KR20080086177A - 모세관 전기영동 칩상에 집적된 전기화학적 검출기 및 이의제조방법 - Google Patents

모세관 전기영동 칩상에 집적된 전기화학적 검출기 및 이의제조방법 Download PDF

Info

Publication number
KR20080086177A
KR20080086177A KR1020070027990A KR20070027990A KR20080086177A KR 20080086177 A KR20080086177 A KR 20080086177A KR 1020070027990 A KR1020070027990 A KR 1020070027990A KR 20070027990 A KR20070027990 A KR 20070027990A KR 20080086177 A KR20080086177 A KR 20080086177A
Authority
KR
South Korea
Prior art keywords
electrode
substrate
sample
electrochemical detector
separation channel
Prior art date
Application number
KR1020070027990A
Other languages
English (en)
Other versions
KR100883775B1 (ko
Inventor
곤 하
김용상
강치중
이인제
Original Assignee
명지대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 명지대학교 산학협력단 filed Critical 명지대학교 산학협력단
Priority to KR1020070027990A priority Critical patent/KR100883775B1/ko
Priority to US12/053,906 priority patent/US20080230389A1/en
Publication of KR20080086177A publication Critical patent/KR20080086177A/ko
Application granted granted Critical
Publication of KR100883775B1 publication Critical patent/KR100883775B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44756Apparatus specially adapted therefor
    • G01N27/44791Microapparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502707Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the manufacture of the container or its components
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44704Details; Accessories
    • G01N27/44717Arrangements for investigating the separated zones, e.g. localising zones
    • G01N27/4473Arrangements for investigating the separated zones, e.g. localising zones by electric means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0645Electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0415Moving fluids with specific forces or mechanical means specific forces electrical forces, e.g. electrokinetic
    • B01L2400/0421Moving fluids with specific forces or mechanical means specific forces electrical forces, e.g. electrokinetic electrophoretic flow

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Dispersion Chemistry (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

모세관 전기영동 칩 상에 집적된 전기화학적 검출기 및 이의 제조방법이 개시된다.
본 발명에 따른 모세관 전기영동 칩의 전기화학적 검출기는, 미세 유로가 형성되어 있는 제 1 기판; 상기 미세 유로의 위치에 상응하여 주입되는 시료의 전기 영동을 위한 적어도 하나의 전극이 형성되어 있는 제 2 기판; 상기 제 1 기판과 제 2 기판의 접합으로 상기 미세 유로를 따라 형성되는 분리 채널; 상기 분리 채널의 천정면의 상기 제 1 기판 상에 ITO(Indium Tin Oxide)를 재료로 형성된 제 1 전극; 상기 제 1 전극과 소정의 간격을 두고 상기 분리 채널의 바닥면의 상기 제 2 기판 상의 대응되는 위치에 ITO를 재료로 형성된 제 2 전극; 및 상기 제 1 전극과 제 2 전극이 서로 쌍을 이루어 상기 분리채널을 통과하는 시료의 전기적 특성을 측정하는 검출부를 포함하는 것을 특징으로 한다.
본 발명에 의하면, 칩 상의 미세 유로를 따라 흐르는 시료의 전기적 특성을 검출기를 통해 측정하고 이에 따라 시료의 특성을 파악할 수 있으므로 간단한 구성으로 미세분석 시스템용 칩을 구현할 수 있게 된다.
전기영동, 분리 채널, 바이오 칩, ECD.

Description

모세관 전기영동 칩상에 집적된 전기화학적 검출기 및 이의 제조방법{Electrochemical Detector Integrated on Microfabricated Capilliary Electrophoresis Chip and Method of Manufacturing the Same}
도 1은 본 발명에 따른 전기화학적 검출기가 설치된 모세관 전기영동 칩의 실시예를 나타낸다.
도 2a 및 도 2b는 본 발명에 따른 모세관 전기영동 칩 상에 전극이 형성된 구조를 나타낸다.
도 3은 본 발명에 따른 모세관 전기영동 칩 상의 분리 채널 및 검출부의 구조를 나타낸다.
도 4는 제 1 기판 내에 미세 채널을 형성하는 구체적인 방법을 나타낸다.
도 5는 기준 전극으로서의 제 2 전극 등이 형성된 제 2 기판을 제조하는 구체적인 방법을 나타낸다.
도 6은 도 4 및 도 5의 제 1 기판 및 제 2 기판을 이용하여 완성된 전기영동 칩을 개략적으로 나타낸다.
<도면의 주요부호에 대한 설명>
100 : 모세관 전기영동 칩, 150 : 분리채널
200 : 검출부, 210 : 제 1 전극, 220 : 제 2 전극,
300 : 제 1 기판, 350 : 제 2 기판.
본 발명은 미세조립된 모세관 전기영동 칩상에 시료의 전기적 또는 유전적 특성을 측정하기 위한 검출기 및 이의 제조방법에 관한 것으로서, 보다 간단한 구성으로 효과적인 검출을 하기 위한 바이오칩에 적용되는 검출기 및 이의 제조방법에 관한 것이다.
최근 유전공학의 기술발전에 따라 각종 질병의 증후를 판별할 수 있는 바이오칩에 관한 연구가 활발히 진행되고 있다. 이미 시판되고 있는 바이오칩의 경우 대부분 혈액이나 세포를 분리, 정제, 유전자 증폭, 전기영동을 걸쳐서 순수하게 수거된 유전자 샘플을 사용하고 있다. 현재 MEMS 기술을 이용하여 실리콘, 유리 및 폴리머 기판에 유로와 반응로를 형성한 칩형의 PCR 소자와 전기영동 칩에 대한 연구가 활성화되고 있는데, 대부분 PCR 칩이나 전기영동 칩에서 분리된 원하는 순수유전자를 검출하는 방법으로는 형광검출법, UV/VIS 흡광도법, 전기화학법 등을 사용하고 있다. 그러나 이들 방법은 큰 규모의 고가의 장비들을 필요로 할 뿐만 아니라 검출방법의 복잡성으로 인하여 소자를 칩화하는데 많은 문제점을 안고 있다. 가령 광학 측정방법의 경우에는 우선 레이저 소스와 마이크로 스코프이외에 미세저울, 필터 등 다양한 광 부품이 필요하게 되며, 전기화학법은 복잡한 전극 구조를 갖으며 검출조건이 실제 PCR 생성물의 요액과의 적합성 문제가 따르게 된다.
종래기술 1로서 미세 모세관 전기영동 칩상에 집적된 전기화학적 검출기(Electrochemcal detector integrated on microfabricated capilliary electrophoresis chip, US patent 6,045,676)는 어레이 형의 혼성화 쳄버 내에 전극을 구현하여 여기에 탐침 DNA를 고정화시킨 후 표적 DNA가 반응을 한 경우와 반응을 하기 전의 유전상수 또는 유전손실의 변화를 측정하여 검출하였다. 그러나 종래기술 1은 질병진단용으로 DNA 자체를 쳄버 내의 전극위에 고정시킨 후 고정된 DNA가 단일 가닥에서 이중 가닥으로 변화함을 관찰하였을뿐 미세유로 내에서 유체 속에 부유하여 이동하는 DNA를 검출하지 못하였다.
또한 종래기술 2로서 미세분석 시스템을 위한 전기적 검출기(Electrical detector for micro-analysis system, US patent 6,169,394)는 미세유로 상의 양쪽 측벽에 전극을 형성하고 신호전압을 가하여 미세유로로 세포, 생체분자, 이온 등의 시료가 흐를 때의 임피던스의 변화를 측정하여 생체분자의 존재여부를 판별하였다. 그러나 상기 종래기술 2는 미세유로 상의 양쪽 측벽에 전극을 형성하여 제작 공정이 매우 복잡하다는 단점이 있다.
이와 같은 기존의 칩의 경우는 DNA 등의 검출을 광학적인 방법이나 전기화학적인 방법에 의존하고 있다. 광학적인 측정법의 경우는 우선 레이저광원 및 렌즈, 필터와 미러 등 다양한 광부품이 소요되는 관계로 상당한 경비와 공간을 필요로 하며, 따라서 집적화하는데 상당한 어려움이 따른다.
또한 최근 칩 내부에 레이져 다이오드와 필터 등 박막형태로 탑재한 소자들이 개발되고 있으나 이를 위한 제작비용이 비싸 일회용의 분석 시스템용 칩에는 적 합하지가 않다. 나아가서, 전기화학법의 경우는 3개 이상의 전극이 필요하며 각 전극의 재질이 목적에 따라 상이해야하므로 제조공정이 복잡하며, 예를 들어 전극에서 산화환원반을 이용하여 방법의 경우에는 주변환경 요인으로 인한 측정치에 오차가 발생하는 문제점이 있다.
본 발명은 상기와 같은 문제점을 해결하고자 창안된 것으로서, 단순한 구조의 칩을 제공하여 제조원가를 낮추며, 또한 칩상의 전기유로에서 시료의 전기적, 유전적 특성에 대한 주변환경요인으로 인한 측정 오차를 감소시켜 시료의 특성을 보다 정확히 판별할 수 있는 모세관 전기영동 칩상에 집적된 전기화학적 검출기 및 이의 제조방법을 제공한다.
상기 목적을 달성하기 위한 본 발명의 제 1 특징에 따른 모세관 전기영동 칩의 전기화학적 검출기는, 미세 유로가 형성되어 있는 제 1 기판; 상기 미세 유로의 위치에 상응하여 주입되는 시료의 전기 영동을 위한 적어도 하나의 전극이 형성되어 있는 제 2 기판; 상기 제 1 기판과 제 2 기판의 접합으로 상기 미세 유로를 따라 형성되는 분리 채널; 상기 분리 채널의 천정면의 상기 제 1 기판 상에 ITO(Indium Tin Oxide)를 재료로 형성된 제 1 전극; 상기 제 1 전극과 소정의 간격을 두고 상기 분리 채널의 바닥면의 상기 제 2 기판 상의 대응되는 위치에 ITO를 재료로 형성된 제 2 전극; 및 상기 제 1 전극과 제 2 전극이 서로 쌍을 이루어 상기 분리채널을 통과하는 시료의 전기적 특성을 측정하는 검출부를 포함하는 것을 특징으로 한다.
바람직하게는 상기 제 1 기판의 재질은 폴리다이메틸실록산(PDMS)이며, 상기 제 2 기판의 재질은 유리, 석영 또는 실리콘 중 어느 하나가 될 수 있으며, 더욱 바람직하게는 상기 제 1 기판은, 상기 제 1 전극이 형성되는 소정의 부분의 재질은 유리, 석영 또는 실리콘 중 어느 하나이고 그 이외 부분의 재질은 폴리다이메틸실록산(PDMS)인 것이 적합하다.
여기서 상기 전기적 특성은 상기 제 1 전극과 상기 제 2 전극 사이의 공간을 이동하는 시료의 정전용량, 유전상수, 공진주파수, 및 임피던스 중 어느 하나일 수 있다.
또한 상기 목적을 달성하기 위한 본 발명의 제 2 특징에 따른 모세관 전기영동 칩의 전기화학적 검출기의 제조 방법은, 폴리다이메틸실록산(PDMS) 재질의 제 1 기판 상에 미세 유로를 형성하는 단계; 상기 미세 유로의 위치에 상응하여 주입되는 시료의 전기 영동을 위한 적어도 하나 이상의 전극 및 상기 미세 유로 상의 상기 시료의 전기적 특성을 측정하기 위한 ITO 재질의 제 2 전극을 제 2 기판상에 형성하는 단계; 상기 미세 유로를 따라 분리 채널을 형성하도록 상기 제 1 기판과 상기 제 2 기판을 접합하는 단계; 및 상기 제 2 전극이 대응되는 위치의 상기 분리 채널의 천정면에 ITO 재질의 제 1 전극을 형성하는 단계를 포함하여 이루어지고, 상기 제 1 전극과 제 2 전극이 서로 쌍을 이루어 상기 분리 채널을 통과하는 상기 시료의 전기적 특성을 검출하는 것을 특징으로 한다.
여기서, 상기 제 2 기판의 재질은 유리, 석영 또는 실리콘 중 어느 하나인 것이 바람직하다.
또한, 상기 미세유로를 형성하는 단계는, 실리콘 웨이퍼 기판에 포토레지스트를 이용하여 상기 미세 유로에 대응하는 패턴을 형성하는 단계; 상기 패터닝된 실리콘 웨이퍼 위에 PDMS 막을 코팅하는 단계; 및 상기 패터닝된 실리콘 웨이퍼를 제거하는 단계를 포함하여 이루어질 수 있다.
또한, 상기 시료의 전기 영동을 위한 상기 적어도 하나 이상의 전극 및 상기 제 2 전극을 제 2 기판 상에 형성하는 단계는, 유리, 석영 또는 실리콘 기판 위에 소정 두께의 ITO층을 형성하는 단계; 및 상기 ITO층 위에 포토레지스트를 도포하여 상기 적어도 하나 이상의 전극 및 상기 제 2 전극에 대응하는 패턴을 형성하는 단계; 및 상기 패터닝된 포토레지스트를 제거하여 상기 적어도 하나 이상의 전극 및 상기 제 2 전극을 형성하는 단계를 포함하여 이루어질 수 있다.
또한, 상기 제 1 기판과 상기 제 2 기판을 접합하는 단계는 UV-Ozone 클리너를 사용하여 이루어지는 것이 바람직하다.
이하 본 발명에 따른 모세관 전기영동 칩의 전기화학적 검출기 및 이의 제조 방법의 구체적인 실시예를 설명한다.
일반적으로 생물체를 이루고 있는 핵산, 단백질, DNA, 세포 등은 전기적으로 극성을 띠고 있기 때문에 이를 포함하는 시료에 전압을 걸어주고 그에 따른 전압의 크기와 주파수를 변화시키면 각각의 시료마다 고유한 전기적 특성을 측정할 수 있게 된다.
본 발명은 이와 같은 특성을 이용하여 PCR 산물인 전기영동(electrophoresis)을 시행하는데, 전기영동의 원리는 시료를 gel에 심은 후 전기를 걸어서 시료에 대한 각 성분의 크기 및 그 특성에 따라 다르게 움직이는 성질의 차이로 분리하는 것이다.
전기영동에 의해 시료는 미세한 모세관 분리채널을 따라 이동을 하게 되는데, 본 발명에서는 상기 분리채널의 미세유로에 ITO로 전극 쌍을 형성하고 상기 전극 쌍에 특정 전압과 주파수의 입력을 주어 시료의 전기적 특성을 검출부에서 계측하게 된다. 이하에서 첨부된 도면을 참조하여 본 발명에 따른 모세관 전기영동 칩의 전기화학적 검출기에 대하여 보다 상세히 설명한다.
도 1은 본 발명에 따른 전기화학적 검출기가 설치된 모세관 전기영동 칩의 실시예를 나타낸다.
모세관 전기 영동 칩(100)에는 시료를 주입하기 위한 샘플 저장기(Sample reservoir)(110), 주입된 시료의 폐샘플 저장기(Sample waste reservoir)(120), 완충액을 저장하는 완충액 저장기(Buffer reservoir)(130), 미세 모세관으로 형성된 분리채널(seperation channel)(150), 시료의 전기적 특성을 측정하는 검출부(200) 및 전기적 특성이 측정된 시료가 저장되는 검출 저장기(140)가 설치된다.
각 저장기에 도입된 모든 용액들은 약 0.45㎛의 멤브레인 필터에 의해 필터링되고, 모든 미세 채널들은 탈이온화되고 정화된 물로 플러싱된다. 그 후 모든 저장기 및 채널이 완충액으로 채워지고 난 후 샘플 저장기(110)에 테스팅 시료가 채워진다. 일단 초기의 시료가 로딩된 후에는 샘플 저장기(110)와 폐샘플 저장 기(120) 사이에 전기장을 가하여 시료가 샘플 저장기(110)에 연결된 미세유로에 주입되면, 교차로를 통과하여 분리채널(150)내로 흐르게 된다. 이 때 검출 저장기(140)을 접지시킴과 동시에 완충액 저장기(130)에 분리 전압을 가하고 나머지 저장기들을 플로팅시킨다. 이 경우에 시료는 분리채널(150)을 따라 이동을 하게 되는데, 이때 검출부(200)에서 분리채널 상의 시료에 대한 전기적 특성을 측정하게 된다.
도 2a 및 도 2b는 본 발명에 따른 칩 상에 전극이 형성된 구조를 나타낸다.
도 2a는 제 1 기판(300) 상에 검출부(200)의 작업 전극(working electrode)으로서의 제 1 전극(210)이 형성된 구조를 나타내며, 도 2b는 제 2 기판(350) 상에 검출부(200)의 기준 전극(reference electrode)로서의 제 2 전극(220) 및 전기 영동을 위한 SB 전극(115), SW 전극(125), BR 전극(135), DR 전극(145) 등을 포함하는 각종 전극이 형성된 구조를 나타낸다.
SB 전극(115)과 SW 전극(125)은 시료의 주입을 위해 형성된 전극이며, BR 전극(135)과 DR 전극(145) 상에 분리 전압을 가하여 분리 채널을 따라 전기영동을 발생시켜 시료가 검출부(200)쪽으로 이동하도록 하는 전극이다.
검출부(200)는 제 1 기판(300) 상에 형성된 제 1 전극(210)과 제 2 기판(350) 상에 형성된 제 2 전극(220)을 포함하며, 도면에는 점선으로 표시된 분리채널(150)을 따라 흐르는 시료의 전기적 특성을 제 1 전극(210)과 제 2 전극(220)을 통해 측정하게 되며, 3전극 시스템인 경우에는 제 2 기판(350) 상에 상대 전 극(counter electrode)(미도시)가 포함될 수도 있다.
기존의 칩상에 형성되는 전극들은 금(Au) 또는 백금(Pt) 등으로 형성하여 고가의 비용이 들었으나, 본 발명에서는 ITO로 전극을 형성하여 저렴한 비용으로 일회용 칩의 제조가 가능하다. 또한 본 발명에 따르면 상하로 형성된 상기 제 1 전극(210) 및 제 2 전극(220)의 한 쌍의 전극을 통해 분리채널 상의 시료에 특정 전압 및 주파수를 인가하고 그에 따른 전기적 특성을 측정함으로써 간단한 구조와 방법으로 시료의 특성을 파악할 수 있다.
또한, 후술하는 바와 같이 본 발명에 따른 검출부(200)는, 분리채널(150) 방향으로 전기영동을 위한 고전압이 걸려있는 관계로 제 1 전극(210) 및 제 2 전극(220)이 분리채널 모세관 방향으로 배치되어 측정 전압의 방향이 전기영동 전기장의 방향과 수직이 되도록 하는 것이 바람직하다. 이러한 구조를 갖는 경우, 전기영동 전압에 의한 잡음 개입의 소지가 최소화될 수 있어 외부환경 변화에 따른 측정치의 오차가 감소될 수 있다.
도 3은 본 발명에 따른 칩 상의 미세 유로 및 검출부의 구조를 나타낸다.
검출부(200)는 제 1 기판(300) 상에 형성된 제 1 전극(210)과 제 2 기판(350) 상에 형성된 제 2 전극(230)을 포함하며, 제 1 전극(210)과 제 2 전극(230)은 서로 이격된 거리에 대칭되도록 형성되어 있다.
도 3에 도시된 바와 같이 제 1 기판(300) 상에 미세 유로가 형성되어 있으며, 제 1 기판(300)과 제 2 기판(350)의 접합에 의해 상기 미세 유로를 따라 분리 채널(150)이 형성되게 된다.
제 1 기판(300)은 주로 PDMS를 재질로 제작되는데 검출부(200)의 제 1 전극(210)을 형성하기 위하여 제 1 전극(210)이 형성되는 부분(320)은 유리나 석영 등으로 제작할 수 있다.
제 2 기판(350)에는 전기영동을 위한 전극들과 제 2 전극(220)이 형성되어 있으며, 상기 전기영동을 위한 전극들을 통해 전기영동이 발생하여 시료가 분리채널(150)을 따라 이동하고 분리채널(150) 상에 형성된 제 1 전극(210)과 제 2 전극(220)을 통해 시료의 특성을 파악하게 된다.
일반적인 ECD 시스템(chip-based electrochemical detection system)의 마이크로 칩은 유리나 석영 등을 재질로 만드는데, 이와 같은 유리 기판의 마이크로 칩은 높은 성형 온도와 청정실(clean room)에서 제조가 되어야 하므로 일반적인 랩에서는 쉽게 제조하기가 힘들다. 따라서 본 발명에서는 제조하기가 쉽고 광학적 특성이 뛰어나며 낮은 온도에서도 섬세한 성형이 가능하며 부착력이 훌륭한 PDMS를 이용하여 제 1 기판(300)을 제조한다. 이와 같이 PDMS 재질의 제 1 기판(300)에 미세 유로를 형성하게 되므로 기존의 유리나 석영 등을 재질로 분리 채널을 형성하는 때보다 훨씬 수월하게 세밀한 미세 유로를 만들 수 있으며, 제 1 기판(300)과 제 2 기판(350)을 접합하면 상기 미세 유로를 따라 분리 채널(150)이 형성되게 된다.
여기서 미세 모세관의 분리채널을 형성하기 위하여 제 1 기판(300)과 전극이 형성된 제 2 기판(350)을 접합하기 전에 UV 오존 세정장치(UV-Ozone cleaner)를 사용하여 세정을 실시하면 PDMS로 이루어진 제 1 기판(300)과 유리 등으로 이루어진 제 2 기판(350) 간의 접합 강도를 높일 수도 있다.
위와 같이 형성된 제 1 전극(210)과 제 2 전극(220) 사이에 특정 주파수를 갖는 교류신호 전압을 인가하는 경우에 제 1 전극(210)과 제 2 전극(220) 사이의 공간에 전기장이 형성되고, 분리채널을 이동하는 하전된 입자들이 이 전기장에 반응하여 특유의 움직임을 보이게 된다.
본 발명의 검출부(200)는 위와 같은 입자들의 특유의 움직임에 의한 전기적 특성을 측정함으로써 시료의 특성을 검출한다. 상기 전기적 특성에는 두 전극 사이에 존재하는 매질에 따라 매우 다양한 양상을 가질 수 있는데, 예를 들면 제 1 전극(210)과 제 2 전극(229) 사이의 공간의 절연 매질에 쌍극자가 존재하거나 혹은 대전된 입자가 존재할 경우 정전용량이 증가하는 경향이 있으며 이러한 정전 용량의 변화를 측정함으로써 시료의 특성을 검출할 수가 있다. 또한, 특히 쌍극자 모멘트의 양 혹은 전하량과 직접적으로 관계되는 유전상수의 변화나, 또한 입자의 질량, 크기와 주위 환경에 많은 영향을 받는 공진 주파수의 변화를 측정할 수도 있다. 또한, 상기 제 1 전극과 제 2 전극 사이에 교류신호 전압이 인가될 때의 저항에 관계되는 임피던스나 어드미턴스의 변화를 이용할 수도 있을 것이다. 이들 값 역시 두 전극 사이의 공간의 이온의 농도, DNA 등의 존재 유무 및 길이에 따라 다른 값을 나타낸다.
도 4 내지 도 5는 본 발명에 따른 모세관 전기영동 칩의 제조방법의 바람직한 실시예를 나타낸다. 도 4는 제 1 기판 내에 미세 채널을 형성하는 방법을 나타 내며, 도 5는 기준 전극으로서의 제 2 전극 등이 형성된 제 2 기판을 제조하는 방법을 나타내며, 도 6은 완성된 전기영동 칩을 개략적으로 나타낸 도면이다.
먼저 제 1 기판의 미세채널이 형성된 PDMS층을 형성하기 위하여, 도 4a에 도시된 바와 같이 실리콘 웨이퍼 기판(401) 위에 SR-8 50과 같은 포토레지스트(402)를 스핀 코팅하여, 도 4b에 도시된 바와 같이 미세 채널에 대응하는 패턴(403)을 형성한다. 이때 패터닝된 포토레지스트의 높이는 나중에 PDMS 층에 만들어질 미세채널의 깊이와 동일하게 대략 40㎛ 정도인 것이 바람직하다. 그 후, 도 4c에 도시된 바와 같이 PDMS를 패터닝된 포토레지스트가 형성된 실리콘 웨이퍼(401, 403) 위에 부어서 PDMS 층(404)을 형성하고, 경화 작업 및 패터닝된 포토레지스트가 형성된 실리콘 웨이퍼(401, 403)와의 분리 작업을 거쳐 도 4d에 도시된 바와 같이 미세채널이 형성된 PDMS층(405)을 형성한다. 이 때 사용된 PDMS는 Sylgard 184 실리콘 엘라스토머와 경화제를 10:1의 비율로 섞어 혼합시킨 것을 사용할 수 있고, 이 경우 대략 72℃에서 대략 1시간 동안 경화시키는 것이 바람직하다.
제 2 기판은 상기 제 1 기판의 제조와 별도의 공정을 통하여 형성하는데, 먼저 도 5a에 도시된 바와 같이, 유리기판(501) 위에 R.F. 마그네트론 스퍼터링에 의해 ITO층(502)을 형성한다. 이 때의 ITO 층의 두께는 대략 340nm이 바람직하며, 대략 10 ohm/□의 면저항을 가지게 된다. ITO 전극(505)을 형성하기 위해서는, 도 5b 및 도 5c에 도시된 바와 같이, 상기 ITO 층(502)에, 예를 들어 AZ 1512와 같은 포토레지스트(503)를 도포하여 제 2 기판 상에 형성될 전극에 대응하는 패터닝 공 정을 수행하고, FeCl3/HCl 혼합 용액을 이용한 식각 공정을 거쳐 최종적인 전극 패턴(505)을 형성한다. 최종적인 전극 패턴(505) 중 기준 전극 및 카운터 전극은 각각 대략 100㎛ 및 200㎛의 폭을 가지도록 형성하는 것이 바람직하다.
그리고 상술한 바와 같은 제 2 기판을 제조하는 방법과 동일한 방법으로 대략 100㎛의 폭을 갖는 작업 전극을 형성하고 적절한 방법으로 절단하여, 도 6에 도시된 바와 같이 작업 전극이 형성된 유리기판(501, 505') 및 개구부(601)가 형성된 소정 두께의 PDMS층을 따로 준비하여, 작업 전극이 제 2 기판의 기준 전극과 마주하도록, 미세채널이 형성된 PDMS층(405)과 접함시킴과 동시에, 이를 UV-Ozone 클리너를 사용하여 기준 전극이 형성된 유리기판(501, 505)을 접합시켜 모세관 전기영동 칩을 완성한다.
본 발명에 의한, 모세관 전기영동 칩의 전기화학적 검출기는 본 발명의 기술적 사상의 범위 내에서 다양한 형태로 변형, 응용 가능하며 상기 실시예에 한정되지 않는다. 또한, 상기 실시예와 도면은 발명의 내용을 상세히 설명하기 위한 목적일 뿐, 발명의 기술적 사상의 범위를 한정하고자 하는 목적은 아니며, 이상에서 설명한 본 발명은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 있어 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형, 및 변경이 가능하므로 상기 실시예 및 첨부된 도면에 한정되는 것은 아님은 물론이며, 후술하는 청구범위뿐만이 아니라 청구범위와 균등 범위를 포함하여 판단되어야 한다.
이상과 같은 본 발명에 의하면, 칩 상의 미세 유로를 따라 흐르는 시료의 전기적 또는 유전적 특성을 검출기를 통해 측정하고 이에 따라 시료의 특성을 파악할 수 있으므로 간단한 구성으로 미세분석 시스템용 칩을 구현할 수 있게 된다. 또한 ITO 전극을 사용하여 기존의 금(Au) 또는 백금(Pt) 등을 전극으로 사용하는 경우보다 제조 단가를 낮출 수 있게 된다.
또한 폴리다이메틸실록산(PDMS)의 기판에 미세 유로를 형성하고 이를 분리 채널로 이용하므로 쉽게 원하는 형태의 미세 유로를 형성할 수 있으며 그 제조비용이 저렴하고 집적화가 용이하다.
나아가서, 분리채널 상에 위치한 한 쌍의 전극에 특정 전압과 주파수를 입력하여 시료의 전기적 특성을 측정하므로 측정하는 주위환경의 영향을 적게 받아 보다 정확한 측정치를 얻을 수 있게 된다.

Claims (9)

  1. 미세 유로가 형성되어 있는 제 1 기판;
    상기 미세 유로의 위치에 상응하여 주입되는 시료의 전기 영동을 위한 적어도 하나의 전극이 형성되어 있는 제 2 기판;
    상기 제 1 기판과 제 2 기판의 접합으로 상기 미세 유로를 따라 형성되는 분리 채널;
    상기 분리 채널의 천정면의 상기 제 1 기판 상에 ITO(Indium Tin Oxide)를 재료로 형성된 제 1 전극;
    상기 제 1 전극과 소정의 간격을 두고 상기 분리 채널의 바닥면의 상기 제 2 기판 상의 대응되는 위치에 ITO를 재료로 형성된 제 2 전극; 및
    상기 제 1 전극과 제 2 전극이 서로 쌍을 이루어 상기 분리채널을 통과하는 시료의 전기적 특성을 측정하는 검출부를 포함하는 것을 특징으로 하는 전기영동 칩의 전기화학적 검출기.
  2. 제 1 항에 있어서,
    상기 제 1 기판의 재질은 폴리다이메틸실록산(PDMS)이며,
    상기 제 2 기판의 재질은 유리, 석영 또는 실리콘 중 어느 하나인 것을 특징으로 하는 모세관 전기영동 칩의 전기화학적 검출기.
  3. 제 1 항에 있어서,
    상기 제 1 기판은, 상기 제 1 전극이 형성되는 소정의 부분의 재질은 유리, 석영 또는 실리콘 중 어느 하나이고 그 이외 부분의 재질은 폴리다이메틸실록산(PDMS)이며,
    상기 제 2 기판의 재질은 유리, 석영 또는 실리콘 중 어느 하나인 것을 특징으로 하는 모세관 전기영동 칩의 전기화학적 검출기.
  4. 제 1 항에 있어서,
    상기 전기적 특성은 상기 제 1 전극과 상기 제 2 전극 사이의 공간을 이동하는 상기 시료의 정전용량, 유전상수, 공진주파수, 및 임피던스 중 어느 하나인 것을 특징으로 하는 모세관 전기영동 칩의 전기화학적 검출기.
  5. 폴리다이메틸실록산(PDMS) 재질의 제 1 기판 상에 미세 유로를 형성하는 단계;
    상기 미세 유로의 위치에 상응하여 주입되는 시료의 전기 영동을 위한 적어도 하나 이상의 전극 및 상기 미세 유로 상의 상기 시료의 전기적 특성을 측정하기 위한 ITO 재질의 제 2 전극을 제 2 기판상에 형성하는 단계;
    상기 미세 유로를 따라 분리 채널을 형성하도록 상기 제 1 기판과 상기 제 2 기판을 접합하는 단계; 및
    상기 제 2 전극이 대응되는 위치의 상기 분리 채널의 천정면에 ITO 재질의 제 1 전극을 형성하는 단계를 포함하여 이루어지고,
    상기 제 1 전극과 제 2 전극이 서로 쌍을 이루어 상기 분리 채널을 통과하는 상기 시료의 전기적 특성을 검출하는 것을 특징으로 하는 모세관 전기영동 칩의 전기화학적 검출기의 제조 방법.
  6. 제 5 항에 있어서,
    상기 제 2 기판의 재질은 유리, 석영 또는 실리콘 중 어느 하나인 것을 특징으로 하는 모세관 전기영동 칩의 전기화학적 검출기의 제조 방법.
  7. 제 5 항에 있어서,
    상기 미세유로를 형성하는 단계는,
    실리콘 웨이퍼 기판에 포토레지스트를 이용하여 상기 미세 유로에 대응하는 패턴을 형성하는 단계;
    상기 패터닝된 실리콘 웨이퍼 위에 PDMS 막을 코팅하는 단계; 및
    상기 패터닝된 실리콘 웨이퍼를 제거하는 단계를 포함하여 이루어지는 것을 특징으로 하는 모세관 전기영동 칩의 전기화학적 검출기의 제조 방법.
  8. 제 5 항에 있어서,
    상기 시료의 전기 영동을 위한 상기 적어도 하나 이상의 전극 및 상기 제 2 전극을 제 2 기판 상에 형성하는 단계는,
    소정의 기판 위에 소정 두께의 ITO층을 형성하는 단계; 및
    상기 ITO층 위에 포토레지스트를 도포하여 상기 적어도 하나 이상의 전극 및 상기 제 2 전극에 대응하는 패턴을 형성하는 단계; 및
    상기 패터닝된 포토레지스트를 제거하여 상기 적어도 하나 이상의 전극 및 상기 제 2 전극을 형성하는 단계를 포함하여 이루어지는 것을 특징으로 하는 모세관 전기영동 칩의 전기화학적 검출기의 제조 방법.
  9. 제 5 항에 있어서,
    상기 제 1 기판과 상기 제 2 기판을 접합하는 단계는 UV-Ozone 클리너를 사용하여 이루어지는 것을 특징으로 하는 모세관 전기영동 칩의 전기화학적 검출기의 제조 방법.
KR1020070027990A 2007-03-22 2007-03-22 모세관 전기영동 칩상에 집적된 전기화학적 검출기 및 이의제조방법 KR100883775B1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020070027990A KR100883775B1 (ko) 2007-03-22 2007-03-22 모세관 전기영동 칩상에 집적된 전기화학적 검출기 및 이의제조방법
US12/053,906 US20080230389A1 (en) 2007-03-22 2008-03-24 Electrochemical Detector Integrated on Microfabricated Capillary Electrophoresis Chip and Method of Manufacturing the Same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070027990A KR100883775B1 (ko) 2007-03-22 2007-03-22 모세관 전기영동 칩상에 집적된 전기화학적 검출기 및 이의제조방법

Publications (2)

Publication Number Publication Date
KR20080086177A true KR20080086177A (ko) 2008-09-25
KR100883775B1 KR100883775B1 (ko) 2009-02-18

Family

ID=39773614

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070027990A KR100883775B1 (ko) 2007-03-22 2007-03-22 모세관 전기영동 칩상에 집적된 전기화학적 검출기 및 이의제조방법

Country Status (2)

Country Link
US (1) US20080230389A1 (ko)
KR (1) KR100883775B1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013168835A1 (ko) * 2012-05-09 2013-11-14 서울대학교산학협력단 전기화학적 검출을 위한 전기영동칩
WO2018182082A1 (ko) * 2017-03-27 2018-10-04 명지대학교 산학협력단 펌프가 필요 없는 비접촉식 전기전도도 측정 기반 미소유체 칩 등전점 전기영동
KR20220048286A (ko) * 2020-10-12 2022-04-19 인제대학교 산학협력단 정전용량형 전극을 이용한 액적 길이 측정장치

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9651520B2 (en) 2010-02-25 2017-05-16 Mettler-Toledo Thornton, Inc. Microfluidic interface for a microchip
FR2980572B1 (fr) * 2011-09-28 2014-07-04 Commissariat Energie Atomique Dispositif de detection massique de particules en milieu fluide et procede de mise en œuvre
US10022728B2 (en) * 2013-02-01 2018-07-17 Arizona Board Of Regents On Behalf Of Arizona State University Punctuated microgradients for improved separations of molecules and particles
CN110672453A (zh) * 2019-09-10 2020-01-10 中国科学院上海技术物理研究所 一种纳米材料的集成式原位表征方法
CN112816535B (zh) * 2020-12-30 2022-08-12 哈尔滨工业大学(深圳) 图案化电极及其制备方法和应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6045676A (en) * 1996-08-26 2000-04-04 The Board Of Regents Of The University Of California Electrochemical detector integrated on microfabricated capilliary electrophoresis chips
US6169394B1 (en) * 1998-09-18 2001-01-02 University Of The Utah Research Foundation Electrical detector for micro-analysis systems
JP3509064B2 (ja) 1999-10-14 2004-03-22 日本電信電話株式会社 キャピラリー電気泳動用電気化学検出器及びその製造方法
US7824854B2 (en) * 2002-05-07 2010-11-02 Japan Science And Technology Agency Method or apparatus for recovering micromaterial
JP3973657B2 (ja) 2004-12-22 2007-09-12 日本電信電話株式会社 連続分離検出チップ
KR100741270B1 (ko) * 2005-07-05 2007-07-19 학교법인 포항공과대학교 이중 유체 흐름 채널을 갖는 전기화학 분석용 랩온어칩

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013168835A1 (ko) * 2012-05-09 2013-11-14 서울대학교산학협력단 전기화학적 검출을 위한 전기영동칩
WO2018182082A1 (ko) * 2017-03-27 2018-10-04 명지대학교 산학협력단 펌프가 필요 없는 비접촉식 전기전도도 측정 기반 미소유체 칩 등전점 전기영동
KR20220048286A (ko) * 2020-10-12 2022-04-19 인제대학교 산학협력단 정전용량형 전극을 이용한 액적 길이 측정장치
WO2022080768A1 (ko) * 2020-10-12 2022-04-21 인제대학교 산학협력단 정전용량형 전극을 이용한 액적 길이 측정장치

Also Published As

Publication number Publication date
US20080230389A1 (en) 2008-09-25
KR100883775B1 (ko) 2009-02-18

Similar Documents

Publication Publication Date Title
KR100883775B1 (ko) 모세관 전기영동 칩상에 집적된 전기화학적 검출기 및 이의제조방법
CN100378451C (zh) 芯片上的微电子检测器及其制造和应用方法
Gencoglu et al. Electrochemical detection techniques in micro-and nanofluidic devices
KR100455284B1 (ko) 탄소나노튜브를 이용한 고용량의 바이오분자 검출센서
Haab et al. Single-molecule detection of DNA separations in microfabricated capillary electrophoresis chips employing focused molecular streams
US8083917B2 (en) Methods and apparatus for the location and concentration of polar analytes using an alternating electric field
CN101981445B (zh) 电学地检测生理活性物质的方法和用于该方法的生物芯片
KR101709762B1 (ko) 생체분자 농축 기능 일체형 센서 및 그 제조방법
US6261430B1 (en) Micro-electrophoresis chip for moving and separating nucleic acids and other charged molecules
CN102879453B (zh) 基于电泳来操控液体中的带电粒子的方法及器件
US20090058428A1 (en) Method and device for monitoring and controlling fluid locomotion
EP2435185B1 (en) Devices and methods for determining the length of biopolymers and distances between probes bound thereto
US20100078325A1 (en) Devices and methods for determining the length of biopolymers and distances between probes bound thereto
JP2015064364A (ja) 流体チャネル内の生体分子および他の分析物の電圧感知のための、長手方向に変位されるナノスケールの電極の使用
KR101575056B1 (ko) 모세관을 이용한 단백질 농축 소자 및 그 제조 방법
Aralekallu et al. Development of glass-based microfluidic devices: A review on its fabrication and biologic applications
WO2015054663A2 (en) Biomolecular interaction detection devices and methods
KR101218987B1 (ko) 바이오칩 및 그 제조 방법, 이를 이용한 분석 대상 물질 검출 방법
Wu et al. Flexible and efficient eletrokinetic stacking of DNA and proteins at an HF etched porous junction on a fused silica capillary
KR102064388B1 (ko) 단일 지점 검출 방식 미소유체 등전점 전기영동 및 미소유체 칩
Castaño‐Álvarez et al. Multiple‐point electrochemical detection for a dual‐channel hybrid PDMS‐glass microchip electrophoresis device
CN115465833A (zh) 一种微悬浮结构的多流道热传感器及其制备方法
Gaillard Electroosmotic microfluidic oligonucleotide synthesis reactor
Sikanen SU-8-Based Microchips for Capillary Electrophoresis and Electrospray Ionization Mass Spectrometry
Lee et al. Highly selective and sensitive DNA measurement by microelectrical impedance spectroscopy

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121218

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20140128

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20150204

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee