KR20090054732A - 태양전지의 제조방법 - Google Patents
태양전지의 제조방법 Download PDFInfo
- Publication number
- KR20090054732A KR20090054732A KR1020070121564A KR20070121564A KR20090054732A KR 20090054732 A KR20090054732 A KR 20090054732A KR 1020070121564 A KR1020070121564 A KR 1020070121564A KR 20070121564 A KR20070121564 A KR 20070121564A KR 20090054732 A KR20090054732 A KR 20090054732A
- Authority
- KR
- South Korea
- Prior art keywords
- substrate
- solar cell
- electrode
- plasma
- forming
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 19
- 238000004381 surface treatment Methods 0.000 title description 13
- 239000000758 substrate Substances 0.000 claims abstract description 84
- 238000004519 manufacturing process Methods 0.000 claims abstract description 15
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 12
- 229910052710 silicon Inorganic materials 0.000 claims description 12
- 239000010703 silicon Substances 0.000 claims description 12
- 238000009832 plasma treatment Methods 0.000 claims description 5
- 229910052760 oxygen Inorganic materials 0.000 claims description 3
- 229910021417 amorphous silicon Inorganic materials 0.000 claims description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 2
- 230000003667 anti-reflective effect Effects 0.000 claims 2
- 229910021421 monocrystalline silicon Inorganic materials 0.000 claims 1
- 239000012535 impurity Substances 0.000 abstract description 16
- 238000009792 diffusion process Methods 0.000 abstract description 5
- 239000007789 gas Substances 0.000 description 20
- 239000004065 semiconductor Substances 0.000 description 10
- 239000000969 carrier Substances 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000002310 reflectometry Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical group [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910021478 group 5 element Inorganic materials 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000010329 laser etching Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- RLOWWWKZYUNIDI-UHFFFAOYSA-N phosphinic chloride Chemical compound ClP=O RLOWWWKZYUNIDI-UHFFFAOYSA-N 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005201 scrubbing Methods 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/18—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
- H01L31/186—Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Photovoltaic Devices (AREA)
Abstract
본 발명은 플라즈마 표면 처리를 이용한 태양전지의 제조방법에 관한 것으로서, (a) 제1도전형의 불순물이 도핑된 태양전지 기판을 준비하는 단계; (b) 상기 태양전지 기판의 전면을 플라즈마 처리하여 태양광의 반사도를 저감시키는 단계; (c) 상기 태양전지 기판의 후면을 플라즈마 처리하여 기판 후면을 평탄화하는 단계; (b) 상기 제1도전형과 반대 도전형인 제2도전형의 불순물을 상기 태양전지 전면에 주입하여 에미터층을 형성하는 단계; (e) 상기 태양전지 기판의 전면에 반사방지막을 형성하는 단계; (f) 상기 반사방지막을 관통하여 전면 전극을 상기 에미터층에 콘택시키는 단계; 및 (g) 상기 태양전지 기판 후면에 후면 전극을 콘택시키고, 후면 전극과 접하는 기판 후면에 BSF(back surface field)를 형성하는 단계;를 포함하는 것을 특징으로 한다.
태양전지, 플라즈마, 에미터층, BSF, 에지 아이솔레이션
Description
본 발명은 태양전지에 관한 것으로서, 보다 상세하게는 태양전지의 제조 공정에서 태양전지 기판의 전면과 후면을 플라즈마 처리하여 태양전지의 효율을 향상시킬 수 있는 플라즈마 표면 처리를 이용한 태양전지의 제조방법에 관한 것이다.
최근 석유나 석탄과 같은 기존 에너지 자원의 고갈이 예측되면서 이들을 대체할 대체 에너지에 대한 관심이 높아지고 있다. 그 중에서도 태양 에너지는 에너지 자원이 풍부하고 환경오염에 대한 문제점이 없어 특히 주목받고 있다. 태양 에너지의 이용방법으로는 태양열을 이용하여 터빈을 회전시키는데 필요한 증기를 발생시키는 태양열 에너지와, 반도체의 성질을 이용하여 태양광(photons)을 전기 에너지로 변환시키는 태양광 에너지가 있으며, 태양광 에너지라고 하면 일반적으로 태양광 전지(이하, '태양전지'라 함)를 일컫는다.
태양전지의 기본적인 구조를 나타낸 도 1을 참조하면, 태양전지는 다이오드와 같이 p형 반도체(101)와 n형 반도체(102)의 접합 구조를 가지며, 태양전지에 빛이 입사되면 빛과 태양전지의 반도체를 구성하는 물질과의 상호 작용으로 (-) 전하 를 띤 전자와 전자가 빠져나가 (+) 전하를 띤 정공이 발생하여 이들이 이동하면서 전류가 흐르게 된다. 이를 광기전력효과(光起電力效果, photovoltaic effect)라 하는데, 태양전지를 구성하는 p형(101) 및 n형 반도체(102) 중 전자는 n형 반도체(102) 쪽으로, 정공은 p형 반도체(101) 쪽으로 끌어 당겨져 각각 n형 반도체(101) 및 p형 반도체(102)와 접합된 전극(103, 104)으로 이동하게 되고, 이 전극(103, 104)들을 전선으로 연결하면 전기가 흐르므로 전력을 얻을 수 있다.
태양전지의 출력 특성은 태양전지의 출력전류-전압곡선을 측정하여 평가한다. 출력전류-전압 곡선 상에서 출력전류 Ip와 출력전압 Vp의 곱 Ip×Vp가 최대가 되는 점을 최대출력 Pm이라 정의하고, 최대출력 Pm을 태양전지로 입사하는 총 광에너지(S×I: S는 소자면적, I는 태양전지에 조사되는 광의 강도)로 나눈 값을 변환효율 η로 정의한다. 변환효율 η를 높이기 위해서는 단락전류 Jsc(출력전류-전압 곡선 상에서 V=0 일 때의 출력전류) 또는 개방전압 Voc(출력전류-전압 곡선 상에서 I=0일 때의 출력전압)를 높이거나 출력전류-전압곡선의 각형에 가까운 정도를 나타내는 충실도(fill factor)를 높여야 한다. 충실도의 값이 1에 가까울수록 출력전류-전압곡선이 이상적인 각형에 근접하게 되고, 변환효율 η도 높아지는 것을 의미하게 된다.
p형 실리콘 기판을 이용한 일반적인 태양전지 제조공정은 다음과 같다. 먼저 웨이퍼의 슬라이싱 가정에서 발생된 데미지를 제거하기 위해 웨이퍼 형태의 실리콘 반도체 기판을 습식 식각한다. 그런 다음 실리콘 기판 전면에 n형 불순물을 주입하여 에미터를 형성한다. 이어서, 엣지 분리(edge isolation) 공정을 진행하여 실리 콘 기판 전면과 후면을 전기적으로 분리한다. 그러고 나서, 에미터 상에 반사방지막을 포함하는 절연층을 형성한다. 그런 다음, 전극 공정을 진행하여 상기 절연층을 관통하여 에미터에 콘택되는 전면 전극과 실리콘 기판의 후면에 콘택되는 후면 전극을 형성한다. 상기 후면 전극을 형성할 때에는 실리콘 기판의 후면에서 캐리어들의 재결합 속도를 저감시키기 위해 실리콘 기판의 후면으로부터 소정 깊이까지 BSF(Back Surface Field)층을 형성한다. 이러한 BSF층은 후면 전극의 형성을 위한 열처리 과정에서 후면 전극 내에 포함된 금속 불순물(Al)을 기판 후면으로 확산시켜 형성한다.
그런데, 위와 같은 방법으로 태양전지를 제조하면 실리콘 기판의 전면으로 입사되는 태양광의 반사도를 적절한 레벨로 제어할 수 없어 광전 변환에 의해 생성되는 전류의 량을 증대시키는데 한계가 있다. 에미터가 형성되는 실리콘 기판의 표면은 웨이퍼 가공 과정에서 경면 연마가 이루어지므로 태양광의 반사를 효과적으로 방지할 수 없기 때문이다.
또한 실리콘 기판의 후면에는 웨이퍼 슬라이싱 가공 과정에서 발생한 물결 모양의 극미세 요철이 존재하게 되는데, 이러한 극미세 요철을 제거하지 않으면 BSF층을 균일하게 형성할 수 없으며 이로 인해 태양전지 효율에 관여하는 개방 전압 Voc를 상승시키는데 한계가 있다.
본 발명은 상술한 종래기술의 문제를 해결하기 위해 창안된 것으로서, 불순물 확산을 통해 에미터층을 형성하기 전에 태양전지 기판의 전면과 후면을 플라즈마로 처리하여 태양광의 반사도를 저감시키고 태양전지 기판 후면에 균일한 BSF를 형성하여 태양전지의 효율을 향상시킬 수 있는 플라즈마 표면 처리를 이용한 태양전지의 제조방법을 제공하는데 그 목적이 있다.
상기 기술적 과제를 달성하기 위한 본 발명에 따른 플라즈마 표면 처리를 이용한 태양전지의 제조방법은, (a) 제1도전형의 불순물이 도핑된 태양전지 기판을 준비하는 단계; (b) 상기 태양전지 기판의 전면을 플라즈마 처리하여 태양광의 반사도를 저감시키는 단계; (c) 상기 태양전지 기판의 후면을 플라즈마 처리하여 기판 후면을 평탄화하는 단계; (b) 상기 제1도전형과 반대 도전형인 제2도전형의 불순물을 상기 태양전지 전면에 주입하여 에미터층을 형성하는 단계; (e) 상기 태양전지 기판의 전면에 반사방지막을 형성하는 단계; (f) 상기 반사방지막을 관통하여 전면 전극을 상기 에미터층에 콘택시키는 단계; 및 (g) 상기 태양전지 기판 후면에 후면 전극을 콘택시키고, 후면 전극과 접하는 기판 후면에 BSF(back surface field)를 형성하는 단계;를 포함하는 것을 특징으로 한다.
본 발명에 있어서, 상기 (b) 단계는, CF4, SF6, Cl 및 O2 중 선택된 어느 하 나 또는 이들의 혼합가스를 이용한 플라즈마에 의한 표면 처리 단계이다. 이 때, 플라즈마 처리는 대기압 하 또는 진공 분위기 하에서 진행될 수 있다.
본 발명에 있어서, 상기 (c) 단계는, CF4, SF6 및 Cl 중 선택된 어느 하나 또는 이들의 혼합가스와 O2 가스를 혼합한 가스를 이용한 플라즈마에 의한 표면 처리 단계이다. 이 때, 플라즈마 처리는 대기압 하 또는 진공 분위기 하에서 진행될 수 있다.
본 발명에 따르면, 불순물 확산 공정에 의해 에미터층을 형성하기 전에 태양전지 기판의 전면과 후면을 플라즈마로 처리함으로써, 태양광의 반사도를 저감시키고 균일한 BSF를 형성할 수 있다. 그 결과 태양전지의 단락 전류(Voc)와 개방 전압(Jsc)을 증가시켜 태양전지의 효율을 향상시킬 수 있다.
이하 첨부된 도면을 참조로 본 발명의 바람직한 실시 예를 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서, 본 명세서에 기재된 실시 예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시 예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것 은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
도 2 내지 도 6은 본 발명의 바람직한 실시예에 따른 플라즈마 표면 처리를 이용한 태양전지의 제조방법을 순차적으로 도시한 공정 단면도들이다.
본 발명에 따른 태양전지의 제조방법은, 먼저, 도 2에 도시된 바와 같이, 제1도전형의 불순물이 도핑된 태양전지 기판(201)을 준비한다. 바람직하게, 태양전지 기판(201)은 단결정이나 다결정 실리콘 기판 또는 비정질 실리콘 기판이다. 하지만, 본 발명이 이에 한하는 것은 아니다. 상기 태양전지 기판(201)은 전처리 공정으로 슬라이싱 가공 중에 태양전지 기판(201)의 표면에 발생된 소우 데미지(saw damage)를 습식 식각하여 제거하였다.
그런 다음, 도 3에 도시된 바와 같이, 태양전지 기판(201)의 전면과 후면에 대해서 플라즈마를 이용한 표면 처리를 시행한다. 여기서, 플라즈마(plasma)는 중성가스 분자를 전자(Electron), 이온(Ion), 자유기(Free Radical) 등이 포함된 고에너지 활성물질로 여기시킨 상태를 말한다. 플라즈마 챔버 내에서 전자는 전장 중에서 전위차로 인하여 가속되는데, 전자가 가속되는 과정 중 가스 분자와 충돌되면서 여기되는 에너지를 방사하게 되고, 충격을 받은 원자가 여기되면서 또 다시 전자를 방출하게 된다. 이렇게 과정이 반복되면서, 전자, 이온, 자유기 및 중성분자가 동시에 존재하는 상태가 되는데, 이를 플라즈마 상태라고 부른다. 그리고 기본적으로 플라즈마 가스는 부분적으로 해리된 가스 및 동일한 양의 양전하와 음전하를 띠는 입자로 구성되며, 그 중 상기 해리된 가스는 높은 활성을 지니게 된다.
상기 태양전지 기판(201)의 전면과 후면에 대해서 그 표면을 플라즈마 처리할 때에는, 먼저, 플라즈마 처리를 위한 진공 또는 대기압 챔버 내에 태양전지 기판(201)의 전면이 표면 처리될 수 있도록 위치시킨 상태에서 챔버 내에 플라즈마 가스를 주입시킨다. 이때 주입되는 플라즈마 가스로는 CF4, SF6, Cl 및 O2 중 선택된 어느 하나 또는 이들의 혼합가스가 사용된다. 그리고, 주입된 플라즈마 가스를 플라즈마 상태로 여기시켜 태양전지 기판(201)의 전면을 플라즈마 표면 처리한다.
태양전기 기판(201)의 전면에 대한 플라즈마 표면 처리가 완료되면, 다시 태양전지 기판(201)의 후면이 표면 처리될 수 있도록 위치시킨 상태에서 진공 또는 대기압 챔버 내에 플라즈마 가스를 주입시킨다. 이때 주입되는 플라즈마 가스로는 상술한 태양전지 기판(201)의 전면을 처리할 때의 플라즈마 가스를 사용할 수 있지만, 태양전지 기판(201)의 후면을 처리할 때에는 O2가스가 첨가되는 것이 바람직하다. 상기 플라즈마 가스가 주입되면, 주입된 가스를 플라즈마로 여기시켜 태양전지 기판(201)의 후면을 플라즈마로 표면 처리한다. 바람직하게, 태양전지 기판(201)의 후면을 처리할 때의 식각율(etching rate)은 태양전지 기판(201)의 전면을 처리할 때보다 크게 제어한다. 한편, 본 발명은 태양전지 기판(201)의 전면과 후면의 플라즈마 처리 순서에 의해 한정되지 않으므로, 그 반대의 순서로 플라즈마 처리될 수 있을 것임은 자명하다.
태양전지 기판(201)에 대한 플라즈마 표면처리가 완료되면, 도 4에 도시된 바와 같이 상기 제1도전형과 반대 도전형인 제2도전형의 불순물을 상기 태양전지 기판(201)의 전면에 주입하여 에미터층(202)을 형성한다. 에미터층(202)이 형성되면, 태양전지 기판(201)에는 p-n 접합이 형성된다. 여기서, 태양전지 기판(201)은 p형 및 n형이 모두 사용될 수 있으며, 그 중 p형 기판은 소수 캐리어의 수명 및 모빌리티(mobility)가 커서(p형의 경우 전자가 소수 캐리어임) 가장 바람직하게 사용될 수 있다. p형 기판에는 대표적으로 B, Ga, In 등의 3족 원소들이 도핑되어 있다. 기판이 p형인 경우, n형 에미터층은 P, As, Sb 등의 5족 원소들을 확산시켜 형성한다.
상기 제2도전형의 에미터층(202)을 형성할 때에는, 먼저 태양전지 기판(201)을 확산로(diffusion furnace)에 넣고, 산소 가스와 제2도전형의 불순물 가스를 주입하여 기판 상에 불순물이 유입된 산화막을 형성한다. 여기서, 태양전지 기판(201)이 p형인 경우, 불순물 가스로는 POCl3가 사용될 수 있다. 그런 다음, 고온 열처리를 통해 산화막 내의 불순물을 태양전지 기판(201) 표면으로 드라이브-인(drive-in) 시킨다. 그리고 나서, 기판 표면에 잔류하는 산화막인 PSG막을 제거한다. 그러면 태양전지 기판(201)에는 소정 두께의 에미터층(202)이 형성된다. 상기 에미터층(202)은 여기에서 설명된 방법 이외에도 본 발명이 속한 기술분야에서 공지된 다양한 방법에 의해 형성될 수 있음은 자명하다.
불순물 확산 공정을 거쳐 에미터층(202)이 형성되고 나면, 도 5에 도시된 바와 같이 엣지 분리(edge isolation) 공정을 진행하여 기판 후면에 존재하는 제2도전형 불순물의 도핑층을 제거한다. 상기 엣지 분리 공정은 기계적 스크러빙, 레이 저 식각, 플라즈마 식각 등 공지된 다양한 방법에 의해 수행될 수 있다. 선택적으로, 상기 엣지 분리 시에는 태양전지 기판(201)의 측면에 형성된 제2도전형 불순물의 도핑층도 함께 제거할 수 있다.
엣지 분리 공정이 완료되면, 도 6에 도시된 바와 같이 태양전지 기판(201)의 전면에 형성된 에미터층(202) 상에 반사방지막(203)을 형성한다. 반사방지막(203)은 태양광에 대한 반사율을 낮추기 위해 형성되는 것으로, 대표적으로 실리콘나이트라이드를 포함하여 이루어질 수 있으며, 플라즈마 화학기상증착법(PECVD), 화학기상증착법(CVD) 및 스퍼터링으로 이루어지는 군에서 선택되는 방법에 의해 형성될 수 있다. 그리고, 상기 반사방지막(203)을 관통하며 에미터층(202)에 콘택되도록 전면 전극(206)을 형성하고, 상기 태양전지 기판(201)의 반사방지막(203)이 형성된 면과 반대 면에 후면 전극(204)을 형성한다. 전면 전극(206) 및 후면 전극(204)의 형성 순서는 제한되지 않아, 어느 전극을 먼저 형성하여도 무방하다.
전면 전극(206)은 은과 글라스 프릿을 포함하는 통상의 전면 전극 형성용 페이스트를 소정 패턴에 따라 반사방지막(203) 위에 도포한 후 열처리함에 의해 형성될 수 있으며, 열처리를 통해 전면 전극(206)은 반사방지막(203)을 관통하여 에미터층(202)과 콘택되게 된다(punch through). 상기 전면 전극(206)은 은을 포함하고 있어 전기 전도성이 우수하다.
후면 전극(204)은 알루미늄을 포함하는 통상의 후면 전극 형성용 페이스트를 상기 태양전지 기판(201)의 후면에 도포한 후 열처리함에 의해 형성될 수 있으며, 열처리에 의해 태양전지 기판(201)은 후면 전극(204)과 접하는 면으로부터 소정 깊 이까지 전극 형성 물질(Al)이 도핑되어 BSF(back surface field)(205)가 형성된다. 후면 전극(204)은 알루미늄을 포함하고 있으므로 전기 전도성이 우수할 뿐만 아니라 실리콘과의 친화력이 좋아서 접합성이 우수하다. 또한, 알루미늄은 3족 원소로서 태양전지 기판(201)과의 접면에서 P+층, 즉 BSF(205)을 형성하여 캐리어들이 표면에서 사라지지 않고 BSF 방향으로 모이도록 한다. 본 발명에서는 태양전지 기판(201)의 후면을 플라즈마 표면 처리를 통해 평탄화시킴으로써, 상기 BSF(205)의 형성에 있어 종래보다 균일한 형성이 가능하여 BSF(205)에 의한 효과가 향상되어 태양전지의 효율을 증대시킬 수 있다.
이상과 같이, 본 발명은 비록 한정된 실시 예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시 예를 예시하는 것이며, 전술된 발명의 상세한 설명과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되지 않아야 한다.
도 1은 태양전지의 기본적인 구조를 도시한 개략도이다.
도 2 내지 도 6은 본 발명의 바람직한 실시예에 따른 플라즈마 표면 처리를 이용한 태양전지의 제조방법을 순차적으로 도시한 공정 단면도들이다.
Claims (10)
- 제1 도전형을 갖는 기판의 전후면을 플라즈마로 처리하는 단계,상기 기판에 상기 제1 도전형과 반대인 제2 도전형을 갖는 에미터층을 형성하는 단계,상기 에미터층과 연결되는 제1 전극을 형성하는 단계, 그리고상기 제1 전극과 분리되어 있고, 상기 기판과 연결되는 제2 전극을 형성하는 단계를 포함하는 태양 전지의 제조 방법.
- 제1항에서,상기 플라즈마 처리 단계는,상기 기판을 챔버 내에 위치시키는 단계,상기 챔버 내에 플라즈마 가스를 주입하는 단계, 그리고상기 플라즈마 가스를 플라즈마 상태로 여기시키는 단계를 포함하는 태양 전지의 제조 방법.
- 제2항에서,상기 플라즈마 가스는 CF4, SF6, Cl 및 O2 중 선택된 하나 또는 이들의 혼합 가스인 태양 전지의 제조 방법.
- 제2항에서,상기 챔버는 진공 또는 대기압 상태인 태양 전지의 제조 방법.
- 제1항에서,상기 에미터층 형성 단계 후, 상기 에미터층 위에 반사 방지막을 형성하는 단계를 더 포함하는 태양 전지의 제조 방법.
- 제5항에서,상기 제1 전극 형성 단계는 상기 반사 방지막 위에 제1 전극 형성용 페이스트를 도포하는 단계 그리고 상기 제1 전극 형성용 페이스트가 도포된 상기 기판을 열처리하여, 상기 제1 전극 형성용 페이스트가 상기 반사 방지막을 관통하여 상기 에미터층과 연결되는 상기 제1 전극으로 형성되는 단계를 포함하는 태양 전지의 제조 방법.
- 제1항에서,상기 제2 전극 형성 단계는 상기 기판과 상기 제2 후면 전극 사이에 BSF를 형성하는 단계를 포함하고,상기 제2 전극은 상기 BSF를 통해 상기 기판과 연결되는태양 전지의 제조 방법.
- 제1항에서,상기 에미터층 형성 단계 후, 상기 기판의 후면에 형성된 에미터층을 제거하는 단계를 더 포함하고,상기 제2 전극은 상기 기판의 후면에 형성되는 태양 전지의 제조 방법.
- 제1항에서,상기 기판은 실리콘 기판인 태양 전지의 제조 방법.
- 제9항에서,상기 기판은 단결정 실리콘 기판, 다결정 실리콘 기판 및 비정질 실리콘 기판 중 하나인 태양 전지의 제조 방법.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020070121564A KR20090054732A (ko) | 2007-11-27 | 2007-11-27 | 태양전지의 제조방법 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020070121564A KR20090054732A (ko) | 2007-11-27 | 2007-11-27 | 태양전지의 제조방법 |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20090054732A true KR20090054732A (ko) | 2009-06-01 |
Family
ID=40986626
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020070121564A KR20090054732A (ko) | 2007-11-27 | 2007-11-27 | 태양전지의 제조방법 |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20090054732A (ko) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101158273B1 (ko) * | 2010-10-27 | 2012-06-19 | 주식회사 나래나노텍 | 개선된 태양전지용 실리콘 웨이퍼, 및 이를 이용한 태양 전지의 전극 패턴 형성 장치 및 형성 방법 |
WO2012134062A2 (en) * | 2011-03-30 | 2012-10-04 | Hanwha Chemical Corporation | Method for manufacturing solar cell |
-
2007
- 2007-11-27 KR KR1020070121564A patent/KR20090054732A/ko not_active Application Discontinuation
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101158273B1 (ko) * | 2010-10-27 | 2012-06-19 | 주식회사 나래나노텍 | 개선된 태양전지용 실리콘 웨이퍼, 및 이를 이용한 태양 전지의 전극 패턴 형성 장치 및 형성 방법 |
WO2012134062A2 (en) * | 2011-03-30 | 2012-10-04 | Hanwha Chemical Corporation | Method for manufacturing solar cell |
WO2012134062A3 (en) * | 2011-03-30 | 2012-12-13 | Hanwha Chemical Corporation | Method for manufacturing solar cell |
CN103460397A (zh) * | 2011-03-30 | 2013-12-18 | 韩华石油化学株式会社 | 制造太阳能电池的方法 |
US9093580B2 (en) | 2011-03-30 | 2015-07-28 | Hanwha Chemical Corporation | Method for manufacturing solar cell |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101225978B1 (ko) | 태양전지 및 그 제조방법 | |
KR100964153B1 (ko) | 태양전지의 제조방법 및 그에 의해 제조되는 태양전지 | |
WO2012174421A2 (en) | Patterned doping for polysilicon emitter solar cells | |
KR101254565B1 (ko) | 태양 전지용 기판의 텍스처링 방법 및 태양 전지의 제조 방법 | |
CN110943143A (zh) | 用于制造具有异质结和发射极扩散区的光伏太阳能电池的方法 | |
KR101474008B1 (ko) | 플라즈마 표면 처리를 이용한 태양전지의 제조방법 | |
US20100240170A1 (en) | Method of fabricating solar cell | |
KR101370225B1 (ko) | 태양전지의 제조방법 및 그를 이용하여 제조된 태양전지 | |
KR101284271B1 (ko) | 태양전지의 제조방법 및 그를 이용하여 제조된 태양전지 | |
KR101223061B1 (ko) | 태양전지의 제조방법 및 그를 이용하여 제조된 태양전지 | |
KR101437162B1 (ko) | 플라즈마 표면 처리를 이용한 태양전지의 제조방법 | |
KR20090054732A (ko) | 태양전지의 제조방법 | |
KR101223021B1 (ko) | 태양전지의 제조방법 및 태양전지 | |
KR20090054731A (ko) | 태양전지의 제조방법 | |
KR101431266B1 (ko) | 태양전지의 제조방법 | |
KR101453086B1 (ko) | 태양전지의 제조방법 | |
KR101244791B1 (ko) | 실리콘 웨이퍼의 텍스쳐링 방법, 태양전지의 제조방법 및태양전지 | |
KR20080105268A (ko) | 태양전지의 부동층 형성방법, 태양전지의 제조방법 및태양전지 | |
KR20110078638A (ko) | 수소 플라즈마를 이용한 태양전지의 표면처리 방법 | |
KR101127303B1 (ko) | 태양전지의 제조방법 | |
KR20110004133A (ko) | 솔라셀 및 이의 제조 방법 | |
KR102156059B1 (ko) | 태양 전지의 제조 방법 | |
KR101172611B1 (ko) | 태양전지 제조 방법 | |
KR101192569B1 (ko) | 태양전지의 제조방법 | |
KR20130013916A (ko) | 레이저 어닐링을 이용하여 선택적 고농도 에미터층을 형성한 태양전지 및 그 태양전지 제조 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
N231 | Notification of change of applicant | ||
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E601 | Decision to refuse application |