KR20090083396A - 풍력 발전 장치 - Google Patents
풍력 발전 장치 Download PDFInfo
- Publication number
- KR20090083396A KR20090083396A KR1020097010502A KR20097010502A KR20090083396A KR 20090083396 A KR20090083396 A KR 20090083396A KR 1020097010502 A KR1020097010502 A KR 1020097010502A KR 20097010502 A KR20097010502 A KR 20097010502A KR 20090083396 A KR20090083396 A KR 20090083396A
- Authority
- KR
- South Korea
- Prior art keywords
- generator
- nacelle
- rotor head
- rotor
- drive train
- Prior art date
Links
- 230000008878 coupling Effects 0.000 description 31
- 238000010168 coupling process Methods 0.000 description 31
- 238000005859 coupling reaction Methods 0.000 description 31
- 230000004048 modification Effects 0.000 description 27
- 238000012986 modification Methods 0.000 description 27
- 238000012423 maintenance Methods 0.000 description 20
- 238000010248 power generation Methods 0.000 description 20
- 230000005674 electromagnetic induction Effects 0.000 description 13
- 230000001965 increasing effect Effects 0.000 description 9
- 239000011295 pitch Substances 0.000 description 8
- 230000005540 biological transmission Effects 0.000 description 5
- 230000002349 favourable effect Effects 0.000 description 5
- 230000002093 peripheral effect Effects 0.000 description 5
- 239000003638 chemical reducing agent Substances 0.000 description 4
- 230000008439 repair process Effects 0.000 description 4
- 239000013585 weight reducing agent Substances 0.000 description 4
- 238000009434 installation Methods 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D1/00—Wind motors with rotation axis substantially parallel to the air flow entering the rotor
- F03D1/06—Rotors
- F03D1/065—Rotors characterised by their construction elements
- F03D1/0658—Arrangements for fixing wind-engaging parts to a hub
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D13/00—Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
- F03D13/20—Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D15/00—Transmission of mechanical power
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D15/00—Transmission of mechanical power
- F03D15/10—Transmission of mechanical power using gearing not limited to rotary motion, e.g. with oscillating or reciprocating members
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D80/00—Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
- F03D80/70—Bearing or lubricating arrangements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D80/00—Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
- F03D80/80—Arrangement of components within nacelles or towers
- F03D80/82—Arrangement of components within nacelles or towers of electrical components
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D9/00—Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
- F03D9/20—Wind motors characterised by the driven apparatus
- F03D9/25—Wind motors characterised by the driven apparatus the apparatus being an electrical generator
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H1/00—Toothed gearings for conveying rotary motion
- F16H1/02—Toothed gearings for conveying rotary motion without gears having orbital motion
- F16H1/20—Toothed gearings for conveying rotary motion without gears having orbital motion involving more than two intermeshing members
- F16H1/22—Toothed gearings for conveying rotary motion without gears having orbital motion involving more than two intermeshing members with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H1/00—Toothed gearings for conveying rotary motion
- F16H1/28—Toothed gearings for conveying rotary motion with gears having orbital motion
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K7/00—Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
- H02K7/10—Structural association with clutches, brakes, gears, pulleys or mechanical starters
- H02K7/116—Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K7/00—Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
- H02K7/18—Structural association of electric generators with mechanical driving motors, e.g. with turbines
- H02K7/1807—Rotary generators
- H02K7/1823—Rotary generators structurally associated with turbines or similar engines
- H02K7/183—Rotary generators structurally associated with turbines or similar engines wherein the turbine is a wind turbine
- H02K7/1838—Generators mounted in a nacelle or similar structure of a horizontal axis wind turbine
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2260/00—Function
- F05B2260/40—Transmission of power
- F05B2260/403—Transmission of power through the shape of the drive components
- F05B2260/4031—Transmission of power through the shape of the drive components as in toothed gearing
- F05B2260/40311—Transmission of power through the shape of the drive components as in toothed gearing of the epicyclic, planetary or differential type
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/72—Wind turbines with rotation axis in wind direction
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/728—Onshore wind turbines
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Energy (AREA)
- General Engineering & Computer Science (AREA)
- Sustainable Development (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Power Engineering (AREA)
- Wind Motors (AREA)
- Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
Abstract
나셀 대판의 소형·경량화를 가능하게 함과 함께, 기기 교환 등의 보수관리성도 우수한 풍력 발전 장치를 제공한다. 풍차 회전 날개 (5) 가 장착되어 일체로 회전하는 로터 헤드 (4) 와 드라이브 트레인 (10) 을 개재하여 연결되어 있는 발전기 (20) 를 구동하여 발전을 실시하는 풍력 발전 장치로서, 로터 헤드 (4) 로부터 발전기 (20) 까지 회전력을 전달하는 드라이브 트레인 (10) 의 적어도 일부를, 로터 헤드 (4) 의 나셀 반대측이 되는 전방에 배치하였다.
풍력 발전 장치
Description
본 발명은, 자연 에너지인 바람을 회전력으로 변환하는 풍차를 이용하여 발전을 실시하는 풍력 발전 장치에 관한 것이다.
종래, 자연 에너지인 풍력을 이용하여 발전을 실시하는 풍력 발전 장치가 알려져 있다. 이런 종류의 풍력 발전 장치는, 지주 (支柱) 상에 설치된 나셀 (nacelle) 에, 풍차 회전 날개를 장착한 로터 헤드와, 이 로터 헤드와 일체로 회전하도록 연결된 주축과, 풍차 회전 날개에 풍력을 받아 회전하는 주축을 연결한 증속기와, 증속기의 축 출력에 의해 구동되는 발전기를 설치한 것이다. 이와 같이 구성된 풍력 발전 장치에 있어서는, 풍력을 회전력으로 변환하는 풍차 회전 날개를 구비한 로터 헤드 및 주축이 회전하여 축 출력을 발생시키고, 주축에 연결된 증속기를 통해 회전수를 증속시킨 축 출력이 발전기에 전달된다. 이 때문에, 풍력을 회전력으로 변환하여 얻어지는 축 출력을 발전기의 구동원으로 하여, 발전기의 동력으로서 풍력을 이용한 발전을 실시할 수 있다.
상기 서술한 종래의 풍력 발전 장치에 있어서는, 통상적인 경우, 증속기나 발전기를 구비한 드라이브 트레인은 나셀의 내부에 배치되어 있다. 이 때문에, 드라이브 트레인을 서포트하는 나셀 대판 (臺板) 등의 프레임은, 드라이브 트레인 설치 스페이스 등을 확보하기 위해 비교적 중량을 갖는 구조로 되어 있었다. 또, 1 베어링 구조의 경우에는, 증속기는 로터 헤드의 지지 구조를 겸하고 있기 때문에, 교환시에 로터 헤드를 지지하는 방법이 곤란해지는 등의 문제도 있었다.
또, 로터와 나셀 사이에 발전기를 배치한 구조도 있지만, 이 경우에는 발전기의 교환이 불가능하게 된다.
그리고, 나셀의 소형화 및 경량화를 목적으로 하여, 로터 헤드의 내부에, 주축으로부터 증속기를 개재하여 발전기에 이르는 드라이브 트레인을 설치한 구성이 제안되어 있다 (예를 들어, 특허문헌 1 참조).
[특허문헌 1] 일본 공개특허공보 2006-188953호
최근, 풍력 발전 장치는 대출력화와 함께 대형화되는 경향이 있기 때문에, 지주나 기초 등의 부담을 경감시키기 위해서도 나셀 대판 구조를 경량화시키는 것이 요구되고 있다. 또, 나셀 내에 수납 설치되는 발전기 등의 드라이브 트레인 구성 기기에 대해 교환이나 보수관리 (maintenance) 를 고려하면, 나셀 내에 작업 스페이스를 확보해 둘 필요가 있었다. 이와 같은 작업 스페이스의 확보는, 운전시에 사용하지 않는 스페이스를 형성하게 되므로, 나셀 형상을 대형화시키는 요인이 되고 있었다.
또, 풍력 발전 장치의 대형화에 수반하여, 드라이브 트레인의 구성 기기 등에 대해서도 대형화되어 중량을 늘리는 경향이 있고, 또한 설치 장소에 있어서의 작업 조건도 엄격해지고 있다. 이 때문에, 특히 현지에 있어서의 설치 공사나 기기 교환 등의 보수관리 작업에 대해서는, 이것을 용이하게 하는 구성이 요구된다.
본 발명은, 상기 사정을 감안하여 이루어진 것으로, 그 목적은, 나셀 대판의 소형·경량화를 가능하게 함과 함께, 기기 교환 등의 보수관리성도 우수한 풍력 발전 장치를 제공하는 것에 있다.
본 발명은, 상기 과제를 해결하기 위해 하기 수단을 채용하였다.
본 발명에 관련된 풍력 발전 장치는, 풍차 회전 날개가 장착되어 일체로 회전하는 로터 헤드와 드라이브 트레인을 개재하여 연결되어 있는 발전기를 구동하여 발전을 실시하는 풍력 발전 장치로서, 상기 로터 헤드로부터 상기 발전기까지 회전력을 전달하는 드라이브 트레인의 적어도 일부를, 상기 로터 헤드의 나셀 반대측에 배치한 것을 특징으로 하는 것이다.
또, 로터 헤드의 나셀 반대측은, 업 윈드형 풍력 발전 장치에 있어서의 로터 헤드의 전방을 의미하고, 또한 다운 윈드형 풍력 발전 장치에 있어서의 로터 헤드의 후방을 의미하며, 어느 경우에서나, 드라이브 트레인을 구성하는 증속기 및/또는 발전기의 일부가 로터 헤드 내 및/또는 나셀 내에 배치되는 구성을 포함하는 것으로 한다.
이와 같은 풍력 발전 장치에 의하면, 로터 헤드로부터 발전기까지 회전력을 전달하는 드라이브 트레인의 적어도 일부를 로터 헤드의 나셀 반대측 (로터 헤드의 전방 또는 후방) 에 배치했기 때문에, 나셀 내에 수납 설치되는 무거운 기기류를 저감시킴과 함께, 보수관리시 등에 사용할 목적으로 확보할 필요가 있는 스페이스를 저감시킬 수 있다.
또, 상기 드라이브 트레인에 있어서는, 발전기를 1 개 이상으로 구성한 것이 바람직하고, 특히 복수의 발전기를 구비하는 멀티 타입을 채용하면, 소형·경량화나 발전기 교환 등의 보수관리성이 향상된다. 또한, 복수의 발전기를 구비한 멀티 타입의 경우, 발전기에 트러블이 발생해도 풍력 발전 장치 전체의 운전을 정지할 필요는 없고, 따라서, 나머지 정상적인 발전기에 의한 발전을 계속할 수 있다.
