KR20080113074A - 미세조립된 디바이스 및 미세조립된 디바이스의 제작 방법 - Google Patents

미세조립된 디바이스 및 미세조립된 디바이스의 제작 방법 Download PDF

Info

Publication number
KR20080113074A
KR20080113074A KR1020087025442A KR20087025442A KR20080113074A KR 20080113074 A KR20080113074 A KR 20080113074A KR 1020087025442 A KR1020087025442 A KR 1020087025442A KR 20087025442 A KR20087025442 A KR 20087025442A KR 20080113074 A KR20080113074 A KR 20080113074A
Authority
KR
South Korea
Prior art keywords
layer
material layer
silicon
substrate
fluid
Prior art date
Application number
KR1020087025442A
Other languages
English (en)
Inventor
시발릭 박시
마이클 에프. 밀러
Original Assignee
바이오스케일, 아이엔씨.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 바이오스케일, 아이엔씨. filed Critical 바이오스케일, 아이엔씨.
Publication of KR20080113074A publication Critical patent/KR20080113074A/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • B81B3/0064Constitution or structural means for improving or controlling the physical properties of a device
    • B81B3/0086Electrical characteristics, e.g. reducing driving voltage, improving resistance to peak voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/0009Structural features, others than packages, for protecting a device against environmental influences
    • B81B7/0025Protection against chemical alteration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/02Microstructural systems; Auxiliary parts of microstructural devices or systems containing distinct electrical or optical devices of particular relevance for their function, e.g. microelectro-mechanical systems [MEMS]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing
    • G01N33/54373Apparatus specially adapted for solid-phase testing involving physiochemical end-point determination, e.g. wave-guides, FETS, gratings
    • G01N33/5438Electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0214Biosensors; Chemical sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2207/00Microstructural systems or auxiliary parts thereof
    • B81B2207/11Structural features, others than packages, for protecting a device against environmental influences
    • B81B2207/115Protective layers applied directly to the device before packaging

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Food Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Toxicology (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Micromachines (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Chemically Coating (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

본 발명은 유체 중에서 작동하는 미세조립된 디바이스에 관한 것이며, 이것은 제 1 및 제 2 표면을 갖는 기판 및 기판의 제 1 표면 위에 위치된 제 1 전극 물질층을 포함한다. 디바이스는 제 1 전극 물질층 위에 위치된 압전 물질층 및 압전 물질층 위에 위치된 제 2 전극 물질층을 갖는다. 디바이스는 또한 제 2 전극 물질층 위에 위치된 격리 물질층을 포함하고, 이것의 적어도 하나는 유체로부터 제 2 전극 물질층의 일부를 격리한다. 일부의 디바이스는 격리 물질층 위에 위치된 전도성 물질층을 포함한다.
유체, 미세조립, 디바이스, 센서

Description

미세조립된 디바이스 및 미세조립된 디바이스의 제작 방법{Microfabricated Devices and Method for Fabricating Microfabricated Devices}
본 발명은 유체 중에서 작동하기 위한 미세조립된(microfabricated) 디바이스에 관한 것이다.
미세조립된 디바이스는 센서, 밸브, 펌프 및 혼합기와 같은 것을 포함한 다양한 유체 적용을 위해 사용될 수 있다. 유체 중에서 작동하도록 의도된 미세조립된 디바이스는 디바이스의 적절한 유체 실링(sealing), 유체와 디바이스의 감지(sensing) 및/또는 구동(actuation) 표면 사이의 유체 소통 및 유체로부터 전기적 계면의 격리(isolation)를 보장하도록 디자인되고 제작되어야 한다.
미세조립된 디바이스는 화학적 감지 또는 생물학적 분석(assay)을 수행하기 위해 주로 사용된다. 예를 들면, 미세조립된 센서는 유체 샘플 중에 생물학적 분석물의 존재 또는 양을 검출하기 위해 사용될 수 있다. 하나의 접근은 센서 표면 상에 목적으로 하는 분석물에 특이적인 항체를 고정화하는 것이다. 전형적으로, 매장되어 있는 표면 화학층은 센서의 표면에 생물학적 분자(예를 들면, 항체)의 결 합을 촉진하기 위해 사용된다. 유체 샘플 중의 분석물은 센서 반응에서 변화를 만드는 센서상에 고정된 항체에 결합한다.
미세조립된 디바이스는 또한 유체 특성을 특징화하기 위해 사용될 수 있다. 예를 들면, 미세조립된 디바이스는 때때로 밀도, 점도 및 유체 중에서 소리의 속도을 측정하기 위해 사용된다. 또한, 유체 환경에서의 변화를 센서의 반응으로 모니터링하는 것으로 다양한 화학적 또는 생화학적 방법(예를 들면, 반응 속도, 상변화, 응집)이 특징화될 수 있다. 일부의 적용은 중합 공정의 모니터링 또는 물질 용응 커브 측정을 포함하지만 이것으로 제한되는 것은 아니다.
일부의 감지 적용은 전도성 유체(예를 들면, 용해된 염을 포함하는 유체) 중에서 수행된다. 미세조립된 디바이스의 표면 상에 전도성 유체와 전기적 트레이스(electrical traces) 사이의 접촉은 유체로의 전기적 소실 또는 근접한 전기적 트레이스 사이의 전기적 임피던스에 변화를 초래할 수 있다. 전도성 유체로의 소실은 성능의 손실 및 잠재적으로 미세조립된 디바이스와 유체의 가열을 초래한다. 근접한 전기적 트레이스 사이에 전기적 임피던스에서의 변화는 또한 근접한 전기적 트레이스 사이에 높은 임피던스 격리를 갖는 것이 필요한 경우에 미세조립된 디바이스의 적절한 기능을 간섭한다. 게다가, 미세조립된 디바이스는 때때로 부식성인 또는 미세조립된 디바이스의 작동에 나쁘게 영향을 미칠 수 있는 유체 중에서 사용된다.
일부 미세조립된 디바이스(예를 들면, 전통적 굴곡 플레이트 웨이브(flexural plate wave) 미세조립된 디바이스)는 트루-웨이퍼 식각(through-wafer etch)을 수행하는 것으로 제작된 부유된 멤브레인을 갖는다. 미세조립된 디바이스에 대한 전기적 계면은 식각된 캐비티의 반대 웨이퍼 측면에 있다. 작동시, 유체는 웨이퍼 중에 형성된 캐비티를 통해 미세조립된 디바이스의 감지 표면과 접촉한다. 이것이 유체와 전기적 계면(미세조립된 디바이스의 반대 측면에 위치된)이 분리되어지는 것을 허용함에 따라서, 미세조립된 디바이스를 사용한 유체 시스템의 디자인을 복잡하게 하고 성능을 떨어뜨릴 수 있다. 디바이스의 측면(lateral) 크기가 감소됨에 따라서, 캐비티로의 유체의 주입이 보다 힘들게된다.
예를 들어, 일부의 분석(assay) 미세조립된 디바이스의 감지 표면(예를 들면, 멤브레인)에서 균일한 유동 특성을 요구한다. 감지 표면을 규정하는 식각된 캐비티로 유체의 주입은 감지 표면에서 비-균일한 유체 유동 패턴을 초래한다. 이런 경우에, 유체가 지나는 실질적으로 평면의 표면을 제공하는 시스템을 디자인하는 것이 바람직할 수 있다.
게다가, 미세조립된 디바이스의 감지 표면을 화학적으로 처리하는 것은 화학적 처리(예를 들며, 유체)가 캐비티를 완전히 적실수 있어야 하기 때문에 힘들다. 캐비티의 적절한 젖음은 캐비티가 날카로운 코너(예를 들면, 딥 반응성 이온 식각 공정에 의해 제작된)를 가지고 있기 때문에 어렵고, 날카로운 코너는 전체 캐비티가 적절하게 처리되는 것을 어렵게 한다. 또한, 작동시 디바이스의 순차적인 사용은 미세조립된 디바이스의 캐비티로 도입된 유체가 또한 적절한 캐비티의 젖음을 요구하기 때문에 힘들다.
따라서, 미세조립된 디바이스의 개선된 디자인 및 미세조립된 디바이스의 개 산된 제작방법이 여전히 요구되고 있다.
하나의 양태에서, 본 발명은 유체 중에서 작동하기 위한 미세조립된 디바이스를 특징으로 한다. 상기 디바이스는 제 1 및 제 2 표면을 갖는 기판을 포함한다. 상기 디바이스는 또한 기판의 제 1 표면 위에 위치된 제 1 전극 물질층을 포함한다. 상기 디바이스는 또한 상기 제 1 전극 물질층 위에 위치된 압전 물질층을 포함한다. 상기 디바이스는 또한 상기 압전 물질층 위에 위치된 제 2 전극 물질층을 포함한다. 상기 디바이스는 또한 제 2 전극 물질층 위에 위치된 격리 물질(예를 들면, 저온 산화물, 질화물, 폴리머)층을 포함하고, 이것은 적어도 하나가 유체로부터 제 2 전극 물질층의 일부를 화학적으로 또는 전기적으로 격리한다.
일부의 구현예에서, 상기 디바이스는 격리 물질층 위에 위치된 전도성 물질(예를 들면, 금, 은 또는 알루미늄 또는 실리콘과 같은 반도체 물질)층을 포함한다. 전도성 물질층의 전기적 전위는 디바이스와 유체 또는 유체중의 물질 사이에 전기적 상호작용을 감소시키기 위해 제어될 수 있다. 일부의 구현예에서, 상기 디바이스는 미세조립된 디바이스 상에 물질의 고정화를 촉진하기 위하여 격리 물질층 위에 위치된 고정 물질(예를 들면, 금속, 폴리머, 반도체 또는 유전체)층을 포함한다.
일부의 구현예에서, 기판은 제 1 및 제 2 표면을 갖는 실리콘층, 상기 실리콘층의 제 1 표면에 근접한 제 1 실리콘 산화물층, 상기 실리콘층의 제 2 표면에 근접한 제 2 실리콘 산화물층, 기판의 제 1 표면인 표면을 갖는 제 1 실리콘 산화물층에 근접한 제 1 실리콘 질화물층, 및 제 2 실리콘 산화물층에 근접한 제 2 실리콘 질화물층을 포함한다.
일부의 구현예에서, 제 2 전극 물질층은 금속층(예를 들면, 몰리브데늄 또는 티타늄과 금층)이다. 일부의 구현예에서, 상기 디바이스는 제 2 실리콘 질화물층, 제 2 실리콘 산화물층 및 제 1 실리콘 질화물층을 노출하는 실리콘층에 형성된 캐비티를 포함한다. 일부의 구현예에서, 실리콘층과 제 1 실리콘 질화물층 사이의 실리콘 산화물층의 일부는 언더컷(undercut)을 형성하기 위해 제거된다. 일부의 구현예에서, 격리 물질은 산화물 물질(예를 들면, 저온 산화물 물질)이다.
일부의 구현예에서, 제 1 및/또는 제 2 전극 물질층은 일종 이상의 전극을 포함한다. 상기 일종 이상의 전극은 적어도 하나는 감지 전극이고 적어도 하나는 구동 전극이 될 수 있다. 일부의 구현예에서, 일종 이상의 전극은 한쌍의 감지 전극 및 한쌍의 구동 전극이 될 수 있다. 일부의 구현예에서, 제 1 및/또는 제 2 전극물질층은 맞물린 감지 전극쌍 및 맞물린 구동 전극쌍을 포함한다. 일부의 구현예에서, 상기 미세조립된 디바이스는 굴곡 플레이트 웨이브 디바이스(flexural plate wave device)로서 작동하도록 배열된다.
일부의 구현예에서, 상기 디바이스는 미세조립된 디바이스 상에 물질의 고정화를 촉진하기 위해 격리 물질층 위에 위치된 전도성 물질층을 포함한다. 일부의 구현예에서, 전도성 물질층의 전기적 전위는 미세조립된 디바이스와 유체 또는 유체중의 물질과의 전기적 상호작용을 감소시키기 위해 제어된다. 상기 물질은 예를 들면, 전(whole) 세포, 박테리아, 효모, 곰팡이, 혈액 세포, 해리된 조직 세포, 포자, 바이러스, 단백질, 항체, 지질, 탄수화물, 핵산, 펩티드 및 소분자일 수 있다.
일부의 구현예에서, 전도성 물질층은 격리 물질층과 유체 사이에 장벽이다. 일부의 구현예에서, 상기 디바이스는 격리 물질층의 표면에 유체를 전달하기 위해 격리 물질층 위에 유체 채널을 포함한다. 일부의 구현예에서, 제 1 및 제 2 전극 물질층에 의한 출력 신호는 압전 물질층을 병합하는 구조물의 대표적인 전파 특성이다.
또 다른 양태에서, 본 발명은 제 1 절연 표면 및 제 2 표면을 갖는 기판을 포함하는 유체 중에서 작동하기 위한 미세조립된 디바이스를 특징으로 한다. 상기 디바이스는 또한 기판의 제 1 표면 위에 위치된 제 1 전극 물질층을 포함하며, 제 1 전극 물질층은 일종 이상의 전극을 갖는다. 상기 디바이스는 또한 제 1 전극 물질층 위에 위치된 압전 물질층을 포함한다. 상기 디바이스는 또한 압전 물질층 위에 위치된 제 2 전극 물질층을 포함하고, 상기 제 2 전극 물질층은 전기적 접지면으로 기능하고, 미세조립된 디바이스에 대한 유체 계면을 규정한다.
일부의 구현예에서, 상기 디바이스는 제 2 전극 물질층 위에 위치된 격리 물질층을 포함하고, 격리 물질층의 적어도 하나는 유체로부터 제 2 전극 물질층의 일부를 화학적으로 또는 전기적으로 격리한다. 일부의 구현예에서, 상기 디바이스는 격리 물질층 위에 위치된 전도성 물질층을 포함한다. 전도성 물질층의 전기적 전위는 미세조립된 디바이스와 전도성 유체 또는 전도성 유체 중의 물질 사이의 전기적 상호작용을 감소시키기 위해 제어될 수 있다. 일부의 구현예에서, 상기 디바이스는 미세조립된 디바이스 상에 물질의 고정화를 촉진하기 위하여 격리 물질층 위에 위치된 고정 물질층을 포함한다.
일부의 구현예에서, 기판은 제 1 및 제 2 표면을 갖는 실리콘층, 상기 실리콘층의 제 1 표면에 근접한 제 1 실리콘 산화물층, 상기 실리콘층의 제 2 표면에 근겁한 제 2 실리콘 산화물층, 기판의 제 1 표면인 표면을 갖는 제 1 실리콘 산화물층에 근접한 제 1 실리콘 질화물층, 제 2 실리콘 산화물층에 근접한 제2 실리콘 질화물층을 포함한다. 일부의 구현예에서, 상기 기판은 제 1 및 제 2 표면을 갖는 실리콘층, 상기 실리콘층의 제 1 표면에 근접한 제 1 실리콘 산화물층, 상기 실리콘층의 제 2 표면에 근접한 제 2 실리콘 산화물층, 제 1 실리콘 산화물층에 근접한 제 1 실리콘 질화물층, 및 기판의 제 1 표면인 표면을 갖는 제 2 실리콘 산화물층에 근접한 제 2 실리콘 질화물층을 포함한다. 일부의 구현예에서, 제 2 전극 물질층은 금속, 전도성 반도체 또는 다른 전도성 물질층이다.
또 다른 양태에서, 본 발명은 유체 중에서 작동하기 위한 미세조립된 디바이스를 제작하는 방법에 관한 것이다. 상기 방법은 기판의 제 1 표면 위에 압전 물질층을 증착하는 단계를 포함한다. 상기 방법은 또한 상기 압전 물질층 위에 전극 물질층을 형성하는 단계를 포함한다. 상기 방법은 또한 미세조립된 디바이스의 작동 동안 유체로부터 전극 물질층의 일부를 화학적으로 또는 전기적으로 격리하는 전극 물질층 위에 격리 물질층을 형성하는 단계를 포함한다.
일부의 구현예에서, 전극 물질층은 기판의 제 1 표면 위에 압전 물질층을 증착하기 전에 기판의 제 1 표면 위에 제공된다. 일부의 구현예에서, 기판의 제 1 표면은 실리콘 물질층을 포함한다. 일부의 구현예에서, 상기 방법은 격리 물질층 위에 위치된 전도성 물질층을 형성하는 단계를 포함한다 전도성 물질층의 전기적 전위는 미세조립된 디바이스와 유체 또는 유체 중의 물질 사이에 전기적 상호작용을 감소시키기 위해 제어될 수 있다.
일부의 구현예에서, 방법은 기판의 제 2 표면에 캐비티를 식각하는 단계를 포함한다. 일부의 구현예에서, 상기 방법은 산화물 물질층에 언더컷을 형성하기 위해 기판의 제 2 표면 중에 캐비티의 식각에 의해 노출된 기판의 산화물 물질층을 식각하는 단계를 포함한다. 전극 물질층 위에 격리 물질층을 형성하는 단계는 격리 물질층을 증착하는 단계를 포함한다. 압전 물질층 위에 전극 물질층을 형성하는 단계는 압전 물질층 위에 전극 물질을 증착하는 단계 및 일종 이상의 전극 구조물을 형성하는 단계를 포함한다.
일부의 구현예에서, 방법은 기판의 전기적 접지 층에 전기적 접속을 제공하기 위해 기판의 일부를 노출하는 하나 이상의 비아(via)를 형성하기 위해 격리층 물질, 전극 물질층 및 압전 물질층을 식각하는 단계를 포함한다. 일부의 구현예에서, 상기 방법은 전극 물질 층에 전기적 접속을 제공하기 위해 전극 물질층의 일부를 노출하는 하나 이상의 비아를 형성하기 위해 격리층 물질을 식각하는 단계를 포함한다. 일부의 구현예에서, 상기 기판은 제 1 및 제 2 표면을 갖는 실리콘층, 실리콘층의 제 1 표면에 근접한 제 1 실리콘 산화물층, 실리콘층의 제 2 표면에 근접한 제 2 실리콘 산화물층, 기판의 제 1 표면인 표면을 갖는 제 1 실리콘 산화물층에 근접한 제 1 실리콘 질화물층, 제 2 실리콘 산화물층에 근접한 제 2 실리콘 질화물층을 포함한다.
또 다른 양태에서, 본 발명은 유체 중에서 작동하기 위한 미세조립된 디바이스의 제작방법에 관한 것이다. 상기 방법은 기판의 제 1 표면 위에 제 1 전극 물질층을 형성하는 단계를 포함하고, 상기 제 1 전극 물질층은 일종 이상의 전극을 갖는다. 상기 방법은 또한 제 1 전극 물질층 위에 압전 물질층을 증착하는 단계를 포함한다. 상기 방법은 또한 압전 물질층 위에 위치된 제 2 전극 물질층을 형성하는 단계를 포함하고, 상기 제 2 전극 물질층은 전기적 접지면으로 기능하고, 미세조립된 디바이스에 대한 유체 계면을 규정한다.
일부의 구현예에서, 상기 방법은 제 2 전극 물질층 위에 위치된 격리 물질층을 형성하는 단계를 포함하고, 여기서, 격리 물질층의 적어도 하나는 유체로부터 제 2 전극 물질층의 일부를 화학적으로 또는 전기적으로 격리한다. 일부의 구현예에서, 상기 방법은 격리 물질층 위에 위치된 전도성 물질층을 형성하는 단계를 포함한다. 전도성 물질층의 전기적 전위는 미세조립된 디바이스와 유체 또는 유체 중의 물질 사이에 전기적 상호작용을 감소시키기 위해 제어될 수 있다.
일부의 구현예에서, 방법은 미세조립된 디바이스 상에 물질의 고정화를 촉진하기 위해 격리 물질층 위에 위치된 고정 물질층을 형성하는 단계를 포함한다. 일부의 구현예에서, 제 1 전극 물질층은 실리콘층이다.
또 다른 양태에서, 본 발명은 유체 중에서 작동하기 위한 미세조립된 디바이스를 특징으로 한다. 상기 디바이스는 제 1 및 제 2 표면을 갖는 기판을 포함한다. 상기 디바이스는 또한 기판의 제 1 표면 위에 위치된 제 1 전극 물질층을 포함한다. 상기 다비이스는 또한 제 1 전극 물질층 위에 위치된 압전 물질층을 포함한다. 상기 디바이스는 또한 압전 물질 층 위에 위치된 제 2 전극 물질층을 포함한다. 상기 디바이스는 또한 유체로부터 제 2 전극 물질층을 화학적으로 또는 전기적으로 격리하는 적어도 하나의 수단을 포함한다.
본 발명의 상기 및 다른 목적, 양태, 특징 및 이점은 다음의 상세한 설명 및 청구항으로부터 보다 명확해질 것이다.
본 발명 자체 뿐만 아니라 본 발명의 상기 및 다른 목적, 양태, 특징 및 이점은 축적될 필요없는 첨부하는 도면과 함께 읽는 경우 다음의 상세한 설명으로부터 보다 완전히 이해될 수 있다.
도 1은 본 발명의 예시적인 구현예에 따른 미세조립된 디바이스의 개략적인 실예이다.
도 2는 본 발명의 예시적인 구현예에 따른 미세조립된 디바이스의 개략적인 실예이다.
도 3은 본 발명의 예시적인 구현예에 따른 미세조립된 디바이스의 개략적인 실예이다.
도 4는 본 발명의 예시적인 구현예에 따른 미세조립된 디바이스의 개략적인 실예이다.
도 5는 본 발명의 예시적인 구현예에 따른 미세조립된 디바이스의 개략적인 실예이다.
도 6은 본 발명의 예시적인 구현예에 따른 미세조립된 디바이스의 제작 방법을 나타낸 흐름도이다.
도 7은 본 발명의 예시적인 구현예에 따른 미세조립된 디바이스의 제작 방법을 나타낸 흐름도이다.
도 8은 본 발명의 예시적인 구현예에 따른 미세조립된 디바이스 및 유체 채널의 개략적인 실예이다.
도 1은 본 발명의 예시적인 구현예에 따른 미세조립된 디바이스(100)의 개략적인 실예이다. 상기 디바이스(100)은 제 1 표면(156)과 제 2 표면(160)을 갖는 기판(102)를 포함한다. 상기 기판(102)는 제 1 표면(170) 및 제 2 표면(174)을 갖는 핸들 웨이퍼(104)(예를 들면, 전도성이며, 바람직하게 약 1 - 10 옴-cm의 저항을 갖는 실리콘 웨이퍼)를 포함한다. 상기 기판(102)는 또한 제 1 산화물 물질층(108) 및 제 2 산화물 물질층(112)를 포함한다. 상기 제 1 산화물 물질층(108)는 핸들 웨이퍼(104)의 제 1 표면(170) 위에 위치된다. 상기 제 2 산화물 물질층(112)는 핸들 웨이퍼(104)의 제 2 표면(174) 위에 위치된다. 일부의 구현예에서, 산화물 물질층은 핸들 웨이퍼(104)의 표면 상에 열적으로 성장된 실리콘 산화물층이다.
기판(102)는 또한 제 1 산화물 물질층(108) 위에 위치된 제 1 실리콘 질화물 층(116)을 포함한다. 상기 기판(102)는 또한 제 2 산화물 물질층(112) 위에 위치된 제 2 실리콘 질화물층(120)을 포함한다. 일부의 구현예에서, 상기 실리콘 질화물층은 저압 화학 증착(LPCVD) 공정을 사용하여 증착된다. 이 구현예에서, 기판(102)의 제 1 표면(156)은 또한 제 1 실리콘 질화물층(116)의 제 1 표면이다. 코팅 중에 실리콘 대 질소의 비율을 다양하게 하여 물질의 스트레스가 제어될 수 있다. 부유된 멤브레인 구조물을 포함하는 디바이스에 대해서, 코팅의 스트레스를 중간정도로 신축적이 되게 맞추는 것이 바람직하다(예를 들면, 50 내지 200 MPa의 인장 스트레스를 갖는 저-스트레스 LPCVD 실리콘 질화물 코팅).
상기 디바이스(100)은 또한 기판(102)의 제 1 표면(1560) 위에 위치된(또한 근접하게 위치된으로 본 명세서에서 일반적으로 언급됨) 제 1 전극 물질층(124)을 포함한다. 일부의 구현예에서, 제 1 전극 물질층(124)(뿐만 아니라 다른 전극 물질층)은 기판(102)의 제 1 표면(156) 상에 스퍼터링된 몰리브데늄이다. 몰리브데늄은 이것이 우수한 접착 특성을 갖는 고온 금속이기 때문에 전극 물질층으로서 사용된다. 몰리브데늄의 고온 능력은 후속 물질층(예를 들면, 알루미늄 질화물 압전층 및 실리콘 산화물층)이 증착되는 것을 허용한다. 압전 물질 및 실리콘 산화물 물질을 증착하기 위한 공정 온도는 일반적으로 300℃를 초과하고, 몰리브데늄은 이들 조건하에서 분해하지 않는다. 추가적으로 몰리브데늄은 많은 압전 물질 및 산화물 물질과 조합해서 사용되는 경우 우수한 접착 특성을 갖는다. 그러나, 집적된 회로 디자인에 공통적인 다른 금속 및 다른 전도성 물질층이 또한 전극 물질층으로 사용될 수 있다.
일부의 구현예에서, 중간층은 제 1 전극 물질층(124)의 적용 전에 기판(102)의 제 1 표면(156)에 우선적으로 적용된다. 하나의 구현예에서, 중간층은 기판(102)에 제 1 전극 물질층(124)의 후속 결합을 개선시킨다. 일반적으로 중간 물질층은 때때로 제작 동안 예를 들면 두개의 물질층 사이의 결합을 개선하기 위하여 또는 다른 것으로부터 하나의 물질층을 전기적으로 또는 화학적으로 격리하기 위하여 사용된다.
상기 디바이스(100)은 또한 제 1 전극 물질층(124) 위에 위치된 압전 물질층(128)을 포함한다. 일부의 구현예에서, 압전 물질층(128)은 예를 들면, 알루미늄 질화물의 반응성 스퍼터링에 의해 기판에 적용된 알루미늄 질화물이다. 다른 적합한 미세조립화 기술은 선택적으로 제 1 전극 물질층(124) 위에 압전 물질층(128)을 적용하기 위해 사용된다. 상기 디바이스(100)은 또한 압전 물질층(128) 위에 위치된 제 2 전극 물질층(132)을 포함한다. 이 구현예에서, 제 2 전극 물질층(132)는 다수의 전극(132a)을 포함한다. 제 2 전극 물질층(132)는 또한 전극(132a)과 전기적 접속중인 전극 콘택 패드(132b)를 포함한다. 상기 전극 콘택 패드(132b)는 전극(132a) 위에 적용된 후속 물질층(예를 들면, 격리 물질층(140))이 전극 콘택 패드(132b)를 덮지 않도록 전극(132a)에 근접하게 위치된다. 이런 방식으로, 전극 콘택 패드(132b)는 전극(132a)에 전기적 접속을 제공한다.
비아(178)은 제 1 전극 물질층(124)에 접근을 제공하는 압전 물질층(128) 중에 위치된다. 상기 비아(178)은 많은 다른 적합한 반도체 제작 공정의 하나를 사용하여 만들어 질 수 있다. 예를 들면, 포토레지스트 물질은 디바이스(100)의 표 면이 비아(178)의 바람직한 위치 이외에서 에천트로부터 보호되도록 디바이스(100) 위에 적용될 수 있다. 선택적 전기적 접촉 금속층(144)이 디바이스(100)에 전기적 접속의 결합을 촉진하기 위하여 전극 콘택 패드(132b)에 적용될 수 있다. 게다가, 선택적 전기적 접촉 금속층(148)은 디바이스(100)에 또 다른 전기적 접속의 결합을 촉진하기 위하여 제 1 전극 물질 표면(124)에 적용될 수 있다.
상기 디바이스(100)은 또한 예를 들면 식각 공정에 의해 제조된 기판(102) 중에 캐비티(152)를 규정한다. 이 구현예에서, 상기 캐비티(152)는 핸들 웨이퍼(104)의 결정 격자 구조에 의해 속박된 식각 공정을 사용하여 제조된다. 실시예에 의해, 실리콘 웨이퍼를 식각하기 위해 사용된 이방성의 에천트는 핸들 웨이퍼(104)의 벽에 핸들 웨이퍼의 결정 격자 구조로 정렬된 각도Θ로 캐비티를 만든다. 반대로, 이방성 에천트는 핸들 웨이퍼의 결정 격자 구조에 의해 속박되지 않는다. 캐비티(152)를 만드는 경우, 노출되는 산화물층(108)의 일부는 식각 공정을 사용하여 제거된다. 전형적으로, 이방성 식각은 산화물층(108)의 노출된 부분을 제거하기 위해 사용된다.
또 다른 구현예에서, 이방성 건조 식각은 핸들 웨이퍼(104)의 벽에 Y축과 나란하고, X축에 수직이 되게 정렬된 캐비티를 형성하기 위해 실리콘 웨이퍼를 식각하는데 대신 사용된다. 예를 들면, 딥 반응성 이온 식각 공정은 이와 같은 기하학적 배열을 얻기 위해 일반적으로 사용된다.
기판(102)는 또한 제 1 실리콘 질화물층(116)과 핸들 웨이퍼(104) 사이에 언더컷(116)이 존재하는 영역을 갖는다. 이 구현예에서, 언더컷(116)은 제 1 실리콘 질화물층(116)과 핸들 웨이퍼(104) 사이에 위치된 제 1 산화물 물질층(108)의 일부를 식각하는 식각 공정을 사용하여 제조된다. 실제, 언더컷(116)은 멤브레인(182)의 경계 조건을 개선시키기 위해 보여지고, 여기서, 멤브레인(182)는 캐비티(152)와 접촉하고, 따라서, 디바이스(100)의 성능을 개선시킨다.
디바이스(100)의 캐비티(152)는 제 1 실리콘 질화물층(116)을 노출하고, 이것으로 부유된 멤브레인(182)를 규정한다. 전극 물질층(132) 및 (124)은 멤브레인(182)의 진동 특성을 사용자 또는 컴퓨터가 모니터하게 하도록 배열된다. 하나의 구현예에서, 기구/제어 전자기기(도시안됨)는 멤브레인(182) 중에 진동을 발생시키기 위해 전극 물질층의 적어도 하나의 전극(전기적 콘택 금속층을 통해)에 시변 전기적 신호(time-varying electrical signal)를 적용한다. 상기 기구/제어 전자기기는 또한 전극 물질층 중의 적어도 하나의 제 2 전극으로부터 감지 신호를 수신하는 것으로 멤브레인(182)의 진동 특성을 모니터한다. 일부의 구현예에서, 제 1 및 제 2 전극 물질층(124 및 132)에 의해 출력된 신호는 유체 환경(또는 예를 들면, 유체 환경과 상호 작용하는 압전 물질층을 병합하는 구조물)과 상호작용하는 디바이스(100)의 대표적인 전파 특성(예를 들면, 음향 전파 특성)이다. 일부의 구현예에서, 제 1 및 제 2 전극 물질층(124 및 132)에 의해 출력된 신호는 유체 중의 물질 또는 디바이스의 표면에 부착된 물질과 상호작용하는 디바이스의 대표적인 전파 특성(예를 들면, 음향 전파 특성)이다. 상기 기구/제어 전자기기는 주파수의 함수로서 신호의 상대적 크기 및 위상각에서의 변화를 결정하기 위하여 전극의 제 2 세트로부터의 신호에 대해 기준 신호를 비교한다. 상기 기구/제어 전자기기는 멤브레인(182)의 표면과 접촉하는 특정 물질의 존재를 검출하기 위해 이들 변화를 해석한다.
일부의 구현예에서, 멤브레인(182)는 디바이스(100)가 제 2 전극 물질층(132a)이 두 세트의 맞물린 전극(구동용 및 감지용)이 존재하도록 배열되는 굴곡 플레이트 웨이브(FPW) 장치이다. 스트레인 에너지는 FPW 디바이스에서의 밴딩(bending) 및 인장(tension)에서 수반된다. 일부의 구현예에서, FPW 디바이스의 두께-대-파장 비율은 1 보다 적어지는 것이 바람직하며, 일부의 경우에는 1 보다 많이 적을 수 있다. 일반적으로, FPW 디바이스의 파장 "λ"는 맞물린 전극의 피치(pitch)와 거의 동일하다. 하나의 구현예에서, FPW 디바이스의 두께 대 파장 비율은 약 2㎛/38㎛이다. 다른 구현예에서, FPW 디바이스는 특정 모드(예를 들면, 0차 모드 내지 보다 높은 차 모드) 또는 디바이스와 관련된 모드의 밴드폭을 격리하도록 디자인된다. 예를 들면, 2㎛/38㎛의 두께/파장을 갖는 FPW 디바이스는 80번째 모드의 FPW 디바이스를 격리한다. FPW 디바이스는 디바이스 상에 증착된 맞물린 전극에 대한 특정 패턴을 선택하는 것으로 이 효과를 성취하기 위하여 디자인될 수 있다. 본 구현예에서, FPW 디바이스는 직사각형 형태이다. FPW 디바이스는 선택적으로 원형 또는 타원형 또는 일부의 다른 평면 형태일 수 있다.
본 구현예에서, 디바이스(100)은 유체 환경에서 사용된다. 디바이스(100)은 영역(186)에 위치된 유체에 노출된다. 본 발명의 구현예에서, 디바이스(100)은 제 2 전극 물질층(132a) 위에 위치된 격리 물질층(136)을 포함한다. 이런 방식으로, 적어도 일부의 제 2 전극 물질층(132a)이 영역(186)에 위치된 유체로부터 격리된 다. 일부의 구현예에서, 격리 물질층(136)은 영역(186) 에서 유체로부터 제 2 전극 물질층을 화학적으로 격리한다. 일부의 구현예에서, 격리 물질층(136)은 영역(186)에서 유체로부터 제 2 전극 물질층을 전기적으로 격리한다. 일부의 구현예에서, 격리 물질층(136)은 영역(186)에서 유체로부터 제 2 전극 물질층을 화학적으로 및 전기적으로 격리한다.
일부의 구현예에서, 격리 물질층(136)은 예를 들면, 저온 화학증착(CVD) 공정에 의해 디바이스(100)에 적용된 실리콘 산화물이다. 직접 회로 디자인에 공통인 다른 격리 물질 또는 유전층 물질이 사용될 수 있다. 다른 적합한 미세조립 기술은 선택적으로 제 2 전극 물질층(132a) 위에 격리 물질층(136)을 적용하기 위해 사용될 수도 있다. 일부의 구현예에서, 고정 물질층(예를 들면, 금 또는 다른 적합한 물질)은 미세조립된 디바이스(100) 상에 물질의 고정화를 촉진하기 위하여 격리 물질층(136) 위에 위치된다. 디바이스(100) 상에 고정될 수 있는 물질은 예를 들면, 항체, 전 세포, 박테리아, 효모, 곰팡이, 혈액 세포, 해리된 조직 세포, 포자, 바이러스, 단백질, 지질, 탄수화물, 핵산, 펩티드 및 소분자를 포함한다. 상기 디바이스(100)은 생물학적 물질이 디바이스(100)의 감지 표면 상에 고정되는 경우 바이오센서로서 사용될 수 있다. 예를 들면, 디바이스 표면 상에 고정된 항체는 유체에 위치된 대응 단백질을 포착하기 위해 사용될 수 있다.
디바이스(100)은 또한 격리 물질층(136) 위에 위치된 전도성 물질층(140)(예를 들면, 금, 은 또는 알루미늄과 같은 금속 또는 실리콘, 티타늄 또는 금과 같은 반도체 또는 이들의 조합물)를 포함한다. 일부의 구현예에서, 티타늄 물질층은 금 과 같은 금속층이 증착되기 전에 격리 물질층(136)의 표면에 우선적으로 증착된다. 본 구현예에서, 티타늄 물질층은 금층과 디바이스(100) 사이의 접착을 증진하기 위해 사용된다. 일부의 구현예에서, 전도성 물질층(140)의 전기적 전위는 디바이스(100)와 영역(186)에 위치된 유체(또는 유체 중의 물질 또는 디바이스(100)의 표면 상에 고정된 물질 또는 디바이스(100)에 결합된 물질) 사이의 전기적 상호작용을 최소화하기 위하여 전도성 물질층(140)(도시하지 않음)에 전기적 접속을 통해 제어된다. 일부의 구현예에서 전도성 물질층은 영역(186) 중의 유체와 격리 물질층(136) 사이의 유체 계면/장벽이다.
일부의 구현예에서, 전도성 물질층(140)(예를 들면, 금)이 또한 사용되며, 이것은 바이오센서로서 사용하기 위하여 금 표면 상에 생물학적 분자의 후속적인 고정화를 위한 디바이스(100)에 표면 화학을 적용하기 위해 사용될 수 있기 때문이다. 이런 방식에서, 전도성 물질층은 미세조립된 디바이스(100) 상에 물질(예를 들면, 생물학적 물질)의 고정화를 촉진하기 위하여 고정 물질층으로서 기능한다. 예를 들면, 티올 화학제는 금 코팅된 표면에 생물학적 물질을 고정하기 위한 수단으로 주로 사용된다.
도 2는 본 발명의 예시적인 구현예에 따른 미세조립된 디바이스(200)의 개략적 실예이다. 디바이스(200)은 제 1 표면(256) 및 제 2 표면(260)을 갖는 기판(202)를 포함한다. 상기 기판(202)는 제 1 표면(270) 및 제 2 표면(274)을 갖는 핸들 웨이퍼(204)(예를 들면, 전도성이며, 바람직하게는 약 1 내지 10 옴-㎝의 저항을 갖는 실리콘 웨이퍼)을 포함한다.
기판(202)는 또한 핸들 웨이퍼(204)의 제 1 표면(270) 위에 위치된 제 1 실리콘 질화물층(216)을 포함한다. 기판(202)는 또한 핸들 웨이퍼(204)의 제 2 표면(274) 위에 위치된 제 2 실리콘 질화물층(220)을 포함한다. 이 구현예에서, 기판(202)의 제 1 표면(256)은 또한 제 1 실리콘 질화물층(216)의 제 1 표면이다.
디바이스(200)은 또한 기판(202)의 제 1 표면(256) 위에 위치된(또한 근접하게 위치된으로 일반적으로 언급) 제 1 전극 물질층(224)을 포함한다. 일부의 구현예에서, 중간층은 기판(202)에 제 1 전극 물질층(224)의 후속적인 결합을 개선하기 위하여 제 1 전극 물질층(224)의 적용 전에 기판(202)의 제 1 표면(256)에 우선적으로 적용된다.
디바이스(200)은 또한 제 1 전극 물질층(224) 위에 위치된 압전 물질층(228)을 포함한다. 디바이스(100)은 또한 압전 물질층(228) 위에 위치된 제 2 전극 물질층(232)를 포함한다. 본 구현예에서, 제 2 전극 물질층(232)는 다수의 전극(232a)을 포함한다. 제 2 전극 물질층(232)는 또한 전극(232a)와 전기적 접속중인 전극 콘택 패드(232b)를 포함한다. 상기 전극 콘택 패드(232b)는 전극(232a) 위에 적용된 후속 물질층(예를 들면, 격리 물질층(240))이 전극 콘택 패드(232b)를 덮지 않도록 전극(232a)에 근접하게 위치된다. 이런 방식으로, 전극 콘택 패드(232b)는 전극(232a)에 전기적 접속을 제공한다.
비아(278)은 제 1 전극 물질층(224)에 접근을 제공하는 압전 물질층(228) 중에 위치된다. 선택적 전기적 콘택 금속층(244)는 디바이스(200)에 전기적 접속의 결합을 촉진하기 위해 전극 콘택 패드(232b)에 적용된다. 게다가, 선택적 전기적 콘택 금속층(248)은 디바이스(200)에 또 다른 전기적 접속의 결합을 촉진하기 위해 제 1 전극 물질 표면(224)에 적용된다.
디바이스(200)은 또한 예를 들면 식각 공정에 의해 제조된 기판(202)에서 캐비티(252)를 규정한다. 본 구현예에서, 캐비티(252)는 핸들 웨이퍼(204)의 결정 격자 구조에 의해 속박된 식각 공정을 사용하여 제조되다. 실예로, 실리콘 웨이퍼를 식각하기 위해 사용된 이방성 에천트는 캐비티를 제조하고, 여기서 핸들 웨이퍼(204)의 벽은 핸들 웨이퍼(204)의 결정 격자 구조에 따라 정렬된 각 Θ에 있다. 반면, 이방성 에천트는 핸들 웨이퍼의 결정 격자 구조에 의해 속박되지 않는다. 디바이스(200)의 캐비티(252)는 제 1 실리콘 질화물층(216)을 노출하고, 이것으로 이전에 설명된 바와 같이 유사하게 부유된 멤브레인(282)를 규정한다.
본 구현예에서, 디바이스(200)은 유체 환경에서 사용된다. 디바이스(200)은 영역(286)에 위치된 유체에 노출된다. 본 발명의 구현예에서, 디바이스(200)은 제 2 전극 물질층(232a) 위에 위치된 격리 물질층(236)을 포함한다. 이런 방식에서, 적어도 일부의 제 2 전극 물질층(232a)는 영역(286)에 위치된 유체로부터 격리된다. 일부의 구현예에서, 격리 물질층(236)은 영역(286)에서 유체로부터 제 2 전극 물질층을 화학적으로 격리한다. 일부의 구현예에서, 격리 물질층(236)은 영역(286)에서 유체로부터 제 2 전극 물질층을 전기적으로 격리한다. 일부의 구현예에서, 격리 물질층(236)은 영역(286)에서 유체로부터 제 2 전극 물질층을 화학적으로 및 전기적으로 격리한다.
일부의 구현예에서, 격리 물질층(236)은 예를 들면, 저온 화학 증착(CVD) 공 정에 의해 디바이스(200)에 적용된 실리콘 산화물이다. 일부의 구현예에서, 고정 물질층(예를 들면, 금 또는 또 다른 적합한 물질)은 미세조립된 디바이스(200) 상에 물질의 고정화를 촉진하기 위하여 격리 물질층(236) 위에 위치된다.
디바이스(200)은 또한 격리 물질층(236) 위에 위치된 전도성 물질층(240)(예를 들면, 금, 은 또는 알루미늄과 같은 금속, 실리콘과 같은 반도체 또는 이들의 조합물)을 포함한다. 일부의 구현예에서, 티타늄 물질층은 금과 같은 금속층을 증착하기 전에 격리 물질층(236)의 표면에 우선 증착된다. 본 구현예에서, 티타늄 물질층은 금층과 디바이스(200) 사이의 접착성을 증강시키기 위해 사용된다. 본 구현예에서, 전도성 물질층(240)의 전기적 전위는 디바이스(200)과 영역(286)에 위치된 유체(또는 유체 중에 물질) 사이의 전기적 상호작용을 최소화하기 위해 전도성 물질에 전기적 접속을 통해 제어된다. 일부의 구현예에서, 전도성 물질층은 영역(286)중의 유체와 격리 물질층(236) 사이의 장벽이다.
일부의 구현예에서, 전도성 물질층(240)(예를 들면, 금)이 사용되며, 이것은 전도성 물질층이 바이오센서로서 사용하기 위한 금 표면 상에 생물학적 분자의 후속 고정화를 위한 디바이스(200)에 표면 화학을 적용하기 위해 사용될 수 있기 때문이다. 이런 방식에서, 전도성 물질층은 미세조립된 디바이스(200) 상에 물질(예를 들면, 생물학적 물질)의 고정화를 촉진하기 위해 고정 물질층으로 기능한다. 예를 들면, 티올 화학은 금 코팅된 표면에 생물학적 물질을 고정하기 위한 수단으로 주로 사용된다.
도 3은 본 발명의 예시적인 구현예에 따른 미세조립된 디바이스(300)의 개략 적인 실예이다. 디바이스(300)은 제 1 표면(356)과 제 2 표면(360)을 갖는 기판(302)를 포함한다. 상기 기판(302)는 제 1 표면(370)과 기판(302)의 제 2 표면(360)과 동일한 제 2 표면을 갖는 핸들 웨이퍼(304)(예를 들면, 전도성이며, 바람직하게, 약 1 내지 10 옴-㎝의 저항을 갖는 실리콘 웨이퍼)를 포함한다. 상기 기판(302)는 또한 핸들 웨이퍼(304)의 제 1 표면 위에 위치된 제 1 산화물 물질층(308)을 포함한다.
기판(302)는 또한 제 1 산화물 물질층(308) 위에 위치된 실리콘 물질층(316)을 포함한다. 본 구현에에서, 기판(302)의 제 1 표면(356)은 실리콘 물질층(316)의 제 1 표면이다. 본 구현예에서, 실리콘 물질층(316)은 전극 물질층으로서 기능하기 위해 충분히 전기적으로 전도성이다. 본 구현예에서, 도판트가 그의 전기적 저항이 충분히 적어지도록(예를 들면, 50Ω/□ 이하의 면저항을 제공하도록) 실리콘 물질층(316)으로 투입된다.
디바이스(300)은 또한 실리콘 물질층(316) 위에 위치된 압전 물질층(328)을 포함한다. 디바이스(300)은 또한 압전 물질층(328) 위에 위치된 제 2 전극 물질층(332)를 포함한다. 본 구현예에서, 제 2 전극 물질층(332)는 다수의 전극(332a)을 포함한다. 제 2 전극 물질층(332)는 또한 전극(332a)와 전기적 접속 상태인 전극 콘택 패드(332b)를 포함한다. 전극 콘택 패드(332b)는 전극(332a) 위에 적용된 후속 물질층(예를 들면, 격리 물질층(340))이 전극 콘택 패드(332b)을 덮지 않도록 전극(332a)에 근접하게 위치된다. 이런 방식에서, 전극 콘택 패드(332b)는 전극(332a)에 전기적 접속을 제공한다.
비아(378)은 실리콘 물질층(316)(이것은 전도성)에 접근을 제공하는 압전 물질층(328) 중에 위치된다. 선택적 전기적 콘택 금속층(344)는 디바이스(300)에 전기적 접속의 결합을 촉진하기 위해 전극 콘택 패드(332b)에 적용된다. 게다가, 선택적 전기적 콘택 금속층(348)은 디바이스(300)에 또 다른 전기적 접속의 결합을 촉진하기 위해 비아(378)의 위치에서 실리콘 물질층(316)에 적용된다.
디바이스(300)은 또한 예를 들면 식각 공정에 의해 제조된 기판(302)에서 캐비티(352)를 규정한다. 본 구현예에서, 캐비티(352)는 핸들 웨이퍼(304)의 결정 격자 구조에 의해 속박된 식각 공정을 사용하여 제조된다. 실예로, 실리콘 웨이퍼를 식각하기 위해 사용된 이방성 에천트는 캐비티를 제조하고, 여기서 핸들 웨이퍼(304)의 벽은 핸들 웨이퍼(304)의 결정 격자 구조에 따라 정렬된 각 Θ에 있다.
디바이스(300)의 캐비티(352)는 실리콘 물질층(316)을 노출하고, 이것으로 이전에 설명된 바와 같이 유사하게 부유된 멤브레인(382)를 규정한다. 기판(302)는 또한 언더컷(316)이 실리콘 물질층(316)과 핸들 웨이퍼(304) 사이에 존재하는 영역을 갖는다. 본 구현예에서, 언더컷(316)은 실리콘 물질층(316)과 핸들 웨이퍼(304) 사이에 위치된 제 1 산화물 물질층(308)의 일부를 식각하는 식각 공정을 사용하여 제조된다.
본 구현예에서, 디바이스(300)은 유체 환경에서 사용된다. 디바이스(300)은 영역(386)에 위치된 유체에 노출된다. 본 발명의 구현예에서, 디바이스(300)은 제 2 전극 물질층(332a) 위에 위치된 격리 물질층(336)을 포함한다. 이런 방식에서, 적어도 일부의 제 2 전극 물질층(332a)는 영역(386)에 위치된 유체로부터 격리된 다. 일부의 구현예에서, 격리 물질층(336)은 영역(386)에서 유체로부터 제 2 전극 물질층을 화학적으로 격리한다. 일부의 구현예에서, 격리 물질층(336)은 영역(386)에서 유체(또는 유체중의 물질, 디바이스(300)의 표면에 고정된 물질 또는 디바이스(300)에 결합된 물질)로부터 제 2 전극 물질층을 전기적으로 격리한다. 일부의 구현예에서, 격리 물질층(336)은 영역(386)에서 유체로부터 제 2 전극 물질층을 화학적으로 및 전기적으로 격리한다.
디바이스(300)은 또한 격리 물질층(336) 위에 위치된 전도성 물질층(340)(예를 들면, 금, 은 또는 알루미늄과 같은 금속, 실리콘과 같은 반도체 또는 이들의 조합물)을 포함한다. 일부의 구현예에서, 티타늄 물질층은 격리 물질층(336)의 표면에 우선 증착되고, 이어서 금속(금)층이 티타늄 물질층 위에 증착된다. 본 구현예에서, 티타늄 물질층은 금층과 디바이스(300) 사이의 접착성을 증진시키기 위해 사용된다. 일부의 구현예에서, 전도성 물질층(340)의 전기적 전위는 디바이스(300)과 영역(386)에 위치된 유체(또는 유체 중에 물질) 사이의 전기적 상호작용을 최소화하기 위해 전도성 물질층(340)에 전기적 접속을 통해 제어된다. 일부의 구현예에서, 전도성 물질층은 영역(386)중의 유체와 격리 물질층(336) 사이의 장벽이다.
일부의 구현예에서, 전도성 물질층(340)(예를 들면, 금)이 사용되며, 이것은 전도성 물질층이 바이오센서로서 사용하기 위한 금 표면 상에 생물학적 분자의 후속 고정화를 위한 디바이스(300)에 표면 화학을 적용하기 위해 사용될 수 있기 때문이다. 이런 방식에서, 전도성 물질층은 미세조립된 디바이스(300) 상에 물질(예 를 들면, 생물학적 물질)의 고정화를 촉진하기 위해 고정 물질층으로 기능한다. 예를 들면, 티올 화학은 금 코팅된 표면에 생물학적 물질을 고정하기 위한 수단으로 주로 사용된다.
도 4은 본 발명의 예시적인 구현예에 따른 미세조립된 디바이스(400)의 개략적인 실예이다. 디바이스(400)은 제 1 표면(456)과 제 2 표면(460)을 갖는 기판(402)를 포함한다. 상기 기판(402)는 제 1 표면(470)과 기판(402)의 제 2 표면(460)과 동일한 제 2 표면을 갖는 핸들 웨이퍼(404)(예를 들면, 전도성이며, 바람직하게, 약 1 내지 10 옴-㎝의 저항을 갖는 실리콘 웨이퍼)를 포함한다. 상기 기판(402)는 또한 핸들 웨이퍼(404)의 제 1 표면 위에 위치된 제 1 산화물 물질층(408)을 포함한다.
기판(402)는 또한 제 1 산화물 물질층(408) 위에 위치된 실리콘 물질층(416)을 포함한다. 본 구현예에서, 기판(402)의 제 1 표면(456)은 실리콘 물질층(416)의 제 1 표면이다. 본 구현예에서, 실리콘 물질층(416)은 전극 물질층으로서 기능하기 위해 충분히 전기적으로 전도성이다. 본 구현예에서, 도판트가 그의 전기적 저항이 충분히 적어지도록(예를 들면, 50Ω/□ 이하의 면저항을 제공하도록) 실리콘 물질층(416)으로 투입된다.
디바이스(400)은 또한 실리콘 물질층(416) 위에 위치된 압전 물질층(428)을 포함한다. 디바이스(400)은 또한 압전 물질층(428) 위에 위치된 제 2 전극 물질층(432)를 포함한다. 본 구현예에서, 제 2 전극 물질층(432)는 다수의 전극(432a)을 포함한다. 제 2 전극 물질층(432)는 또한 전극(432a)와 전기적 접속 상태인 전 극 콘택 패드(432b)를 포함한다. 전극 콘택 패드(432b)는 전극(432a) 위에 적용된 후속 물질층(예를 들면, 격리 물질층(440))이 전극 콘택 패드(432b)을 덮지 않도록 전극(432a)에 근접하게 위치된다. 이런 방식에서, 전극 콘택 패드(432b)는 전극(432a)에 전기적 접속을 제공한다.
비아(478)은 실리콘 물질층(416)(이것은 전도성)에 접근을 제공하는 압전 물질층(428) 중에 위치된다. 선택적 전기적 콘택 금속층(444)는 디바이스(400)에 전기적 접속의 결합을 촉진하기 위해 전극 콘택 패드(432b)에 적용된다. 게다가, 선택적 전기적 콘택 금속층(448)은 디바이스(400)에 또 다른 전기적 접속의 결합을 촉진하기 위해 비아(478)의 위치에서 실리콘 물질층(416)에 적용된다.
디바이스(400)은 또한 예를 들면 식각 공정에 의해 제조된 기판(402)에서 캐비티(452)를 규정한다. 본 구현예에서, 캐비티(452)는 핸들 웨이퍼(404)의 결정 격자 구조에 의해 속박되지 않는 식각 공정을 사용하여 제조된다. 실예로, 실리콘 웨이퍼를 식각하기 위해 사용된 이방성 건조 식각은 캐비티를 제조하고, 여기서 핸들 웨이퍼(404)의 벽은 X-축에 수직인 Y축에 나란히 정렬된다. 예를 들면, 딥 반응성 이온 식각 공정은 이들과 같은 기하학을 성취하기 위해 일반적으로 사용된다.
디바이스(400)의 캐비티(452)는 실리콘 물질층(416)을 노출하고, 이것으로 이전에 설명된 바와 같이 유사하게 부유된 멤브레인(482)를 규정한다. 기판(402)는 또한 언더컷(416)이 실리콘 물질층(416)과 핸들 웨이퍼(404) 사이에 존재하는 영역을 갖는다. 본 구현예에서, 언더컷(416)은 실리콘 물질층(416)과 핸들 웨이퍼(404) 사이에 위치된 제 1 산화물 물질층(408)의 일부를 식각하는 식각 공정을 사용하여 제조된다.
본 구현예에서, 디바이스(400)은 유체 환경에서 사용된다. 디바이스(400)은 영역(486)에 위치된 유체에 노출된다. 본 발명의 구현예에서, 디바이스(400)은 제 2 전극 물질층(432a) 위에 위치된 격리 물질층(436)을 포함한다. 이런 방식에서, 적어도 일부의 제 2 전극 물질층(432a)는 영역(486)에 위치된 유체로부터 격리된다. 일부의 구현예에서, 격리 물질층(436)은 영역(486)에서 유체로부터 제 2 전극 물질층을 화학적으로 격리한다. 일부의 구현예에서, 격리 물질층(436)은 영역(486)에서 유체(또는 유체중의 물질, 디바이스(400)의 표면에 고정된 물질 또는 디바이스(400)에 결합된 물질)로부터 제 2 전극 물질층을 전기적으로 격리한다. 일부의 구현예에서, 격리 물질층(436)은 영역(486)에서 유체로부터 제 2 전극 물질층을 화학적으로 및 전기적으로 격리한다.
디바이스(400)은 또한 격리 물질층(436) 위에 위치된 전도성 물질층(440)(예를 들면, 금, 은 또는 알루미늄과 같은 금속, 실리콘과 같은 반도체 또는 이들의 조합물)을 포함한다. 일부의 구현예에서, 티타늄 물질층은 금과 같은 금속층이 증착되기 전에 격리 물질층(436)의 표면에 우선 증착된다. 본 구현예에서, 티타늄 물질층은 금층과 디바이스(400) 사이의 접착성을 증진시키기 위해 사용된다. 본 구현예에서, 전도성 물질층(440)의 전기적 전위는 디바이스(400)과 영역(486)에 위치된 유체(또는 유체 중에 물질) 사이의 전기적 상호작용을 최소화하기 위해 전도성 물질층(440)(도시하지 않음)에 전기적 접속을 통해 제어된다. 일부의 구현예에서, 전도성 물질층은 영역(486)중의 유체와 격리 물질층(436) 사이의 장벽이다.
일부의 구현예에서, 전도성 물질층(440)(예를 들면, 금)이 사용되며, 이것은 전도성 물질층이 바이오센서로서 사용하기 위한 금 표면 상에 생물학적 분자의 후속 고정화를 위한 디바이스(400)에 표면 화학을 적용하기 위해 사용될 수 있기 때문이다. 이런 방식에서, 전도성 물질층은 미세조립된 디바이스(400) 상에 물질(예를 들면, 생물학적 물질)의 고정화를 촉진하기 위해 고정 물질층으로 기능한다. 예를 들면, 티올 화학은 금 코팅된 표면에 생물학적 물질을 고정하기 위한 수단으로 주로 사용된다.
도 5는 본 발명의 예시적인 구현예에 따른 미세조립된 디바이스(500)의 개략적인 실예이다. 디바이스(500)은 제 1 표면(556)과 제 2 표면(560)을 갖는 기판(502)를 포함한다. 상기 기판(502)는 제 1 표면(570)과 제 2 표면(574)을 갖는 핸들 웨이퍼(504)(예를 들면, 전도성이며, 바람직하게, 약 1 - 10 옴-㎝의 저항을 갖는 실리콘 웨이퍼)를 포함한다. 상기 기판(502)는 또한 제 1 산화물 물질층(508) 및 제 2 산화물 물질층(512)을 포함한다. 상기 제 1 산화물 물질층(508)은 핸들 웨이퍼(504)의 제 1 표면 위에 위치된다. 제 2 산화물 물질층(512)는 핸들 웨이퍼(504)의 제 2 표면(574) 위에 위치된다.
기판(502)는 또한 제 1 산화물 물질층(508) 위에 위치된 실리콘 물질층(516)을 포함한다. 기판(502)는 또한 제 2 산화물 물질층(512) 위에 위치된 제 2 실리콘 질화물층(520)을 포함한다. 일부의 구현예에서, 실리콘 질화물층은 저압 화학증착(LPCVD) 공정을 사용하여 증착된다. 코팅시 실리콘 대 질소의 비율을 다양하게 하는 것으로 스트레스가 제어될 수 있다. 부유된 멤브레인 구조를 포함하는 디 바이스에서, 코팅의 스트레스는 완만하게 인장되도록 맞추어지는 것이 바람직하다(예를 들면, 50 내지 200 MPa의 인장 스트레스를 갖는 저압 LPCVD 실리콘 질화물 코팅). 본 구현예에서, 기판(502)의 제 1 표면(556)은 또한 제 1 실리콘 질화물층(516)의 제 1 표면이다.
디바이스(500)은 또한 제 1 전극 물질층(524)을 포함한다. 본 구현예에서, 제 1 전극 물질층(524)는 다수의 전극(524a)을 포함한다. 제 2 전극 물질층(524)은 또한 전극(524a)와 전기적 접속인 전극 콘택 패드(524b)를 포함한다. 상기 전극 콘택 패드(524b)는 전극(524a) 위에 적용된 후속 물질층(예를 들면, 격리 물질층(540))이 전극 콘택 패드(524b)을 덮지 않도록 전극(524a)에 근접하게 위치된다. 이런 방식에서, 전극 콘택 패드(524b)는 전극(524a)에 전기적 접속을 제공한다.
디바이스(500)는 또한 제 1 전극 물질층(524) 위에 위치된 압전 물질층(528)을 포함한다. 일부의 구현예에서, 압전 물질층(528)은 예를 들면, 기판에 적용된, 예를 들면, 알루미늄 질화물의 반응성 스퍼터링에 의한 알루미늄 질화물이다. 다른 적합한 미세조립 기술은 선택적으로 제 1 전극 물질층(524) 위에 압전 물질층(528)을 적용하는데 사용될 수도 있다.
디바이스(500)은 또한 압전 물질층(528) 위에 위치된 제 2 전극 물질층(532)를 포함한다. 비아(578)은 전극 콘택 패드(524b)에 접근을 제공하는 압전 물질층(528) 중에 위치된다. 비아(578)은 많은 적합한 반도체 제조 공정의 하나를 사용하여 형성될 수 있다. 선택적 전기적 콘택 금속층(548)는 디바이스(500)에 전기적 접속의 결합을 촉진하기 위해 제 2 전극 물질 표면(532)에 적용된다. 게다가, 선택적 전기적 콘택 금속층(544)은 디바이스(500)에 또 다른 전기적 접속의 결합을 촉진하기 위해 제 1 전극 물질 표면(524b)에 적용된다.
디바이스(500)은 또한 식각 공정에 의해 제조된 기판(502)에서 캐비티(552)를 규정한다. 본 구현예에서, 캐비티(552)는 핸들 웨이퍼(504)의 결정 격자 구조에 의해 속박된 식각 공정을 사용하여 제조된다. 에천트는 캐비티를 제조하고, 여기서 핸들 웨이퍼(504)의 벽은 핸들 웨이퍼(504)의 결정 격자 구조에 따라 정렬된 각 Θ에 있다.
디바이스(500)의 캐비티(552)는 제 1 실리콘 질화물층(516)을 노출하고, 이것으로 이전에 설명된 바와 같이 유사하게 부유된 멤브레인(582)를 규정한다. 기판(502)는 또한 언더컷(516)이 제 1 실리콘 질화물층(516)과 핸들 웨이퍼(504) 사이에 존재하는 영역을 갖는다.
본 구현예에서, 디바이스(500)은 유체 환경에서 사용된다. 디바이스(500)은 영역(586)에 위치된 유체에 노출된다. 본 발명의 구현예에서, 디바이스(500)은 제 2 전극 물질층(532) 위에 위치된 격리 물질층(536)을 포함한다. 이런 방식에서, 적어도 일부의 제 2 전극 물질층(532)는 영역(586)에 위치된 유체로부터 격리된다. 일부의 구현예에서, 격리 물질층(536)은 영역(586)에서 유체(또는 유체중의 물질, 디바이스(500)의 표면에 고정된 물질 또는 디바이스(500)에 결합된 물질)로부터 제 2 전극 물질층을 화학적으로 격리한다.
일부의 구현예에서, 격리 물질층(536)은 예를 들면 저온 화학증착(CVD) 공정에 의해 디바이스(500)에 적용된 실리콘 산화물이다. 집적된 회로 디자인에 공통 인 다른 격리 물질 또는 유전층 물질이 사용될 수 있다. 다른 적합한 미세조립 기술은 선택적으로 제 2 전극 물질층(532) 위에 격리 물질층(536)을 적용하는데 사용될 수 있다. 일부의 구현예에서, 고정화 물질(예를 들면, 금 또는 다른 적합한 물질)층이 미세조립된 디바이스(500) 상에 물질의 고정을 촉진하기 위해 격리 물질층(536) 위에 위치된다. 디바이스(500) 위에 고정화될 수 있는 물질은 예를 들면, 전 세포, 박테리아, 효모, 곰팡이, 혈액 세포, 해리된 조직 세포, 포자, 바이러스, 단백질, 항체, 지질, 탄수화물, 핵산, 펩티드 및 소분자를 포함한다.
상기 디바이스(500)은 또한 격리 물질층(536) 위에 위치된 전도성 물질층(540)(예를 들면, 금, 은 또는 알루미늄과 같은 금속 또는 실리콘과 같은 반도체 또는 이들의 조합물)을 포함한다. 일부의 구현예에서, 티타늄 물질층은 격리 물질층(532)의 표면에 우선 증착되고, 이어서, 금속층(예를 들면, 금)은 티타늄 물질층 위에 증착된다. 본 구현예에서, 타타늄 물질층은 금층과 디바이스(500) 사이에 접착성을 증강시키기 위해 사용된다. 일부의 구현예에서, 전도성 물질층(540)의 전기적 전위는 디바이스(500)과 영역(586) 에 위치된 유체(또는 유체 중의 물질 또는 디바이스(500)의 표면 상에 고정된 물질 또는 디바이스(500)에 결합된 물질) 사이의 전기적 상호작용을 최소화하기 위해 전도성 물질층(540)(도시하지 않음)에 전기적 접속을 통해 제어된다. 일부의 구현예에서, 전도성 물질층은 영역(586) 중의 유체와 격리 물질층(536) 사이에 장벽이다.
일부의 구현예에서, 전도성 물질층(540)(예를 들면, 금)이 사용되는데, 이것은 바이오센서로서 사용하기 위하여 금 표면에 생물학적 분자의 후속 고정화를 위 한 디바이스(500)에 표면 화학을 적용하기 위해 사용될 수 있기 때문이다. 이런 방식에서, 전도성 물질층은 미세조립된 디바이스(500) 상에서 물질(예를 들면, 생물학적 물질)의 고정화를 촉진하기 위해 고정화 물질층으로서 기능한다.
도 6은 본 발명의 예시적인 구현예에 따라 미세조립된 디바이스(예를 들면, 도 1의 미세조립된 디바이스(100))의 제조방법(600)의 흐름도이다. 상기 방법(600)은 실리콘 웨이퍼(예를 들면, 핸들 웨이퍼(104)) 위에 산화물 물질층(예를 들면, 제 1 산화물 물질층(108)을 증착하는 단계를 포함한다. 하나의 구현예에서, 1 마이크론 두께의 열 산화물층이 500 마이크론 두께의 실리콘 웨이퍼(약 4 - 6 옴-㎝의 저항을 갖는 p-형 붕소-도핑된 실리콘) 상에 만들어지거나 증착된다(단계 604). 일부의 구현예에서, 산화물 물질층(약 0.1 마이크론 및 약 10마이크론 사이의 두께를 가짐)이 실리콘 웨이퍼의 상단 및 하단 표면(예를 들면, 제 1 표면(156) 및 제 2 표면(160))에 증착된다. 일부의 구현예에서, 핸들 웨이퍼는 약 350 마이크론 내지 약 1,000 마이크론의 두께를 갖는다.
방법(600)은 또한 산화물 물질층 위에 실리콘 질화물 물질층을 증착하는 단계를 포함한다(단계 608). 하나의 구현예에서, 2 마이크론 두께층의 저압 실리콘 질화물은 LPCVD 공정을 사용하여 산화물 물질층 위에 증착된다. 증착 조건은 중간 정도의 인장 스트레스(50 - 200 MPa)를 갖는 실리콘 질화물층을 얻기 위해 선택된다. 일부의 구현예에서, 저압 실리콘 질화물층은 약 0.1 마이크론 및 약 10 마이크론 사이의 두께를 갖는다. 일부의 구현예에서, 산화물 물질층은 실리콘 웨이퍼의 상단 및 하단 표면에 이전에 증착된 산화물 물질층 위에 증착된다.
방법(600)은 또한 실리콘 질화물층 위에 제 1 전극 물질층을 형성하는 단계를 포함한다(단계 612). 하나의 구현예에서, 1500Å 두께층의 몰리브데늄은 스퍼터링 공정을 사용하여 실리콘 질화물층 위에 증착된다. 일부의 구현예에서, 제 1 전극 물질층은 실질적으로 실리콘 질화물층을 덮고, 미세조립된 디바이스의 작동 동안 접지면으로 사용된다. 일부의 구현예에서, 제 1 전극 물질층은 약 500Å 내지 약 10,000Å의 두께를 갖는다.
방법(600)은 또한 제 1 전극 물질층 위에 압전 물질층을 증착하는 단계를 포함한다(단계 616). 하나의 구현예에서, 5000Å 두께층의 알루미늄 질화물은 전극 물질층(예를 들면 , 제 1 전극 물질층(124)) 위에 반응성 스퍼러팅 공정을 사용하여 증착된다. 일부의 구현예에서, 압전 물질층은 약 0.1 마이크론 내지 약 3 마이크론이다.
방법(600)은 또한 압전 물질층 위에 제 2 전극 물질층(예를 들면, 압전 물질층(128) 위에 제 2 전극 물질층(132))을 형성하는 단계를 포함한다(단계 620). 하나의 구현예에서, 2000Å 두께층의 몰리브데늄이 스퍼터링 공정을 사용하여 압전 물질층 위에 증착되다. 포토레지스트 물질은 제 2 전극 물질층에 적용되고(단계 620에서 적용), 이어서 제 2 전극 물질층에 특정 전극 패턴을 만들기 위해 식각된다. 예를 들면, 일부의 구현예에서, 제 2 전극 물질층이 포토레지스트로 덮여지고, 이어서 제 2 전극 물질층 중의 일종 이상의 전극(예를 들면, 맞물린 전극)을 제조하기 위해 식각된다. 일종 이상의 전극은 예를 들면, 구동 및 감지 전극으로 사용될 수 있다. 그러나, 일부의 구현예에서, 포토레지스트 물질은 제 1 전극 물 질층(단계 612에서 적용)에 적용되고, 이어서 제 1 전극 물질층에 특정 전극 패턴을 만들기 위해 식각된다. 일부의 구현예에서, 제 2 전극 물질층은 실질적으로 압전 물질층을 덮고, 미세조립된 디바이스의 작동 동안 접지면으로서 사용된다. 일부의 구현예에서, 제 2 전극 물질층은 약 500Å 내지 약 10,000Å 사이의 두께를 갖는다.
방법(600)은 제 2 전극 물질층 위에 격리 물질층을 형성하는 단계를 포함한다(단계 624). 하나의 구현예에서, 1000 Å 두꼐층의 저온 실리콘 산화물은 저온 화학증착 공정을 사용하여 제 2 전극 물질층 위에 증착된다. 일부의 구현예에서, 격리 물질층은 약 500Å 내지 약 10,000Å 사이의 두께를 갖는다. 격리 물질층은 이어서 매장되어 있는 물질층에 접근을 제공하는 격리 물질층을 통해 하나 이상의 비아를 형성하기 위해 처리될 수 있다. 예를 들면, 포토레지스트는 격리 물질층에 적용될 수 있고, 이어서, 제 1 전극 물질층을 노출하고, 제 1 전극 물질층에 전기적 접근을 제공하기 위해 격리 물질층과 압전 물질층을 관통하는 하나 이상의 비아를 형성하기 위해 식각된다. 게다가, 별도의 처리 단계가 수행될 수 있으며, 여기서 포토레지스트는 격리 물질층에 적용되고, 이어서 제 2 전극 물질층에 전기적 접근을 제공하기 위해 식각된다.
방법(600)은 또한 격리 물질층 위에 전도성 물질층을 증착하는 단계를 포함한다(단계 628). 하나의 구현예에서, 100Å 두께층의 티타늄은 예를 들면 증착 또는 스퍼터링 공정을 사용하여 격리 물질층 위에 증착된다. 이어서, 1000 Å 두께층의 금은 예를 들면 증착 또는 스퍼터링 공정을 사용하여 티타늄 층 위에 증착된 다. 일부의 구현예에서, 전도성 물질층은 약 500Å 내지 약 10,000Å 사이의 두께를 갖는다. 방법(600)은 또한 선택적으로 전극 물질층의 노출된 위치 위에 콘택 금속층(예를 들면, 전기적 콘택 금속층 144 및 148)을 증착하는 단계를 포함할 수 있다. 콘택 금속층 물질은 전도성 물질층에 사용된 물질과 동일한 물질 또는 다른 물질일 수 있다.
방법(600)은 또한 미세조립된 디바이스의 일부를 관통하는 캐비티를 형성하는 단계를 포함한다(단계 636). 예를 들면, 도 1에 관해서, 단계(636)은 제 1 실리콘 질화물층(116)을 노출하는 제 2 실리콘 질화물층(120), 제 2 실리콘 산화물층(112), 핸들 웨이퍼(204) 및 제 1 실리콘 산화물층(108)을 관통하는 캐비티(152)를 형성하고, 이것에 의해 멤브레인(182)를 형성하는 단계를 포함한다. 하나의 구현예에서, 캐비티는 캐비티를 형성하기 위해 디바이스의 반대 측면을 보호하고, 이어서 수산화칼륨(KOH) 용액(예를 들면, KOH 조)을 사용하는 것으로 형성된다.
방법(600)은 또한, 예를 들면, 도 1에 대해서 본 명세서에서 설명된 바와 같이 유사하게 제 1 실리콘 질화물층 및 실리콘 웨이퍼 사이에 언더컷을 형성하기 위해 제 1 산화물 물질층의 일부를 식각하는 단계를 포함한다(단계 640). 하나의 구현예에서, 언더컷은 완충된 산화물 식각(BOE) 공정 또는 희석된 불화수소산(HF) 식각 공정을 사용하여 형성된다. 방법(600)은 또한 개개의 디바이스/칩을 제조하기 위해 이전 단계에 의해 제조된 웨이퍼를 자르는 단계를 포함한다(단계 644).
도 7은 본 발명의 예시적인 구현예에 따른 미세조립된 디바이스(예를 들면, 도 4의 미세조립된 디바이스(400))를 제조하는 방법의 흐름도이다. 방법(700)은 실리콘 웨이퍼(예를 들면, 핸들 웨이퍼(404)) 위에 산화물 물질층(예를 들면, 제 1 산화물 물질층(408))을 증착하는 단계를 포함한다. 방법(700)은 또한 산화물 물질층 위에 실리콘 물질층을 증착하는 단계를 포함한다. 실리콘 웨이퍼(예를 들면, 핸들 웨이퍼(404)), 산화물 물질층(예를 들면, 산화물 물질층(408)) 및 실리콘 물질층(예를 들면, 실리콘 물질층(416))의 조합물이 실리콘 온 인슐레이터(SOI) 기판(예를 들면, 기판(402))을 제조한다. 본 구현예에서, 실리콘 물질층(예를 들면, 실리콘 물질층(416))의 저항은 디바이스용 전기적 접지면으로서 기능하는 실리콘 물질층에 대해 적절하다.
방법(700)은 또한 실리콘 물질층 위에 압전 물질층을 증착하는 단계를 포함한다(단계 716). 방법(700)은 또한 압전 물질층 위에 제 2 전극 물질층(예를 들면, 압전 물질층(428) 위에 제 2 전극 물질층(432))을 형성하는 단계를 포함한다(단계 720). 포토레지스 물질은 제 2 전극 물질층에 적용(단계 720에 적용)되고, 이어서 제 2 전극 물질층에 특정 전극 패턴을 제조하기 위해 식각된다. 예를 들면, 일부의 구현예에서, 제 2 전극 물질층은 포토레지스트로 덮여지고, 이어서 제 2 전극 물질층 중에 하나 이상의 전극(예를 들면, 맞물린 전극)을 형성하기 위해 식각된다. 하나 이상의 전극은 예를 들면, 구동 및 감지 전극으로 사용될 수 있다.
방법(700)은 또한 제 2 전극 물질층 위에 격리 물질층을 형성하는 단계를 포함한다(단계 724). 격리 물질층은 이어서 매장되어 있는 물질층에 접근을 제공하기 위해 격리 물질층을 관통하는 하나 이상의 비아를 형성하기 위해 처리될 수 있다. 예를 들면, 포토레지스트는 격리 물질층에 적용될 수 있고, 이어서 제 1 전극 물질층을 노출하고, 제 1 전극 물질층에 전기적 접근을 제공하기 위해 격리 물질층과 압전 물질층을 관통하는 하나 이상의 비아를 형성하기 위해 식각된다. 게다가, 별도의 처리 단계가 수행될 수 있으며, 여기서, 포토레지스트는 격리 물질층에 적용되고, 이어서 제 2 전극 물질층에 전기적 접근을 제공하기 위해 식각된다.
방법(700)은 또한 격리 물질층 위에 전도성 물질층을 증착하는 단계를 포함한다(단계 728). 방법(700)은 또한 제 2 전극 물질층 중에 노출된 위치(예를 들면, 전극 콘택 패드 432b) 위에 콘택 금속층(예를 들면, 전기적 콘택 금속층 444 및 448)을 증착하는 단계를 선택적으로 포함할 수 있다. 콘택 금속층 물질은 전도성 물질층을 위해 사용된 물질과 동일한 물질 또는 다른 물질일 수 있다.
방법(700)은 또한 미세조립된 디바이스의 일부를 관통하는 캐비티를 형성하거나 만드는 단계를 포함한다(단계 736). 예를 들면, 도 4에 대해서, 단계 736은 실리콘층(416)을 노출시켜 멤브레인(582)를 형성하기 위해, 핸들 웨이퍼(404) 및 제 1 실리콘 산화물층(408)을 관통하는 캐비티(452)를 형성하는 단계를 포함한다. 하나의 구현예에서, 캐비티는 디바이스의 반대 측면을 보호하고, 이어서 딥 반응성 이온 식각(DRIE) 공정을 사용하는 것으로 형성된다.
방법(700)은 또한, 예를 들어, 도 4에 대해 본 명세서에 설명된 바와 유사하게, 실리콘층(실리콘층(416)) 및 실리콘 웨이퍼(핸들 웨이퍼(404)) 사이에 언더컷을 형성하기 위해 제 1 산화물 물질층의 일부를 식각하는 단계를 포함한다(단계 740). 방법(700)은 또한 개개의 디바이스/칩을 제조하기 위해 이전 단계에 의해 제조된 웨이퍼를 자르는 단계를 포함한다(단계 744).
도 8은 미세조립된 디바이스(도 1의 디바이스(100)) 및 디바이스의 표면(예를 들면, 전도성 물질층(140)의 표면)에 영역(186)의 유체를 보내는 유체 채널(804)를 포함하는 분석(assay) 측정 시스템(800) 일부의 개략도이다. 채널(804)는 디바이스(100) 위에 위치된 캡 구조(808)에 의해 형성된다. 캡 구조(808) 및 압전 물질층(128) 사이에 위치된 시일(812)(예를 들면, 가스켓)은 유체가 영역(186)에 보유되도록(또는 영역(186)을 통해 흐르는 유체가 유체 채널(804)로부터 유출되지 않게) 유체 시일을 유지한다.
본 명세서에서 설명된 것의 다양한 변화 및 다른 이행이 본 발명의 정신 및 범위를 이탈함 엇이 이 분야의 당업자에게 수행될 것이며, 이것은 본 발명에 포함된다고 여겨진다. 따라서, 본 발명은 앞의 예시적인 설명에 의해서만 한정되는 것은 아니다.

Claims (45)

  1. 제 1 및 제 2 표면을 갖는 기판;
    상기 기판의 제 1 표면 위에 위치된 제 1 전극 물질층;
    상기 제 1 전극 물질층 위에 위치된 압전 물질층;
    상기 압전 물질층 위에 위치된 제 2 전극 물질층; 및
    상기 제 2 전극 물질층 위에 위치된 격리 물질층, - 여기서 격리 물질층의 적어도 하나는 유체로부터 제 2 전극 물질층의 일부를 화학적으로 또는 전기적으로 격리함.-을 포함하는 유체 중에서 작동하기 위한 미세조립된 디바이스.
  2. 제 1항에 있어서, 상기 격리 물질층 위에 위치된 전도성 물질층을 포함하는 미세조립된 디바이스.
  3. 제 2항에 있어서, 상기 전도성 물질층의 전기적 전위는 미세조립된 디바이스와 유체 또는 유체 중의 물질 사이의 전기적 상호 작용을 감소시키도록 제어되는 미세조립된 디바이스.
  4. 제 1항에 있어서, 상기 미세조립된 디바이스 상에 물질의 고정화를 촉진하기 위해 격리 물질층 위에 위치된 고정 물질층을 포함하는 미세조립된 디바이스.
  5. 제 1항에 있어서, 상기 기판은 제 1 및 제 2 표면을 갖는 실리콘층, 상기 실리콘층의 제 1 표면에 근접한 제 1 실리콘 산화물층, 상기 실리콘층의 제 2 표면에 근접한 제 2 실리콘 산화물층, 상기 기판의 제 1 표면인 표면을 갖는 제 1 실리콘 산화물층에 근접한 제 1 실리콘 질화물층, 및 상기 제 2 실리콘 산화물층에 근접한 제 2 실리콘 질화물층을 포함하는 미세조립된 디바이스.
  6. 제 1항에 있어서, 상기 제 2 전극 물질층은 금속 또는 반도체 물질층인 미세조립된 디바이스.
  7. 제 5항에 있어서, 상기 캐비티가 제 2 실리콘 질화물층, 제 2 실리콘 산화물층 및 제 1 실리콘 질화물층을 노출하는 실리콘층 중에 형성되고, 상기 실리콘층과 상기 제 1 실리콘 질화물층 사이의 실리콘 산화물층의 일부가 언더컷을 형성하기 위해 제거되는 것인 미세조립된 디바이스.
  8. 제 1항에 있어서, 상기 격리 물질층은 산화물 물질인 미세조립된 디바이스.
  9. 제 1항에 있어서, 상기 제 1 또는 제 2 전극 물질층은 일종 이상의 전극을 포함하는 미세조립된 디바이스.
  10. 제 9항에 있어서, 상기 일종 이상의 전극은 한 쌍의 감지(sensing) 전극 및 한 쌍의 구동(actuation) 전극을 포함하는 미세조립된 디바이스.
  11. 제 9항에 있어서, 상기 제 1 또는 제 2 전극 물질층은 맞물린 감지 전극 한 쌍과 맞물린 구동 전극 한 쌍을 포함하는 미세조립된 디바이스.
  12. 제 11항에 있어서, 상기 미세조립된 디바이스는 굴곡 플레이트 웨이브 디바이스인 미세조립된 디바이스.
  13. 제 1항에 있어서, 상기 미세조립된 디바이스 상에 물질의 고정화를 촉진하기 위해 격리 물질층 위에 위치된 전도성 물질층을 포함하는 미세조립된 디바이스.
  14. 제 13항에 있어서, 상기 전도성 물질층의 전기적 전위는 미세조립된 디바이스와 유체 또는 유체 중의 물질과의 전기적 상호작용을 감소시키기 위해 제어되는 미세조립된 디바이스.
  15. 제 3항에 있어서, 상기 물질은 전(whole) 세포, 박테리아, 효모, 곰팡이, 혈액 세포, 해리된 조직 세포, 포자, 바이러스, 단백질, 항체, 지질, 탄수화물, 핵산, 펩티드 및 소분자로 이루어진 군에서 선택된 미세조립된 디바이스.
  16. 제 2항에 있어서, 상기 전도성 물질층은 격리 물질층과 유체 사이의 장벽인 미세조립된 디바이스.
  17. 제 1항에 있어서, 상기 격리 물질층의 표면으로 유체를 전달하기 위해 격리 물질층 위에 유체 채널을 포함하는 미세조립된 디바이스.
  18. 제 17항에 있어서, 상기 제 1 및 제 2 전극 물질층에 의한 신호 출력은 압전 물질층을 병합하는 구조물의 대표적인 전파 특성인 미세조립된 디바이스.
  19. 제 1 절연 표면 및 제 2 표면을 갖는 기판;
    상기 기판의 제 1 표면 위에 위치되며, 일종 이상의 전극을 갖는 제 1 전극 물질층;
    상기 제 1 전극 물질층 위에 위치된 압전 물질층; 및
    상기 압전 물질층 위에 위치되며, 전기적 접지면으로 기능하고, 미세조립된 디바이스를 위한 유체 계면을 규정하는 제 2 전극 물질층을 포함하는 유체 중에서 작동하기 위한 미세조립된 디바이스.
  20. 제 19항에 있어서, 상기 제 2 전극 물질층 위에 위치된 격리 물질층을 포함하고, 이것의 적어도 하나는 유체로부터 제 2 전극 물질층의 일부를 화학적으로 또는 전기적으로 격리하는 미세조립된 디바이스.
  21. 제 20항에 있어서, 상기 격리 물질층 위에 위치된 전도성 물질층을 포함하는 미세조립된 디바이스.
  22. 제 21항에 있어서, 상기 전도성 물질층의 전기적 전위는 미세조립된 디바이스와 전도성 유체 또는 전도성 유체 중의 물질 사이의 전기적 상호작용을 감소시키기 위해 제어되는 미세조립된 디바이스.
  23. 제 20항에 있어서, 상기 미세조립된 디바이스 상에 물질의 고정화를 촉진하기 위하여 격리 물질층 위에 위치된 고정 물질층을 포함하는 미세조립된 디바이스.
  24. 제 19항에 있어서, 상기 기판은 제 1 및 제 2 표면을 갖는 실리콘층, 상기 실리콘층의 제 1 표면에 근접한 제 1 실리콘 산화물층, 상기 실리콘층의 제 2 표면에 근접한 제 2 실리콘 산화물층, 상기 기판의 제 1 표면인 표면을 갖는 제 1 실리콘 산화물층에 근접한 제 1 실리콘 질화물층, 및 상기 제 2 실리콘 산화물층에 근접한 제 2 실리콘 질화물층을 포함하는 미세조립된 디바이스.
  25. 제 19항에 있어서, 상기 기판은 제 1 및 제 2 표면을 갖는 실리콘층, 상기 실리콘층의 제 1 표면에 근접한 제 1 실리콘 산화물층, 상기 실리콘층의 제 2 표면에 근접한 제 2 실리콘 산화물층, 제 1 실리콘 산화물층에 근접한 제 1 실리콘 질화물층, 및 상기 기판의 제 1 표면인 표면을 갖는 상기 제 2 실리콘 산화물층에 근접한 제 2 실리콘 질화물층을 포함하는 미세조립된 디바이스.
  26. 제 19항에 있어서, 상기 제 2 전극 물질층은 금속층 또는 전도성 반도체층인 미세조립된 디바이스.
  27. 기판의 제 1 표면 위에 압전 물질층을 증착하는 단계;
    상기 압전 물질층 위에 전극 물질층을 형성하는 단계; 및
    상기 전극 물질층 위에 격리 물질층을 형성하는 단계, - 여기서, 격리 물질층의 적어도 하나는 미세조립된 디바이스의 작동 동안 유체로부터 전극 물질층의 일부를 화학적으로 또는 전기적으로 격리함- 을 포함하는 유체 중에서 작동하기 위한 미세조립된 디바이스의 제작방법.
  28. 제 27항에 있어서, 상기 전극 물질층은 기판의 제 1 표면 위에 압전 물질층 을 증착하기 전에 기판의 제 1 표면 위에 제공되는 것인 제작방법.
  29. 제 27항에 있어서, 상기 기판의 제 1 표면은 전도성 실리콘 물질을 포함하는 제작방법.
  30. 제 27항에 있어서, 상기 격리 물질층 위에 위치된 전도성 물질층을 형성하는 단계를 포함하는 제작방법.
  31. 제 30항에 있어서, 상기 전도성 물질층의 전기적 전위는 미세조립된 디바이스와 유체 또는 유체 중의 물질 사이에 전기적 상호작용을 감소시키기 위해 제어되는 것인 제작방법.
  32. 제 30항에 있어서, 상기 기판의 제 2 표면 중에 캐비티를 식각하는 단계를 포함하는 제작방법.
  33. 제 32항에 있어서, 상기 산화물 물질층 중에 언더컷을 형성하기 위해 상기 기판의 제 2 표면 중에서 캐비티의 식각에 의해 노출된 상기 기판의 산화물 물질층을 식각하는 단계를 포함하는 제작방법.
  34. 제 27항에 있어서, 상기 전극 물질층 위에 격리 물질층을 형성하는 단계는 격리 물질을 증착하는 단계를 포함하는 제작방법.
  35. 제 27항에 있어서, 상기 압전 물질층 위에 전극 물질층을 형성하는 단계는 압전 물질층 위에 전극 물질을 증착하는 단계 및 일종 이상의 전극 구조물을 형성하는 단계를 포함하는 제작방법.
  36. 제 27항에 있어서, 상기 기판 중의 전기적 접지 층에 전기적 접속을 제공하기 위해 기판의 일부를 노출하는 적어도 하나의 비아를 형성하기 위해 격리 물질층, 전극 물질층 및 압전 물질층을 식각하는 단계를 포함하는 제작방법.
  37. 제 36항에 있어서, 상기 전극 물질층에 전기적 접속을 제공하기 위해 전극 물질층의 일부를 노출하는 적어도 하나의 비아를 형성하기 위해 격리 물질층을 식각하는 단계를 포함하는 제작방법.
  38. 제 27항에 있어서, 상기 기판은 제 1 및 제 2 표면을 갖는 실리콘층, 상기 실리콘층의 제 1 표면에 근접한 제 1 실리콘 산화물층, 상기 실리콘층의 제 2 표면에 근접한 제 2 실리콘 산화물층, 상기 기판의 제 1 표면인 표면을 갖는 제 1 실리콘 산화물층에 근접한 제 1 실리콘 질화물층, 및 상기 제 2 실리콘 산화물층에 근접한 제 2 실리콘 질화물층을 포함하는 제작방법.
  39. 기판의 제 1 표면 위에 일종 이상의 전극을 갖는 제 1 전극 물질층을 형성하는 단계;
    상기 제 1 전극 물질층 위에 압전 물질층을 증착하는 단계; 및
    상기 압전 물질층 위에 위치된 제 2 전극 물질층을 형성하는 단계를 포함하고, 제 2 전극 물질층은 전기적 접지면으로 기능하고, 미세조립된 디바이스를 위한 유체 계면을 규정하는 유체중에서 작동하기 위한 미세조립된 디바이스의 제작방법.
  40. 제 39항에 있어서, 상기 제 2 전극 물질층 위에 위치된 격리 물질층을 형성 하는 단계를 포함하고, 여기서 격리 물질층의 적어도 하나는 유체로부터 제 2 전극 물질층의 일부를 화학적으로 또는 전기적으로 격리하는 제작방법.
  41. 제 40항에 있어서, 상기 격리 물질층 위에 위치에 전도성 물질층을 형성하는 단계를 포함하는 제작방법.
  42. 제 41항에 있어서, 상기 전도성 물질층의 전기적 전위는 미세조립된 디바이스와 유체 또는 유체 중의 물질 사이에 전기적 상호작용을 감소시키기 위해 제어되는 제작방법.
  43. 제 40항에 있어서, 상기 미세조립된 디바이스 상에 물질의 고정화를 촉진하기 위하여 격리 물질층 위에 위치된 고정 물질층을 형성하는 단계를 포함하는 제작방법.
  44. 제 39항에 있어서, 상기 제 1 전극 물질층은 실리콘 층인 제작방법.
  45. 제 1 및 제 2 표면을 갖는 기판;
    상기 기판의 제 1 표면 위에 위치된 제 1 전극 물질층;
    상기 제 1 전극 물질층 위에 위치된 압전 물질층;
    상기 압전 물질층 위에 위치된 제 2 전극 물질층; 및
    유체로부터 제 2 전극 물질을 적어도 하나 화학적으로 또는 전기적으로 격리하기 위한 수단을 포함하는 유체 중에 작동하기 위한 미세조립된 디바이스.
KR1020087025442A 2006-04-21 2007-04-17 미세조립된 디바이스 및 미세조립된 디바이스의 제작 방법 KR20080113074A (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US79384806P 2006-04-21 2006-04-21
US60/793,848 2006-04-21

Publications (1)

Publication Number Publication Date
KR20080113074A true KR20080113074A (ko) 2008-12-26

Family

ID=38656103

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020087025442A KR20080113074A (ko) 2006-04-21 2007-04-17 미세조립된 디바이스 및 미세조립된 디바이스의 제작 방법

Country Status (5)

Country Link
US (1) US8004021B2 (ko)
EP (1) EP2010450A2 (ko)
JP (1) JP2009534174A (ko)
KR (1) KR20080113074A (ko)
WO (1) WO2007127107A2 (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7851333B2 (en) * 2007-03-15 2010-12-14 Infineon Technologies Ag Apparatus comprising a device and method for producing it
US8476809B2 (en) * 2008-04-29 2013-07-02 Sand 9, Inc. Microelectromechanical systems (MEMS) resonators and related apparatus and methods
US8448494B2 (en) * 2008-12-30 2013-05-28 Stmicroelectronics S.R.L. Integrated electronic microbalance plus chemical sensor
JP5489866B2 (ja) * 2010-06-02 2014-05-14 キヤノン株式会社 基板加工方法および液体吐出ヘッドの製造方法
MY174066A (en) * 2010-12-15 2020-03-06 Mimos Berhad Interdigitated capacitor and dielectric membrane sensing device

Family Cites Families (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4278492A (en) 1980-01-21 1981-07-14 Hewlett-Packard Company Frequency trimming of surface acoustic wave devices
WO1989008336A1 (en) 1988-02-29 1989-09-08 The Regents Of The University Of California Plate-mode ultrasonic sensor
US5189914A (en) 1988-02-29 1993-03-02 The Regents Of The University Of California Plate-mode ultrasonic sensor
US5490034A (en) 1989-01-13 1996-02-06 Kopin Corporation SOI actuators and microsensors
US5417111A (en) 1990-08-17 1995-05-23 Analog Devices, Inc. Monolithic chip containing integrated circuitry and suspended microstructure
US5605598A (en) 1990-10-17 1997-02-25 The Charles Stark Draper Laboratory Inc. Monolithic micromechanical vibrating beam accelerometer with trimmable resonant frequency
US5668303A (en) * 1992-04-30 1997-09-16 Forschung E.V Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Sensor having a membrane as part of an electromechanical resonance circuit forming receiver and transmitter converter with interdigital structures spaced apart from one another
DE4241045C1 (de) 1992-12-05 1994-05-26 Bosch Gmbh Robert Verfahren zum anisotropen Ätzen von Silicium
US5374792A (en) 1993-01-04 1994-12-20 General Electric Company Micromechanical moving structures including multiple contact switching system
US5725729A (en) 1994-09-26 1998-03-10 The Charles Stark Draper Laboratory, Inc. Process for micromechanical fabrication
US5565625A (en) 1994-12-01 1996-10-15 Analog Devices, Inc. Sensor with separate actuator and sense fingers
US6547973B2 (en) 1996-07-30 2003-04-15 Agilent Technologies, Inc. Fabrication of suspended structures using a sacrificial layer
US5836203A (en) 1996-10-21 1998-11-17 Sandia Corporation Magnetically excited flexural plate wave apparatus
US6091182A (en) 1996-11-07 2000-07-18 Ngk Insulators, Ltd. Piezoelectric/electrostrictive element
US6223598B1 (en) 1997-06-18 2001-05-01 Analog Devices, Inc. Suspension arrangement for semiconductor accelerometer
US5932953A (en) * 1997-06-30 1999-08-03 Iowa State University Research Foundation, Inc. Method and system for detecting material using piezoelectric resonators
US6794197B1 (en) 1998-07-14 2004-09-21 Zyomyx, Inc. Microdevice and method for detecting a characteristic of a fluid
JP3545269B2 (ja) 1998-09-04 2004-07-21 日本碍子株式会社 質量センサ及び質量検出方法
US6433401B1 (en) 1999-04-06 2002-08-13 Analog Devices Imi, Inc. Microfabricated structures with trench-isolation using bonded-substrates and cavities
US6323580B1 (en) 1999-04-28 2001-11-27 The Charles Stark Draper Laboratory, Inc. Ferroic transducer
US6257059B1 (en) 1999-09-24 2001-07-10 The Charles Stark Draper Laboratory, Inc. Microfabricated tuning fork gyroscope and associated three-axis inertial measurement system to sense out-of-plane rotation
US6953977B2 (en) * 2000-02-08 2005-10-11 Boston Microsystems, Inc. Micromechanical piezoelectric device
CA2404137C (en) 2000-03-20 2006-07-11 The Charles Stark Draper Laboratory, Inc. Flexural plate wave sensor and array
US6887391B1 (en) 2000-03-24 2005-05-03 Analog Devices, Inc. Fabrication and controlled release of structures using etch-stop trenches
US7998746B2 (en) 2000-08-24 2011-08-16 Robert Otillar Systems and methods for localizing and analyzing samples on a bio-sensor chip
US6455980B1 (en) 2000-08-28 2002-09-24 The Charles Stark Draper Laboratory, Inc. Resonator with preferred oscillation mode
JP3858639B2 (ja) * 2000-08-31 2006-12-20 株式会社村田製作所 圧電共振子および電子機器
US6388789B1 (en) 2000-09-19 2002-05-14 The Charles Stark Draper Laboratory, Inc. Multi-axis magnetically actuated device
WO2002025630A2 (en) 2000-09-20 2002-03-28 Molecular Reflections Microfabricated ultrasound array for use as resonant sensors
US6506620B1 (en) 2000-11-27 2003-01-14 Microscan Systems Incorporated Process for manufacturing micromechanical and microoptomechanical structures with backside metalization
KR100398363B1 (ko) 2000-12-05 2003-09-19 삼성전기주식회사 Fbar 소자 및 그 제조방법
US6946314B2 (en) 2001-01-02 2005-09-20 The Charles Stark Draper Laboratory, Inc. Method for microfabricating structures using silicon-on-insulator material
CA2433738C (en) 2001-01-02 2012-07-24 The Charles Stark Draper Laboratory, Inc. Method for microfabricating structures using silicon-on-insulator material
JP4174661B2 (ja) 2001-01-10 2008-11-05 セイコーエプソン株式会社 弾性表面波装置及びその製造方法
US6511915B2 (en) 2001-03-26 2003-01-28 Boston Microsystems, Inc. Electrochemical etching process
WO2002095800A2 (en) 2001-05-22 2002-11-28 Reflectivity, Inc. A method for making a micromechanical device by removing a sacrificial layer with multiple sequential etchants
US6828172B2 (en) 2002-02-04 2004-12-07 Delphi Technologies, Inc. Process for a monolithically-integrated micromachined sensor and circuit
US20030154031A1 (en) 2002-02-14 2003-08-14 General Electric Company Method and apparatus for the rapid evaluation of a plurality of materials or samples
US6955914B2 (en) 2002-04-10 2005-10-18 Geneohm Sciences, Inc. Method for making a molecularly smooth surface
US6778908B2 (en) 2002-06-25 2004-08-17 The Charles Stark Draper Laboratory, Inc. Environmentally mitigated navigation system
JP2004095849A (ja) 2002-08-30 2004-03-25 Fujikura Ltd 貫通電極付き半導体基板の製造方法、貫通電極付き半導体デバイスの製造方法
US20040065638A1 (en) 2002-10-07 2004-04-08 Bishnu Gogoi Method of forming a sensor for detecting motion
US6790775B2 (en) 2002-10-31 2004-09-14 Hewlett-Packard Development Company, L.P. Method of forming a through-substrate interconnect
US6777727B2 (en) * 2002-11-26 2004-08-17 Motorola, Inc. Flexural plate wave systems
US20040159629A1 (en) 2003-02-19 2004-08-19 Cabot Microelectronics Corporation MEM device processing with multiple material sacrificial layers
US7018862B2 (en) 2003-07-15 2006-03-28 Agency For Science, Technology And Research Micromachined electromechanical device
US7118922B1 (en) 2003-08-15 2006-10-10 University Of South Florida System and method for immunosensor regeneration
US7109633B2 (en) 2003-09-30 2006-09-19 Charles Stark Draper Laboratory, Inc. Flexural plate wave sensor
US7045407B2 (en) 2003-12-30 2006-05-16 Intel Corporation Amorphous etch stop for the anisotropic etching of substrates
EP1752663A4 (en) 2004-05-18 2008-07-16 Matsushita Electric Ind Co Ltd TUBES CASSETTE UNIT AND LIQUID TRANSFER DEVICE USING THE SAME
US7300631B2 (en) 2005-05-02 2007-11-27 Bioscale, Inc. Method and apparatus for detection of analyte using a flexural plate wave device and magnetic particles
TWI269038B (en) 2005-06-21 2006-12-21 Ind Tech Res Inst Analytic method and device by utilizing magnetic materials

Also Published As

Publication number Publication date
EP2010450A2 (en) 2009-01-07
US8004021B2 (en) 2011-08-23
WO2007127107A2 (en) 2007-11-08
JP2009534174A (ja) 2009-09-24
WO2007127107A3 (en) 2008-04-24
US20070284699A1 (en) 2007-12-13

Similar Documents

Publication Publication Date Title
US7716986B2 (en) Acoustic wave sensing device integrated with micro-channels and method for the same
US7468608B2 (en) Device and method for detecting a substance of a liquid
US7500379B2 (en) Acoustic wave array chemical and biological sensor
TWI220423B (en) A method of fabrication of a sensor
EP1908529B1 (en) Manufacturing method of an ultrasonic transducer
US10326425B2 (en) Acoustic resonator with reduced mechanical clamping of an active region for enhanced shear mode response
JP2005522219A5 (ko)
CN110632171B (zh) 传感器、形成传感器的方法和装置
KR20080113074A (ko) 미세조립된 디바이스 및 미세조립된 디바이스의 제작 방법
JP2012127966A (ja) センサーを製作するための方法
US11369960B2 (en) Acoustic resonator device
WO2017083131A1 (en) Baw sensor with enhanced surface area active region
US6955914B2 (en) Method for making a molecularly smooth surface
CN110715969B (zh) 一种生物传感器及其制作方法
US20200171544A1 (en) High Frequency Ultrasonic Transducer and Method of Fabrication
CN112449743A (zh) 具有液滴保持结构的传感器
JP3604246B2 (ja) 静電容量型トランスデューサの製造方法および静電容量型トランスデューサ
US20200225138A1 (en) Fluid viscosity measuring device
US20220236214A1 (en) Semiconductor Device Providing a Biosensor to Test for Pathogen
US20220404318A1 (en) Preventing epoxy bleed-out for biosensor devices
Laconte et al. MicroElectroMechanical Systems in Silicon-on-Insulator Technology

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application