KR20090042691A - Hydroelectric Power Generation using Low Temperature Boiling Media - Google Patents

Hydroelectric Power Generation using Low Temperature Boiling Media Download PDF

Info

Publication number
KR20090042691A
KR20090042691A KR1020070109253A KR20070109253A KR20090042691A KR 20090042691 A KR20090042691 A KR 20090042691A KR 1020070109253 A KR1020070109253 A KR 1020070109253A KR 20070109253 A KR20070109253 A KR 20070109253A KR 20090042691 A KR20090042691 A KR 20090042691A
Authority
KR
South Korea
Prior art keywords
water
gas
pressure
tank
lower tank
Prior art date
Application number
KR1020070109253A
Other languages
Korean (ko)
Inventor
이상하
Original Assignee
이상하
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이상하 filed Critical 이상하
Priority to KR1020070109253A priority Critical patent/KR20090042691A/en
Publication of KR20090042691A publication Critical patent/KR20090042691A/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B17/00Other machines or engines
    • F03B17/005Installations wherein the liquid circulates in a closed loop ; Alleged perpetua mobilia of this or similar kind
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B11/00Parts or details not provided for in, or of interest apart from, the preceding groups, e.g. wear-protection couplings, between turbine and generator
    • F03B11/002Injecting air or other fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2220/00Application
    • F05B2220/30Application in turbines
    • F05B2220/32Application in turbines in water turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2220/00Application
    • F05B2220/70Application in combination with
    • F05B2220/706Application in combination with an electrical generator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

A hydroelectric power generation method using low temperature boiling media is provided to rotate the turbine without heat loss of gas. A hydroelectric power generation method using low temperature boiling media isolates an upper tub(3), a turbine generator and a lower tank(4) from the atmosphere and adheres an automatic opening and closing unit are to a pipe in which the water and gas are delivered. A gas of which the pressure rises in a gas expansion chamber(17) flows into the lower tank when the water was run over in the lower tank and a turbine(2) is rotated by the pressure which is pressurized by the pressure(atm). The gas of the lower tank inside moves to a condensing chamber(18) and is converted to the liquid by being condensed after the pressurized water comes off. The gas of which the pressure(atm) rises again is supplied to the lower tank since the pressure(atm) rises with the heat exchange. The water in the upper tub is automatically provided to the lower tank when the water flows off.

Description

저온비등매체등을 이용하여 수력발전을하는 방법{omitted}Hydropower generation using low temperature boiling media {omitted}

도면의명칭Name of the drawing

① 대형 횡형으로서 상당한기압을 견딜수 있는 원통① Cylinder that can withstand considerable pressure as a large horizontal type

② 수차로서 옆에 발전기가 부착되어 있으며 발전기는 돌출부에 장착한다.② As aberrations, a generator is attached to the side and the generator is mounted on the protrusion part.

③ 상부수조 ④ 하부물탱크 ⑤⑥ 각 물탱크에서 상부수조로 물이 상승하는 관 ⑦ 상부수조에서 하부탱크로 물이 들어가는 관 ⑧ 압력기체가 팽창실에서 물탱크속으로 들어가는 관 ⑨ 압력기체가 물탱크에서 응축실로 들어가는 관 ⑩⑪⑫⑬ 각 센서와 연결되어 자동개폐장치와 연결된 밸브 ⑭ 수압에 의해 열리고 닫히는 밸브 ⑮ 상부센서

Figure 112007508761086-PAT00002
하부센서
Figure 112007508761086-PAT00003
팽창실
Figure 112007508761086-PAT00004
응축실③ Upper water tank ④ Lower water tank ⑤⑥ Pipe that water rises from each water tank to upper water tank ⑦ Pipe that water enters from upper water tank to lower tank ⑧ Pipe where pressure gas enters into water tank from expansion chamber ⑨ Pressure gas is water tank To the condensing chamber from the valve 밸브 Valve connected to each sensor and connected to automatic switchgear 밸브 Valve opened and closed by water pressure ⑮ Upper sensor
Figure 112007508761086-PAT00002
Lower sensor
Figure 112007508761086-PAT00003
Expansion chamber
Figure 112007508761086-PAT00004
Condensing chamber