또, 상기 드라이브 트레인은, 발전기가 증속기보다 나셀측에 배치되어 있는 것이 바람직하고, 이로써, 드라이브 트레인의 중심 (重心) 위치를 나셀측 (주베어링측) 에 접근시킬 수 있다. 이 경우, 적어도 발전기의 일부를, 바람직하게는 발전기와 증속기의 일부를 로터 헤드 내에 배치하는 것이 바람직하고, 이로써, 드라이브 트레인의 중심 위치를 보다 더 나셀측에 접근시킬 수 있다.
또, 발전기가 증속기보다 나셀측에 배치되어 있는 경우에는, 발전기를 나셀의 내부에 배치함으로써, 드라이브 트레인의 중심 위치를 보다 더 나셀측에 접근시킬 수 있다.
상기 서술한 본 발명의 풍력 발전 장치에 의하면, 로터 헤드로부터 발전기까지 회전력을 전달하는 드라이브 트레인의 적어도 일부를 로터 헤드의 나셀 반대측, 즉, 업 윈드형에서는 나셀의 전방에, 다운 윈드형에서는 나셀의 후방에 배치했기 때문에, 보수관리용 등의 목적으로 나셀 내에 확보해 두어야 하는 통상적인 운전시에 불필요한 스페이스를 저감시키고, 나셀 자체를 소형화하여 스마트한 형상으로 할 수 있다.
특히, 복수의 발전기로 이루어지는 멀티 타입의 구성을 채용하면, 소형화된 발전기의 교환 등을 실시하는 보수관리 작업이 용이해짐과 함께, 발전기에 트러블을 일으킨 경우에도 발전 출력을 떨어뜨린 상태에서의 운전 계속이 가능해진다.
그리고, 풍력 발전 장치를 대형화해도, 종래 구조에 있어서 나셀 내에서 드라이브 트레인을 지지했던 나셀 대판측에서는, 발전기나 증속기와 같은 대형이고 무거운 기기가 없어져 주축만을 지지하면 되고, 따라서, 나셀 대판의 소형 경량화가 가능해진다. 또한, 종래 구조와 비교한 경우, 대체로 10∼15% 정도의 경량화가 기대된다.
특히, 발전기를 증속기보다 나셀측에 배치하여 드라이브 트레인의 중심 위치를 나셀측 (주베어링측) 에 접근시키면, 모멘트의 저감에 의해 지지 구조를 경량화할 수 있기 때문에, 드라이브 트레인이나 나셀을 경량이고 컴팩트한 구조로 하는 것이 용이해진다.
또, 드라이브 트레인을 로터 헤드의 전방 또는 후방에 장착하면, 로터 헤드 커버를 떼어낸 경우, 드라이브 트레인이 전방 또는 후방으로 오버행 (overhang) 된 상태가 되므로, 드라이브 트레인 및 그 구성 기기를 크레인에 의해 교환하는 작업이 용이해진다.
특히, 발전기를 증속기보다 나셀측에 배치하면, 보수관리나 교환 빈도가 높은 증속기가 단부 (端部) 측에 위치하여 작업성의 향상에 유효하다.
도 1 은 본 발명에 관련된 풍력 발전 장치의 일 실시형태를 나타내는 도면으로서, 제 1 실시형태로서 나셀 주변의 요부를 확대하여 내부 구성예를 나타내는 단면도이다.
도 2 는 풍력 발전 장치의 전체 구성예를 나타내는 도면이다.
도 3 은 제 1 실시형태의 변형예를 나타내는 단면도이다.
도 4 는 본 발명에 관련된 풍력 발전 장치의 제 2 실시형태로서, 나셀 주변의 요부를 확대하여 내부 구성예를 나타내는 단면도이다.
도 5 는 본 발명에 관련된 풍력 발전 장치의 제 3 실시형태로서, 나셀 주변의 요부를 확대하여 내부 구성예를 나타내는 단면도이다.
도 6 은 본 발명에 관련된 풍력 발전 장치의 제 4 실시형태로서, 나셀 주변의 요부를 확대하여 내부 구성예를 나타내는 단면도이다.
도 7 은 본 발명에 관련된 풍력 발전 장치의 제 5 실시형태로서, 나셀 주변의 요부를 확대하여 내부 구성예를 나타내는 단면도이다.
도 8 은 제 5 실시형태의 제 1 변형예를 나타내는 단면도이다.
도 9 는 제 5 실시형태의 제 2 변형예를 나타내는 단면도이다.
도 10 은 본 발명에 관련된 풍력 발전 장치의 제 6 실시형태로서, 나셀 주변의 요부를 확대하여 내부 구성예를 나타내는 단면도이다.
도 11 은 제 6 실시형태의 변형예를 나타내는 단면도이다.
도 12 는 본 발명에 관련된 풍력 발전 장치의 제 7 실시형태로서, 나셀 주변의 요부를 확대하여 내부 구성예를 나타내는 단면도이다.
도 13 은 제 7 실시형태의 제 1 변형예를 나타내는 단면도이다.
도 14 는 제 7 실시형태의 제 2 변형예를 나타내는 단면도이다.
도 15 는 본 발명에 관련된 풍력 발전 장치의 제 8 실시형태로서, 나셀 주변의 요부를 확대하여 내부 구성예를 나타내는 단면도이다.
도 16 은 제 8 실시형태의 제 1 변형예를 나타내는 단면도이다.
도 17 은 제 8 실시형태의 제 2 변형예를 나타내는 단면도이다.
도 18 은 본 발명에 관련된 풍력 발전 장치의 제 9 실시형태로서, 나셀 주변의 요부를 확대하여 내부 구성예를 나타내는 단면도이다.
도 19 는 본 발명에 관련된 풍력 발전 장치의 제 10 실시형태로서, 나셀 주변의 요부를 확대하여 내부 구성예를 나타내는 단면도이다.
도 20a 는 본 발명에 관련된 풍력 발전 장치의 제 11 실시형태로서, 나셀 주변의 요부를 확대하여 내부 구성예를 나타내는 단면도이다.
도 20b 는 도 20a 의 A-A 단면도이다.
도 21 은 본 발명에 관련된 풍력 발전 장치의 제 12 실시형태로서, 나셀 주변의 요부를 확대하여 내부 구성예를 나타내는 단면도이다.
도 22 는 제 12 실시형태의 제 1 변형예를 나타내는 단면도이다.
도 23 은 제 12 실시형태의 제 2 변형예를 나타내는 단면도이다.
도 24 는 제 12 실시형태의 제 3 변형예를 나타내는 단면도이다.
도 25 는 본 발명에 관련된 풍력 발전 장치의 제 13 실시형태로서, 나셀 주변의 요부를 확대하여 내부 구성예를 나타내는 단면도이다.
* 도면의 주요 부분에 대한 부호의 설명*
1 : 풍력 발전 장치 2 : 지주
3 : 나셀 4 : 로터 헤드
5 : 풍차 회전 날개 10, 10A∼10N : 드라이브 트레인
11 : 주축 20 : 발전기
30A∼30G : 증속기 40 : 멀티 타입 발전기
41 : 자(子)발전기
발명을 실시하기 위한 최선의 형태
이하, 본 발명에 관련된 풍력 발전 장치의 일 실시형태를 도면에 기초하여 설명한다.
도 2 에 나타내는 풍력 발전 장치 (1) 는, 기초 (6) 상에 세워 설치되는 지주 (2) 와, 지주 (2) 의 상단에 설치되는 나셀 (3) 과, 대략 수평인 축선 둘레로 회전 가능하게 하여 나셀 (3) 에 설치되는 로터 헤드 (4) 를 갖고 있다.
로터 헤드 (4) 에는, 그 회전 축선 둘레에 방사상으로 하여 복수 장의 풍차 회전 날개 (5) 가 장착되어 있다. 이로써, 로터 헤드 (4) 의 회전 축선 방향으로부터 풍차 회전 날개 (5) 에 닿은 바람의 힘이, 로터 헤드 (4) 를 회전 축선 둘레로 회전시키는 동력으로 변환되도록 되어 있다. 또한, 도시한 풍력 발전 장치 (1) 는, 나셀 (3) 의 전방에서 풍차 회전 날개 (5) 가 회전하는 업 윈드형으로 불리는 것이다.
<제 1 실시형태>
도 1 은, 나셀 (3) 의 전방에 배치되어 있는 로터 헤드 (4) 와, 로터 헤드 (4) 의 전방에 배치되어 있는 드라이브 트레인 (10) 에 대해, 로터 헤드 커버 (도시 생략) 를 떼어낸 상태의 내부 구성예를 나타내는 요부의 확대 단면도이다. 또한, 이하에 설명하는 실시형태에 있어서, 드라이브 트레인 (10) 은, 로터 헤드 (4) 의 회전이 증속기를 통하지 않고 그대로 발전기 (20) 에 전달되는 구성이 된다.
도 1 에 있어서, 풍차 회전 날개 (5) 를 구비한 로터 헤드 (4) 는, 나셀 (3) 로부터 전방으로 돌출되는 주축 (11) 에 베어링 (12) 을 개재하여 지지되어 있다. 즉, 로터 헤드 (4) 는, 풍차 회전 날개 (5) 에 바람을 받음으로써, 나셀 (3) 에 고정 지지된 주축 (11) 의 둘레를 풍차 회전 날개 (5) 와 일체로 회전한다.
나셀 (3) 에 고정 지지된 주축 (11) 의 선단부측에는, 발전기 (20) 를 구성하는 원통 형상의 고정자 (21) 가 설치되어 있다. 또, 로터 헤드 (4) 의 전단면에는, 동일하게 발전기 (20) 를 구성하는 원통 형상의 회전자 (22) 가, 고정자 (21) 와의 갭을 유지하기 위해 플렉시블 커플링 (13) 을 개재하여 장착되어 있다. 또한, 도시한 구성에서는 플렉시블 커플링 (13) 을 이용하고 있지만, 회전자 (22) 를 로터 헤드 (4) 의 전단면에 직접 고정시키는 구조나, 리지드 커플링을 개재하여 고정시키는 구조가 기본이 된다.
이 회전자 (22) 는 고정자 (21) 보다 작은 직경이 되고, 회전자 (22) 가 고정자 (21) 의 내측에 배치되어 있다. 즉, 이 경우의 발전기 (20) 에서는, 로터 헤드 (4) 와 함께 회전하는 회전자 (22) 가 고정자 (21) 의 내측을 대략 동축으로 회전하므로, 전자 유도의 법칙에 의해 발전이 실시되도록 되어 있다.
또, 상기 서술한 실시형태에서는, 회전자 (22) 를 고정자 (21) 의 내측에 배치한 구성을 채용하고 있지만, 예를 들어 도 3 에 나타내는 변형예와 같이, 고정자 (21) 를 회전자 (22) 의 내측에 배치한 구성으로 해도 된다. 즉, 도 3 에 나타내는 드라이브 트레인 (10') 은 증속기가 없는 구성이 되고, 주축 (11) 의 선단부에 회전자 (22) 보다 작은 직경인 고정자 (21) 가 고정되어 장착되고, 로터 헤드 (4) 의 전단면에 플렉시블 커플링 (13) 을 개재하여 장착된 회전자 (22) 가 고정자 (21) 의 외측을 회전한다. 이 경우의 회전자 (22) 에 대해서도 플렉시블 커플링 (13) 을 사용한 구조에 한정되지는 않고, 로터 헤드 (4) 의 전단면에 직접 고정시키는 구조나, 리지드 커플링을 개재하여 고정시키는 구조가 기본이 된다.
이와 같이, 고정자 (21) 및 회전자 (22) 의 내외 배치에 대해서는, 어느 배치를 채용해도 전자 유도의 법칙에 의한 발전이 가능하다.
이와 같이, 풍차 회전 날개 (5) 에 바람을 받아 발생되는 회전력을 발전기 (20) 에 전달하는 드라이브 트레인 (10, 10') 이 로터 헤드 (4) 의 전방에 배치된 구성에 의해, 나셀 (3) 내에 발생하는 여분의 스페이스를 저감시킬 수 있다. 즉, 나셀 (3) 내에는 발전기 (20) 등의 드라이브 트레인 구성 기기류를 수납 설치할 필요가 없기 때문에, 이들 대형이고 고중량인 기기류를 지지하는 나셀 대판 (도시 생략) 의 하중 부담은 큰폭으로 경감된다. 이 때문에, 풍력 발전 장치 (1) 를 대형화해도, 나셀 (3) 내의 나셀 대판측에서는 주축 (11) 만을 지지하면 되고, 따라서, 나셀 대판의 소형 경량화가 가능해진다.
또, 로터 헤드 (4) 로부터 발전기 (20) 까지 회전력을 전달하는 드라이브 트레인 (10, 10') 을 로터 헤드 (4) 의 전방에 배치했기 때문에, 나셀 (3) 내에 발생하는 여분의 스페이스, 즉 보수관리 등의 작업 스페이스로서 확보하는 스페이스를 저감시킬 수 있게 되어, 나셀 (3) 자체가 필요 최소한의 공간을 갖도록 소형화하여 스마트한 형상으로 할 수 있다.
또, 드라이브 트레인 (10, 10') 을 로터 헤드 (4) 의 전방에 장착하면, 로터 헤드 커버를 떼어낸 경우, 드라이브 트레인 (10) 이 로터 헤드 (4) 의 전방으로 오버행된 상태가 되므로, 드라이브 트레인 (10, 10') 및 발전기 (20) 등의 구성 기기를 크레인에 의해 교환하는 작업이 용이해진다.
<제 2 실시형태>
이어서, 본 발명에 관련된 풍력 발전 장치에 대해, 제 2 실시형태를 도 4 에 기초하여 설명한다. 또한, 상기 서술한 실시형태와 동일한 부분에는 동일한 부호를 붙이고, 그 상세한 설명은 생략한다.
본 실시형태의 드라이브 트레인 (10A) 은, 로터 헤드 (4) 의 회전을 증속시켜 발전기 (20) 에 전달하기 위해, 로터 헤드 (4) 와 발전기 (20) 사이에 증속기 (30) 를 구비하고 있다. 이 경우의 증속기 (30) 는 플래너터리형 1 단 증속기이고, 도면 중의 부호 31 이 태양 기어, 부호 32 가 유성 기어이다.
상기 서술한 증속기 (30) 는, 주축 (11) 의 전단부측에 베어링 (12) 을 개재하여 자유롭게 회전할 수 있도록 지지된 태양 기어 (31) 와, 로터 헤드 (4) 의 전 단면에 리지드 커플링 (14) 을 개재하여 지지된 복수 개의 유성 기어 (32) 가 맞물리고, 또한 유성 기어 (32) 와 케이싱 (33) 의 내주면에 형성된 기어부 (33a) 가 맞물리는 것이고, 태양 기어 (31) 의 원주 방향으로 등(等)피치로 배치된 유성 기어 (32) 가, 로터 헤드 (4) 와 일체로 태양 기어 (31) 의 둘레를 자전하면서 선회한다. 이 결과, 태양 기어 (31) 및 유성 기어 (32) 의 기어비에 따라, 태양 기어 (31) 는 로터 헤드 (4) 의 회전수로부터 증속되어 회전한다.
또한, 유성 기어 (32) 의 지지 구조에 대해서는, 상기 서술한 리지드 커플링 (14) 을 사용하는 구조 및 유성 기어 (32) 를 직접 고정시키는 구조도 가능한데, 플렉시블 커플링을 개재하여 고정시키는 구조가 기본이 된다.
한편, 발전기 (20) 는, 고정자 (21) 가 주축 (11) 의 선단부에 고정되어 있고, 태양 기어 (31) 와 일체로 연결된 회전자 (22) 가 고정자 (21) 의 내측을 대략 동축으로 회전한다. 즉, 이 실시형태의 발전기 (20) 는, 고정자 (21) 와 로터 헤드 (4) 의 회전수로부터 증속되어 회전하는 회전자 (22) 사이에 전자 유도를 일으켜 발전하게 되어 있다. 또한, 도시는 생략했지만, 증속기 (30) 의 유성단 뒤에, 1 축뿐만 아니라 다축의 출력축을 갖는 구성의 멀티 타입 발전기를 채용해도 된다. 이 멀티 타입 발전기는, 예를 들어 도 16 내지 도 18 에 기초하여 후술하는 실시형태와 같이, 증속기가 2 단 유성 또는 평행 기어에 의해 구성되는 다축의 출력축을 가지며, 각 출력축에 의해 복수의 발전기를 구동하는 것이다.
이와 같은 구성으로 해도, 상기 서술한 제 1 실시형태와 동일하게, 나셀 (3) 내에는 발전기 (20) 등의 드라이브 트레인 구성 기기류를 수납 설치할 필요가 없기 때문에, 이들 대형이고 고중량인 기기류를 지지하는 나셀 대판 (도시 생략) 의 하중 부담은 큰폭으로 경감된다. 이 때문에, 풍력 발전 장치 (1) 을 대형화해도, 나셀 (3) 내의 나셀 대판측에서는 주축 (11) 만을 지지하면 되고, 따라서 나셀 대판의 소형 경량화가 가능해진다.
또, 로터 헤드 (4) 로부터 발전기 (20) 까지 회전력을 전달하는 드라이브 트레인 (10A) 을 로터 헤드 (4) 의 전방에 배치했기 때문에, 나셀 (3) 내에 발생하는 여분의 스페이스를 저감시킬 수 있게 되어, 나셀 (3) 자체가 필요 최소한의 공간을 갖도록 소형화하여 스마트한 형상으로 할 수 있다.
또, 드라이브 트레인 (10A) 을 로터 헤드 (4) 의 전방에 장착하면, 로터 헤드 커버를 떼어낸 경우, 드라이브 트레인 (10) 이 로터 헤드 (4) 의 전방으로 오버행된 상태가 되므로, 드라이브 트레인 (10A) 및 발전기 (20) 등의 구성 기기를 크레인에 의해 교환하는 작업이 용이해진다.
<제 3 실시형태>
이어서, 본 발명에 관련된 풍력 발전 장치에 대해, 제 3 실시형태를 도 5 에 기초하여 설명한다. 또한, 상기 서술한 실시형태와 동일한 부분에는 동일한 부호를 붙이고, 그 상세한 설명은 생략한다.
본 실시형태의 드라이브 트레인 (10B) 은, 로터 헤드 (4) 의 회전을 증속시켜 발전기 (20) 에 전달하기 위해, 로터 헤드 (4) 와 발전기 (20) 사이에 증속기 (30A) 를 구비하고 있다. 이 경우의 증속기 (30A) 는 스타형 1 단 증속기이고, 도면 중의 부호 31A 가 태양 기어, 부호 32A 가 유성 기어이다. 스타형 증속기 (30A) 에 있어서의 유성 기어 (32A) 는, 고정측 주축 (11) 에 지지되어 자유롭게 회전할 수 있고, 외주측에서 로터 헤드 (4) 와 일체로 회전하는 케이싱 (33A) 의 내주면에 형성된 기어부 (33a) 와 맞물려 있다.
따라서, 케이싱 (33A) 이 로터 헤드 (4) 와 동일한 회전수로 회전하고, 케이싱 (33A) 의 기어부 (33a), 유성 기어 (32A) 및 태양 기어 (31A) 의 기어비에 따라 태양 기어 (31A) 가 증속된다. 이 경우의 회전자 (22) 는 태양 기어 (31A) 와 동축이기 때문에, 이 실시형태의 발전기 (20) 도, 고정자 (21) 와 로터 헤드 (4) 의 회전수로부터 증속되어 회전하는 회전자 (22) 사이에 전자 유도를 일으켜 발전하게 되어 있다. 또한, 이 실시형태에 있어서도, 발전기 (20) 대신에, 멀티 타입 발전기를 채용해도 된다.
이와 같은 구성으로 해도, 상기 서술한 실시형태와 동일하게, 나셀 (3) 내에는 발전기 (20) 등의 드라이브 트레인 구성 기기류를 수납 설치할 필요가 없기 때문에, 이들 대형이고 고중량인 기기류를 지지하는 나셀 대판 (도시 생략) 의 하중 부담은 큰폭으로 경감된다.
<제 4 실시형태>
이어서, 본 발명에 관련된 풍력 발전 장치에 대해, 제 4 실시형태를 도 6 에 기초하여 설명한다. 또한, 상기 서술한 실시형태와 동일한 부분에는 동일한 부호를 붙이고, 그 상세한 설명은 생략한다.
본 실시형태의 드라이브 트레인 (10C) 은, 증속 기능을 갖지 않는 타입이며, 발전기 (20) 의 구성이 상이하다. 즉, 이 경우의 발전기 (20) 는, 고정자 (21) 의 외측을 회전자 (22) 가 회전하여 발전하도록 구성되어 있다.
고정자 (21) 는, 나셀 (3) 의 전단면에 플렉시블 커플링 (13) 을 개재하여 고정 지지되어 있는 주축 (11) 의 선단부에, 추가로 플렉시블 커플링 (13) 을 개재하여 장착되어 있다. 도시한 예에서는 플렉시블 커플링 (13) 을 2 단으로 했지만, 1 단이나 3 단 이상의 다단으로 해도 되고, 나아가서는 퀼 샤프트도 포함한다. 또한, 플렉시블 커플링 (13) 으로는, 기어 커플링, 다이어프램, 다반식 (多盤式), 마이크로 부시 등을 포함하는 것으로 한다.
로터 헤드 (4) 는, 나셀 (3) 의 전단면 및 고정자 (21) 의 후단면에 형성한 지지부에, 베어링 (12A) 을 개재하여 자유롭게 회전할 수 있도록 지지되어 있다. 여기서 사용하는 베어링 (12A) 은, 직경 방향 및 축 방향의 하중에 대응함과 함께, 예를 들어 복렬 테이퍼 구름 베어링이나 3 롤러 베어링 등과 같이 모멘트의 지지가 가능하다. 그리고, 로터 헤드 (4) 의 전단면에는, 일체로 회전하는 회전자 (22) 가 장착되어 있다. 즉, 이 경우의 발전기 (20) 에서는, 로터 헤드 (4) 와 함께 회전하는 회전자 (22) 가 고정자 (21) 의 외측을 대략 동축으로 회전하므로, 전자 유도의 법칙에 의해 발전이 실시되도록 되어 있다.
이와 같은 구성으로 해도, 상기 서술한 실시형태와 동일하게, 나셀 (3) 내에는 발전기 (20) 등의 드라이브 트레인 구성 기기류를 수납 설치할 필요가 없기 때문에, 이들 대형이고 고중량인 기기류를 지지하는 나셀 대판 (도시 생략) 의 하중 부담은 큰폭으로 경감된다.
또한, 나셀 (3) 과 로터 헤드 (4) 의 지지 관계에 대해서는, 로터 헤드 (4) 가 베어링 (12A) 의 외주측을 회전하는 외륜 회전형에 한정되지는 않고, 로터 헤드 (4) 가 베어링 (12A) 의 내주측을 회전하는 내륜 회전형 (후술하는 도 13 참조) 을 채용해도 된다.
<제 5 실시형태>
이어서, 본 발명에 관련된 풍력 발전 장치에 대해, 제 5 실시형태를 도 7 에 기초하여 설명한다. 또한, 상기 서술한 실시형태와 동일한 부분에는 동일한 부호를 붙이고, 그 상세한 설명은 생략한다.
본 실시형태의 드라이브 트레인 (10D) 은, 제 4 실시형태와 동일하게 증속 기능을 갖지 않는 타입이며, 발전기 (20) 의 구성이 상이하다. 즉, 이 경우의 발전기 (20) 는, 고정자 (21) 의 내측을 회전자 (22) 가 회전하여 발전하도록 구성되어 있다.
이 경우의 회전자 (22) 는, 로터 헤드 (4) 의 전단면에 리지드 커플링 (14) 을 개재하여 장착되어 있다. 또한, 회전자 (22) 와 고정자 (21) 사이에 베어링 (12A) 을 형성하고 있으므로, 로터 헤드 (4) 와 일체로 회전하는 회전자 (22) 는, 주축 (11) 의 선단부에 고정 지지되어 있는 고정자 (21) 에 대해 회전 가능해진다. 또한, 회전자 (22) 의 장착은, 상기 서술한 리지드 커플링 (14) 을 사용하는 구조에 한정되지는 않고, 로터 헤드 (4) 의 전단면에 직접 고정된 구조로 해도 된다.
즉, 이 경우의 발전기 (20) 에서는, 로터 헤드 (4) 와 함께 회전하는 회전자 (22) 가 고정자 (21) 의 내측을 대략 동축으로 회전하므로, 전자 유도의 법칙에 의해 발전이 실시되도록 되어 있다.
또한, 나셀 (3) 과 로터 헤드 (4) 의 지지 관계에 대해서는, 로터 헤드 (4) 가 베어링 (12A) 의 외주측을 회전하는 외륜 회전형에 한정되지는 않고, 로터 헤드 (4) 가 베어링 (12A) 의 내주측을 회전하는 내륜 회전형 (후술하는 도 13 참조) 을 채용해도 된다.
또, 도 8 에 나타내는 구성의 드라이브 트레인 (10D') 은 도 7 의 제 1 변형예이다. 이 제 1 변형예는, 발전기 (20) 의 회전자 (22) 를 지지하는 구조가 상이하다.
즉, 이 변형예의 발전기 (20) 는, 2 단의 플렉시블 커플링 (13) 을 구비하고 있는 주축 (11) 의 선단에 고정자 (21) 가 장착되고, 회전자 (22) 는 로터 헤드 (4) 와 일체로 고정자 (21) 의 내측을 회전하여 발전한다.
이 경우의 회전자 (22) 는, 주축 (11) 에 1 쌍의 베어링 (12) 을 개재하여 회전 가능하게 지지되어 있다. 그리고, 회전자 (22) 의 회전을 지지하는 주축 (11) 의 선단부측과, 주축 (11) 의 타단측을 지지하는 나셀 (3) 사이에는, 2 단의 플렉시블 커플링 (13) 이 형성되어 있다. 이 때문에, 풍력 발전 장치 (1) 의 회전계와 구조계 사이가 플렉시블 커플링 (13) 에 의해 절연되어, 회전계로부터 구조계로의 입력 전달을 억제함과 함께, 고정자 (21) 와 회전자 (22) 사이의 갭을 소정 범위 내로 유지할 수 있다.
또, 도 9 에 나타내는 구성의 드라이브 트레인 (10D'') 은 도 7 의 제 2 변형예이다. 이 제 2 변형예는, 주축 (11) 이 1 쌍의 베어링 (12) 을 개재하여 로터 헤드 (4) 의 회전을 지지하고 있다. 이 경우의 주축 (11) 은, 로터 헤드 (4) 의 회전을 지지하는 나셀 (3) 측의 부분과, 회전자 (22) 의 회전을 지지하는 선단부측의 부분 사이에, 회전계와 구조계 사이를 절연하는 1 단의 플렉시블 커플링 (13) 을 구비하고 있다.
이와 같은 제 2 변형예의 구성으로 해도, 풍력 발전 장치 (1) 의 회전계와 구조계 사이는 플렉시블 커플링 (13) 에 의해 절연되어, 회전계로부터 구조계로의 입력 전달을 억제함과 함께, 고정자 (21) 와 회전자 (22) 사이의 갭을 소정 범위 내로 유지할 수 있다.
그런데, 도시한 제 2 변형예에서는 플렉시블 커플링 (13) 을 1 단으로 했지만, 상기 서술한 제 1 변형예와 같이, 나셀 (3) 측의 단부에 플렉시블 커플링을 추가하여 2 단으로 해도 된다.
또한, 상기 서술한 변형예에 있어서는, 회전자 (12) 를 지지하는 1 쌍의 베어링 (12) 대신에, 예를 들어 복렬 테이퍼 구름 베어링을 이용하여 모멘트를 제거하는 구성으로 해도 된다.
<제 6 실시형태>
이어서, 본 발명에 관련된 풍력 발전 장치에 대해, 제 6 실시형태를 도 10 에 기초하여 설명한다. 또한, 상기 서술한 실시형태와 동일한 부분에는 동일한 부호를 붙이고, 그 상세한 설명은 생략한다.
본 실시형태의 드라이브 트레인 (10E) 은, 플래너터리형 1 단의 증속기 (30) 를 채용한 것이다. 또, 이 드라이브 트레인 (10E) 은, 2 단의 플렉시블 커플링 (13) 을 구비하고 있는 주축 (11) 의 선단에 고정자 (21) 가 장착되고, 회전자 (22) 는 태양 기어 (31) 와 일체로 회전한다. 이 태양 기어 (31) 는, 로터 헤드 (4) 와 일체로 자전하면서 태양 기어 (31) 의 둘레를 선회하는 유성 기어 (32) 에 의해, 로터 헤드 (4) 의 회전수로부터 증속되어 회전한다.
즉, 이 경우의 발전기 (20) 에서는, 태양 기어 (31) 와 함께 회전하는 회전자 (22) 가 고정자 (21) 의 내측을 대략 동축으로 회전하므로, 전자 유도의 법칙에 의해 발전이 실시되도록 되어 있다. 또한, 이 실시형태에 있어서도, 발전기 (20) 대신에, 예를 들어 도 18 에 기초하여 후술하는 2 단 증속과 같은 멀티 타입 발전기를 채용해도 된다.
또, 도 11 에 나타내는 변형예와 같이, 로터 헤드 (4) 의 회전 지지 구조로서, 베어링 (12) 을 개재하여 주축 (11) 에 지지됨과 함께, 플렉시블 커플링 (13) 을 1 단으로 한 드라이브 트레인 (10E') 을 채용해도 된다. 이 변형예에 있어서, 발전기 (20) 는 상기 서술한 본 실시형태와 동일한 구성이 되기 때문에, 멀티 타입 발전기의 채용도 가능하다.
또한, 나셀 (3) 과 로터 헤드 (4) 의 지지 관계에 대해서는, 로터 헤드 (4) 가 베어링 (12A) 의 외주측을 회전하는 외륜 회전형에 한정되지는 않고, 로터 헤드 (4) 가 베어링 (12A) 의 내주측을 회전하는 내륜 회전형 (후술하는 도 13 참조) 을 채용해도 된다.
<제 7 실시형태>
이어서, 본 발명에 관련된 풍력 발전 장치에 대해, 제 7 실시형태를 도 12 에 기초하여 설명한다. 또한, 상기 서술한 실시형태와 동일한 부분에는 동일한 부호를 붙이고, 그 상세한 설명은 생략한다.
본 실시형태의 드라이브 트레인 (10F) 은, 스타형 1 단의 증속기 (30A) 를 채용한 것이다. 또, 이 드라이브 트레인 (10F) 은, 2 단의 플렉시블 커플링 (13) 을 구비하고 있는 주축 (11) 의 선단에 유성 기어 (32A) 를 지지하고, 또한 선단부측에는 고정자 (21) 가 장착되어 있다. 한편, 회전자 (22) 는, 고정자 (21) 의 후단면에 회전 가능하게 지지된 태양 기어 (31A) 와 동축으로 연결되어 있다.
그리고, 케이싱 (33) 이 로터 헤드 (4) 와 일체로 회전함으로써, 케이싱 (33) 의 기어부 (33a), 유성 기어 (32A) 및 태양 기어 (31A) 가 맞물려 있으므로, 기어비에 따라 로터 헤드 (4) 의 회전수로부터 증속되어 회전자 (22) 도 회전한다. 즉, 이 경우의 발전기 (20) 에서는, 태양 기어 (31A) 와 함께 회전하는 회전자 (22) 가 고정자 (21) 의 내측을 대략 동축으로 회전하므로, 전자 유도의 법칙에 의해 발전이 실시되도록 되어 있다. 또한, 이 실시형태에 있어서도, 발전기 (20) 대신에, 예를 들어 도 19 에 기초하여 후술하는 2 단 증속의 멀티 타입 발전기를 채용하는 것이 가능하다.
또, 도 13 에 나타내는 구성은, 도 12 의 제 1 변형예이다. 즉, 나셀 (3) 과 로터 헤드 (4) 의 지지 관계가 상이하고, 도 12 는 로터 헤드 (4) 가 베어링 (12A) 의 외주측을 회전하는 외륜 회전형, 도 13 은 로터 헤드 (4) 가 베어링 (12A) 의 내주측을 회전하는 내륜 회전형이다. 또한, 이 제 1 변형예에 있어서도, 발전기 (20) 대신에 멀티 타입 발전기의 채용이 가능하다.
또, 도 14 에 나타내는 구성은 도 12 의 제 2 변형예이다. 즉, 로터 헤드 (4) 의 회전 지지 구조로서, 베어링 (12) 을 개재하여 주축 (11) 에 지지됨과 함께, 플렉시블 커플링 (13) 을 1 단으로 한 드라이브 트레인 (10F'') 을 채용해도 된다. 또한, 이 제 2 변형예에 있어서도, 발전기 (20) 대신에 멀티 타입 발전기의 채용이 가능하다.
<제 8 실시형태>
이어서, 본 발명에 관련된 풍력 발전 장치에 대해, 제 8 실시형태를 도 15 에 기초하여 설명한다. 또한, 상기 서술한 실시형태와 동일한 부분에는 동일한 부호를 붙이고, 그 상세한 설명은 생략한다.
본 실시형태의 드라이브 트레인 (10G) 은, 로터 헤드 (4) 의 회전을 증속시켜 발전기 (20) 에 전달하기 위해, 로터 헤드 (4) 와 발전기 (20) 사이에 증속기 (30B) 를 구비하고 있다. 이 증속기 (30B) 는 평행형 2 단 증속기이고, 도면 중의 부호 31A 는 종동 기어, 32A, 32B 는 종동 기어, 33a 는 케이싱 (33A) 의 내주면에 형성된 기어부이다.
이 증속기 (30B) 는, 로터 (4) 의 전단면에 직접 고정되어 있는 케이싱 (33A) 이 일체로 회전함으로써, 기어부 (33a) 와 맞물리는 유성 기어 (32A) 를 회전시킨다. 이 유성 기어 (32A) 는, 주축 (11) 의 선단부측에 플렉시블 커플링 (13) 을 개재하여 고정 지지되어 있는 케이싱 부재 (33B) 에 의해, 베어링 (12) 을 개재하여 회전 가능하게 지지되어 있다.
또한, 상기 서술한 종동 기어 (32A) 는, 큰 직경의 종동 기어 (32B) 와 동축 으로 연결되어 있다. 이 유성 기어 (32B) 는, 회전자 (22) 와 동축으로 한 종동 기어 (31A) 와 맞물려 있다. 이 때문에, 로터 (4) 의 회전은, 기어부 (33a), 유성 기어 (32A, 32B) 및 태양 기어 (31A) 의 기어비에 따라 증속된 회전수로 회전자 (22) 를 회전시킨다. 즉, 이 경우의 발전기 (20) 는, 태양 기어 (31A) 와 함께 회전하는 회전자 (22) 가 고정자 (21) 의 내측을 대략 동축으로 회전하므로, 전자 유도의 법칙에 의해 발전이 실시되도록 되어 있다. 또한, 이 실시형태에 있어서도, 발전기 (20) 대신에 멀티 타입 발전기의 채용이 가능하다.
또, 도 16 에 나타내는 구성은 도 15 의 제 1 변형예, 도 17 에 나타내는 구성은 도 15 의 제 2 변형예이다. 즉, 나셀 (3) 과 로터 헤드 (4) 의 지지 관계가 상이하고, 도 16 은 로터 헤드 (4) 가 베어링 (12A) 의 외주측을 회전하는 외륜 회전형, 도 17 은 로터 헤드 (4) 가 베어링 (12A) 의 내주측을 회전하는 내륜 회전형이고, 다른 구성에 대해서는 도 15 의 실시형태와 동일하다. 또한, 이들 제 1 변형예 및 제 2 변형예에 있어서도, 발전기 (20) 대신에 멀티 타입 발전기의 채용이 가능하다.
<제 9 실시형태>
이어서, 본 발명에 관련된 풍력 발전 장치에 대해, 제 9 실시형태를 도 18 에 기초하여 설명한다. 또한, 상기 서술한 실시형태와 동일한 부분에는 동일한 부호를 붙이고, 그 상세한 설명은 생략한다.
본 실시형태의 드라이브 트레인 (10H) 은, 도 10 에 나타낸 제 6 실시형태의 증속기 (30) 를 2 단 증속으로 한 증속기 (30C) 를 채용함과 함께, 2 단 증속 후의 출력축을 복수로 하여 소형 발전기를 구동하는 멀티 타입 발전기 (40) 를 채용한 것이다. 이 멀티 타입 발전기 (40) 는, 소형이고 출력이 작은 자발전기 (41) 를 복수 개 조합한 구성이 된다. 도시한 자발전기 (41) 는, 상기 서술한 발전기 (20) 와 동일하게, 고정자 (22) 의 내측에서 회전자 (21) 가 회전하여 발전하는 것이다.
또, 이 경우의 증속기 (30C) 는, 도 10 에 나타낸 플래너터리형 1 단의 증속기 (30) 에 평기어를 조합한 2 단 증속기이다. 이 증속기 (30C) 는, 태양 기어 (31) 의 출력축에 평행 기어를 조합하여 2 단 증속으로 한 것으로, 외부 톱니의 제 1 기어 (35) 가 태양 기어 (31) 와 일체로 회전하고, 제 1 기어 (35) 의 외주에 배치되어 맞물리는 외부 톱니의 제 2 기어 (36) 를 증속시켜 회전시키는 것이다. 즉, 제 1 기어 (35) 보다 톱니 수가 적은 제 2 기어 (36) 를 둘레 방향으로 등피치로 분배하여 복수 설치하고, 각 제 2 기어 (36) 의 출력축에 자발전기 (41) 의 회전자 (21) 를 장착한 구성이 된다. 또한, 도시한 예에서는 제 2 기어 (36) 가 등피치로 분배되어 있지만, 등피치에 한정되는 것은 아니다.
이와 같은 구성으로 하면, 로터 헤드 (4) 의 회전이 증속기 (30C) 에 의해 2 단 증속되고, 각 자발전기 (41) 의 회전자 (21) 를 고정자 (22) 의 내측에서 회전시키므로, 각 자발전기 (41) 에 있어서 전자 유도의 법칙에 의한 발전이 실시되고, 각 자발전기 (41) 의 발전량을 합계한 값이 멀티 타입 발전기 (40) 의 총 발전량이 된다. 따라서, 각 자발전기 (41) 의 소형·경량화가 가능해지므로, 높은 곳에서 작업이 이루어지는 보수관리 작업이나 고장 등의 트러블 발생시에 있어서의 수 리·교환 작업이 용이해진다. 또, 복수 개의 자발전기 (41) 의 트러블이 모두에 동시 발생할 확률은 낮기 때문에, 트러블이 발생한 자발전기 (41) 만을 발전 정지시킴으로써, 총 발전량은 저하되지만, 풍력 발전 장치 전체가 운전 정지가 되는 것을 방지할 수 있다.
<제 10 실시형태>
이어서, 본 발명에 관련된 풍력 발전 장치에 대해, 제 10 실시형태를 도 19 에 기초하여 설명한다. 또한, 상기 서술한 실시형태와 동일한 부분에는 동일한 부호를 붙이고, 그 상세한 설명은 생략한다.
본 실시형태의 드라이브 트레인 (10I) 은, 도 12 에 나타낸 제 7 실시형태의 증속기 (30A) 를 2 단 증속으로 한 증속기 (30D) 를 채용함과 함께, 2 단 증속 후의 출력축을 복수로 하여 소형 발전기를 구동하는 멀티 타입 발전기 (40) 를 채용한 것이다. 이 멀티 타입 발전기 (40) 는, 소형 자발전기 (41) 를 복수 개 조합한 구성이 된다. 도시한 자발전기 (41) 는, 상기 서술한 발전기 (20) 와 동일하게, 고정자 (22) 의 내측에서 회전자 (21) 가 회전하여 발전하는 것이다.
또, 이 경우의 증속기 (30D) 는, 도 12 에 나타낸 스타형 1 단의 증속기 (30A) 에 평기어를 조합한 2 단 증속기이다. 이 증속기 (30D) 는, 태양 기어 (31A) 의 출력축에 평행 기어를 조합하여 2 단 증속으로 한 것으로, 외부 톱니의 제 1 기어 (35) 가 태양 기어 (31A) 와 일체로 회전하고, 제 1 기어 (35) 의 외주에 배치되어 맞물리는 외부 톱니의 제 2 기어 (36) 를 증속시켜 회전시키는 것이다. 즉, 제 1 기어 (35) 보다 톱니 수가 적은 제 2 기어 (36) 를 둘레 방향으 로 등피치로 분배하여 복수 설치하고, 각 제 2 기어 (36) 의 출력축에 자발전기 (41) 의 회전자 (21) 를 장착한 구성이 된다.
이와 같은 구성으로 해도, 로터 헤드 (4) 의 회전이 증속기 (30D) 에 의해 2 단 증속되고, 각 자발전기 (41) 의 회전자 (21) 를 고정자 (22) 의 내측에서 회전시키므로, 각 자발전기 (41) 에 있어서 전자 유도의 법칙에 의한 발전이 실시되고, 각 자발전기 (41) 의 발전량을 합계한 값이 멀티 타입 발전기 (40) 의 총 발전량이 된다. 따라서, 각 자발전기 (41) 의 소형·경량화가 가능해지므로, 높은 곳에서 작업이 이루어지는 보수관리 작업이나 고장 등의 트러블 발생시에 있어서의 수리·교환 작업이 용이해진다. 또, 복수 개의 자발전기 (41) 의 트러블이 모두에 동시 발생할 확률은 낮기 때문에, 트러블이 발생한 자발전기 (41) 만을 발전 정지시킴으로써, 총 발전량은 저하되지만, 풍력 발전 장치 전체가 운전 정지가 되는 것을 방지할 수 있다.
<제 11 실시형태>
이어서, 본 발명에 관련된 풍력 발전 장치에 대해, 제 11 실시형태를 도 20a 및 도 20b 에 기초하여 설명한다. 또한, 상기 서술한 실시형태와 동일한 부분에는 동일한 부호를 붙이고, 그 상세한 설명은 생략한다.
본 실시형태의 드라이브 트레인 (10J) 은, 2 단의 평행 기어를 조합하여 구성된 증속기 (30E) 를 채용하고, 2 단 증속 후의 출력축을 복수로 하여 소형 발전기를 구동하는 멀티 타입 발전기 (40) 를 채용한 것이다. 이 멀티 타입 발전기 (40) 는, 소형 자발전기 (41) 를 복수 개 조합한 구성이 된다. 도시한 자발전 기 (41) 는, 상기 서술한 발전기 (20) 와 동일하게, 고정자 (22) 의 내측에서 회전자 (21) 가 회전하여 발전하는 것이다.
이 경우의 증속기 (30E) 는, 로터 헤드 (4) 와 일체로 회전하는 외부 톱니의 주동 (主動) 기어 (37) 와, 주동 기어 (37) 의 외주에 등피치로 배치되어 맞물리는 복수의 제 1 종동 기어 (38) 에 의해 제 1 단 증속 기구가 구성되어 있다. 또한, 제 1 단 증속 기구의 제 1 종동 기어 (38) 에는, 각각에 동축의 제 2 종동 기어 (39A) 가 형성되고, 각 제 2 종동 기어 (39A) 와 각각 맞물리는 제 3 종동 기어 (39B) 를 형성함으로써, 제 2 단 증속 기구가 구성되어 있다. 따라서, 증속기 (30E) 는, 샤프트 (4) 의 회전을 2 단계로 증속시킨 회전수가 제 3 종동 기어 (39B) 의 회전축으로부터 출력되고, 각 제 3 종동 기어 (39B) 와 동축에 장착된 회전자 (21) 를 고정자 (22) 의 내측에서 회전시킴으로써, 자발전기 (41) 에 의한 발전이 가능해진다.
또한, 도시한 예에서는 제 1 종동 기어 (38) 가 등피치로 배치되어 있지만, 등피치에 한정되는 것은 아니다.
이와 같은 구성으로 하면, 로터 헤드 (4) 의 회전이 증속기 (30E) 에 의해 2 단 증속되고, 각 자발전기 (41) 의 회전자 (21) 를 고정자 (22) 의 내측에서 회전시키므로, 각 자발전기 (41) 에 있어서 전자 유도의 법칙에 의한 발전이 실시되고, 각 자발전기 (41) 의 발전량을 합계한 값이 멀티 타입 발전기 (40) 의 총 발전량이 된다. 따라서, 각 자발전기 (41) 의 소형·경량화가 가능해져, 높은 곳에서 작업이 이루어지는 보수관리 작업이나 고장 등의 트러블 발생시에 있어서의 수리·교 환 작업이 용이해진다. 또, 복수 개의 자발전기 (41) 의 트러블이 모두에 동시 발생할 확률은 낮기 때문에, 트러블이 발생한 자발전기 (41) 만을 발전 정지시킴으로써, 총 발전량은 저하되지만, 풍력 발전 장치 전체가 운전 정지가 되는 것을 방지할 수 있다.
그런데, 상기 서술한 제 3 종동 기어 (39B) 는, 도 20a 에 나타내는 바와 같이, 제 2 종동 기어 (39A) 의 내측, 즉 주축 (11) 측에 배치되어 있다. 그러나, 이 위치에 제 3 종동 기어 (39B) 를 배치하면, 전체의 외경 치수가 자발전기 (41) 에 의해 규정되지는 않으므로, 컴팩트화에 적합한 배치 구성이 된다. 그러나, 동축이 되는 자발전기 (41) 의 형상 등에 따라서는, 자발전기 (41) 끼리가 서로 간섭하여 설치할 수 없는 경우도 생각할 수 있다.
그래서, 도 20a 에 나타내는 바와 같이, 제 3 종동 기어 (39B) 와 제 2 종동 기어 (39A) 의 위치 관계에 있어서는, 배치 (맞물림) 하는 방향에 하기와 같은 변형예가 가능하다.
제 1 변형예의 배치예에서는, 도 20b 에 이점쇄선으로 나타내는 바와 같이, 증속기 (30E) 의 가장 외주측에 제 3 종동 기어 (39B') 를 배치하여 제 2 종동 기어 (39A) 와 맞물리게 하면 된다. 이와 같은 배치를 채용하면, 자발전기 (41) 끼리의 간섭은 방지할 수 있지만, 드라이브 트레인 (10I) 및 증속기 (30E) 의 외경 치수가 자발전기 (41) 의 외주 위치에 의해 정해지기 때문에, 장치 전체의 외경 치수 대형화가 우려된다.
제 2 변형예의 배치예에서는, 도 20b 에 일점쇄선으로 나타내는 바와 같이, 상기 서술한 제 3 종동 기어 (39B, 39B') 의 중간적인 위치, 즉, 제 2 종동 기어 (39A) 의 둘레 방향으로 90 도 정도 이동시킨 위치에 제 3 종동 기어 (39B'') 를 배치하여 제 2 종동 기어 (39A) 와 맞물리게 해도 된다. 이와 같은 배치를 채용하면, 컴팩트화와 자발전기 (41) 끼리의 간섭 방지를 양립시킨 배치 구성이 된다.
이와 같이, 제 3 종동 기어 (39B, 39B', 39B'') 의 위치에 대해서는, 양 변형예의 중간적인 위치도 포함시켜 모든 조건에 따른 최적 위치를 적당히 선택하면 된다.
<제 12 실시형태>
이어서, 본 발명에 관련된 풍력 발전 장치에 대해, 제 12 실시형태를 도 21 에 기초하여 설명한다. 또한, 상기 서술한 실시형태와 동일한 부분에는 동일한 부호를 붙이고, 그 상세한 설명은 생략한다.
본 실시형태의 드라이브 트레인 (10K) 은, 로터 헤드 (4) 의 회전을 증속시켜 발전기 (20) 에 전달하기 위해, 증속기 (30A) 및 발전기 (20) 를 구비하고 있다. 이 경우의 증속기 (30A) 는 스타형의 1 단 증속기이고, 도면 중의 부호 31A 가 태양 기어, 부호 32A 가 유성 기어이다. 스타형 증속기 (30A) 에 있어서의 유성 기어 (32A) 는, 고정측 주축 (11) 에 지지되어 자유롭게 회전할 수 있고, 외주측에서 로터 헤드 (4) 와 일체로 회전하는 케이싱 (33A) 의 내주면에 형성된 기어부 (33a) 와 맞물려 있다.
이 드라이브 트레인 (10K) 은, 발전기 (20) 가 증속기 (30A) 보다 나셀 (3) 측에 배치된 구성이 된다. 즉, 상기 서술한 각 실시형태의 드라이브 트레인과는 축 방향의 배치 순서가 반대가 되고, 나셀 (3) 측에 발전기 (20) 가 배치됨과 함께, 선단부측에 증속기 (30A) 가 배치되어 있다. 그리고, 도시한 구성예에서는, 발전기 (20) 의 적어도 일부가 로터 헤드 (4) 의 내부에 위치하고 있고, 이 결과, 드라이브 트레인 (10K) 의 중심 위치가 나셀 (3) 측 (주베어링이 되는 베어링 (12A) 측) 에 접근해 있다.
또, 도 22 에 나타내는 제 1 변형예의 드라이브 트레인 (10K') 에서는, 발전기 (20) 가 증속기 (30A) 보다 나셀 (3) 측에 배치되는 것에 추가하여, 발전기 (20) 와 증속기 (30A) 의 일부가 로터 헤드 (4) 의 내부에 배치되어 있다. 즉, 제 1 변형예의 구성은, 도 21 에 나타낸 실시형태의 드라이브 트레인 (10K) 을 가능한 한 나셀 (3) 측으로 이동시키고, 발전기 (20) 의 전체 및 증속기 (30A) 의 대부분을 로터 헤드 (4) 의 내부에 배치함으로써, 드라이브 트레인 (10K') 의 중심 위치를 보다 더 나셀 (3) 측에 접근시킨 것이다.
따라서, 상기 서술한 드라이브 트레인 (10K, 10K') 은, 케이싱 (33A) 이 로터 헤드 (4) 와 동일한 회전수로 회전하고, 케이싱 (33A) 의 기어부 (33a), 유성 기어 (32A) 및 태양 기어 (31A) 의 기어비에 따라 태양 기어 (31A) 가 증속된다. 이 경우의 회전자 (22) 는 태양 기어 (31A) 와 동축이므로, 이 실시형태의 발전기 (20) 도, 고정자 (21) 와 로터 헤드 (4) 의 회전수로부터 증속되어 회전하는 회전자 (22) 사이에 전자 유도를 일으켜 발전하게 되어 있다.
이와 같이 구성된 드라이브 트레인 (10K, 10K') 은, 발전기 (20) 가 증속기 (30A) 보다 나셀 (3) 측에 배치되고, 적어도 일부가 로터 헤드 (4) 의 내부에 배치되어 있으므로, 드라이브 트레인 자체의 중심 위치를 나셀 (3) 측에 접근시킬 수 있다.
이 때문에, 베어링 (12A) 에 작용하는 모멘트가 저감되어 지지 구조를 경량화할 수 있다. 즉, 베어링 (12A) 을 지지하는 나셀 (3) 의 부하가 경감되어 그 만큼 나셀 (3) 의 구조를 간략화하여 경량화할 수 있다. 또, 드라이브 트레인 (10K, 10K') 에 대해서도, 주축 (11) 이 짧아지는 등 경량이고 컴팩트한 구조로 할 수 있다.
또, 드라이브 트레인 (10K, 10K') 의 보수관리나 기기 교환을 실시하는 경우에는, 로터 헤드 커버를 떼어내면, 증속기 (30A) 가 단부측에 존재한다. 증속기 (30A) 는, 발전기 (20) 와 비교하여 보수관리의 빈도나 기기 교환의 가능성이 높기 때문에, 발전기 (20) 측을 그대로 하여 작업을 실시할 수 있는 배치는 보수관리 등의 작업성 향상에도 유효하다.
또, 상기 서술한 드라이브 트레인 (10K, 10K') 과 같이, 발전기 (20) 를 증속기 (30A) 보다 나셀 (3) 측에 배치하는 구성은, 예를 들어 도 23 에 나타내는 제 2 변형예의 증속기 (10L) 나 도 24 에 나타내는 제 3 변형예의 증속기 (10M) 를 채용하는 등, 증속기나 발전기의 조합이 한정되지는 않는다. 또한, 도 23 및 도 24 에 있어서, 상기 서술한 실시형태와 동일한 부분에는 동일한 부호를 붙이고, 그 상세한 설명은 생략한다.
도 23 에 나타내는 제 2 변형예에서는, 스타 + 플래너터리형 2 단의 증속기 (30F) 를 구비한 드라이브 트레인 (10L) 이 채용된다. 이 경우, 발전기 (20) 및 증속기 (30F) 의 약 절반이 로터 헤드 (4) 내에 배치되어 있으므로, 중심 위치가 나셀 (3) 측에 가까워져 경량화나 컴팩트화가 가능해진다. 또, 이 드라이브 트레인 (10L) 에서는, 선증속기 (30F) 가 단부측에 위치하고 있으므로, 보수관리 등의 작업성도 양호하다.
또한, 도 24 에 나타내는 제 3 변형예에서는, 2 단의 평행 기어를 조합하여 구성된 증속기 (30G) 를 구비한 드라이브 트레인 (10M) 이 채용된다. 이 경우에도, 발전기 (20) 및 증속기 (30G) 의 약 절반이 로터 헤드 (4) 내에 배치되어 있으므로, 중심 위치가 나셀 (3) 측에 가까워져 경량화나 컴팩트화가 가능해진다. 또, 이 드라이브 트레인 (10M) 에서는, 증속기 (30G) 가 선단부측에 위치하고 있으므로, 보수관리 등의 작업성도 양호하다.
<제 13 실시형태>
이어서, 본 발명에 관련된 풍력 발전 장치에 대해, 제 13 실시형태를 도 25 에 기초하여 설명한다. 또한, 상기 서술한 실시형태와 동일한 부분에는 동일한 부호를 붙이고, 그 상세한 설명은 생략한다.
본 실시형태의 드라이브 트레인 (10N) 은, 로터 헤드 (4) 의 회전을 증속시켜 발전기 (20) 에 전달하기 위해, 증속기 (30F) 및 발전기 (20) 를 구비하고 있다. 이 경우의 증속기 (30F) 는, 상기 서술한 제 12 실시형태에 있어서의 제 2 변형예 (도 23 참조) 와 동일하게 구성된 스타 + 플래너터리형 2 단의 증속기이고, 증속기 (30F) 의 약 절반이 로터 헤드 (4) 내에 배치되어 있다. 그러나, 발전기 (20) 에 대해서는, 전체가 지지 가대 (14) 에 강(剛)지지 또는 방진 고무 등에 의해 유(柔)지지되어 나셀 (3) 의 내부에 배치되어 있다.
이 드라이브 트레인 (10N) 에서는, 증속기 (30F) 의 출력축과, 나셀 (3) 내에 설치된 발전기 (20) 의 회전자 (22) 사이가, 양단에 플렉시블 커플링 (13) 을 개재시킨 주축 (11) 에 의해 연결되어 있다. 또한, 도면 중의 부호 13' 는 나셀 (3) 과 증속기 (30F) 사이에 개재시킨 토크 아암 부시인데, 토크 아암 부시 (13') 대신에 상기 서술한 플렉시블 커플링 (13) 을 사용해도 된다.
이와 같은 구성으로 하면, 발전기 (20) 전체가 나셀 (3) 내에 배치됨과 함께, 증속기 (30F) 의 약 절반이 로터 헤드 (4) 내에 배치되어 있으므로, 드라이브 트레인 (10N) 의 중심 위치가 보다 더 나셀 (3) 측에 가까워져 경량화나 컴팩트화는 용이해진다. 또, 이 드라이브 트레인 (10N) 에 있어서도, 선증속기 (30F) 가 단부측에 위치하고 있으므로, 보수관리 등의 작업성도 양호하다.
상기 서술한 본 발명에 의하면, 로터 헤드 (4) 로부터 발전기 (20) 또는 자발전기 (41) 까지 회전력을 전달하는 드라이브 트레인 (10, 10A∼N) 을 로터 헤드 (4) 의 나셀 반대측, 즉 상기 서술한 업 윈드형에서는 나셀 (3) 의 전방에 배치했기 때문에, 보수관리용 등의 목적으로 나셀 (3) 내에 확보해 두어야 하는 통상적인 운전시에 불필요한 스페이스를 저감시킬 수 있다. 따라서, 나셀 (3) 의 소형화가 가능해진다. 또한, 풍력 발전 장치 (1) 를 대형화해도, 나셀 대판의 소형 경량화가 가능해진다.
또, 드라이브 트레인 (10, 10A∼N) 을 로터 헤드 (4) 의 전방에 장착함으로 써, 로터 헤드 커버를 떼어내면 드라이브 트레인 (4) 이 전방으로 오버행된 상태가 된다. 따라서, 높은 곳에 있는 드라이브 트레인 및 그 구성 기기를 크레인에 의해 교환하는 작업이 용이해진다.
특히, 보수관리 기회가 많은 증속기를 선단부측에 배치한 드라이브 트레인 (10K, 10K', 10L, 10M, 10N) 의 구성에서는, 로터 헤드 커버를 떼어내면 발전기를 그대로 하여, 즉, 발전기를 설치한 상태 그대로 증속기에 관한 보수관리 등의 작업을 실시할 수 있기 때문에, 양호한 작업성을 얻을 수 있다.
또, 상기 서술한 각 실시형태에 있어서, 예를 들어 가동측과 고정측 사이에서 필요하게 되는 전원이나 제어 신호 등의 전달 구조를 고려한 경우, 플렉시블 커플링 (13) 을 사용한 구성 (예를 들어, 도 8, 도 10, 도 18 및 도 19 등을 참조) 은, 슬립 링의 배치가 용이해지는 등의 이점을 갖고 있다.
또, 소형·경량화 면에서는, 멀티 타입 발전기 (40) 를 채용한 구성이 유리하고, 일반적으로는 도 18 이나 도 19 에 나타내는 바와 같이, 2 단 증속의 증속기와 멀티 타입 발전기 (40) 를 조합한 구성이 특히 유리하다.
또한, 직경이 큰 기어에 대해서는, 내부 톱니보다 외부 톱니를 저가로 제조할 수 있다.
또한, 주축 (11) 등의 하중 전달 경로에 관한 효율화를 고려하면, 예를 들어 도 18 및 도 19 에 나타내는 바와 같이, 부하가 작기 때문에 직경을 가늘게 하여 경량화할 수 있는 구성이 바람직하다.
따라서, 도 18 에 나타낸 제 9 실시형태나, 도 19 에 나타낸 제 10 실시형태 의 구성은, 상기 서술한 플렉시블 커플링 (13), 멀티 타입 발전기 (40) 및 외부 톱니의 기어를 사용한 구성에 추가하여, 하중 전달 경로의 효율화에 유리한 구성으로 되어 있으므로, 소형 경량화의 달성에 유리한 조건을 거의 모두 구비한 구성이 된다.
그런데, 상기 서술한 실시형태에 있어서는 풍력 발전 장치가 업 윈드형인 경우에 대해 설명했지만, 다운 윈드형에도 적용할 수 있다.
다운 윈드형인 경우, 드라이브 트레인이 나셀 (3) 의 후방에 배치되게 되어, 상기 서술한 업 윈드형과 동일한 작용 효과를 얻을 수 있다.
또, 증속기가 나셀측에 배치되는 경우, 드라이브 트레인을 구성하는 증속기 및 발전기에 대해서는, 그 구성 요소의 일부가 로터 헤드 및/또는 나셀의 내부에 배치되어도 된다.
한편, 발전기가 나셀측에 배치되는 경우, 드라이브 트레인을 구성하는 발전기 및 증속기에 대해서는, 그 구성 요소의 일부를 로터 헤드의 내부에 배치하는 것이 바람직하고, 나아가 발전기 전체를 나셀 내에 배치해도 된다.
즉, 본 발명은, 드라이브 트레인을 구성하는 증속기 및/또는 발전기에 대해, 그 일부를 로터 헤드 내 및/또는 나셀 내에 배치하는 구성을 포함한다. 환언하면, 드라이브 트레인을 구성하는 증속기 및/또는 발전기의 적어도 일부가, 로터 헤드의 나셀 반대측에 배치된 구성으로 할 수 있다.
또한, 본 발명은 상기 서술한 실시형태에 한정되지는 않고, 예를 들어 증속기의 구성이나 발전기의 구성 등에 관한 조합의 변경, 혹은 베어링 및 커플링에 관 한 조합의 변경 등, 그 요지를 일탈하지 않는 범위 내에서 적당히 변경할 수 있다.
Claims (3)
- 풍차 회전 날개가 장착되어 일체로 회전하는 로터 헤드와 드라이브 트레인을 개재하여 연결되어 있는 발전기를 구동하여 발전을 실시하는 풍력 발전 장치로서,상기 로터 헤드로부터 상기 발전기까지 회전력을 전달하는 드라이브 트레인의 적어도 일부를, 상기 로터 헤드의 나셀 반대측에 배치한 것을 특징으로 하는 풍력 발전 장치.
- 제 1 항에 있어서, 상기 드라이브 트레인의 발전기가 1 개 이상으로 구성되어 있는 것을 특징으로 하는 풍력 발전 장치.
- 제 1 항 또는 제 2 항에 있어서, 상기 드라이브 트레인은, 발전기가 증속기보다 나셀측에 배치되어 있는 것을 특징으로 하는 풍력 발전 장치.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007275124 | 2007-10-23 | ||
JPJP-P-2007-275124 | 2007-10-23 | ||
PCT/JP2008/055119 WO2009054152A1 (ja) | 2007-10-23 | 2008-03-19 | 風力発電装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20090083396A true KR20090083396A (ko) | 2009-08-03 |
KR101052456B1 KR101052456B1 (ko) | 2011-07-28 |
Family
ID=40579260
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020097010502A KR101052456B1 (ko) | 2007-10-23 | 2008-03-19 | 풍력 발전 장치 |
Country Status (9)
Country | Link |
---|---|
US (1) | US8198749B2 (ko) |
EP (1) | EP2202409A1 (ko) |
JP (2) | JPWO2009054152A1 (ko) |
KR (1) | KR101052456B1 (ko) |
CN (1) | CN101568724B (ko) |
AU (1) | AU2008315236B2 (ko) |
CA (1) | CA2669276C (ko) |
TW (1) | TW200918743A (ko) |
WO (1) | WO2009054152A1 (ko) |
Families Citing this family (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL2001190C1 (nl) * | 2008-01-16 | 2009-07-20 | Lagerwey Wind B V | Generator voor een direct aangedreven windturbine. |
US8298115B2 (en) * | 2008-07-10 | 2012-10-30 | General Electric Company | Wind turbine transmission assembly |
KR101158967B1 (ko) * | 2009-06-01 | 2012-06-21 | 두산중공업 주식회사 | 풍력 발전기용 슬립링 연결장치 |
TWI482906B (zh) * | 2009-11-24 | 2015-05-01 | Nat Univ Chin Yi Technology | 薄片式空氣擾流發電系統 |
EP2369720A1 (en) * | 2010-03-25 | 2011-09-28 | Siemens Aktiengesellschaft | Stator arrangement for an electromechanical transducer, electromechanical transducer and wind turbine |
AT509625B1 (de) * | 2010-04-14 | 2012-02-15 | Miba Gleitlager Gmbh | Lagerelement |
CN102312787B (zh) * | 2010-07-02 | 2015-06-17 | 肖艳义 | 环形风力永磁直驱发电机 |
US8038402B2 (en) * | 2010-09-28 | 2011-10-18 | General Electric Company | Compact geared drive train |
CN102536666B (zh) * | 2010-12-09 | 2015-05-13 | 厦门蓝溪科技有限公司 | 一种大型直驱风力双发电机系统和安装方法 |
US8147183B2 (en) * | 2010-12-30 | 2012-04-03 | General Electric Company | Drivetrain for generator in wind turbine |
GB201104455D0 (en) * | 2011-03-16 | 2011-04-27 | Romax Technology Ltd | Cover and sealing arrangements for a wind turbine gearbox |
EP2525090B1 (en) * | 2011-05-18 | 2016-06-29 | ZF Wind Power Antwerpen NV | Wind turbine nacelle |
EP2530300B1 (en) * | 2011-06-01 | 2017-11-22 | ZF Wind Power Antwerpen NV | Nacelle main frame structure and drive train assembly for a wind turbine |
CN103703246A (zh) * | 2011-07-15 | 2014-04-02 | Zf风力发电安特卫普股份有限公司 | 用于风力涡轮机的机舱主框架结构和传动系组件 |
WO2013092502A2 (de) * | 2011-12-21 | 2013-06-27 | Wobben Properties Gmbh | Windenergieanlagengondel |
US9903347B2 (en) | 2012-07-16 | 2018-02-27 | Vindg A/S | Wind turbine gearbox |
US9103326B2 (en) | 2012-07-31 | 2015-08-11 | General Electric Company | Wind turbine bedplate support frame |
WO2014058886A1 (en) | 2012-10-08 | 2014-04-17 | Exro Technologies Inc. | Electrical machines such as generators and motors |
MX2016005171A (es) * | 2013-10-22 | 2016-10-13 | Vestas Wind Sys As | Turbina eolica con arreglo de engranaje de impulsion por banda. |
WO2015094607A1 (en) * | 2013-12-20 | 2015-06-25 | United Technologies Corporation | Geared turbofan with improved gear system maintainability |
JP5984792B2 (ja) * | 2013-12-27 | 2016-09-06 | 三菱重工業株式会社 | 風力発電装置 |
GB2532478B (en) * | 2014-11-20 | 2021-08-25 | Time To Act Ltd | Generator |
US20180023543A1 (en) * | 2015-03-30 | 2018-01-25 | Vestas Wind Systems A/S | A wind turbine comprising two or more rotors |
CN107429660A (zh) * | 2015-03-30 | 2017-12-01 | 维斯塔斯风力系统有限公司 | 具有包括中空主销的转子的风轮机 |
DE102016216458A1 (de) * | 2016-08-31 | 2018-03-01 | Wobben Properties Gmbh | Rotorblattnabe für eine Windenergieanlage, und Windenergieanlage mit selbiger |
EP3354847B1 (en) | 2017-01-30 | 2023-03-08 | GE Avio S.r.l. | Flexible coupling shaft for turbine engine |
EP3354882B1 (en) | 2017-01-30 | 2021-03-17 | GE Avio S.r.l. | Method and system of connecting a turbine engine gearbox to engine core |
DE102018204303A1 (de) | 2018-03-21 | 2019-09-26 | Zf Friedrichshafen Ag | Windkraftgetriebe mit mittigem Schwerpunkt |
DE102018219012A1 (de) | 2018-11-08 | 2020-05-14 | Zf Friedrichshafen Ag | Abstützung der Gewichtskraft eines Getriebegehäuses |
JP6728465B1 (ja) * | 2019-12-25 | 2020-07-22 | 電源開発株式会社 | 風力発電機 |
FR3106176B1 (fr) * | 2020-01-09 | 2022-02-04 | Safran Trans Systems | Réducteur pour turbomachine muni d’un générateur électrique |
US11754056B1 (en) | 2021-03-26 | 2023-09-12 | Hawk Spider Energy Corp. | Dynamic mass torque generator |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US659165A (en) * | 1899-11-06 | 1900-10-02 | Albert Braun | Folding shipping-crate. |
US2491172A (en) * | 1945-05-07 | 1949-12-13 | Fairey Aviat Co Ltd | Electrical equipment on aircraft |
JPS5991916U (ja) | 1982-12-10 | 1984-06-22 | 鬼怒川ゴム工業株式会社 | 自動車用ドアのシ−ル構造 |
JPS616686U (ja) * | 1984-06-20 | 1986-01-16 | 晴雄 太田 | 風車装置 |
DE3625840A1 (de) * | 1986-07-30 | 1988-02-11 | Scholz Hans Ulrich | Windkraftanlage |
JPH05164037A (ja) | 1991-12-13 | 1993-06-29 | Mitsubishi Heavy Ind Ltd | 風力発電装置 |
FR2760492B1 (fr) * | 1997-03-10 | 2001-11-09 | Jeumont Ind | Systeme de production d'energie electrique associe a une eolienne |
DE19916454A1 (de) * | 1999-04-12 | 2000-10-19 | Flender A F & Co | Getriebe für eine Windkraftanlage |
JP3935702B2 (ja) * | 2001-10-12 | 2007-06-27 | 三菱重工業株式会社 | 風力発電装置 |
JP4031747B2 (ja) * | 2003-09-30 | 2008-01-09 | 三菱重工業株式会社 | 風力発電用風車 |
US7154191B2 (en) * | 2004-06-30 | 2006-12-26 | General Electric Company | Electrical machine with double-sided rotor |
DE102004064007B4 (de) * | 2004-09-24 | 2009-08-20 | Aloys Wobben | Windenergieanlage mit einer Generatorkühlung |
JP4519635B2 (ja) | 2004-12-28 | 2010-08-04 | 三菱重工業株式会社 | 風力発電装置 |
KR100695012B1 (ko) * | 2006-03-24 | 2007-03-14 | 유니슨 주식회사 | 풍력 발전기 |
US7528497B2 (en) * | 2006-07-11 | 2009-05-05 | Hamilton Sundstrand Corporation | Wind-turbine with load-carrying skin |
US20110020107A1 (en) * | 2007-03-23 | 2011-01-27 | Flodesign Wind Turbine Corporation | Molded wind turbine shroud segments and constructions for shrouds |
US7538446B2 (en) * | 2007-06-21 | 2009-05-26 | General Electric Company | Gear integrated generator for wind turbine |
AU2008331342B2 (en) * | 2008-03-13 | 2011-06-30 | Mitsubishi Heavy Industries, Ltd. | Speed-varying device and wind turbine generator system |
CN101675268A (zh) * | 2008-03-13 | 2010-03-17 | 三菱重工业株式会社 | 变速装置及风力发电装置 |
CN101715520A (zh) * | 2008-07-17 | 2010-05-26 | 三菱重工业株式会社 | 轴承结构及风力发电装置 |
-
2008
- 2008-03-19 JP JP2009519741A patent/JPWO2009054152A1/ja active Pending
- 2008-03-19 WO PCT/JP2008/055119 patent/WO2009054152A1/ja active Application Filing
- 2008-03-19 KR KR1020097010502A patent/KR101052456B1/ko not_active IP Right Cessation
- 2008-03-19 US US12/514,179 patent/US8198749B2/en not_active Expired - Fee Related
- 2008-03-19 CA CA2669276A patent/CA2669276C/en not_active Expired - Fee Related
- 2008-03-19 AU AU2008315236A patent/AU2008315236B2/en not_active Ceased
- 2008-03-19 EP EP08722494A patent/EP2202409A1/en not_active Withdrawn
- 2008-03-19 CN CN2008800011916A patent/CN101568724B/zh not_active Expired - Fee Related
- 2008-03-25 TW TW097110601A patent/TW200918743A/zh not_active IP Right Cessation
-
2012
- 2012-08-20 JP JP2012181751A patent/JP5134738B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
US20100032961A1 (en) | 2010-02-11 |
CA2669276A1 (en) | 2009-04-30 |
JPWO2009054152A1 (ja) | 2011-03-03 |
TW200918743A (en) | 2009-05-01 |
JP2012225350A (ja) | 2012-11-15 |
TWI355457B (ko) | 2012-01-01 |
AU2008315236B2 (en) | 2011-06-23 |
US8198749B2 (en) | 2012-06-12 |
CA2669276C (en) | 2012-05-08 |
JP5134738B2 (ja) | 2013-01-30 |
WO2009054152A1 (ja) | 2009-04-30 |
AU2008315236A1 (en) | 2009-04-30 |
CN101568724B (zh) | 2012-07-04 |
EP2202409A1 (en) | 2010-06-30 |
KR101052456B1 (ko) | 2011-07-28 |
CN101568724A (zh) | 2009-10-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101052456B1 (ko) | 풍력 발전 장치 | |
US8033951B2 (en) | Gearbox for a wind turbine | |
CA2531278C (en) | Wind turbine generator | |
EP2630367B1 (en) | Wind turbine power transmission system and method of installing a wind farm including same | |
US8075442B2 (en) | System and assembly for power transmission and generation in a wind turbine | |
EP2461030A2 (en) | Drivetrain for generator in wind turbine | |
US8147183B2 (en) | Drivetrain for generator in wind turbine | |
EP2275705B1 (en) | Transmission unit and wind power generator | |
US20110068583A1 (en) | Rotor-shaft integrated generator drive apparatus | |
EP2253843A1 (en) | Wind turbine | |
EP2339176A2 (en) | Wind turbine drivetrain system | |
WO2019022595A1 (en) | WIND TURBINE | |
US9447777B2 (en) | Continuous-flow power installation | |
JP5287631B2 (ja) | 風力発電装置 | |
JP2006249982A (ja) | 風力発電装置 | |
AU2011226784B2 (en) | Wind power generator | |
JP2008208959A (ja) | 増速機およびそれを用いた風力発電装置 | |
CN103670952B (zh) | 风力发电机传动装置及风力发电机 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
LAPS | Lapse due to unpaid annual fee |