KR20090074302A - Method for fabricating heat plate - Google Patents

Method for fabricating heat plate Download PDF

Info

Publication number
KR20090074302A
KR20090074302A KR1020080000034A KR20080000034A KR20090074302A KR 20090074302 A KR20090074302 A KR 20090074302A KR 1020080000034 A KR1020080000034 A KR 1020080000034A KR 20080000034 A KR20080000034 A KR 20080000034A KR 20090074302 A KR20090074302 A KR 20090074302A
Authority
KR
South Korea
Prior art keywords
urethane foam
plating
heat sink
foam resin
manufacturing
Prior art date
Application number
KR1020080000034A
Other languages
Korean (ko)
Inventor
김수경
Original Assignee
김수경
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김수경 filed Critical 김수경
Priority to KR1020080000034A priority Critical patent/KR20090074302A/en
Publication of KR20090074302A publication Critical patent/KR20090074302A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/28Sensitising or activating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/54Electroplating of non-metallic surfaces
    • C25D5/56Electroplating of non-metallic surfaces of plastics

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Chemically Coating (AREA)

Abstract

A manufacturing method of a urethane foam radiating plate is provided to ensure rigidity against external impact so as to protect various electric and electronic appliances by making a radiating plate of urethane foam resin. A manufacturing method of a urethane foam radiating plate comprises a step of immersing urethane foam resin in degreasing chemicals, fat-removing the urethane foam resin at a temperature of 50~60°C, neutralizing the urethane foam resin in the water in which the hydrochloric acid is diluted, and then electroless-plating the urethane foam resin in a nonmetallic solution; and a step of activating the resultant material with active chemicals at a temperature of 50~60°C, nickel-plating it in nickel solution, and then copper-plating it in copper solution.

Description

우레탄 발포수지 방열판의 제조방법{Method for fabricating heat plate}Manufacturing Method of Urethane Foam Resin Heat Sink {Method for fabricating heat plate}

본 발명은 방열판의 제조방법에 관한 것으로서, 더욱 상세하게는 각종 전자기기 또는 전자전기부품 등에서 발생하는 열을 효과적으로 방출시킬 뿐만 아니라 외부의 충격을 흡수할 수 있어 충격으로 인한 오동작을 방지하고 제품의 파손 및 변형을 방지할 수 있는 우레탄 발포수지 방열판의 제조방법에 관한 것이다.The present invention relates to a method for manufacturing a heat sink, and more particularly, to effectively release heat generated from various electronic devices or electronic components, and to absorb external shocks, thereby preventing malfunction and damage to a product. And it relates to a method for producing a urethane foam resin heat sink that can prevent deformation.

잘 알려진 바와 같이, 각종 전자기기 또는 전자전기부품들인 파워 저항기, 파워 트랜지스터, 고집적, 고속, 대용량의 반도체 집적회로 등은 동작 중 열이 자주 발생하게 되고, 이와 같이 동작시 내부에서 발생한 열은 회로 동작시 성능저하 및 오동작을 발생시킨다.As is well known, power resistors, power transistors, high-integration, high-speed, large-capacity semiconductor integrated circuits, such as various electronic devices or electronic components, generate heat frequently during operation. It may cause performance degradation and malfunction.

따라서 동작시 발생한 열을 외부로 방출시키기 위하여 전자기기 또는 전자전기부품 등에 방열판을 설치하는데, 현재의 방열판은 소형의 전자기기에 내장되는 것과 중대형의 전자전기부품에 사용되는 방열판으로 나누어져 있다. 전기전자기기는 운전 중에 전류가 흐르게 되며, 이러한 전기에너지에 의해 전자전기기기가 작동 을 하게 되고, 일부의 에너지 또는 대부분의 에너지를 열로 발산하여, 이러한 발생한 열이 외부로 발산되지 않을 경우, 기기는 온도가 상승하게 되며, 기기의 오작동 및 파손의 원인이 되기도 한다. 따라서 이러한 방열이 빠르게 일어나도록 장치하는 것이 방열판이다.Therefore, in order to dissipate heat generated during operation to the outside of the electronic device or electronic components, such as heat sink is installed, the current heat sink is divided into a heat sink used for small and medium-sized electronic and electrical components. The electric and electronic equipment is a current flows during operation, the electrical and electronic equipment is operated by this electrical energy, and if some of the energy or most of the energy dissipates as heat, the generated heat is not emitted to the outside, The temperature will rise and it may cause the device to malfunction or break down. Therefore, it is a heat sink to arrange such a heat radiation to occur quickly.

한편 고기능의 전자기기에 사용되는 방열판은 소형으로 형상이 복잡하고 방열팬을 적용하여 운전가능 하지만, 중대형 전자기기나 외부환경에 적용되는 전자전기제품은 방열팬의 사용에 제한을 받고 있으며, 중대형의 팬을 제작하는데 고가의 공정을 필요로 하고 복잡한 형상의 방열판이 외부로 돌출되어 있을 경우 쉽게 파손되어 초기의 특성이 저하될 수 있다.On the other hand, the heat sink used for high-performance electronic devices is compact and complicated in shape and can be operated by applying a heat dissipation fan. However, medium and large electronic devices and electronic / electrical products applied to the external environment are limited to the use of heat dissipation fans. If manufacturing a fan requires an expensive process and the heat sink having a complicated shape protrudes to the outside, it may be easily damaged and the initial characteristics may be degraded.

따라서 외부환경에 사용되는 전자전기부품의 방열판은 저가의 방열판으로 단순한 형상을 하고 있으며, 방열 기능은 자연으로부터 형성된 대류와 자연 바람에 의존한다. 이러한 방열판을 복잡한 형상으로 하게 될 경우, 제조공정상의 이유로 제조원가가 상승하게 되므로 부품업체들은 단순한 형태의 방열판을 사용하고 있으며, 이에 따른 전자전기부품에서 발생한 열을 빠르게 외부로 방출하지 못하여 전자부품의 수명이 기대수명에 미치지 못하는 원인이 되었다.Therefore, the heat sink of the electronic and electrical components used in the external environment has a simple shape with a low cost heat sink, and the heat dissipation function depends on convection and natural wind formed from nature. When the heat sink is made in a complicated shape, manufacturing cost is increased due to the manufacturing process, so parts makers use a simple heat sink. Accordingly, the heat generated from the electronic and electronic parts can not be quickly discharged to the outside, and thus the life of the electronic parts is increased. This was the cause of not meeting life expectancy.

따라서 본 발명은 방열판의 냉각효율을 높여 각종 전자기기나 전기전자부품으로부터 발생하는 열을 외부로 효과적으로 방출할 수 있는 우레탄 발포수지 방열 판의 제조방법을 제공하는데 그 목적이 있다.Accordingly, an object of the present invention is to provide a method for manufacturing a urethane foam resin heat dissipation plate which can effectively release heat generated from various electronic devices or electronic components by increasing the cooling efficiency of the heat dissipation plate.

본 발명의 다른 목적은 방열판을 우레탄 발포수지로 만들어 방열효과를 구현하면서 외부의 충격을 흡수하여 충격으로 인한 오동작 및 제품의 파손과 변형을 방지할 수 있는 우레탄 발포수지 방열판의 제조방법을 제공함에 있다.Another object of the present invention is to provide a manufacturing method of the urethane foam resin heat sink that can prevent the malfunction and damage and deformation of the product due to the shock by absorbing the external shock while implementing the heat dissipation effect made of urethane foam resin. .

상기한 바와 같은 목적을 달성하기 위한 본 발명은, 통상의 우레탄 발포수지를 탈지약품에 침지시킨 후, 이를 50~60℃의 온도에서 탈지 처리한 다음, 이를 염산이 희석된 물에 담가 중화시킨 후, 이를 다시 비금속 용액인 팔라듐에 투입하여 무전해 도금이 될 수 있도록 촉매 처리한 다음, 상기 촉매 처리된 우레탄 발포수지를 활성화약품에 담가 50~60℃의 온도에서 활성화시킨 후, 이를 니켈 용액에 침지시켜 2㎛ 두께의 니켈도금을 하고, 이를 다시 구리 용액에 담가 25~30㎛ 두께의 구리도금을 처리하는 과정으로 이루어짐을 특징으로 한다.The present invention for achieving the object as described above, after immersing the conventional urethane foaming resin in a degreasing agent, it is degreased at a temperature of 50 ~ 60 ℃, and then immersed it in water diluted with hydrochloric acid and neutralized Then, it is put back into palladium, a nonmetallic solution, catalyzed for electroless plating, and then, the catalyst-treated urethane foam resin is immersed in an activating agent and activated at a temperature of 50 to 60 ° C., and then immersed in a nickel solution. It is characterized in that the nickel plating of 2㎛ thickness, which is immersed in a copper solution again to process a copper plating of 25 ~ 30㎛ thickness.

위와 같은 특징을 가지는 본 발명은 방열효과를 높일 수 있으며, 장기간 사용하더라도 열에 의한 변형이 발생되지 않고, 우수한 방열효과를 구현할 수 있다. 뿐만 아니라 발포 우레탄 수지로 방열판을 제조함으로써 외부의 충격에도 강하여 방열효과를 구현하면서 충격으로부터 각종 전기전자제품을 보호할 수 있는 장점이 있다.The present invention having the characteristics as described above can increase the heat dissipation effect, even if used for a long time can be achieved without the deformation caused by heat, excellent heat dissipation effect. In addition, by manufacturing a heat sink made of a urethane foam, there is an advantage that can protect various electrical and electronic products from the impact while implementing a heat dissipation effect is strong against external impact.

이하 본 발명의 실시 예를 첨부된 도면을 참조하여 설명하면 다음과 같다. 후술 될 상세한 설명에서는 상술한 기술적 과제를 이루기 위해 본 발명에 있어 대표적인 실시 예를 제시할 것이다. 그리고 본 발명으로 제시될 수 있는 다른 실시 예들은 본 발명의 구성에서 설명으로 대체한다.Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings. In the following description will be presented a representative embodiment in the present invention to achieve the above technical problem. And other embodiments that can be presented with the present invention are replaced by the description in the configuration of the present invention.

본 발명에서는 방열효과를 높이고 아울러 외부의 충격으로부터 전기전자부품을 보호할 수 있는 우레탄 발포수지 방열판의 제조방법을 구현하고자 한다. 이를 위해서는 구체적인 방열판의 제조방법이 제시되어야 하는데, 바람직하게는 각 단계별 공정의 작업조건 및 이 작업에 필요한 조성물과 이에 따른 제조방법(탈지 과정→중화 과정→촉매 과정→활성화 과정→무전해 니켈도금 과정→전기 구리도금 과정)이 구체적으로 개시되어야 한다.In the present invention, to improve the heat dissipation effect and to implement a method for manufacturing a urethane foam resin heat sink that can protect the electrical and electronic components from external impact. To this end, a specific method for manufacturing a heat sink should be presented. Preferably, the operating conditions of each step process, the composition required for the work and the manufacturing method according thereto (degreasing process → neutralization process → catalyst process → activation process → electroless nickel plating process) Electrocopper plating process) should be specifically disclosed.

이하, 도면을 참조하여 본 발명의 바람직한 실시 예를 상세히 설명한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 1은 본 발명의 실시 예에 따른 우레탄 발포수지 방열판의 제조방법을 순차적으로 보이고 있는 도면이다. 본 발명의 실시 예에 따른 제조방법은 6단계로 이루어지며, 각 단계는 우레탄 발포수지(이하 "수지"라 함)를 탈지하는 과정, 탈지된 수지를 중화시키는 과정, 중화된 수지를 촉매과정을 거쳐 활성화시키는 과정, 활성화된 수지의 표면에 니켈을 도금하는 과정, 니켈 도금 처리된 수지에 구리를 도금하는 과정으로 이루어진다. 하기에서는 이들의 각 과정들을 단계별로 나누어 상세하게 설명할 것이다.1 is a view sequentially showing a manufacturing method of a urethane foam resin heat sink according to an embodiment of the present invention. The manufacturing method according to an embodiment of the present invention consists of six steps, each step is a process of degreasing the urethane foam resin (hereinafter referred to as "resin"), the process of neutralizing the degreased resin, the process of catalyzing the neutralized resin After activation, the process of plating the nickel on the surface of the activated resin, the process of plating copper on the nickel-plated resin. In the following, each of these processes will be described in detail by dividing step by step.

1. 우레탄 발포수지 탈지 과정 1. Urethane foaming degreasing process

통상적으로 사용되고 있는 탈지약품(예를 들어, 상품명: 에스크린)에 우레탄 발포수지를 침지시킨 후, 이를 50~60℃의 온도에서 약 30초 동안 탈지시킨다. After immersing the urethane foaming resin in a conventionally used degreasing agent (for example, E-Screen), it is degreased at a temperature of 50 ~ 60 ℃ for about 30 seconds.

2. 중화 과정 2. Neutralization process

탈지 처리된 수지를 염산(15%의 농도)에 담가 약 40초 동안 중화를 시킨다.The degreased resin is immersed in hydrochloric acid (concentration of 15%) and neutralized for about 40 seconds.

3. 촉매 과정 3. Catalytic Process

중화 처리된 수지를 촉매제인 팔라듐(palladium: 상품명: 95A, 제조사: 멕드미드 회사)에 투입하여 무전해 도금이 될 수 있도록 촉매 처리를 한다. 이때 촉매조건은 30~40℃이고 시간은 약 1분 정도이다.The neutralized resin is added to a catalyst, palladium (trade name: 95A, manufacturer: Mekmid, Inc.), and the catalyst is treated to allow electroless plating. At this time, the catalyst condition is 30 ~ 40 ℃ and the time is about 1 minute.

4. 활성화 과정 4. Activation process

촉매 처리된 수지를 통상적인 활성화약품(예를 들어, 상품명: M3107, 제조사: 멕드미드 회사)으로 50~60℃의 온도에서 약 40초 동안 활성화를 시킨다. 이때 활성화를 시키는 이유는 후술한 니켈도금과 구리도금 과정을 수행할 때 도금이 잘 이루어지도록 촉매제가 우레탄 발포수지의 표면에서 떨어지지 않도록 하기 위함이다.The catalyzed resin is activated for about 40 seconds at a temperature of 50-60 ° C. with a conventional activating agent (eg, trade name: M3107, manufacturer: Mexmid). In this case, the reason for activating is to prevent the catalyst from falling off the surface of the urethane foaming resin so that plating is performed well when the nickel plating and copper plating processes described below are performed.

5. 무전해 니켈도금 과정 5. Electroless Nickel Plating Process

활성화 처리된 수지를 무전해 니켈 용액에 침지시켜 니켈도금 두께가 2㎛가 되도록 도금처리를 한다. 이때 도금조건은 45℃에서 3분 동안 이루어지고, PH는 7.5~8.5가 바람직하다.The activated resin is immersed in an electroless nickel solution and plated so that the nickel plating thickness is 2 μm. At this time, the plating conditions are made for 3 minutes at 45 ℃, PH is preferably 7.5 ~ 8.5.

6. 전기 구리도금 과정 6. Electric copper plating process

니켈도금 처리된 수지를 전해 동(Cu) 도금으로 두께가 25~30㎛가 되도록 도금처리를 한다. 이때 도금조건은 30℃에서 20분 정도가 바람직하다.Nickel plated resin is electrolytic copper (Cu) plating to be 25 ~ 30㎛ thick. At this time, the plating condition is preferably about 20 minutes at 30 ℃.

이상과 같은 과정을 거치게 되면 본 발명에서 요구하는 우레탄 발포수지 방열판이 제조되며, 이러한 방법으로 제조된 방열판은 방열효과가 뛰어나면서 아울러 외부의 충격으로부터 전기전자제품을 보호할 수 있다.When the process as described above, the urethane foam resin heat sink required by the present invention is manufactured, the heat sink produced in this way is excellent in the heat dissipation effect can also protect the electrical and electronic products from external shocks.

도 1은 본 발명의 바람직한 일 실시 예에 따른 우레탄 발포수지 방열판을 제조하는 과정을 순차적으로 보여주고 있는 도면.1 is a view sequentially showing a process of manufacturing a urethane foam resin heat sink according to an embodiment of the present invention.

Claims (3)

우레탄 발포수지 방열판을 제조하는 방법에 있어서,In the method for producing a urethane foam resin heat sink, 통상의 우레탄 발포수지를 탈지약품에 침지시킨 후, 이를 50~60℃의 온도에서 탈지 처리한 다음, 이를 염산이 희석된 물에 담가 중화시킨 후, 이를 다시 비금속 용액에 투입하여 무전해 도금이 될 수 있도록 촉매 처리는 단계와;After immersing the conventional urethane foaming resin in a degreasing agent, it is degreased at a temperature of 50 ~ 60 ℃, then immersed in neutralized water diluted with hydrochloric acid, and then neutralized, and then added to a non-metallic solution to be electroless plating. Catalytic treatment to make it possible; 상기 단계를 거친 결과물을 활성화약품에 담가 50~60℃의 온도에서 활성화시킨 후, 이를 니켈 용액에 침지시켜 니켈도금을 하고, 이를 다시 구리 용액에 담가 구리도금을 처리하는 단계로 이루어짐을 특징으로 하는 우레탄 발포수지 방열판의 제조방법.After immersing the resultant product in the activation chemicals at a temperature of 50 ~ 60 ℃, it is immersed in a nickel solution to nickel plating, and then immersed in a copper solution, it is characterized in that the copper plating process Method for producing urethane foam heat sink. 제1항에 있어서,The method of claim 1, 상기 니켈도금의 두께는 2㎛ 임을 특징으로 하는 우레탄 발포수지 방열판의 제조방법.The thickness of the nickel plating is a method of manufacturing a urethane foam resin heat sink, characterized in that 2㎛. 제1항에 있어서,The method of claim 1, 상기 구리도금의 두께는 25~30㎛ 임을 특징으로 하는 우레탄 발포수지 방열판의 제조방법.The thickness of the copper plating is a method of manufacturing a urethane foam resin heat sink, characterized in that 25 ~ 30㎛.
KR1020080000034A 2008-01-02 2008-01-02 Method for fabricating heat plate KR20090074302A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080000034A KR20090074302A (en) 2008-01-02 2008-01-02 Method for fabricating heat plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080000034A KR20090074302A (en) 2008-01-02 2008-01-02 Method for fabricating heat plate

Publications (1)

Publication Number Publication Date
KR20090074302A true KR20090074302A (en) 2009-07-07

Family

ID=41331609

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080000034A KR20090074302A (en) 2008-01-02 2008-01-02 Method for fabricating heat plate

Country Status (1)

Country Link
KR (1) KR20090074302A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101500467B1 (en) * 2013-10-29 2015-03-12 닛토덴코 가부시키가이샤 Laminate
KR20220098886A (en) 2021-01-05 2022-07-12 주식회사 휴비스 A foam sheet having excellent thermal conductivity, and heatsink containing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101500467B1 (en) * 2013-10-29 2015-03-12 닛토덴코 가부시키가이샤 Laminate
KR20220098886A (en) 2021-01-05 2022-07-12 주식회사 휴비스 A foam sheet having excellent thermal conductivity, and heatsink containing the same

Similar Documents

Publication Publication Date Title
KR101077378B1 (en) Heat-radiating substrate and manufacturing method thereof
US8198104B2 (en) Method of manufacturing a semiconductor device
JP2010016362A5 (en) Semiconductor device manufacturing method and semiconductor device
KR101250932B1 (en) An antenna for mobile electronics and the producing method thereof
US20160143126A1 (en) Method of fabricating heat dissipating board
JP2008306064A (en) Semiconductor device
KR101282183B1 (en) Laser direct structuring electroless plating method with two-step pre-treatment process and intenna thereof
CN102074554A (en) Heat conduction board and mounting method of electronic components
KR20090074302A (en) Method for fabricating heat plate
KR101724071B1 (en) Laser direct structuring electroless plating method with single-step pre-treatment process and intenna thereof
JP6169694B2 (en) Heat dissipation board and manufacturing method thereof
CN102655713B (en) Manufacturing process of high-conduction metal-based circuit board of metal substrate
KR101166350B1 (en) Lds plastic material and fabricating method the same
TW202035789A (en) Wiring board and production method for same
JP7326761B2 (en) Wiring board manufacturing method
WO2014136175A1 (en) Heat-dissipating substrate and method for producing same
TW201414881A (en) Method of using potential-free electroplating to manufacture heat-dissipating material
CN201222843Y (en) Module for preventing electromagnetic interference
KR20110003200U (en) A radiate heating equipment
JP7115868B2 (en) Device
JP6190154B2 (en) Method for forming electroless plating layer
US9204553B2 (en) Method for producing a printed circuit board
KR20090070397A (en) Radiant heat circuit board and method for manufacturing of radiant heat circuit board
KR100778022B1 (en) A heat sink manufacturing method for memory module
JP4923224B2 (en) Plating method for metal ceramic composite member and pattern manufacturing method for metal ceramic composite member

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application