 도 2의 예시적인 시스템(200)의 컨텍스트(context)에 도시된다. 시스템(200)이 도시한 바와 같이, 시스템(200) 내의 k(k=1,..., K)로 표시되는 사용자(220)는, 최대 SINR Bk(226)을 얻기 위해, 먼저
Figure 112009066066175-PCT00018
로 표시되는 그들의 각각 최적의(most favorable) 송신 안테나(222) 및
Figure 112009066066175-PCT00019
로 표시되는 그들의 각각 최적의 수 신 안테나(224)를 선택할 수 있다. 일 예에서, 사용자(220)에 대한 최대 SINR(226)은 다음의 수학식과 같이 표현될 수 있다.
Figure 112009066066175-PCT00020
사용자(220)가 파라미터(222 내지 226)를 생성하면, 최대 SINR(Bk)(226) 및 최적의 송신 안테나 인덱스
Figure 112009066066175-PCT00021
(222)는 사용자(220)에 의해 스케쥴링을 위해 서비스하는 기지국(210)으로 보내질 수 있다. 시스템(200)은 간결성을 위해 단일 사용자(220)에서의 파라미터(222 내지 226)의 생성 및 통신이 도시되었지만, 도 2에 의해 도시된 동작은 통신 시스템과 관련된 임의의 수의 사용자에 의해 수행될 수 있다는 것이 인식되어야 한다.
송신 안테나 인덱스 및 SINR 값이 하나 이상의 사용자로부터 기지국에 수신되면, 도 3은 예시적인 스케쥴링 컴포넌트(300)의 컨텍스트 내에 상기 알고리즘의 제2 단계에서 수행되는 스케쥴링을 도시한다. 예시적인 스케쥴링 컴포넌트(300)는 관련 통신 시스템 내에서 예를 들면, 기지국[예컨대, 기지국(110)]에서, 다른 적합한 네트워크 엔티티에서, 및/또는 독립한 컴포넌트로서 실행될 수 있다는 것이 인식되어야 한다. 일 예에서, 스케쥴링 컴포넌트(300)에 의해 스케쥴링되는 각 전송 안테나에 대해서, 스케쥴링 컴포넌트(300)는 각 전송 안테나의 인덱스를 제공한 각 사용자들을 상응하는 그룹(315)으로 모으는 그룹화 컴포넌트(310) 및/또는 다른 적절한 컴포넌트를 채용할 수 있다. 예컨대, 그룹화 컴포넌트(310)는 인덱스
Figure 112009066066175-PCT00022
=m, (m=1,..., M)를 제공하는 사용자들을 다음과 같은 세트 Im으로 그룹화할 수 있다.
Figure 112009066066175-PCT00023
생성된 그룹(315)에 기반하여, 스케쥴링 컴포넌트(300)의 선택 컴포넌트(320) 및/또는 다른 적절한 컴포넌트는 다음의 수학식과 같은 제한에 기반하여 km *(m=1,..., M)으로 표시될 수 있는 최적의 M명의 사용자(325)를 선택할 수 있다.
Figure 112009066066175-PCT00024
스케쥴링이 모든 m=1,..., M에 대하여 최적 사용자 km *를 선택함에 의해 실행되면, 송신이 도 4의 시스템(400)에 의해 도시된 바와 같이 결정된 스케쥴에 기반하여 수행될 수 있다. 시스템(400)에 도시한 바와 같이, 기지국(410)의 스케쥴링 컴포넌트(412)는 각 송신 안테나(414)에 대해 결정된 최적의 사용자 km *를 제공할 수 있다. 이러한 정보에 기반하여, 송신 안테나(412)는 각 선택된 사용자(420 및/또는 430)와 신호 x(m)을 송신하는데 사용될 수 있다. 사용자(420 및/또는 430)에서, 기지국(410)에 의해 송신된 신호가 최적의 수신 안테나
Figure 112009066066175-PCT00025
(422 및/또는 432)에 수신될 수 있다. 각 사용자(420 및/또는 430)에 대한 최적의 수신 안테나
Figure 112009066066175-PCT00026
(422 및/또는 432)는 예컨대, 도 2와 관련하여 상기 기술된 바와 같이 결정될 수 있다. 이러한 예에서, 수신 안테나 선택이 각 사용자(420 및/또는 430)에서 수행되므로, 각 타임 슬롯에서의 총 피드백 로드는,
Figure 112009066066175-PCT00027
가 x보다 큰 최소 정수를 나타낼 때, 모든 k에 대하여, K개의 실수 값 {B1,..., Bk} 더하기
Figure 112009066066175-PCT00028
Figure 112009066066175-PCT00029
비트로 여겨질 수 있다.
일 측면에 따르면, 레일리(Rayleigh) 페이딩 채널에 걸친 도 2 내지 도 4에 의해 도시된 풀 피드백 스케쥴링 알고리즘의 평균 달성 가능한 처리율은 다음과 같이 얻어질 수 있다. 가우시안 코드 및 수신자에서 디코딩된 최소 거리 하에서, SINR 피드백을 가진 스케쥴링의 순간 합 레이트는 다음의 수학식에 의해 표현될 수 있다.
Figure 112009066066175-PCT00030
여기서,
Figure 112009066066175-PCT00031
는 m 번째 전송 안테나에 의해 스케쥴링된 사용자 km *의 SINR이고,
Figure 112009066066175-PCT00032
은 사용자 km *에 의해 선택된 수신 안테나이다. 이러한 표현에 기반하여, 다음의 수학식이 진술될 수 있다.
Figure 112009066066175-PCT00033
Figure 112009066066175-PCT00034
여기서, 수학식 10에서 모든 l=1,..., NK 및 j=1,..., M-1에 대하여
Figure 112009066066175-PCT00035
이다. 모든 n, m 및 k에 대한 i.i.d. 파라미터 hk(n,m)에 있어서 임의의 k 및 m에 대해
Figure 112009066066175-PCT00036
이므로,
Figure 112009066066175-PCT00037
는 K/M에 접근함을 알 수 있다. 따라서, 스케쥴링된 사용자의 SINR이 수학식 9의 마지막 단계에 보여진 바와 같이
Figure 112009066066175-PCT00038
의 후보들로부터 선택되는 것으로 볼 수 있다.
더불어, 파라미터 Zl가 i.i.d.이므로, 수학식10은,
Figure 112009066066175-PCT00039
Figure 112009066066175-PCT00040
일 때, 모든 동일한
Figure 112009066066175-PCT00041
에 대하여
Figure 112009066066175-PCT00042
로 다시 쓰여질 수 있다. 따라서, Z의 확률 밀도 함수(probability density function: PDF) 및 누적 분포 함수(cumulative distribution function: CDF)는 다음의 수학식과 같이 주어질 수 있다.
Figure 112009066066175-PCT00043
Figure 112009066066175-PCT00044
이어서, 다음의 수학식이 얻어질 수 있다.
Figure 112009066066175-PCT00045
Figure 112009066066175-PCT00046
이러한 수학식에 기반하고 수학식 8 및 수학식 9를 이용함으로써, 레일리 페이딩 채널을 거쳐 평균된, 도 2 내지 도 4에 의해 도시된 스케쥴링 알고리즘에 따른 시스템 처리율은 다음의 수학식에 의해 주어질 수 있다.
Figure 112009066066175-PCT00047
여기서
Figure 112009066066175-PCT00048
는 U의 PDF이다. 순서 통계(order statistics)를 사용하면, 수학식 14로부터 모든 동일한