본발명은 탱크안에 물이 들어 있을 때 이물을 저온에서 비등하는 기체등을 사용하여 그물을 고압으로 밀어 물에 전체적으로 그기체의 압력만큼 전달하게 하여 압력을 받은 물이 수차를 돌리는 발전이다. 전체를 진공으로 하여 물이 저온에서 비등하게 하여 그 증기압력으로 물을 밀어 수차를 돌릴수도 있다. 처음방법이 고압 을 낼수가 있어서 출력이 높다. 상세하게 설명하면 상부수조를 밖으로대형 원통이 둘러싸게 하고 상부수조에는 물을 담아둔다. 하부탱크안의 기압을 빼버려 상부에서 하부로 물이 들어올수 있게하며, 밸브는상부수조의 수압에 의하여 저절로 열리 며 하부탱크안의 수압이 상부수조의 수압보다 새면 닫히는 밸브이다. 상부탱크내의 공기도 밖으로 빼버리고 하부탱크의 물이 다 빠지고 응축실의 최저기압과 동일하게끔 저온비등매체기체 넣어둔다. 처음 팽창실에서 저온비등매체에 대하여 열을 가하면 저온비등매체가 열을 받아 기압이 상승한다. 하부탱크안에 물이 차있고, 물이 차있을때 ⑩밸브가 ⑮센서에 의한 자동개폐장치에 의하여 열려 팽창실의 기체가 하부 탱크의 상부로 유입하여 압력이 걸려 물 전체에 대하여 압력이 걸린다. ⑫밸브는 상부센서와 연결된 자동개폐장치에 의하여 열린다. 기체압력을 받은 물이 그압력만큼 차고 나가 수차를 돌린다. 물의 온도는 기체의 온도와 비슷하게 맞추어 둔다. 맞추기 위하여 도면에는 없지만 별도의 열교환기와 물이 연결되도록 하면 된다. 압력을 받은 물이 수차를 돌린다음 상부수조에 물이 고이고 물이 다올라간다음에는 탱크안의 하부센서에 의하여 ⑩, ⑫가 닫히고 ⑪이 열리도록 하부센서와 연결된 자동개폐장치를 부착한다. 즉 자동개폐장치는 상부센서하부센서와 다 연결되어 있다.탱크안의 기체가

Figure 112007508761086-PAT00005
응축실에서 응축이 된다. 응축을 하기위하여 팽창실과 마찬가지로 열교환기가 있어야 하고 열교환기밖으로 찬물등이 들러싸면 응축을 얻을수가 있다. 팽창이나응축시에 열교환기에 열이나 냉을 가할시에 태양열이나 지하수등을 이용하여 열이나 냉을 가할 수가 있다. 다른방법으로 히트펌프를 이용하여 열을 줄 수가 있고 열을뺏을수가 있다. 열교환기밖으로 물을 둘러싸고 히트펌프의 증발관을 두면 열을 뺏을수가 있으며 아예 히트펌프의 증발관이나 응축기를 응축실이나 팽창실안에 두면 더쉽게 열전달을 할 수가 있다. 히트펌프의 장점으론 cop가 높게나와 열이나 냉발생에 비하여 전력을 대폭 줄일수가 있다는 것이다. 응축실에서 액화된 저온비등매체는 팽창실로 압력펌프로 옮긴다.팽창실에서 다시 열을 받아 팽창하며 하부탱크에 물이 찼을 때 밸브가 열려 다시 기체가 탱크안으로 들어가 고압으로 물을 밀어 수력발전을 하는 것이다.According to the present invention, when water is contained in a tank, the gas is pushed to a high pressure by using a gas that boils at a low temperature to transfer the net to the water as much as the pressure of its gas, so that the water under pressure turns aberrations. The whole can be vacuumed to allow water to boil at low temperatures and to push the water to its vapor pressure to reverse the aberration. The first method can produce high pressure, so the output is high. In detail, a large cylinder is enclosed outside the upper tank, and the upper tank holds water. It releases the air pressure in the lower tank to allow water to flow from the upper part to the lower part. The valve is opened by itself by the hydraulic pressure of the upper tank and closes when the hydraulic pressure in the lower tank is lower than the hydraulic pressure in the upper tank. The air in the upper tank is also drained out and the lower tank is drained of water and the low temperature boiling medium is kept at the same pressure as the minimum pressure in the condensing chamber. When heat is first applied to the low temperature boiling medium in the expansion chamber, the low temperature boiling medium receives heat to increase the atmospheric pressure. When the water is filled in the lower tank, when the water is filled, the valve is opened by the automatic opening and closing device by the sensor, the gas in the expansion chamber flows into the upper part of the lower tank, and the pressure is applied to the whole water. The valve is opened by an automatic switchgear connected to the upper sensor. The water under the gas pressure kicks out and turns the aberration. The temperature of the water is set to approximate the temperature of the gas. Although not shown in the drawings, a separate heat exchanger and water may be connected to each other. When the water under pressure turns aberrations, water accumulates in the upper tank, and after the water rises, the automatic switchgear connected to the lower sensor is attached to close and open by the lower sensor in the tank. In other words, the automatic switchgear is connected to the upper sensor and lower sensor.
Figure 112007508761086-PAT00005
Condensation occurs in the condensation chamber. In order to condense, there must be a heat exchanger like the expansion chamber, and cold water can be condensed out of the heat exchanger. When heat or cold is applied to the heat exchanger during expansion or condensation, heat or cold can be applied using solar heat or ground water. Alternatively, the heat pump can be used to heat up and take away the heat. Heat can be removed by surrounding the water outside the heat exchanger and placing the evaporation tube of the heat pump. Heat transfer can be easier by placing the evaporation tube or condenser of the heat pump in the condensation or expansion chamber. The advantage of the heat pump is that the cop is high, which can greatly reduce the power compared to heat or cold generation. The low temperature boiling medium liquefied in the condensation chamber is transferred to the expansion chamber with a pressure pump, which receives heat from the expansion chamber and expands it. will be.

본발전은 기체가 바로 터어빈을 돌리면 열손실이 많이 생기는데 비하여 열손실이 거의 없다는데서 큰장점이 있으며 저온의 열만 있으면 지하수등의 냉을 이용하여 3,4기압정도의압력으로 수력발전이 가능 하며 히터펌프를 사용하면 더 효율적인 발전이 가능하다는데 있다.상부수조와 하쿠탱크는 방열처리하여 열보존을 하도록한다. 물이 열이 외부로 뺏기지않도록하여 탱크 물에 압력을 가하는 기체온도와 거의같게하여 기압이 그대로 물에 전달되도록하는 것이다. 한편 탱크안의 물이 다 빠지면 수차가 정지하므로 이것을 피하기 위하여 별도의 떡같은 센서와 개폐장치를 갖춘 하부탱크를 상부수조와 연결되게 하여 한쪽의 물이 다빠지면 다른쪽의 물이 나가도록할 수가 있도록 하는 것이다.도면의 ⑥,⑬은 이것을 고려하여 그린 것이다.The main power generation has a great advantage in that there is much heat loss when the gas is turned on the turbine right away, and if there is only low temperature heat, it is possible to use hydropower at 3,4 atmospheres by using cold water such as groundwater. The use of a pump allows for more efficient power generation: the upper tank and the Haku tank are thermally insulated for heat preservation. The water does not lose heat to the outside, so that it is almost the same as the gas temperature to pressurize the tank water so that the air pressure is transferred to the water as it is. On the other hand, when the water in the tank runs out, the aberration stops, so to avoid this, connect the lower tank with a separate rice cake-like sensor and switchgear to the upper tank so that the other water can go out when one water runs out. (6) and (6) in the drawing are drawn with this in mind.

위의 과정중 센서장치는 상부센서 하부센서를 두지 아니하고 시간적 간격에 의하여 자동으로 밸브등이 열리고 닫히는 방식을 취할 수도 있다.In the above process, the sensor device may take the manner of automatically opening and closing the valve by the time interval without the upper sensor lower sensor.

기체의 압력으로 물을 밀어 수력발전을 하여 효율을 높이는방법How to increase efficiency by hydroelectric power by pushing water with gas pressure

기체의압력으로 발전하는 영역Area developed by gas pressure

기압으로 물을 밀어 그물의압력으로 터어빈을 돌리는 방법How to turn the turbine by the pressure of the net by pushing water at atmospheric pressure

..

기체의 압력을 열손실없이 터어빈에 전달할 수가 있다.The pressure of the gas can be transmitted to the turbine without losing heat.

Claims (4)

도면처럼 상부 수조 터어빈발전기 하부탱크전체를 대기와 폐쇄하고 각물과 기체가 전달하는 관에는 센서에 의하여 연결된, 또는 시간적 간격으로 열리고 닫히는 자동화 개폐장치를 부착하고 하부탱크에 물이 찻을 때 기체팽창실에서 열교환을 받아 기압이 상승한 기체가 하부탱크로 유입하여 기압이 물에전달되어 그압력으로 수차를 돌리며, 물이 다빠진다음에는 탱크안의 기체가 응축실로 가 그기에서냉교환을 받아 응축하여 액체로 바뀌어 그액체를 팽창실로 밀어 넣어 그기에서 열교환을 받아 기압이 상승하게하여 하부탱크로 들어가게하며, 물이 다빠진경우에는 상부수조의 물이 하부탱크로 상부수조의 물의 압력에 의하여 하부탱크로 저절로 들어오게 하는 방법으로서 탱크구조를 2개이상 두어 물이 연속적으로 나가게 하는 시스템As shown in the drawing, the entire lower tank of the upper turbine turbine generator is closed with the atmosphere, and the pipes through which the objects and gas are delivered are equipped with an automatic switchgear connected by sensors or opening and closing at time intervals and when the water is filled in the lower tank, the gas expansion chamber After receiving heat exchange from the gas, the gas which rises in air pressure flows into the lower tank, and the air pressure is transferred to the water, and the aberration is rotated at that pressure. When the liquid is pushed into the expansion chamber, it receives heat exchange and the air pressure rises and enters the lower tank. When the water runs out, the water in the upper tank enters the lower tank by the pressure of the water in the upper tank. A system that puts two or more tank structures in order to bring water out continuously 위 시스템시 팽창실과 응축실의 열교환시에 히트펌프를 이용하여 열교환하는방법으로서, 팽창실에 히트펌프의 응축기를 두고 응축실에 히트펌프의 증발관을 두어 히트펌프를 구동하 던지 ( 이때는 히트펌프의 증발열교환기를 별도로 하나더 응축실밖에 하나더 둔다) 각각의 히트펌프를 두어 히트펌프의 증발관은 응축실에 다른히트펌프의 응축기는 팽창실에 설치하여 구동하는 방법In the above system, heat exchange is performed by using a heat pump during heat exchange between the expansion chamber and the condensation chamber, and the heat pump is driven by placing the condenser of the heat pump in the expansion chamber and the evaporation tube of the heat pump in the condensation chamber (in this case, the heat pump). Separate the evaporation heat exchanger from outside the condensation chamber) by placing each heat pump so that the evaporation tube of the heat pump is installed in the condenser chamber and the other condenser of the heat pump is operated in the expansion chamber. 도면중 전체구조를 공기를 빼버려 기압을 내린 상태에서 탱크안의 물에 압력을 주는 기체를 저온비등매체가 아니라 물이 비등하게 하여 수증기의 압력으로 물 을 밀어 수차를 돌리는 방법How to turn the aberration by pushing the water to the pressure of water vapor so that the gas that pressurizes the water in the tank while depressurizing the entire structure in the drawing and depressurizes the water in the tank instead of the low temperature boiling medium 위 1, 2항의 경우 기체의 응축시에 냉온으로 응축하지아니하고 냉매압축기로 압축 응축하는 방법In the case of the above 1 and 2, when the condensation of the gas is not condensed to cold temperature, but the method of compression condensation by the refrigerant compressor
KR1020070109253A 2007-10-26 2007-10-26 Hydroelectric Power Generation using Low Temperature Boiling Media KR20090042691A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070109253A KR20090042691A (en) 2007-10-26 2007-10-26 Hydroelectric Power Generation using Low Temperature Boiling Media

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070109253A KR20090042691A (en) 2007-10-26 2007-10-26 Hydroelectric Power Generation using Low Temperature Boiling Media

Publications (1)

Publication Number Publication Date
KR20090042691A true KR20090042691A (en) 2009-04-30

Family

ID=40765386

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070109253A KR20090042691A (en) 2007-10-26 2007-10-26 Hydroelectric Power Generation using Low Temperature Boiling Media

Country Status (1)

Country Link
KR (1) KR20090042691A (en)

Similar Documents

Publication Publication Date Title
US9702268B2 (en) Device for controlling a working fluid in a closed circuit operating according to the Rankine cycle, and method using said device
KR101431133B1 (en) OTEC cycle device that contains the ejector
WO2011004866A1 (en) Vapor supply device
CN105423772B (en) Power station air cooling system adopting combined refrigeration with shaft seal steam leakage of steam turbine and continuous blow-down waste heat of boiler as well as method for predicting heat-transfer coefficient of air-cooling condenser
WO2009059562A1 (en) A pneumatic-thermal expansion type cycling method and the apparatus thereof
CN106091717A (en) Direct air cooling system with peak cooling device
CA2823523A1 (en) Pumping device using vapor pressure for supplying water for power plant
CN103821571A (en) Novel thermal power generation system and working method
CN208804908U (en) It is a kind of to utilize electric power plant circulating water exhaust heat refrigerating heating system
KR20100115394A (en) The solar heat generating system having multi serial super heater
CN201421238Y (en) Flash evaporation type vapor phase drying device
KR20090042691A (en) Hydroelectric Power Generation using Low Temperature Boiling Media
CN105605552A (en) Heat energy recycling device for steam exhaust of deaerator in boiler steam turbine system
CN203730081U (en) Novel thermal power generation system
WO2017152759A1 (en) Low-temperature heat energy recycling unit and method
CN111747465B (en) Natural force driven efficient waste heat seawater desalination device and method
CN102650486B (en) Closed water cooling system being capable of producing condensed water
CN103899369A (en) Closed water cooling system with twin-jet nozzle for evaporative cooling
CN109028645A (en) Industrial circulating cooling water device
WO2012118398A1 (en) The system for generation of electrical power, cold and fresh water
RU123840U1 (en) COMBINED HEAT POWER PLANT (OPTIONS)
CN102654342A (en) Closed water cooling system based on evaporative cooling
CN206905572U (en) Condensing plant in afterheat generating system
CN108194155B (en) System for improving summer operation vacuum of heat supply unit
KR20100130130A (en) How to obtain high temperature by condensing low temperature steam obtained by using vacuum pump under water pressure

Legal Events

Date Code Title Description
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid