KR20080107016A - 막오염속도를 이용한 화학세정 자동 제어 장치 및 그 방법 - Google Patents

막오염속도를 이용한 화학세정 자동 제어 장치 및 그 방법 Download PDF

Info

Publication number
KR20080107016A
KR20080107016A KR1020070054770A KR20070054770A KR20080107016A KR 20080107016 A KR20080107016 A KR 20080107016A KR 1020070054770 A KR1020070054770 A KR 1020070054770A KR 20070054770 A KR20070054770 A KR 20070054770A KR 20080107016 A KR20080107016 A KR 20080107016A
Authority
KR
South Korea
Prior art keywords
treated water
chemical cleaning
unit
membrane
cip
Prior art date
Application number
KR1020070054770A
Other languages
English (en)
Other versions
KR100889915B1 (ko
Inventor
김형수
김지훈
하금률
오영기
김효상
김충환
임재림
Original Assignee
지에스건설 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 지에스건설 주식회사 filed Critical 지에스건설 주식회사
Priority to KR1020070054770A priority Critical patent/KR100889915B1/ko
Publication of KR20080107016A publication Critical patent/KR20080107016A/ko
Application granted granted Critical
Publication of KR100889915B1 publication Critical patent/KR100889915B1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/008Control or steering systems not provided for elsewhere in subclass C02F
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/70Control means using a programmable logic controller [PLC] or a computer
    • B01D2313/701Control means using a programmable logic controller [PLC] or a computer comprising a software program or a logic diagram
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/16Use of chemical agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/40Automatic control of cleaning processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/42Chemical regeneration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/005Processes using a programmable logic controller [PLC]
    • C02F2209/006Processes using a programmable logic controller [PLC] comprising a software program or a logic diagram

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

본 발명은 수처리를 위한 전체 막여과 공정에서 최적의 화학세정주기를 모니터링하여 설정하고, 이 설정된 최적의 화학세정주기에 따라 운전모드를 자동으로 제어하기 위한 것으로, 이를 위한 본 발명은, 가압식 막여과부를 실시간으로 모니터링하면서 TMP를 측정하고, 측정된 TMP와, 온도보정계수(점성계수)(μ) 및 플럭스(투과유량/단위막면적)(J)를 검출하여 총여과저항(Rt)을 계산하고, 총여과저항(Rt)을 모니터링한 후, 기설정된 PLC 프로그램상의 단위시간당 총여과저항(Rt)의 차이(ΔR)(Rt2-Rt1) 및 단위시간당 시간간격(ΔT)(t2-t1)과, 유입원수농도의 상수(α)를 검출하여 자동제어가 가능한 상수값(γ)을 계산하며, 계산된 자동제어가 가능한 상수값(γ)의 범위를 판단하여 화학세정주기를 도출하여 운전모드를 설정하고, 설정된 운전모드에 따라 막여과 공정을 자동 제어한다. 따라서, 기존에서와 같이 '성능지표' , '경제성지표' , '안정성지표'를 만족시키지 못하게 되는 문제점을 해결할 수 있고, 또한, 적정한 비가역적인 막오염 정도를 판단하여 좀더 덜 비가역적인 막오염이 진행될 때 자동으로 화학세정을 실시하여 막 회복율을 초기 상태에 근접하게 할 수 있도록 보다 쉽고 빠르게 회복시켜 안정적으로 운전 성능을 향상시킬 수 있으며, 또한, 세정약품의 종류 및 사용량을 절약할 수 있으며, 세정시간의 단축을 가져 올 수 있으며, 유지관리비 및 부설물제어비를 절약할 수 있다.
총여과저항, 화학세정주기, 가압식 막여과, 막간차압(TMP), 막오염 속도