Figure 112009066066175-PCT00049
에 대하여 다음과 같은 수학식이 얻어질 수 있다.
Figure 112009066066175-PCT00050
따라서, 레일리 페이딩 채널을 거쳐 평균된, 도 2 내지 도 4에 의해 도시된 MIMO 다운링크 스케쥴링의 달성 가능한 처리율은 다음의 수학식과 같이 표시될 수 있다.
Figure 112009066066175-PCT00051
또한, 시스템 처리율의 수치 근사(numerical approximation)가 수학식 11 및 수학식 12를 수학식 17에 대입함으로써 구해질 수 있다는 것이 인식될 수 있다.
종래의 스케쥴링 접근법 하에서, N > 1 일때, 각 수신 안테나는 개별 사용자로서 고려된다. 그렇게 함으로써, K명의 사용자를 가진 M x N 시스템은
Figure 112009066066175-PCT00052
Figure 112009066066175-PCT00053
일 때,
Figure 112009066066175-PCT00054
명의 사용자를 가진
Figure 112009066066175-PCT00055
시스템으로 효과적으로 변환될 수 있다. 각 사용자들이 단일 수신 안테나만을 가질 경우, 수학식 15는 또한
Figure 112009066066175-PCT00056
Figure 112009066066175-PCT00057
에 대해 이러한 및/또는 비슷한 종래의 접근법의 수행을 평가하는데 사용될 수 있다. 그렇게 함으로써, 다음의 수학식이 얻어질 수 있다.
Figure 112009066066175-PCT00058
수학식 18의 우단과 비교되는 수학식 17의 우단을 관찰함으로써, 두 수학식이 동일하다는 것이 관찰될 수 있다. 따라서, 도 2 내지 도 4에 의해 도시된 스케쥴링 알고리즘은 종래의 스케쥴링 접근법과 비교해서 수행 손실을 일으키지 않는다는 것이 인식될 수 있다.
다른 측면에 따르면, 시스템(100)의 스케쥴링 컴포넌트(114)는 하나 이상의 사용자(120 및/또는 130)로부터의 양자화된 SINR 피드백에 기반한 스케쥴링 알고리즘을 이용할 수 있다. 일 예에서, 시스템(100)에 의해 실행되는 양자화된 피드백 스케쥴링 알고리즘은 제1 단계에서 사용자(120 및/또는 130)에 의해 양자화된 피드백이 생성 및 송신되고, 뒤이어 제2 단계에서 기지국(110)에서 스케쥴링하는 두 단계 과정으로 실행될 수 있다.
상기 양자화된 피드백 알고리즘의 제1 단계에서의 양자화된 피드백 생성 및 전송은 도 5의 예시적인 시스템(500)의 컨텍스트(context)에 도시된다. 시스템(500)이 도시한 바와 같이, 시스템(500) 내의 k(k=1,..., K)로 표시되는 사용 자(520) 단말기는, 최대 SINR Bk(526)을 얻기 위해, 먼저 최적의 송신 안테나
Figure 112009066066175-PCT00059
의 각 인덱스(522) 및 최적의 수신 안테나
Figure 112009066066175-PCT00060
의 각 인덱스(524)를 선택할 수 있다. 일 예에서, 사용자(520)에 대한 최대 SINR(526)은 상기의 수학식 5와 같이 표현될 수 있다. 실수 값의 최대 SINR Bk(526)의 확인에 이어서, 사용자 단말기는 레벨
Figure 112009066066175-PCT00061
의 미리 결정된 수 중의 하나로 Bk를 양자화해서 양자화된 최대 SINR(532)를 생성하기 위하여 양자화 컴포넌트(530) 및/또는 다른 적절한 컴포넌트를 채용할 수 있다. 일 예에서, 양자화 컴포넌트(530)에 의해 이용되는 양자화 레벨은 다음의 수학식과 같이 표시될 수 있다.
Figure 112009066066175-PCT00062
일 예에서, Q(Bk)를 위해 사용되는 레벨 L의 수는, 적어도 부분적으로, 값 Bk를 표시하도록 요구되는 비트의 수 b에 의해 예컨대, L=2b에 기반하여 결정될 수 있다. 사용자(520)가 Tx 안테나 인덱스(522) 및 양자화된 최대 SINR(532)를 생성하면, 이러한 및/또는 다른 파라미터는 스케쥴링을 위해 기지국 또는 접속점(510)으로 송신될 수 있다. 시스템(500)은 간결성을 위해 단일 사용자(520)에서의 피드백 파라미터의 생성 및 통신이 도시되었지만, 도 5에 의해 도시된 동작은 통신 시스템 과 관련된 임의의 수의 사용자에 의해 수행될 수 있다는 것이 인식되어야 한다.
송신 안테나 인덱스 및 양자화된 SINR 값이 하나 이상의 사용자로부터 기지국에 수신되면, 도 6은 상기 양자화된 피드백 알고리즘의 제2 단계에서 스케쥴링 컴포넌트(600)에 의해 수행되는 예시적인 스케쥴링을 도시한다. 예시적인 스케쥴링 컴포넌트(600)는 관련 통신 시스템 내에서 예를 들면, 기지국[예컨대, 기지국(110)]에서, 다른 적합한 네트워크 엔티티에서, 및/또는 독립한 컴포넌트로서 실행될 수 있다는 것이 인식되어야 한다. 일 예에서, 스케쥴링 컴포넌트(600)에 의해 스케쥴링되는 각 전송 안테나에 대해서, 스케쥴링 컴포넌트(600)는 각 전송 안테나의 인덱스를 제공하는 각 사용자들을 상응하는 사용자 세트(615)로 모으는 그룹화 컴포넌트(610) 및/또는 다른 적절한 컴포넌트를 채용할 수 있다. 예컨대, 그룹화 컴포넌트(610)는 인덱스
Figure 112009066066175-PCT00063
=m, (m=1,..., M)를 제공하는 사용자들을 상기 수학식 6에 의해 제공되는 바와 같이 세트 Im으로 그룹화할 수 있다. 이렇게 생성된 사용자 세트(615)로부터, 스케쥴링 컴포넌트(600)의 세트 리파이닝 컴포넌트(620) 및/또는 다른 적절한 컴포넌트는 또한, 모든
Figure 112009066066175-PCT00064
에 대해 최대 qk를 얻는 각 개별 전송 안테나에 대한 사용자 세트(615) 내의 사용자를 최적 사용자 세트 Jm(625)으로 모을 수 있다. 이러한 최적 세트 Jm은 다음의 수학식과 같이 표시될 수 있다.
Figure 112009066066175-PCT00065
수학식 20으로부터,
Figure 112009066066175-PCT00066
이므로,
Figure 112009066066175-PCT00067
임을 인식할 수 있다. 최적 사용자 세트(625)로부터, 랜덤(random) 선택 컴포넌트(630) 및/또는 다른 적절한 컴포넌트는 다음의 수학식과 같이 세트 Jm으로부터 사용자를 무작위로 선택함으로써 m 번째 전송 안테나를 사용자 km *으로 할당할 수 있다.
Figure 112009066066175-PCT00068
스케쥴링이 모든 m=1,..., M에 대하여 최적 사용자 km *를 선택함에 의해 실행되면, 송신이 도 4의 시스템(400)에 의해 도시된 바와 같은 풀 피드백 스케쥴링에 대해 상기 기술된 것과 비슷한 방법으로 결정된 스케쥴에 기반하여 수행될 수 있다.
일 측면에 따르면, 도 5 내지 도 6에 의해 도시된 양자화된 피드백 스케쥴링 알고리즘의 달성 가능한 처리율은 다음과 같이 얻어질 수 있다. 먼저, 도 5 내지 도 6에 의해 도시된 양자화된 피드백 스케쥴링 기술에 의해 얻어진 순간 합 레이트는 다음의 수학식에 의해 주어질 수 있다는 것을 알 수 있다.
Figure 112009066066175-PCT00069
여기서,
Figure 112009066066175-PCT00070
은 세트
Figure 112009066066175-PCT00071
으로부터 요소의 무작위 선택을 나타내고, Bk는 수학식 5에 의해 주어진 SINR에 대한 표현에 상응한다. 계산을 간략화하기 위해,
Figure 112009066066175-PCT00072
은 간단히 V로 표시될 수 있다. 따라서, 양자화된 피드백 스케쥴링에 의해 얻어지는 평균 총 처리율은 다음의 수학식과 같이 주어질 수 있다.
Figure 112009066066175-PCT00073
Figure 112009066066175-PCT00074
는 V의 PDF를 나타낸다.
다음으로,
Figure 112009066066175-PCT00075
가 V 및
Figure 112009066066175-PCT00076
의 CDF를 나타내는데 사용된다면, 많은 수의 사용자에 대해, 임의의 k 및 m에 대해
Figure 112009066066175-PCT00077
이므로 세트 Im의 카디널리티는 모든 m에 대해
Figure 112009066066175-PCT00078
와 같다.
Figure 112009066066175-PCT00079
이고
Figure 112009066066175-PCT00080
인 i=0,1,..., L-1에 대한 범위
Figure 112009066066175-PCT00081
를 나타내는데 Ai를 사용함으로써, CDF
Figure 112009066066175-PCT00082
는 다음과 같은 적어도 두 경우를 위해 얻어질 수 있다.
일 예에서, 이러한 첫 번째 경우는
Figure 112009066066175-PCT00083
일 때 발생할 수 있다. 이러한 경우, 스케쥴링된 사용자의 최대 SINR Bk는 범위 A0 내에 있다는 것이 인식될 수 있다. 따라서, 모든
Figure 112009066066175-PCT00084
에 대한 Bk도 또한 범위 A0 내에 있다는 것이 더 인식될 수 있다. 그 결과, V의 CDF는 다음의 수학식과 같이 표시될 수 있다.
Figure 112009066066175-PCT00085
Figure 112009066066175-PCT00086
는 B의 CDF를 나타낸다.
부가적으로 및/또는 선택적으로, 두 번째 경우는 i=1,..., L-1에 대해
Figure 112009066066175-PCT00087
일 때 발생할 수 있다. 이러한 경우, 스케쥴링된 사용자의 최대 SINR Bk는 범위 Ai 내에 있다는 것이 인식될 수 있다. 게다가, 이러한 경우에 임의의 주어진
Figure 112009066066175-PCT00088
에 대하여 영역 Ai 내에서 Bk를 가진 (r-1)명의 다른 사용자가 존재한다는 것이 추정될 수 있다. 일 측면에 따르면, 스케쥴링된 사용자는 사용자의 세트를 위한 Bk의 값을 최대화하므로, 스케쥴링된 사용자가 선택된다. 따라서, 남은
Figure 112009066066175-PCT00089
명의 사용자의 Bk
Figure 112009066066175-PCT00090
보다 반드시 작다는 것이 추정될 수 있다. 이러한 관찰의 측면에서, V의 CDF는
Figure 112009066066175-PCT00091
에 대하여 다음의 수학식과 같이 표시될 수 있다.
Figure 112009066066175-PCT00092
결과적으로, 상응하는 PDF
Figure 112009066066175-PCT00093
는 다음의 수학식에 의해 주어질 수 있다.
Figure 112009066066175-PCT00094
여기서,
Figure 112009066066175-PCT00095
이고
Figure 112009066066175-PCT00096
이다. 일 예에서, PDF
Figure 112009066066175-PCT00097
및 CDF
Figure 112009066066175-PCT00098
는 각각 수학식 11 및 수학식 12로 주어진다. 또한 수학식 26을 수학식 23에 대입함으로써, 도 5 내지 도 6에 의해 도시된 바와 같은 양자화된 피드백 스케쥴링의 달성 가능한 처리율의 수치 근사가 얻어질 수 있다.
특정의, 한정되지 아니하는 예로서, 도 5 내지 도 6에 의해 도시된 양자화된 피드백 스케쥴링은 1 비트 양자화에 기반할 수 있다. 이러한 1비트 양자화의 예에서, 하나 이상의 사용자는 임계값
Figure 112009066066175-PCT00099
에 따라 스케쥴링 컴포넌트에 0 또는 1의 양자화된 값을 제공하여 최소 피드백 로드를 획득할 수 있다. 예로서, 1 비트 양자화에 있어서, 수학식 26은 다음의 수학식과 같이 다시 쓰여질 수 있다.
Figure 112009066066175-PCT00100
그 결과, 평균 달성 가능한 시스템 처리율은 수학식 23을 적용하여 다음의 수학식과 같이 계산될 수 있다.
Figure 112009066066175-PCT00101
일 예에서, 수학식 28은
Figure 112009066066175-PCT00102
일 때,
Figure 112009066066175-PCT00103
Figure 112009066066175-PCT00104
로부터 구해지는 근사를 레버리지(leverage)할 수 있다. 수학식 28에 기반하여, PDF
Figure 112009066066175-PCT00105
및 CDF
Figure 112009066066175-PCT00106
는 각각 수학식 11 및 수학식 12로 주어진다.
K가 무한대로 가면(예컨대,
Figure 112009066066175-PCT00107
인 동안), 고정된 값
Figure 112009066066175-PCT00108
에 대해
Figure 112009066066175-PCT00109
이라는 것을 상기로부터 알 수 있다. 따라서 수학식 28의 처리율은 다음의 수학식과 같이 구해질 수 있다.
Figure 112009066066175-PCT00110
수학식 29에 보인 바와 같이, 사용자의 수 K가 무한대로 갈 때 총 레이트가 K에 의존하지 않으므로 다중 사용자 다양성은 임의의 고정된
Figure 112009066066175-PCT00111
에 대해 상실될 수 있다.
또한,
Figure 112009066066175-PCT00112
일 때, 도 5 내지 도 6에 의해 도시된 양자화된 피드백 스케쥴링은, 단일 사용자가 모든 사용자로부터 무작위로 스케쥴링되거나 다중 사용자가 하나씩 순환하여 스케쥴링되는 라운드 로빈(Round-Robin) 스케쥴링과 동등한 것으로 여겨질 수 있다. 일 예에서, 이러한 경우의 처리율은 수학식 28로부터 다음의 수학식과 같이 구해질 수 있다.
Figure 112009066066175-PCT00113
수학식 30에 나타난 바와 같이, 다중 사용자 다양성은 라운드 로빈 스케쥴링 과 비슷한 방법에서
Figure 112009066066175-PCT00114
일 때 상실될 수 있다.
이제 도 7 내지 도 8을 참조하면, 본 명세서에 기술된 여러 가지 측면에 따라 구현될 수 있는 방법론이 도시된다. 설명의 간략화의 목적을 위해, 방법론은 일련의 블록으로 도시되고 기술되지만, 본 발명에 따르면 몇몇 블록은 상이한 순서로 및/또는 다른 블록과 동시에 발생할 수 있는 바와 같이, 본 발명이 블록의 순서에 의해 제한되지 않은 것으로 이해되고 인식되어야 한다. 게다가, 본 발명에 따른 방법론을 구현하기 위해 도시된 블록이 모두 필요한 것은 아니다.
또한, 본 발명은 하나 이상의 컴포넌트에 의해 실행되는 프로그램 모듈(module)과 같은 컴퓨터 실행가능한 명령어의 일반적인 컨텍스트(context)로 기술될 수 있다. 일반적으로, 프로그램 모듈은 특정 태스크(task)를 실행하거나 특정의 추상적인 데이터 타입을 구현하는 루틴(routine), 프로그램, 객체(object), 데이터 구조 등을 포함한다. 일반적으로 프로그램 모듈의 기능성은 여러 가지 실시예에서 원하는 바에 따라 조합되거나 분할될 수 있다. 또한, 인식될 수 있는 바와 같이 상기 개시된 시스템 및 하기 방법의 여러 가지 부분은 인공 지능 또는 지식 또는 법칙 기반 컴포넌트, 서브컴포넌트, 프로세스, 수단, 방법론 또는 메커니즘[예컨대, 서포트 벡터 머신(support vector machine), 신경 네트워크(neural network), 전문가 시스템(expert system), 베이지안 신뢰 네트워크(Bayesian belief network), 퍼지 이론(fuzzy logic), 데이터 퓨전 엔진(data fusion engine), 분류기(classifier)...]을 포함하거나 그것들로 구성할 수 있다. 이러한 컴포넌트는 특히 수행되는 특정 메커니즘 또는 프로세스를 자동화할 수 있어서, 시스템 및 방법의 일부를 보다 효율적이고 지적이게 할 뿐 아니라 보다 적응적이 되도록 한다.
도 7을 참조하면, 무선 통신 시스템[예컨대, 시스템(100)]에서 다중 사용자를 스케쥴링하기 위한 방법(700)이 도시된다. 단계(702)에서, 각 사용자 단말기[예컨대, 사용자(220)]에 의해 제공되는 송신 안테나 인덱스[예컨대, 최적의 Tx 안테나 인덱스(222)] 및 최대 신호 품질 지시기(indicator)[예컨대, 최대 SINR 값(226)]가 [예컨대, 기지국(210)에서] 인식된다. 단계(704)에서, 단계(702)에서 송신 안테나 인덱스 및 최대 신호 품질 지시기가 인식된 사용자 단말기가 [예컨대, 스케쥴링 컴포넌트(300)의 그룹화 컴포넌트(310)에 의해] 송신 안테나 인덱스에 의해 각 세트[예컨대, 세트(315)]로 그룹화된다. 단계(706)에서, 사용자 단말기의 각 세트 내의 사용자 단말기 중에 최고의 지시된 최대 신호 품질을 가진, 단계(704)에서 생성된 각 세트 내의 사용자 단말기[예컨대, 최적의 사용자(325)]가 [예컨대, 선택 컴포넌트(320)에 의해] 선택된다. 단계(708)에서, 사용자 단말기에 의해 인덱스로 주어진 송신 안테나[예컨대, Tx 안테나(414)]를 통해 정보가 단계(706)에서 선택된 사용자 단말기로 송신된다.
도 8을 참조하면, 양자화된 사용자 피드백에 기반하여 무선 통신 시스템 내에서의 통신을 위해 다중 사용자를 스케쥴링하기 위한 방법(800)이 도시된다. 단계(802)에서, 각 사용자[예컨대, 사용자 단말기(520)]에 의해 제공되는 송신 안테 나 인덱스[예컨대, Tx 안테나 인덱스(522)] 및 양자화된 신호 품질 지시기[예컨대, 양자화된 최대 SINR 값(532)]가 [예컨대, 접속점(510)에서] 인식된다. 단계(804)에서, 단계(802)에서 송신 안테나 인덱스 및 양자화된 신호 품질 지시기가 인식된 사용자가 [예컨대, 스케쥴링 컴포넌트(600)의 그룹화 컴포넌트(610)에 의해] 송신 안테나 인덱스에 의해 각 세트[예컨대, 세트(615)]로 그룹화된다. 단계(806)에서, 사용자의 각 세트 내에 최고의 양자화된 신호 품질 지시기를 가진, 단계(804)에서 생성된 각 세트 내의 사용자로부터 [예컨대, 세트 리파이닝 컴포넌트(620)에 의해 제공되는 최적의 사용자 리스트(625)에서 제공되는 사용자로부터] 사용자가 [예컨대, 랜덤 선택 컴포넌트(630)에 의해] 무작위로 선택된다. 단계(708)에서, 선택된 사용자에 의해 인덱스로 주어진 송신 안테나를 통해 정보가 단계(706)에서 선택된 사용자로 송신된다.
도 9로 넘어와서, 본 명세서에 기술된 여러 가지 측면이 실행될 수 있는 대표적인 한정되지 아니하는 컴퓨팅 시스템 또는 동작 환경이 도시된다. 핸드헬드(handheld), 휴대용 및 다른 컴퓨팅 장치 및 모든 종류의 컴퓨팅 객체가 예컨대, 통신 시스템이 바람직하게 구성될 수 있는 어떤 곳에서든지 본 발명과 관련된 사용을 위해 고려될 수 있음을 당업자는 인식할 수 있다. 따라서, 도 9에서 아래에 기술된 아래의 범용 원격 컴퓨터는 본 발명이 실행될 수 있는 컴퓨팅 시스템의 한 예일 뿐이다.
요구되지 않았지만, 본 발명은 장치 또는 객체를 위한 서비스의 개발자에 의 해 사용되는 작동 시스템을 통해 부분적으로 실행될 수 있고/거나, 본 발명의 하나 이상의 컴포넌트와 관련되어 실행하는 어플리케이션 소프트웨어 내에 포함될 수 있다. 소프트웨어는 하나 이상의 클라이언트 워크스테이션, 서버, 또는 다른 장치와 같은, 컴퓨터에 의해 실행되는 프로그램 모듈과 같은, 컴퓨터에서 실행 가능한 지시의 일반적인 컨텍스트에서 설명될 수 있다. 당업자는 본 발명이 다른 컴퓨터 시스템 구조 및 프로토콜로 실행될 수 있다는 것을 인식할 수 있다.
도 9는 본 발명이 실행될 수 있는 적합한 컴퓨팅 시스템 환경(900)의 일 실시 예를 설명하고, 앞서 명확히 설명하였으나, 상기 컴퓨팅 시스템 환경(900)은 매체 장치를 위한 적합한 컴퓨팅 환경의 일 예에 불과하며, 본 발명의 사용 또는 기능의 범위에 대해서 어떠한 제한도 제시하지 않는다. 또한 상기 컴퓨팅 환경(900)은 본 발명 및 예시적인 작동 환경(900)에서 설명되는 어떠한 컴포넌트 또는 조합과 관련하여 어떠한 의존 또는 요청을 제시하지 않는다.
도 9를 참조하면, 본 명세서에서 설명된 다양한 면을 실행하기 위한 원격 컴퓨터의 예는 컴퓨터(910) 형태의 범용 컴퓨터 장치를 포함한다. 컴퓨터(910)의 컴포넌트는 처리장치(920), 시스템 메모리(930) 및 시스템 메모리를 포함하는 다양한 시스템 컴포넌트들을 상기 처리 장치(920)로 연결하는 시스템 버스(921)를 포함하나, 이에 한정되지 않는다. 상기 시스템 버스(921)는 다양한 버스 구조의 어떠한 형태도 사용하는 메모리 버스 또는 메모리 제어기, 주변 장치 버스 및 로컬 버스를 포함하는 버스 구조의 다양한 형태가 될 수 있다.
컴퓨터(910)는 컴퓨터에서 판독 가능한 다양한 매체를 포함할 수 있다. 컴퓨 터에서 판독 가능한 매체는 컴퓨터(910)에 의해 접근될 수 있는, 임의의 이용 가능한 매체일 수 있다. 한정되지 아니하는 예로서, 컴퓨터로 판독 가능한 매체는 컴퓨터 저장 매체 및 통신 매체를 포함할 수 있다. 컴퓨터 저장 매체는 컴퓨터로 판독 가능한 명령어, 데이터 구조, 프로그램 모듈 또는 기타 데이터와 같은 정보의 저장을 위한 방법 또는 기법으로 구현된 착탈식 매체와 고정식 매체뿐 아니라, 휘발성 매체와 비휘발성 매체를 포함한다. 컴퓨터 저장 매체는, 램(RAM), 롬(ROM), 이이피롬(EEPROM), 플래시 메모리(flash memory) 또는 메모리 기술, 시디롬(CDROM), 디지털 다기능 디스크(Digital Versatile Disks: DVD) 또는 기타 광 디스크 저장소(optical disk storage) 또는 다른 자기 저장 장치, 또는 컴퓨터(910)에 의해 접근할 수 있고, 원하는 정보를 저장하기 위해 사용될 수 있는 다른 임의의 매체를 포함할 수 있으며, 이에 제한되는 것은 아니다. 통신 매체는, 반송파 또는 다른 전송 메커니즘과 같은 변조된 데이터 신호에, 컴퓨터로 판독 가능한 명령어, 데이터 구조, 프로그램 모듈 또는 다른 데이터를 포함할 수 있고, 임의의 적절한 정보 전달 매체(information delivery media)를 포함할 수 있다.
상기 시스템 메모리(930)는 ROM(Read Only Memory) 및/또는 RAM(Random Access Memory)와 같은 휘발성 및/또는 비휘발성 메모리의 형태의 컴퓨터 저장 매체를 포함할 수 있다. 기본 입출력 시스템(basic input/output system: BIOS)이 메모리(930)에 저장될 수 있고, BIOS는 스타트 업(start-up)과 같은 기간 동안, 컴퓨터(910) 내의 구성 요소(elements) 사이에서 정보를 전송하는 것을 도와주는 기본 루틴(basic routines)을 포함한다. 메모리(930)는 또한 즉시 접근 가능하고/거나 처리 장치(920)에 의해 즉시 처리되는 데이터 및/또는 프로그램 모듈을 포함할 수 있다. 비제한적인 예시로서, 이에 한정되지 않지만, 메모리(930)는 운영 체제, 어플리케이션 프로그램, 다른 프로그램 모듈 및 프로그램 데이터를 포함한다.
상기 컴퓨터(910)는 다른 제거 가능/제거 불가능, 휘발성/비휘발성의 컴퓨터 저장 매체를 포함할 수 있다. 예를 들어, 컴퓨터(910)는 제거 불가능하고, 비휘발성인 자기 매체로부터 읽거나 쓸 수 있는 하드 디스크, 제거 가능하고 비휘발성인 자기 디스크로부터 읽거나 쓸 수 있는 자기 디스크, CD-ROM 또는 다른 광 매체와 같이 제거가능하고, 비휘발성인 광 디스크로부터 읽거나 쓸 수 있는 광 디스크를 포함할 수 있다. 대표적인 작동 환경에서 사용될 수 있는 다른 제거 가능/제거 불가능, 휘발성/비휘발성인 컴퓨터 저장 매체는, 자기 테이프 카세트, 플래시 메모리 카드, 디지털 다기능 디스크(digital versatile disk), 디지털 비디오 테이프, 고체 RAM(solid state RAM), 고체 ROM(solid state ROM) 등을 포함할 수 있으나 이에 제한되는 것은 아니다. 하드 디스크 드라이브는 일반적으로 인터페이스와 같은 제거 불가능한 메모리 인터페이스를 통해 상기 시스템 버스(921)로 연결되고, 자기 디스크 드라이브 또는 광 디스크 드라이브는 일반적으로 인터페이스와 같은 제거 가능한 메모리 인터페이스에 의해 상기 시스템 버스(921)로 연결된다.
사용자는 키보드, 마우스와 같은 포인팅 장치(pointing device), 트랙볼(trackball) 또는 터치 패드와 같은 입력 장치를 통해 상기 컴퓨터(910)로 명령 및 정보를 입력한다. 다른 입력 장치는 마이크로폰, 조이스틱(joystick), 게임 패드(game pad), 위성 접시(satellite dish), 스캐너 등을 포함한다. 상기 및 다른 입력 장치는 보통 사용자 입력(940)을 통해 처리 장치(920)와 연결되고, 상기 시스템 버스(921)로 연결되는 인터페이스(들)과 접속되며, 병렬 포트, 게임 포트 또는 USB(Universal Serial Bus)와 같은 다른 인터페이스 및 버스 구조로 인해서 연결될 수 있다. 그래픽 보조 시스템은 상기 시스템 버스(921)와 연결될 수 있다. 모니터 또는 다른 형태의 디스플레이 장치도 비디오 메모리로 통신하도록 할 수 있는, 출력 인터페이스(950)과 같은 인터페이스를 경유하여 상기 시스템 버스(921)에 연결될 수 있다. 상기 모니터에 부가하여, 컴퓨터는 스피커, 프린터와 같은 출력 인터페이스(950)를 통해 연결되는 다른 출력 주변 장치를 포함할 수 있다.
상기 컴퓨터(910)는 장치(910)와 다른 매체 기능을 차례로 가질 수 있는 원격 컴퓨터(970)와 같은, 하나 이상의 원격 컴퓨터에 논리 연결을 사용하는 네트워크 접속되거나 분산 환경에서 작동할 수 있다. 상기 원격 컴퓨터(970)는 개인 컴퓨터, 서버, 라우터, 네트워크 PC, 단(peer) 장치 또는 다른 일반 네트워크 노드, 및/또는 어떤 다른 원격 매체 소비자 또는 전송 장치가 될 수 있고, 상기 컴퓨터(910)와 관련되는 위에서 설명된 어떤 또는 모든 요소들을 포함할 수 있다. 상기 논리 연결은 도 9에서 설명된 바와 같이, LAN(Local Area Network) 또는 WAN(Wide Area Network)와 같은 네트워크(971)를 포함하지만, 또한 다른 네트워크/버스를 포함할 수 있다. 상기 네트워크 환경은 집(home), 사무소(office), 전사적 컴퓨터 네트워크(enterprise-wide network), 인트라넷(intranet) 및 인터넷의 일상이다.
LAN 네트워크 환경에서 사용될 때, 상기 컴퓨터(910)는 네트워크 인터페이스 또는 어댑터를 통해 상기 LAN(971)으로 연결된다. WAN 네트워크 환경에서 사용될 때, 상기 컴퓨터(910)는 일반적으로, 모뎀과 같은 통신 컴포넌트 또는 인터넷과 같은 WAN에 걸쳐 통신을 수행하기 위한 다른 수단을 포함한다. 내부 또는 외부에 존재하는 모뎀과 같은 통신 컴포넌트는 입력(940)의 사용자 입력 인터페이스 및/또는 다른 적절한 메커니즘을 경유하여 상기 시스템 버스(921)와 연결될 수 있다. 네트워크 접속된 환경에서, 상기 컴퓨터(910)와 관련되어 묘사된 프로그램 모듈 또는 그에 의한 다른 부분들은 원격 메모리 저장 장치에 저장될 수 있다. 도시되거나 설명된 네트워크 연결은 대표적 예임이 명백하고, 컴퓨터 사이에서 연결 접속을 할 수 있는 다른 수단이 사용될 수 있다.
도 10으로 넘어가면, 본 발명이 실행될 수 있는 네트워크 환경의 개요가 도시된다. 전술한 시스템 및 방법론은 어떤 무선 통신 네트워크에도 적용될 수 있다. 그러나, 아래의 실시예의 설명은 상기 시스템 및 방법을 위한 비제한적인 작동 시스템이다. 아래에서 설명되는 작업 환경은 전부를 나열한 것은 아니며, 아래 설명되는 네트워크 구조는 단지 본 발명이 통합될 수 있는 네트워크 구조의 하나를 보여줄 뿐이다. 하지만, 상기 발명은 통신 네트워크를 위해 지금 존재하거나, 미래의 대체적인 구조의 어디에도 통합될 수 있음이 명백하다.
도 10으로 돌아와서, 이동 통신의 글로벌 시스템(Global System for Mobile communication: GSM)의 다양한 예가 도시된다. GSM은 오늘날 빠르게 성장하는 통신 시스템에서 가장 널리 활용되는 무선 접근 시스템의 하나이다. GSM은 이동 단말기 또는 컴퓨터 사용자와 같은 신청자에게 회로 스위치화된 데이터 서비스를 제공한다. 제너럴 패킷 무선 서비스(GPRS)는 GSM 기술을 확장한 것으로, GSM 네트워크에 패킷 스위치를 도입한다. GPRS는 효율적인 방식으로 빠르고 고속 및 저속의 데이터 및 신호를 전송하기 위한 패킷 기반 무선 통신 기술을 사용한다. GPRS는 네트워크의 사용 및 무선 자원의 사용을 최적화하고, 패킷 모드 어플리케이션을 위한 GSM 네트워크 자원이 효과적이고 비용 효율적으로 사용되도록 한다.
당업자는, 상기 대표적인 GSM/GPRS 환경 및 기술된 서비스는 UMTS(Universal Mobile Telephone System), FDD(Frequency Division Duplexing), TDD(Time Division Duplexing), HSPDA(High Speed Packet Data Access), EVDO(cdma 2000 1x Evolution Data Optimized), cdma 2000 3x(Code Division Multiple Access-2000), TD-SCDMA(Time Division Synchronous Code Division Multiple Access), WCDMA(Wideband Code Division Multiple Access), EDGE(Enhanced Data GSM Environment), IMT-2000(International Mobile Telecommunications-2000), DECT(Digital Enhanced Cordless Telelcommuinication)등의 3세대 서비스뿐만 아니라, 미래에 사용 가능하도록 되는 다른 네트워크 서비스에 확장될 수 있음을 이해할 수 있다. 본 명세서에 기술된 시간 동기화 기술은 데이터 전송 방법에 독립적으로 적용될 수 있고, 어떤 특정 네트워크 구조나 잠재적인 프로토콜에 의존하지 않는다.
도 10은 본 발명이 실행될 수 있는 GPRS 네트워크와 같은 패킷 기반 이동 휴대 전화 네트워크 환경의 블록도을 표시한다. 상기 환경은, 복수의 기지국 서브 시스템(Base Station Subsystem; BSS)(1000)(하나만 도시됨)을 포함할 수 있고, 각각은 기지 송신국(Base Transceiver Station; BTS)(1004)과 같은 하나 이상의 기지 송신국을 지원하는 기지국 제어기(Base Station Controller; BSC)(1002)를 포함할 수 있다. 상기 BTS(1004)는 이동 가입 장치(1050)이 상기 무선 네트워크에 접속하게 되면, 접근점을 제공할 수 있다. 이동 가입 장치(1050) 및 BTS(1004) 사이의 연결을 위해, 위에서 설명된, 하나 이상의 시간 동기 기술이 이용될 수 있다.
일 예로, 상기 이동 가입자(1050)으로부터 생성되는 패킷 트래픽은 공중 인터페이스를 통해 BTS(1004)로 전송되고, BTS(1004)로부터 BSC(1002)로 전송된다. BSS(1000)와 같은 기지국 서브 시스템은 서비스 GPRS 지원 노드(Service GPRS Support Node; SGSN)(1012 및 1014)와 같은 서비스 GPRS 지원 노드를 포함할 수 있는 내부 프레임 중계 네트워크(1010)의 일부분이다. 각각의 SGSN은 내부 패킷 네트워크(1002)에 연결되며, 이를 통하여 SGSN(1012, 1014, 등)은 복수의 게이트웨이 GPRS 지원 노드(Gateway GPRS Support Node; GGSN)(1022, 1024, 1026 등)로 데이터 패킷을 전송하거나 전송받을 수 있다. 도시된 바와 같이, SGSN(1014) 및 GPRS 게이트웨이 지원 노드(1022, 1024 및 1026)은 내부 패킷 네트워크(1020)의 일부이다. GPRS 게이트웨이 지원 노드(1022, 1024, 1026)는 PLMN(Public Land Mobile Network)(1045), 법인 인트라넷(1040) 또는 고정단 시스템(Fixed End System; FES) 또는 공중 인터넷(1030)과 같은 외부 인터넷 프로토콜(Internet Protocol; IP) 네트워크로 인터페이스를 제공할 수 있다. 도시된 바와 같이, 가입자 법인 네트워크(1040)는 방화벽(1032)를 통해 GGSN(1024)으로 연결될 수 있다. 또한, PLMN(1045)는 보더 게이트웨이 라우터(boarder gateway router)(1034)를 통해 GGSN(1024)으로 연결될 수 있다. RAIUS(Remote Authenticatio Dial-In User Service) 서버(1042)는 이동 휴대 전화 장치의 사용자가 법인 네트워크(1040)로 전화할 때, 전화 인증을 위해 사용될 수 있다.
일반적으로, GSM 네트워크에는 매크로(macro), 마이크로(micro), 피코(pico), 엄브렐라(umbrella) 셀의 네 가지 상이한 셀 사이즈가 있다. 각 셀의 적용범위(coverage)는 상이한 환경에 따라 상이하다. 매크로 셀은 마스트(mast) 또는 지붕 최고 높이의 평균을 넘는 빌딩에 설치되는 기지국 안테나의 셀로 여겨질 수 있다. 마이크로 셀은 안테나 높이가 상기 지붕 최고 높이의 평균 아래인 셀로, 도시 지역에서 일반적으로 사용된다. 피코 셀은 몇십 미터의 직경을 갖는 작은 셀로, 주로 실내에서 사용된다. 반면, 엄브렐라 셀은 더 작은 셀의 차단된 지역을 덮기 위해 사용되고, 상기 셀 사이의 적용 범위의 틈을 채운다.
본 발명이 예시로서 본 명세서에 기술되었다. 본 명세서에 개시된 발명은 분명 이러한 예시들에 의해 제한되지 않는다. 나아가, 본 명세서에서 "예시적"이라고 기술된 임의의 측면 또는 디자인은 반드시 다른 측면 또는 디자인에 비해 유리하거나 바람직한 것은 아니며, 당업자에게 알려진 예시적인 균등 구조 및 기술을 배제하는 것도 아니다. 아울러, 상세한 설명 또는 청구항에서 사용되는 "포함한다", "갖는다", "가지고 있다" 및 기타 유사한 단어들은 분명 추가적인 또는 기타 요소들을 배제하지 않는 열린 표현으로서 "포함한다"는 것을 의미하기 위한 것이다.
또한, 본 명세서에 기술된 대상은 시스템, 방법, 장치, 또는 표준 프로그래밍 및/또는 엔지니어링 기술을 이용하여 소프트웨어, 펌웨어(firmware), 하드웨어, 또는 이들의 임의의 조합을 생산하기 위한 제조 방법으로 구현될 수 있다. 이들은 본 명세서에 기술된 상세한 측면을 구현하기 위하여 컴퓨터 또는 처리장치 기반의 장치를 제어하기 위한 것일 수 있다. 본 명세서에서 "제조 방법", "컴퓨터 프로그램 제품" 또는 유사한 용어들은 임의의 컴퓨터로 판독 가능한 장치, 매개체(carrier), 또는 매체로부터 접근 가능한 컴퓨터 프로그램을 포함하도록 의도된 것이다. 예를 들어, 컴퓨터로 판독 가능한 매체는 자기 저장 장치(예컨대, 하드 디스크, 플로피 디스크, 자기 스트립(strip)...), 광학 디스크(예컨대, 콤팩트 디스크(compact disk; CD), 디지털 다기능 디스크(digital versatile disk; DVD)...), 스마트 카드, 및 플래쉬 메모리 장치(예컨대, 카드, 스틱)를 포함할 수 있으나 이에 제한되는 것은 아니다. 나아가, 컴퓨터로 판독 가능한 전자 데이터를 운반하기 위하여 반송파(carrier wave)를 이용할 수 있다는 것이 알려져 있으며, 전자 메일의 송신 및 수신이나 인터넷 또는 로컬 영역 네트워크(local area network; LAN) 등의 네트워크에 접근하는데에 사용되는 것 등이 있다.
전술한 시스템들은 몇몇 컴포넌트들 사이의 상호 작용을 참조로 하여 기술되었다. 이러한 시스템들 및 컴포넌트들은, 이들 컴포넌트들 또는 특정 서브컴포넌트들, 특정 컴포넌트들 또는 서브컴포넌트들 중 몇몇, 및/또는 추가 컴포넌트들을 포함할 수 있으며, 이들의 다양한 치환 및 조합을 포함할 수도 있다. 서브컴포넌트들은 또한 예컨대 계급 배열에 따라 상위 컴포넌트에 포함되기 보다는 다른 컴포넌트들에 통신 연결된 컴포넌트들로 구현될 수도 있다. 나아가, 하나 이상의 컴포넌트들이 단일 컴포넌트로 조합되어 집합 기능을 제공하거나 몇몇의 개별 서브컴포넌트로 분할될 수 있으며, 이러한 서브컴포넌트들을 통신 연결하여 통합된 기능을 제공 하기 위하여 관리 계층(management layer)과 같은 하나 이상의 중간 계층(middle layer)이 제공될 수 있다. 본 명세서에서 기술된 임의의 컴포넌트들은, 본 명세서에 특정하여 기술되지 않았으나 당업자에게 알려진 하나 이상의 다른 컴포넌트들과 상호 작용할 수도 있다.

Claims (20)

  1. 다중 입력 다중 출력 통신 링크를 통해 복수의 사용자 단말기와 통신하는 기지국;
    각 사용자 단말기에 정보를 송신하는 상기 기지국의 복수의 송신 안테나; 및
    각 사용자 단말기로부터 송신 안테나 인덱스 및 최대 신호 품질 지시를 수신하고, 수신된 상기 송신 안테나 인덱스 및 최대 신호 품질 지시에 적어도 일부 기반하여, 정보의 송신을 위해 선택된 사용자 단말기에 각 송신 안테나를 할당하는 기지국과 연관되어 동작하는 스케쥴링 컴포넌트를 포함하는 것을 특징으로 하는 다중 입력 다중 출력 통신 시스템에서의 다중 사용자 스케쥴링 시스템.
  2. 제1항에 있어서,
    송신 안테나는, 사용자 단말기에 의해 선택된 상기 사용자 단말기의 수신 안테나를 통해 상기 스케쥴링 컴포넌트로부터의 할당에 기반하여 상기 사용자 단말기에 정보를 송신하는 것을 특징으로 하는 다중 입력 다중 출력 통신 시스템에서의 다중 사용자 스케쥴링 시스템.
  3. 제1항에 있어서,
    상기 스케쥴링 컴포넌트는, 유한 통신 레이트를 가진 피드백 채널을 거쳐 상기 각 사용자 단말기로부터 상기 송신 안테나 인덱스 및 최대 신호 품질 지시를 수신하는 것을 특징으로 하는 다중 입력 다중 출력 통신 시스템에서의 다중 사용자 스케쥴링 시스템.
  4. 제1항에 있어서,
    상기 최대 신호 품질 지시는 최대 신호 대 간섭 및 잡음비에 상응하는 것을 특징으로 하는 다중 입력 다중 출력 통신 시스템에서의 다중 사용자 스케쥴링 시스템.
  5. 제1항에 있어서,
    상기 스케쥴링 컴포넌트는,
    사용자 단말기로부터 수신된 송신 안테나 인덱스에 따라 각 사용자 단말기를 일련의 세트로 그룹화하는 그룹화 컴포넌트;
    상기 각 세트로 그룹화된 사용자 단말기 중으로부터 최고의 최대 신호 품질 지시를 가진 사용자 단말기를 인식하는 선택 컴포넌트를 포함하는 것을 특징으로 하는 다중 입력 다중 출력 통신 시스템에서의 다중 사용자 스케쥴링 시스템.
  6. 제1항에 있어서,
    각 사용자 단말기로부터 수신된 최대 신호 품질 지시는 상기 각 사용자 단말기에서 달성 가능한 최대 신호 품질에 상응하는 양자화된 값을 포함하는 것을 특징으로 하는 다중 입력 다중 출력 통신 시스템에서의 다중 사용자 스케쥴링 시스템.
  7. 제6항에 있어서,
    상기 양자화된 값은 b가 최대 신호 품질 지시의 피드백에 할당되는 비트의 수 일 때 2b 개의 레벨로 양자화되는 것을 특징으로 하는 다중 입력 다중 출력 통신 시스템에서의 다중 사용자 스케쥴링 시스템.
  8. 제6항에 있어서,
    상기 스케쥴링 컴포넌트는,
    사용자 단말기로부터 수신된 송신 안테나 인덱스에 따라 각 사용자 단말기를 일련의 세트로 모으는 그룹화 컴포넌트;
    상기 각 세트로 그룹화된 사용자 단말기 중으로부터 최고의 양자화된 신호 품질 값을 가진 사용자 단말기를 상응하는 최적 사용자 세트로 배치하는 세트 리파 이닝 컴포넌트; 및
    상응하는 전송 안테나로의 할당을 위해, 각 최적 사용자 세트로부터 사용자 단말기를 무작위로 선택하는 랜덤 선택 컴포넌트를 포함하는 것을 특징으로 하는 다중 입력 다중 출력 통신 시스템에서의 다중 사용자 스케쥴링 시스템.
  9. 제6항에 있어서,
    사용자 단말기로부터 수신된 양자화된 값은, 상기 사용자 단말기에 의해 달성 가능한 최대 신호 품질이 미리 결정된 임계값을 초과하는 경우 1의 값을 가지며 그렇지 않으면 0의 값을 갖는 1 비트 값인 것을 특징으로 하는 다중 입력 다중 출력 통신 시스템에서의 다중 사용자 스케쥴링 시스템.
  10. 각각 복수의 수신 안테나를 포함하는 복수의 수신 사용자로부터 송신 안테나 인덱스 피드백 및 신호 품질 피드백을 수신하는 단계;
    각 수신 사용자로 정보를 통신하는데 동작 가능한 복수의 송신 안테나를 인식하는 단계; 및
    상기 수신 사용자로부터 수신된 상기 송신 안테나 인덱스 피드백 및 상기 신호 품질 피드백에 적어도 일부 기반하여, 각 송신 안테나로부터 정보가 송신되는 각 수신 사용자를 선택하는 단계를 포함하는 것을 특징으로 하는 다중 입력 다중 출력 통신 시스템에서의 통신을 위해 사용자를 스케쥴링하는 방법.
  11. 제10항에 있어서,
    수신 사용자에 의해 선택된 상기 수신 사용자의 수신 안테나를 통해, 송신 안테나로부터 상응하는 선택된 수신 사용자로 정보를 송신하는 단계를 더 포함하는 것을 특징으로 하는 다중 입력 다중 출력 통신 시스템에서의 통신을 위해 사용자를 스케쥴링하는 방법.
  12. 제10항에 있어서,
    상기 수신하는 단계는, 유한 레이트 피드백 채널을 거쳐 상기 송신 안테나 인덱스 피드백 및 상기 신호 품질 피드백을 수신하는 단계를 포함하는 것을 특징으로 하는 다중 입력 다중 출력 통신 시스템에서의 통신을 위해 사용자를 스케쥴링하는 방법.
  13. 제10항에 있어서,
    수신 사용자로부터 수신된 상기 신호 품질 피드백은, 상기 수신 사용자에 의해 달성 가능한 최대 신호대 간섭 및 잡음비의 지시를 포함하는 것을 특징으로 하 는 다중 입력 다중 출력 통신 시스템에서의 통신을 위해 사용자를 스케쥴링하는 방법.
  14. 제10항에 있어서,
    상기 선택하는 단계는,
    정보가 송신될 각 수신 사용자를 상기 각 수신 사용자로부터 수신된 송신 안테나 인덱스 피드백에 적어도 일부 기반하여 각 그룹에 배치하는 단계;
    상기 각 그룹의 상기 수신 사용자 중에서 상기 선택된 사용자로부터 수신된 상기 신호 품질 피드백이 최고의 최대 신호 품질을 지시하도록, 각 그룹의 각 수신 사용자를 선택하는 단계를 포함하는 것을 특징으로 하는 다중 입력 다중 출력 통신 시스템에서의 통신을 위해 사용자를 스케쥴링하는 방법.
  15. 제10항에 있어서,
    각 수신 사용자로부터 수신된 상기 신호 품질 피드백은 상기 수신 사용자에 대해 각 달성 가능한 최대 신호 품질에 상응하는 양자화된 값을 포함하는 것을 특징으로 하는 다중 입력 다중 출력 통신 시스템에서의 통신을 위해 사용자를 스케쥴링하는 방법.
  16. 제15항에 있어서,
    상기 양자화된 값은 b가 신호 품질 피드백에 할당되는 비트의 수 일 때 2b개의 레벨로 양자화되는 것을 특징으로 하는 다중 입력 다중 출력 통신 시스템에서의 통신을 위해 사용자를 스케쥴링하는 방법.
  17. 제15항에 있어서,
    선택하는 단계는,
    정보가 송신될 각 수신 사용자를 상기 각 수신 사용자로부터 수신된 송신 안테나 인덱스 피드백에 적어도 일부 기반하여 각 그룹으로 배치하는 단계;
    상기 각 그룹 내의 상기 각 수신 사용자 중에서 최고의 최대 양자화된 신호 품질을 지시하는 신호 품질 피드백을 가진 수신 사용자를 상응하는 최적 사용자 그룹으로 모으는 단계; 및
    최적 사용자 그룹으로부터 각 수신 사용자를 실질적으로 무작위로 선택하는 단계를 포함하는 것을 특징으로 하는 다중 입력 다중 출력 통신 시스템에서의 통신을 위해 사용자를 스케쥴링하는 방법.
  18. 제10항에 따른 방법을 수행하도록 동작할 수 있는 명령들이 저장된 컴퓨터로 판독 가능한 매체.
  19. 각 사용자에 의해 제공되는 송신 안테나 인덱스 및 최대 신호 품질 지시기를 인식하는 수단;
    유사 송신 안테나 인덱스를 제공하는 사용자를 각 사용자 세트로 그룹화하는 수단;
    최적의 최대 신호 품질 지시기를 가진 상기 각 사용자 세트 내에서 사용자를 선택하는 수단; 및
    상기 선택된 사용자에 의해 각각 제공되는 상기 송신 안테나 인덱스에 상응하는 송신 안테나를 통해, 상기 선택된 사용자로 정보를 전송하는 수단을 포함하는 것을 특징으로 하는 무선 통신 시스템에서 송신 스케쥴링을 용이하게 하는 시스템.
  20. 제19항에 있어서,
    상기 인식하는 수단은 양자화된 신호 품질 지시기를 식별하는 수단을 포함하고,
    상기 선택하는 수단은 최고의 양자화된 신호 품질 지시기를 가지는 상기 각 사용자 세트 내에서 사용자를 무작위로 선택하는 수단을 포함하는 것을 특징으로 하는 무 선 통신 시스템에서 송신 스케쥴링을 용이하게 하는 시스템.
KR1020097022549A 2007-04-30 2008-04-29 유한 레이트 피드백을 가진 mimo 방송 채널을 위한 다중 사용자 스케줄링 KR101286877B1 (ko)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US91481007P 2007-04-30 2007-04-30
US60/914,810 2007-04-30
US12/108,485 2008-04-23
US12/108,485 US8054837B2 (en) 2007-04-30 2008-04-23 Multiuser scheduling for MIMO broadcast channels with finite rate feedback
PCT/IB2008/003485 WO2009040678A2 (en) 2007-04-30 2008-04-29 Multiuser scheduling for mimo broadcast channels with finite rate feedback

Publications (2)

Publication Number Publication Date
KR20100016000A true KR20100016000A (ko) 2010-02-12
KR101286877B1 KR101286877B1 (ko) 2013-07-16

Family

ID=39886865

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020097022549A KR101286877B1 (ko) 2007-04-30 2008-04-29 유한 레이트 피드백을 가진 mimo 방송 채널을 위한 다중 사용자 스케줄링

Country Status (6)

Country Link
US (2) US8054837B2 (ko)
EP (1) EP2143302A4 (ko)
JP (1) JP2010526463A (ko)
KR (1) KR101286877B1 (ko)
CN (1) CN101690306A (ko)
WO (1) WO2009040678A2 (ko)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101002877B1 (ko) * 2007-03-06 2010-12-21 한국과학기술원 통신시스템에서 다중 사용자 스케쥴링 방법 및 장치
US8054837B2 (en) * 2007-04-30 2011-11-08 Yim Tu Investments Ltd., Llc Multiuser scheduling for MIMO broadcast channels with finite rate feedback
US8290088B2 (en) * 2007-08-07 2012-10-16 Research In Motion Limited Detecting the number of transmit antennas in a base station
US7907677B2 (en) * 2007-08-10 2011-03-15 Intel Corporation Open loop MU-MIMO
US8654715B2 (en) * 2008-10-24 2014-02-18 Qualcomm Incorporated Systems and methods providing mobile transmit diversity
US8654705B2 (en) * 2008-10-24 2014-02-18 Qualcomm Incorporated System and method for supporting multiple reverse link data streams
CN101764635B (zh) * 2008-12-24 2013-04-17 中国移动通信集团公司 信号联合处理系统及其信号检测、确定发送信号的方法
US8649357B2 (en) 2009-04-23 2014-02-11 Sharp Kabushiki Kaisha Wireless communication system, mobile station apparatus, base station apparatus and wireless communication method
CN102696180B (zh) 2010-01-12 2015-08-05 富士通株式会社 空间信道状态反馈方法和装置
US8891555B2 (en) * 2010-02-25 2014-11-18 Nippon Telegraph And Telephone Corporation Spatial multiplexing wireless transmission system, spatial multiplexing wireless transmission method and computer program
KR101695716B1 (ko) * 2010-08-02 2017-01-13 삼성전자주식회사 다중안테나 시스템에서 평균 전송률을 제어하기 위한 스케줄링 방법 및 장치
MX2013005647A (es) 2010-11-18 2013-12-02 Aereo Inc Sistema y metodo para proporcionar acceso a red a alimentaciones de antena.
AU2012219371A1 (en) 2011-02-18 2013-08-29 Aereo, Inc. Cloud based location shifting service
US8744502B2 (en) 2011-08-12 2014-06-03 Qualcomm Incorporated Antenna to transceiver mapping of a multimode wireless device
CN103765805B (zh) * 2011-09-02 2016-11-09 富士通株式会社 一种多用户预编码方法和装置
US9148674B2 (en) 2011-10-26 2015-09-29 Rpx Corporation Method and system for assigning antennas in dense array
US9118304B2 (en) 2012-05-29 2015-08-25 Rpx Corporation Dynamic tuning in dense arrays of electrically small elements
US9306640B2 (en) * 2012-09-07 2016-04-05 Qualcomm Incorporated Selecting a modulation and coding scheme for beamformed communication
CN105308876B (zh) * 2012-11-29 2018-06-22 康宁光电通信有限责任公司 分布式天线系统中的远程单元天线结合
WO2014158208A1 (en) * 2013-03-29 2014-10-02 Intel Corporation Orthogonal beamforming for multiple user multiple-input and multiple-output (mu-mimo)
US9629020B2 (en) * 2013-05-28 2017-04-18 Rivada Networks, Llc Methods and systems for data context and management via dynamic spectrum controller and dynamic spectrum policy controller
CN106341166A (zh) * 2015-07-09 2017-01-18 合勤科技股份有限公司 支持多用户多输入多输出的基站以及其通信方法
CN111953448B (zh) * 2019-05-17 2024-04-30 株式会社Ntt都科摩 无线通信系统中的终端和基站
CN110212957B (zh) * 2019-05-27 2021-11-12 广西大学 一种基于信漏噪比的mu-mimo系统用户调度方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5634203A (en) * 1994-09-02 1997-05-27 Motorola Inc. Adaptive multi-receiver shared antenna matching system and method
US5940379A (en) * 1997-07-23 1999-08-17 Motorola, Inc. Apparatus and method for using multiple spreading codes for data transmission in a satellite communication system
JP4357083B2 (ja) * 2000-06-01 2009-11-04 株式会社ルネサステクノロジ デルタシグマモジュレータおよびadコンバータ
US6662024B2 (en) * 2001-05-16 2003-12-09 Qualcomm Incorporated Method and apparatus for allocating downlink resources in a multiple-input multiple-output (MIMO) communication system
US7072304B2 (en) * 2002-02-27 2006-07-04 Nortel Networks Limited Network path selection based on bandwidth
JP3844758B2 (ja) * 2002-11-26 2006-11-15 松下電器産業株式会社 通信方法及び送信装置、受信装置
US7437166B2 (en) * 2003-09-24 2008-10-14 Telefonaktiebolaget Lm Ericsson (Publ) Reducing shared downlink radio channel interference by transmitting to multiple mobiles using multiple antenna beams
KR101084831B1 (ko) * 2003-12-19 2011-11-21 텔레폰악티에볼라겟엘엠에릭슨(펍) Mimo 기반 통신 시스템에서의 방법 및 장치
US8249518B2 (en) * 2003-12-29 2012-08-21 Telefonaktiebolaget Lm Ericsson (Publ) Network controlled feedback for MIMO systems
WO2005069505A1 (en) * 2004-01-20 2005-07-28 Lg Electronics Inc. Method for transmitting/receiving signal in mimo system
SE0400370D0 (sv) 2004-02-13 2004-02-13 Ericsson Telefon Ab L M Adaptive MIMO architecture
US8045638B2 (en) * 2004-03-05 2011-10-25 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for impairment correlation estimation in a wireless communication receiver
CN1797987B (zh) * 2004-12-30 2011-02-16 都科摩(北京)通信技术研究中心有限公司 自适应调度的mimo通信系统及其自适应用户调度方法
KR100950644B1 (ko) 2005-03-04 2010-04-01 삼성전자주식회사 다중사용자 다중입출력 시스템의 피드백 방법
US7715863B2 (en) 2005-06-01 2010-05-11 Nec Laboratories America, Inc. Throughput maximization using quantized rate control in multiple antenna communication
EP1729531A1 (en) * 2005-06-02 2006-12-06 Alcatel Method and device for providing static beamforming
US7917176B2 (en) 2006-02-14 2011-03-29 Nec Laboratories America, Inc. Structured codebook and successive beamforming for multiple-antenna systems
GB0600141D0 (en) * 2006-01-05 2006-02-15 British Broadcasting Corp Scalable coding of video signals
US8271043B2 (en) * 2006-08-21 2012-09-18 Qualcomm Incorporated Approach to a unified SU-MIMO/MU-MIMO operation
EP1895680B1 (en) * 2006-08-31 2019-08-14 Samsung Electronics Co., Ltd. Apparatus and method for transmitting/receiving data in a multi-antenna system, and system using the same
EP1914909A1 (en) 2006-10-20 2008-04-23 Nokia Siemens Networks Gmbh & Co. Kg Downlink scheduling method for MIMO/MISO cellular systems with limited feedback signalling
US8054837B2 (en) * 2007-04-30 2011-11-08 Yim Tu Investments Ltd., Llc Multiuser scheduling for MIMO broadcast channels with finite rate feedback

Also Published As

Publication number Publication date
WO2009040678A2 (en) 2009-04-02
US8054837B2 (en) 2011-11-08
EP2143302A2 (en) 2010-01-13
WO2009040678A3 (en) 2009-05-14
EP2143302A4 (en) 2015-03-25
US20120008583A1 (en) 2012-01-12
WO2009040678A4 (en) 2009-09-24
CN101690306A (zh) 2010-03-31
JP2010526463A (ja) 2010-07-29
US8792500B2 (en) 2014-07-29
KR101286877B1 (ko) 2013-07-16
US20080267108A1 (en) 2008-10-30

Similar Documents

Publication Publication Date Title
KR101286877B1 (ko) 유한 레이트 피드백을 가진 mimo 방송 채널을 위한 다중 사용자 스케줄링
RU2288538C2 (ru) Распределение ресурсов восходящей линии связи в коммуникационной системе с множественными входами и множественными выходами (мвмв)
EP2030473B1 (en) Coordinating transmission scheduling among multiple base stations
JP5466234B2 (ja) 基地局の同時資源割当ておよびクラスタ化の方法
Lau Proportional fair space-time scheduling for wireless communications
US20120314570A1 (en) System and methods to compensate for doppler effects in distributed-input distributed-output wireless systems
EP2681886B1 (en) Lte scheduling
CN1672348A (zh) 使用波束的有槽分码多重存取系统中分配资源于使用者
CN103797725A (zh) 在无线系统中利用同调性区域的系统及方法
WO2011018031A1 (en) Coordinated beam forming and multi-user mimo
US20040258026A1 (en) Method of uplink scheduling for multiple antenna systems
EP2062378A1 (en) Beamforming with imperfect channel state information
WO2013116857A1 (en) Method and apparatus for measuring multi-cell data efficiency in link adaptive wireless networks
CN1574686A (zh) 移动通信系统中用于发送分集方案模式转换的设备和方法
US20120063404A1 (en) Method and Apparatus
Khoshnevis et al. Two-stage channel quantization for scheduling and beamforming in network MIMO systems: Feedback design and scaling laws
CN111107575B (zh) 一种信号质量参数测量方法和设备
Busson et al. Impact of resource blocks allocation strategies on downlink interference and SIR distributions in LTE networks: a stochastic geometry approach
Bany Salameh et al. Iterative beamforming algorithm for improved throughput in multi‐cell multi‐antenna wireless systems
Elliott et al. On the convergence of genetic scheduling algorithms for downlink transmission in multi-user MIMO systems
CN111934839B (zh) 一种水声软频率复用网络的干扰缓解与资源分配方法
Zhang et al. Max-min fairness for cell-free massive MIMO with low-resolution ADCs
Khoshkholgh et al. Coverage performance in MIMO-ZFBF dense HetNets with multiplexing and LOS/NLOS path-loss attenuation
Huang et al. Joint QoS-Aware Scheduling and Precoding for Massive MIMO Systems via Deep Reinforcement Learning
CN1623285A (zh) 用于高数据速率业务的直接最大比组合方法和系统

Legal Events

Date Code Title Description
N231 Notification of change of applicant
N231 Notification of change of applicant
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160629

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180628

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20190624

Year of fee payment: 7