Description

막오염속도를 이용한 화학세정 자동 제어 시스템 및 그 방법{AUTO CONTROLLING SYSTEM OF CLEAN IN PLACE AND ITS METHOD BY USING MEMBRANE FOULING RATE}
도 1은 본 발명의 바람직한 실시예에 따른 막오염속도를 이용한 화학세정 자동 제어 시스템을 위한 블록 구성도,
도 2는 본 발명의 실시예에 따른 막오염속도를 이용한 화학세정 자동 제어 방법에 대한 흐름도,
도 3은 본 발명에 따른 운전시간(T)과 총여과저항(Rt)간의 모식도.
<도면의 주요부분에 대한 부호의 설명>
11 : 제어부 13 : 가압식 막여과부
15 : 처리수 탱크부 17 : 역세 펌프부
19 : CIP 탱크부 21 : 원수 탱크부
23 : 공급 펌프부 25 : 응집제 투입부
27 : 믹서부 29 : 침전부
31 : 여과 펌프부
본 발명은 막오염속도를 이용한 화학세정(Clean In Place, CIP) 자동 제어 시스템 및 그 방법에 관한 것으로, 보다 상세하게는 수처리를 위한 막여과 공정에서 최적의 화학세정주기를 실시간 모니터링(Monitering)하면서 최적의 화학세정주기에 따라 운전모드를 자동 제어할 수 있는 시스템 및 그 방법에 관한 것이다.
주지된 바와 같이, 수처리를 위한 막여과 공정에서는 처리능력을 보증하기 위한 방법으로, 막오염(Fouling)이 지속되어 기설정된 한계차압 이상일 경우 CIP를 수행한다.
즉, 상술한 바와 같이 CIP를 수행할 경우, 이 CIP 수행 횟수는 목표로 하는 처리성능을 유지하기 위해 실시되는데, 이 횟수는 전체 막여과 공정에서의 운전성능평가의 '성능지표'가 되고, CIP로 필요한 세정시간(접촉시간), 세정약품, 폐액처리 등의 유지관리비 및 부산물처리비와 연관되어 '경제성지표'가 되며, 또한 막여과 공정의 '안정성지표'가 된다.
그리고, 막여과 공정에서 목표로하는 처리능력을 유지하면서 최소한의 CIP를 통해 안정적으로 장기 운전되고 있다는 것은 전체 막여과 공정이 최적화되었다는 것을 의미한다. 여기서, 최소한의 CIP란 그만큼 처리 성능의 손실을 최소화하였다는 것을 의미하며, 최적의 CIP 주기의 설정은 상술한 '성능지표' , '경제성지표' , '안정성지표'를 모두 만족시켜야 한다.
그러나, 상술한 바와 같이 종래 막여과 공정을 이용할 경우 막오염이 지속되어 기설정된 한계차압 이상으로 막오염 속도가 증가하게 되는데, 이 지속되는 막오 염을 해결하기 위해 CIP를 임의의 주기로 수행함에도 불구하고, 상술한 '성능지표' , '경제성지표' , '안정성지표'를 만족시키지 못하게 되는 문제점이 있다.
이에, 본 발명의 기술적 과제는 상술한 문제점을 해결하기 위해 안출한 것으로, 본 발명의 목적은 수처리를 위한 전체 막여과 공정에서 최적의 화학세정주기를 모니터링하여 설정하고, 이 설정된 최적의 화학세정주기에 따라 정상 모드(여과공정 및 역세공정)와 CIP 모드(CIP공정)로 이루어진 운전모드를 자동으로 제어할 수 있는 막오염속도를 이용한 CIP 자동 제어 시스템 및 그 방법을 제공함에 있다.
상술한 목적을 달성하기 위한 본 발명에서 막오염속도를 이용한 CIP 자동 제어 시스템은 가압식 막여과부를 모니터링하면서 측정된 총여과저항(Rt)에 따라 자동제어가 가능한 상수값(γ)을 계산하고, 계산된 자동제어가 가능한 상수값(γ)의 범위를 판단하여 화학세정주기를 도출하여 운전모드를 설정하는 제어부와, 도출된 화학세정주기에 따라 설정된 운전모드가 'CIP공정' 주기인 경우, 역세밸브를 자동으로 개방시켜 수집된 처리수를 이송시키는 처리수 탱크부와, 처리수를 펌핑시키는 역세 펌프부와, 펌핑되는 처리수가 내부 보관된 화학약품에 혼합되어 이송되는 CIP 탱크부와, 화학약품이 혼합된 처리수를 가압식 막여과부를 통해 여과되도록 순환 펌핑시키는 여과 펌프부를 포함하는 것을 특징으로 한다.
또한, 상술한 목적을 달성하기 위한 본 발명에서 막오염속도를 이용한 CIP 자동 제어 방법은 가압식 막여과부를 실시간으로 모니터링하면서 TMP를 측정하고, 측정된 TMP와, 온도보정계수(점성계수)(μ) 및 플럭스(투과유량/단위막면적)(J)를 검출하여 총여과저항(Rt)을 계산하는 단계와, 총여과저항(Rt)을 모니터링한 후, 기설정된 PLC 프로그램상의 단위시간당 총여과저항(Rt)의 차이(ΔR)(Rt2-Rt1) 및 단위시간당 시간간격(ΔT)(t2-t1)과, 유입원수농도의 상수(α)를 검출하여 자동제어가 가능한 상수값(γ)을 계산하는 단계와, 계산된 자동제어가 가능한 상수값(γ)의 범위를 판단하여 화학세정주기를 도출하여 운전모드를 설정하고, 설정된 운전모드에 따라 막여과 공정을 자동 제어하는 단계를 포함하는 것을 특징으로 한다.
이하, 본 발명의 실시 예는 다수개가 존재할 수 있으며, 이하에서 첨부한 도면을 참조하여 바람직한 실시 예에 대하여 상세히 설명한다. 이 기술 분야의 숙련자라면 이 실시 예를 통해 본 발명의 목적, 특징 및 이점들을 잘 이해하게 될 것이다.
도 1은 본 발명의 바람직한 실시 예에 따른 막오염속도를 이용한 CIP 자동 제어 시스템을 위한 블록 구성도로서, 제어부(11)와, 가압식 막여과부(13)와, 처리수 탱크부(15)와, 역세 펌프부(17)와, CIP 탱크부(19)와, 원수 탱크부(21)와, 공급 펌프부(23)와, 응집제 투입부(25)와, 믹서부(27)와, 침전부(29)와, 여과 펌프부(31)를 포함한다.
제어부(11)는 프로그래머블 로직 컨트롤러(Programmable Logic Controller)를 의미하고, 내부적으로 메모리(미도시됨)를 사용하는 디지털 동작을 위한 전자 장치로서, 화학세정 자동 제어 시스템의 자동화 공정이 가능하도록 작동/정지를 제어하는 블록으로서, 가압식 막여과부(13)를 실시간으로 모니터링(Monitoring)하면 서 막간 차압(Trans-Membrane Pressure, TMP)을 측정(여기서, 한계압력은 통상 200∼300kPa의 범위)하고, 이 측정된 TMP와, 그리고 온도보정계수(점성계수)(μ) 및 플럭스(투과유량/단위막면적)(J)를 검출한 다음에, 수학식1
Figure 112007040889864-PAT00001
(여기서, Rt는 총여과저항이고, ΔP는 TMP이며, μ는 온도보정계수(점성계수)이며, J는 플럭스(투과유량/단위막면적)이다.)
에 적용하여 총여과저항(Rt)을 계산한 후, 일정시간에 총여과저항(Rt)의 상승 정도를 모니터링(예컨대, 도 3에 도시된 바와 같은 모식도)한 후, 기설정된 PLC 프로그램상의 단위시간당 총여과저항(Rt)의 차이(ΔR)(Rt2-Rt1) 및 단위시간당 시간간격(ΔT)(t2-t1)과, 그리고 유입원수농도의 상수(α)를 검출한 다음에, 수학식 2
Figure 112007040889864-PAT00002
(여기서, γ은 자동제어가 가능한 상수값이고, ΔR은 단위시간당 총여과저항(Rt)의 차이(Rt2-Rt1)이며, ΔT는 단위시간당 시간간격(t2-t1)이며, α는 유입원수농도의 상수이다.)
에 적용하여 자동제어가 가능한 상수값(γ)을 계산하고, 이 계산된 자동제어가 가능한 상수값(γ)의 범위를 판단하여 최적의 화학세정주기를 도출하여 운전모 드(예컨대, 정상 모드 vs CIP 모드)를 설정한다.
이후, 제어부(11)는 설정된 최적의 화학세정주기에 따라 운전모드(예컨대, 정상 모드 vs CIP 모드)를 자동 제어하는 중에, 정상 모드중 '여과공정'시 원수 탱크부(21)와 공급 펌프부(23)와 응집제 투입부(25)와 믹서부(27)와 침전부(29)와 여과 펌프부(31)와 가압식 막여과부(13)가 모두 자동 동작되도록 제어하고, '역세공정'시 처리수 탱크부(15)와 역세 펌프부(17)와 가압식 막여과부(13)가 모두 자동 동작되도록 제어한다.
또한, 제어부(11)는 설정된 최적의 화학세정주기에 따라 운전모드(예컨대, 정상 모드 vs CIP 모드)를 자동 제어하는 중에, CIP 모드인 'CIP공정'시 가압식 막여과부(13)와 처리수 탱크부(15)와 역세 펌프부(17) 그리고 CIP 탱크부(19)와 여과 펌프부(31)가 모두 자동 동작되도록 제어한다.
가압식 막여과부(13)는 선택적 투과성을 가진 막(예컨대, 스틸막과 세라믹막과 고분자막 등)으로 분류되고, 이 재질 분류에 따른 분리막은 공정에 따라 UF(Ultra-Filtration)과 MF(Micro-Filtration)로 각각 분류되어 통상 0.001∼10㎛ 범위의 공경을 가지고, 막여과 공정을 적용한 수처리에 있어 체거름 작용에 의해 원수내의 불순물을 제거하는 기작을 발휘하므로 상술한 0.001∼10㎛ 범위 이내의 공경보다 큰 입자에 대해서는 모두 제거시키는 블록으로서, 제어부(11)의 자동 제어에 따라 '여과공정'시 여과 펌프부(31)를 통해 이송되는 원수를 여과시켜 처리수 탱크부(15)로 이송하도록 하고, '역세공정'시 역세 펌프부(17)에 의해 펌핑되어 이송되는 처리수를 역으로 여과시켜 외부로 이송하도록 한다. 또한, 가압식 막 여과 부(13)는 제어부(11)의 자동 제어에 따라 'CIP공정'시 CIP 탱크부(19)로부터 여과 펌프부(31)를 통해 이송되는 화학약품이 혼합된 처리수를 순환/여과시켜 다시 CIP 탱크부(19)로 이송하도록 한다.
처리수 탱크부(15)는 가압식 막여과부(13)에 의해 여과된 처리수를 수집하는 블록으로서, 제어부(11)의 자동 제어에 따라 '여과공정'시 가압식 막여과부(13)에 의해 여과된 처리수를 직접적으로 이송받아 수집하고, '역세공정'시 내부에 위치한 역세밸브(미도시됨)를 자동으로 개방시켜 수집된 처리수를 역세 펌프부(17)로 이송하도록 한다. 또한, 처리부 탱크부(15)는 제어부(11)의 자동 제어에 따라 'CIP공정'시 내부에 위치한 역세밸브(미도시됨)를 자동으로 개방시켜 수집된 처리수를 역세 펌프부(17)로 이송하도록 한다.
역세 펌프부(17)는 처리수를 원심으로 펌핑하는 블록으로서, 제어부(11)의 자동 제어에 따라 '역세공정'시 처리수 탱크부(15)에 수집된 처리수를 가압식 막여과부(13)로 역으로 여과시켜 물리세정을 수행하도록 펌핑하고, 또한, 역세 펌프부(17)는 제어부(11)의 자동 제어에 따라 'CIP공정'시 처리수 탱크부(15)에 수집된 처리수를 CIP 탱크부(19)로 이송하도록 펌핑한다.
CIP 탱크부(19)는 화학약품을 일정농도로 조제하기 위한 처리수와 필요 화학약품을 혼합할 수 있는 블록으로서, 내부적으로 화학약품을 가지고 있는 상태에서, 제어부(11)의 자동 제어에 따라 'CIP공정'시 역세 펌프부(17)에 의해 펌핑되어 이송된 처리수가 화학약품과 혼합되어 여과 펌프부(31)로 이송하도록 한다.
원수 탱크부(21)는 제어부(11)의 자동 제어에 따라 '여과공정'시 내부에 위 치한 원수밸브(미도시됨)를 자동으로 개방시켜 저장된 원수를 공급 펌프부(23)로 이송하도록 한다.
공급 펌프부(23)는 제어부(11)의 자동 제어에 따라 '여과공정'시 원수 탱크부(21)로부터 이송되는 원수를 일정압력(정압) 혹은 일정유량(정유량)으로 펌핑하여 믹서부(27)로 이송하도록 한다.
응집제 투입부(25)는 제어부(11)의 자동 제어에 따라 '여과공정'시 공급 펌프부(23)의 펌핑에 의해 믹서부(27)로 이송되는 원수에 응집제를 투입한다.
믹서부(27)는 파이프(Pipe) 형태의 교반기 대체설비의 인-라인(In-line) 믹서의 일종으로, 제어부(11)의 자동 제어에 따라 '여과공정'시 공급 펌프부(23)로부터 이송되는 원수와 응집제 투입부(25)에 의해 투입된 응집제 간을 효율적으로 혼화시킬 수 있도록 믹싱시켜 침전부(29) 혹은 여과 펌프부(31)로 이송하도록 한다. 여기서, 침전부(29)는 공정과정에서 생략될 수도 있지만 생략하지 않을 경우, 제어부(11)의 자동 제어에 따라 '여과공정'시 믹서부(27)에 의해 믹싱되어 응결된 입자들을 중력을 이용하여 가라앉히고, 나머지 원수를 여과 펌프부(31)로 이송할 수도 있다.
여과 펌프부(31)는 제어부(11)의 자동 제어에 따라 '여과공정'시 믹서부(27)로부터 믹싱되어 이송되는 원수를 일정압력(정압) 혹은 일정유량(정유량)으로 펌핑하여 가압식 막여과부(13)로 이송하도록 하며, 또한 여과 펌프부(31)는 제어부(11)의 자동 제어에 따라 'CIP공정'시 CIP 탱크부(19)로부터 이송되는 화학약품이 혼합된 처리수를 가압식 막여과부(13)로 이송하도록 펌핑한다.
따라서, 본 실시 예에 따른 막오염속도를 이용한 CIP 자동 제어 시스템은 수처리를 위한 전체 막여과 공정에서 최적의 화학세정주기를 모니터링하여 설정하고, 이 설정된 최적의 화학세정주기에 따라 정상 모드(여과공정 및 역세공정)와 CIP 모드(CIP공정)로 이루어진 운전모드를 자동으로 제어함으로써, 기존에서와 같이 기설정된 한계차압 이상으로 막오염 속도가 증가하게 되어 발생되는 '성능지표' , '경제성지표' , '안정성지표'를 만족시키지 못하게 되는 문제점을 해결할 수 있다.
다음에, 상술한 바와 같은 구성을 갖는 본 실시 예에서 막오염속도를 이용한 CIP 자동 제어 과정에 대하여 설명한다.
도 2는 본 발명의 실시예에 따른 막오염속도를 이용한 CIP 자동 제어 방법에 대한 흐름도이다.
먼저, 제어부(11)는 가압식 막여과부(13)를 실시간으로 모니터링(Monitoring)하면서 TMP를 측정하고, 이 측정된 TMP와 온도보정계수(점성계수)(μ) 및 플럭스(투과유량/단위막면적)(J)를 검출한 다음에, 상술한 수학식1에 적용하여 총여과저항(Rt)을 계산한다(S201).
이후, 제어부(11)는 일정시간에 총여과저항(Rt)의 상승 정도를 모니터링(예컨대, 도 3에 도시된 바와 같은 모식도)한 후, 기설정된 PLC 프로그램상의 단위시간당 총여과저항(Rt)의 차이(ΔR)(Rt2-Rt1) 및 단위시간당 시간간격(ΔT)(t2-t1)과 유입원수농도의 상수(α)를 검출한 다음에, 상술한 수학식 2에 적용하여 자동제어가 가능한 상수값(γ)을 계산하고(S203), 이 계산된 자동제어가 가능한 상수값(γ)의 범위를 판단하여 최적의 화학세정주기(예컨대, 정상모드인 '여과공정' 및 '역세 공정'을 중점으로 진행하는 중에 CIP모드인 'CIP공정'을 어느 정도의 주기로 진행해야 하는지에 따른 주기)를 도출(S205)하여 운전모드의 판단을 설정한다(S207).
상술한 바와 같이 운전모드가 설정되면, 제어부(11)는 정상모드인 '여과공정' 및 '역세공정'을 중점으로 진행하는 중에, 최적의 화학세정주기에 따라 설정된 CIP모드인 'CIP공정'의 진행 여부를 판단(S209)한다.
상기 판단(S209)결과, 정상모드인 '여과공정'(S211)시 원수 탱크부(21) 내부에 위치한 원수밸브(미도시됨)를 자동으로 개방시켜 저장된 원수를 공급 펌프부(23)로 이송(S213)하도록 한다.
공급 펌프부(23)에서는 제어부(11)의 자동 제어에 따라 원수 탱크부(21)로부터 이송되는 원수를 일정압력(정압) 혹은 일정유량(정유량)으로 펌핑(S215)하여 믹서부(27)로 이송하도록 한다.
이때, 응집제 투입부(25)는 제어부(11)의 자동 제어에 따라 공급 펌프부(23)의 펌핑에 의해 믹서부(27)로 이송되는 원수에 응집제를 투입(S217)한다.
그러면, 믹서부(27)에서는 제어부(11)의 자동 제어에 따라 공급 펌프부(23)로부터 이송되는 원수와 응집제 투입부(25)에 의해 투입된 응집제 간을 효율적으로 혼화시킬 수 있도록 믹싱(S219)시켜 침전부(29) 혹은 여과 펌프부(31)로 이송하도록 한다. 여기서, 침전부(29)는 공정과정에서 생략될 수도 있지만 생략하지 않을 경우, 제어부(11)의 자동 제어에 따라 믹서부(27)에 의해 믹싱되어 응결된 입자들을 중력을 이용하여 가라앉히고, 나머지 원수를 여과 펌프부(31)로 이송할 수도 있다.
여과 펌프부(31)는 제어부(11)의 자동 제어에 따라 믹서부(27)로부터 믹싱되어 이송되는 원수를 일정압력(정압) 혹은 일정유량(정유량)으로 펌핑(S221)하여 가압식 막여과부(13)로 이송하도록 한다.
가압식 막여과부(13)는 제어부(11)의 자동 제어에 따라 여과 펌프부(31)를 통해 이송되는 원수를 여과(S223)시켜 처리수 탱크부(15)로 이송하도록 한다.
상술한 바와 같은 '여과공정' 이후에, '역세공정'을 항상 수행하여야만 한다.
즉, '역세공정'(S227)시 처리수 탱크부(15)는 제어부(11)의 자동 제어에 따라 내부에 위치한 역세밸브(미도시됨)를 자동으로 개방시켜 수집된 처리수를 역세 펌프부(17)로 이송(S229)하도록 한다. 역세 펌프부(17)는 제어부(11)의 자동 제어에 따라 처리수 탱크부(15)에 수집된 처리수를 가압식 막여과부(13)로 역으로 여과시켜 물리세정을 수행하도록 펌핑(S231)한다. 가압식 막여과부(13)는 제어부(11)의 자동 제어에 따라 역세 펌프부(17)에 의해 펌핑되어 이송되는 처리수를 역으로 여과(S233)시켜 외부로 이송하도록 한다.
여기서, '여과공정'과 '역세공정'이 계속 순환되는데, 일예로, 통상 28분 '여과공정'에 2분의 '역세공정'을 수행하며, 두 개를 합하여 한 사이클에 30분, 하루에 총 48 사이클 정도로 정상모드로 운전되며, 매 사이클마다 '여과공정'에서 총여과저항(Rt)은 계산되어지며, 매 사이클마다 계산되어 이 값을 토대로, 정상모드(여과/역세)와 CIP모드를 판단하는 기준이 된다.
상기 판단(S209)결과, 정상모드인 '여과공정' 및 '역세공정'을 중점으로 매 사이클마다 진행하는 중에, 최적의 화학세정주기에 따라 설정된 CIP모드인 'CIP공정'(S235)의 주기인 경우, 처리수 탱크부(15)는 제어부(11)의 자동 제어에 따라 내부에 위치한 역세밸브(미도시됨)를 자동으로 개방시켜 수집된 처리수를 역세 펌프부(17)로 이송(S237)하도록 한다.
역세 펌프부(17)는 제어부(11)의 자동 제어에 따라 'CIP공정'시 처리수 탱크부(15)에 수집된 처리수를 CIP 탱크부(19)로 역으로 여과하도록 펌핑(S239)한다.
CIP 탱크부(19)는 내부적으로 화학약품을 가지고 있는 상태에서, 제어부(11)의 자동 제어에 따라 'CIP공정'시 역세 펌프부(17)에 의해 펌핑되어 이송된 처리수가 화학약품에 혼합(S241)되어 여과 펌프부(31)로 이송하도록 한다.
여과 펌프부(31)는 제어부(11)의 자동 제어에 따라 CIP 탱크부(19)로부터 이송되는 화학약품이 혼합된 처리수를 가압식 막여과부(13)로 이송하도록 순환 펌핑(S243)한다.
그러면, 가압식 막 여과부(13)는 제어부(11)의 자동 제어에 따라 CIP 탱크부(19)로부터 여과 펌프부(31)를 통해 이송되는 화학약품이 혼합된 처리수를 순환/여과(S245)시켜 다시 CIP 탱크부(19)로 이송하도록 한다.
이때, 제어부(11)는 'CIP공정'을 설정된 운전모드의 주기에 맞게 반복 진행(S247)하도록 자동 제어하면서 'CIP공정' 주기가 끝나면(S249), 다시 정상모드로 리턴된다.
따라서, 본 발명은 막오염속도를 이용한 CIP 자동 제어 시스템은 수처리를 위한 전체 막여과 공정에서 최적의 화학세정주기를 모니터링하여 설정하고, 이 설 정된 최적의 화학세정주기에 따라 여과공정 및 역세공정와, CIP공정으로 이루어진 운전모드를 자동으로 제어함으로써, 적정한 비가역적인 막오염 정도를 판단하여 좀더 덜 비가역적인 막오염이 진행될 때 자동으로 화학세정을 실시하여 막 회복율을 초기 상태에 근접하게 할 수 있도록 보다 쉽고 빠르게 회복시켜 안정적으로 운전 성능을 향상시킬 수 있다.
또한, 본 발명의 사상 및 특허청구범위 내에서 권리로서 개시하고 있으므로, 본원 발명은 일반적인 원리들을 이용한 임의의 변형, 이용 및/또는 개작을 포함할 수도 있으며, 본 명세서의 설명으로부터 벗어나는 사항으로서 본 발명이 속하는 업계에서 공지 또는 관습적 실시의 범위에 해당하고 또한 첨부된 특허청구범위의 제한 범위 내에 포함되는 모든 사항을 포함한다.
이상에서 설명한 바와 같이, 본 발명은 막오염속도를 이용한 CIP 자동 제어 시스템은 수처리를 위한 전체 막여과 공정에서 최적의 화학세정주기를 모니터링하여 설정하고, 이 설정된 최적의 화학세정주기에 따라 정상 모드와 CIP 모드로 이루어진 운전모드를 자동으로 제어함으로써, 기존에서와 같이 기설정된 한계차압 이상으로 막오염 속도가 증가하게 되어 발생되는 '성능지표' , '경제성지표' , '안정성지표'를 만족시키지 못하게 되는 문제점을 해결할 수 있다.
또한, 본 발명은 적정한 비가역적인 막오염 정도를 판단하여 좀더 덜 비가역적인 막오염이 진행될 때 자동으로 화학세정을 실시하여 막 회복율을 초기 상태에 근접하게 할 수 있도록 보다 쉽고 빠르게 회복시켜 안정적으로 운전 성능을 향상시 킬 수 있고, 세정약품의 종류 및 사용량을 절약할 수 있으며, 세정시간의 단축을 가져 올 수 있으며, 유지관리비 및 부설물제어비를 절약할 수 있는 효과가 있다.

Claims (7)

  1. 가압식 막여과부를 통해 원수를 여과시켜 처리수 탱크에 보관하는 '여과공정'인 운전모드에서 상기 가압식 막여과부의 막오염속도를 이용하여 화학세정을 자동으로 제어하는 시스템으로서,
    상기 가압식 막여과부를 모니터링하면서 측정된 총여과저항(Rt)에 따라 자동제어가 가능한 상수값(γ)을 계산하고, 상기 계산된 자동제어가 가능한 상수값(γ)의 범위를 판단하여 화학세정주기를 도출하여 운전모드를 설정하는 제어부와,
    상기 도출된 화학세정주기에 따라 상기 설정된 운전모드가 'CIP공정' 주기인 경우, 역세밸브를 자동으로 개방시켜 수집된 처리수를 이송시키는 처리수 탱크부와,
    상기 처리수를 펌핑시키는 역세 펌프부와,
    상기 펌핑되는 처리수가 내부 보관된 화학약품에 혼합되어 이송되는 CIP 탱크부와,
    상기 화학약품이 혼합된 처리수를 상기 가압식 막여과부를 통해 여과되도록 순환 펌핑시키는 여과 펌프부
    를 포함하는 막오염속도를 이용한 화학세정 자동 제어 시스템.
  2. 제 1 항에 있어서,
    상기 자동제어가 가능한 상수값(γ)은,
    수학식
    Figure 112007040889864-PAT00003
    (여기서, γ은 자동제어가 가능한 상수값이고, ΔR은 단위시간당 총여과저항(Rt)의 차이(Rt2-Rt1)이며, ΔT는 단위시간당 시간간격(t2-t1)이며, α는 유입원수농도의 상수이다.)
    에 의해 계산되는 것을 특징으로 하는 막오염속도를 이용한 화학세정 자동 제어 시스템.
  3. 제 2 항에 있어서,
    상기 총여과저항(Rt)은,
    수학식
    Figure 112007040889864-PAT00004
    (여기서, Rt는 총여과저항이고, ΔP는 TMP이며, μ는 온도보정계수(점성계수)이며, J는 플럭스(투과유량/단위막면적)이다.)
    에 의해 계산되는 것을 특징으로 하는 막오염속도를 이용한 화학세정 자동 제어 시스템.
  4. 제 3 항에 있어서,
    상기 TMP의 한계압력은, 200∼300Kpa의 범위 이내인 것을 특징으로 하는 막 오염속도를 이용한 화학세정 자동 제어 시스템.
  5. 제 1 항에 있어서,
    상기 제어부는, 'CIP공정' 주기에 맞게 반복 진행하도록 자동 제어하면서 상기 'CIP공정' 주기가 끝나면, 상기 '여과공정'으로 리턴시키는 것을 특징으로 하는 막오염속도를 이용한 화학세정 자동 제어 시스템.
  6. 가압식 막여과부를 통해 원수를 여과시켜 처리수 탱크에 보관하는 '여과공정'인 운전모드에서 상기 가압식 막여과부의 막오염속도를 이용하여 화학세정을 자동으로 제어하는 방법으로서,
    상기 가압식 막여과부를 실시간으로 모니터링하면서 TMP를 측정하고, 상기 측정된 TMP와, 온도보정계수(점성계수)(μ) 및 플럭스(투과유량/단위막면적)(J)를 검출하여 총여과저항(Rt)을 계산하는 단계와,
    상기 총여과저항(Rt)을 모니터링한 후, 기설정된 PLC 프로그램상의 단위시간당 총여과저항(Rt)의 차이(ΔR)(Rt2-Rt1) 및 단위시간당 시간간격(ΔT)(t2-t1)과, 유입원수농도의 상수(α)를 검출하여 자동제어가 가능한 상수값(γ)을 계산하는 단계와,
    상기 계산된 자동제어가 가능한 상수값(γ)의 범위를 판단하여 화학세정주기를 도출하여 운전모드를 설정하고, 상기 설정된 운전모드에 따라 막여과 공정을 자동 제어하는 단계
    를 포함하는 막오염속도를 이용한 화학세정 자동 제어 방법.
  7. 제 6 항에 있어서,
    상기 방법은,
    상기 도출된 화학세정주기에 따라 상기 설정된 운전모드가 'CIP공정' 주기인 경우, 역세밸브를 자동으로 개방시켜 수집된 처리수를 이송시키는 단계와,
    상기 처리수를 펌핑시키는 단계와,
    상기 펌핑되는 처리수가 내부 보관된 화학약품에 혼합시켜 이송시키는 단계와,
    상기 화학약품이 혼합된 처리수를 상기 가압식 막여과부를 통해 여과되도록 순환 펌핑시키는 단계
    를 더 포함하는 막오염속도를 이용한 화학세정 자동 제어 방법.
KR1020070054770A 2007-06-05 2007-06-05 막오염속도를 이용한 화학세정 자동 제어 장치 및 그 방법 KR100889915B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070054770A KR100889915B1 (ko) 2007-06-05 2007-06-05 막오염속도를 이용한 화학세정 자동 제어 장치 및 그 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070054770A KR100889915B1 (ko) 2007-06-05 2007-06-05 막오염속도를 이용한 화학세정 자동 제어 장치 및 그 방법

Publications (2)

Publication Number Publication Date
KR20080107016A true KR20080107016A (ko) 2008-12-10
KR100889915B1 KR100889915B1 (ko) 2009-03-24

Family

ID=40367458

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070054770A KR100889915B1 (ko) 2007-06-05 2007-06-05 막오염속도를 이용한 화학세정 자동 제어 장치 및 그 방법

Country Status (1)

Country Link
KR (1) KR100889915B1 (ko)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100949658B1 (ko) * 2009-07-29 2010-03-26 주식회사 코오롱 여과막을 이용한 유체 처리 장치
KR100970842B1 (ko) * 2010-02-04 2010-07-16 코오롱베니트 주식회사 여과막을 이용한 유체 처리 장치 및 방법
KR101133664B1 (ko) * 2009-12-16 2012-04-12 한국건설기술연구원 분리막을 이용한 수처리 시스템에서 유전자 알고리즘/프로그래밍을 이용한 막오염지수 예측모델 기반 완화 세정 방법 및 시스템
WO2012060518A1 (ko) * 2010-11-01 2012-05-10 Lee Tae Il 수 처리 약품을 투입하여 수질 목표값을 유지하기 위한 pid 자동제어용 plc 시스템
KR101156592B1 (ko) * 2011-03-30 2012-06-20 지에스건설 주식회사 여과 방식의 수처리 설비의 운영 장치 및 방법
KR101494867B1 (ko) * 2014-01-27 2015-02-23 주식회사 퓨어엔비텍 막 세정 시스템 및 방법
CN112755797A (zh) * 2020-12-30 2021-05-07 北京城市排水集团有限责任公司 一种膜系统产水率提升改造的方法及系统

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101478878B1 (ko) * 2012-10-29 2015-01-02 도레이케미칼 주식회사 막오염 지수를 이용한 막여과 공정 시스템 및 그 방법
KR101415060B1 (ko) 2013-05-06 2014-07-04 주식회사 포스코건설 재급수 유로를 구비한 수처리장치
KR102584330B1 (ko) 2023-05-17 2023-10-04 주식회사 에코비트워터 생물막반응조의 분리막 유지 세정 시기 예측 및 자동제어 방법

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2282370T3 (es) * 1995-03-15 2007-10-16 U.S. Filter Wastewater Group, Inc. Sistema de supervision y control de filtracion.
US6547968B1 (en) 1999-07-30 2003-04-15 Zenon Environmental Inc. Pulsed backwash for immersed membranes
JP2005351707A (ja) * 2004-06-09 2005-12-22 Jfe Engineering Kk 膜ろ過性能の検知方法、検知装置、膜ろ過方法および膜ろ過装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100949658B1 (ko) * 2009-07-29 2010-03-26 주식회사 코오롱 여과막을 이용한 유체 처리 장치
KR101133664B1 (ko) * 2009-12-16 2012-04-12 한국건설기술연구원 분리막을 이용한 수처리 시스템에서 유전자 알고리즘/프로그래밍을 이용한 막오염지수 예측모델 기반 완화 세정 방법 및 시스템
KR100970842B1 (ko) * 2010-02-04 2010-07-16 코오롱베니트 주식회사 여과막을 이용한 유체 처리 장치 및 방법
WO2012060518A1 (ko) * 2010-11-01 2012-05-10 Lee Tae Il 수 처리 약품을 투입하여 수질 목표값을 유지하기 위한 pid 자동제어용 plc 시스템
KR101156592B1 (ko) * 2011-03-30 2012-06-20 지에스건설 주식회사 여과 방식의 수처리 설비의 운영 장치 및 방법
KR101494867B1 (ko) * 2014-01-27 2015-02-23 주식회사 퓨어엔비텍 막 세정 시스템 및 방법
CN112755797A (zh) * 2020-12-30 2021-05-07 北京城市排水集团有限责任公司 一种膜系统产水率提升改造的方法及系统

Also Published As

Publication number Publication date
KR100889915B1 (ko) 2009-03-24

Similar Documents

Publication Publication Date Title
KR100889915B1 (ko) 막오염속도를 이용한 화학세정 자동 제어 장치 및 그 방법
KR101478878B1 (ko) 막오염 지수를 이용한 막여과 공정 시스템 및 그 방법
EP2253594B1 (en) Water purification apparatus and method for using pressure filter and pore-control fiber filter
KR100979096B1 (ko) 간헐폭기식 공기세정방식을 이용한 막분리 공정의 최적운전제어시스템 및 방법
JP3924919B2 (ja) 水ろ過処理装置
KR101299165B1 (ko) 약품 투입 자동 제어가 가능한 가압식 막 여과 장치 및 방법
JP5866808B2 (ja) 水処理システム及び水処理システムの洗浄制御方法
CN111727174B (zh) 曝气量控制系统及曝气量控制方法
KR102319947B1 (ko) 물 집약 공정에서 소수성 상태 및 파울링을 제어하기 위한 방법 및 시스템
JP7260067B1 (ja) 膜分離活性汚泥処理装置の運転方法および膜分離活性汚泥処理装置
JP7021461B2 (ja) 水処理方法、水処理装置および原水へのケーキ層形成物質の添加の制御方法
JPWO2017221984A1 (ja) 造水システムのトラブル判定プログラム及びトラブル判定装置、並びに記録媒体
KR100949658B1 (ko) 여과막을 이용한 유체 처리 장치
JP5588099B2 (ja) 膜ろ過処理法及び膜ろ過処理装置
CN206915888U (zh) 一种碟管式反渗透系统模块化预处理装置
KR20160057595A (ko) 막차압(TMP:Trans Membrane Pressure) 측정 결과를 이용하여 막세정을 하는 막여과 공정 운영방법
KR101693100B1 (ko) 스마트 막여과 수처리 시스템
JPH11169851A (ja) 水ろ過処理装置およびその運転方法
JP2018008192A (ja) ファウラントの定量方法
KR101522254B1 (ko) 유동적 회수율을 갖는 2단 막여과 시스템 및 이의 운전방법
KR101692789B1 (ko) 막유니트를 이용한 수처리 장치 및 수처리 방법
RU2484880C2 (ru) Способ и система для уменьшения числа частиц
KR101306790B1 (ko) 순환율 자동제어를 이용한 유입수 대응형 막여과 정수장치의 제어방법
JP2006102634A (ja) 中空糸膜の洗浄方法及び水処理設備
JP6264095B2 (ja) 膜モジュールの洗浄方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
J201 Request for trial against refusal decision
AMND Amendment
B701 Decision to grant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130227

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20140312

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20150311

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20160218

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20170222

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20180313

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20190305

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20200304

Year of fee payment: 12