KR20080050127A - Transgenic plant for increasing disease resistant and crop yield using osglu2 gene - Google Patents
Transgenic plant for increasing disease resistant and crop yield using osglu2 gene Download PDFInfo
- Publication number
- KR20080050127A KR20080050127A KR1020060120965A KR20060120965A KR20080050127A KR 20080050127 A KR20080050127 A KR 20080050127A KR 1020060120965 A KR1020060120965 A KR 1020060120965A KR 20060120965 A KR20060120965 A KR 20060120965A KR 20080050127 A KR20080050127 A KR 20080050127A
- Authority
- KR
- South Korea
- Prior art keywords
- osglu2
- rice
- gene
- glucanase
- ala
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
- C12N15/8271—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
- C12N15/8279—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
- C12N15/8282—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for fungal resistance
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/24—Hydrolases (3) acting on glycosyl compounds (3.2)
- C12N9/2402—Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
- C12N9/2405—Glucanases
- C12N9/2434—Glucanases acting on beta-1,4-glucosidic bonds
- C12N9/244—Endo-1,3(4)-beta-glucanase (3.2.1.6)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y302/00—Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
- C12Y302/01—Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
- C12Y302/01006—Endo-1,3(4)-beta-glucanase (3.2.1.6)
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Cell Biology (AREA)
- Plant Pathology (AREA)
- Medicinal Chemistry (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
Abstract
Description
도 1은 벼 잎으로부터 도열병을 접종한 후 단백질을 추출하여 벼 도열병에 의해 단백질 발현을 확인한 것으로, 도 1(A)는 2-DE분석을 통해 8종류의 방어관련 단백질을, 도 1(B)는 MALDI-TOF 분석으로 동정된 두 종류의 β-1,3-glucanase (OsGlu1, OsGlu2) 유전자임.1 is a protein after inoculation of the plaque from the rice leaves to confirm the protein expression by rice blast, Figure 1 (A) is 8 types of defense-related proteins through the 2-DE analysis, Figure 1 (B) Are two β-1,3-glucanase (OsGlu1, OsGlu2) genes identified by MALDI-TOF analysis.
도 2는 동정된 β-1,3-glucanase(OsGlu2)를 cDNA library로부터 cloning한 것으로, 도 2(A)는 OsGlu2의 specific한 프라이머 조합을, 도 2(B)는 PCR에 의해 증폭된 DNA단편 나타낸 것임.Figure 2 is a cloning of the identified β-1,3-glucanase (OsGlu2) from the cDNA library, Figure 2 (A) is a specific primer combination of OsGlu2, Figure 2 (B) DNA fragments amplified by PCR It is shown.
도 3(A)은 벼로부터 동정된 두 종류의 β-1,3-glucanase (OsGlu1, OsGlu2)와 다른 식물체(애기장대와 담배)로부터 잘 알려진 β-1,3-glucanase의 아미노산 서열의 비교를, 도 3(B)는 이들의 계통분류학적 관계를 나타낸 것임.FIG. 3 (A) shows a comparison of the amino acid sequences of the well-known β-1,3-glucanase from two types of β-1,3-glucanase (OsGlu1, OsGlu2) identified from rice and other plants (Arabidopsis and tobacco). , Figure 3 (B) shows their phylogenetic relationship.
도 4는 OsGlu2유전자의 Genomic DNA gel blot 분석을 나타낸 것임.Figure 4 shows the Genomic DNA gel blot analysis of the OsGlu2 gene.
도 5는 histag가 달린 단백질 발현 벡터를 이용한 OsGlu2의 재조합 단백질의 발현을 확인, 제작한 것임.Figure 5 is to confirm and produced the expression of the recombinant protein of OsGlu2 using a protein expression vector with histag.
도 6은 식물 호르몬 (JA, SA, ABA)과 스트레스 (CN, CHX, ST)에 따른 OsGlu2유전자의 Northern blot 분석을 나타낸 것임.Figure 6 shows the Northern blot analysis of the OsGlu2 gene according to plant hormones (JA, SA, ABA) and stress (CN, CHX, ST).
도 7은 벼 잎으로부터 도열병을 시간 별로 처리하여 OsGlu2유전자의 발현양상 변화를 확인한 것으로, 도 7(A)는 벼 잎으로부터 도열병을 시간 별로 처리한 RNA 시료로부터 확인한 Northern blot 분석이고, 도 7(B)는 protein 시료로부터 확인한 Western blot 분석임.Figure 7 shows the change in the expression pattern of OsGlu2 gene by treating the blasts from rice leaves by time, Figure 7 (A) is Northern blot analysis confirmed from RNA samples treated with blasts by time from rice leaves, Figure 7 (B ) Is Western blot analysis from protein samples.
도 8은 Gateway 방식으로 OsGlu2유전자의 과발현(Over-expression), RNAi 벼 형질전환작물을 제작한 것으로, 도 8(A)는 벼 형질전환작물을 제작하기 위해 OsGlu2유전자의 Gateway 방식을 통한 cloning 방법이고, 도 8(B)는 본 발명의 기본벡터인 Over-expression 벡터인 OsCcl과 RNAi 벡터인 P-Ai를 이용하여 벼 형질전환작물을 제작하는 것임. 8 is an over-expression of the OsGlu2 gene, an RNAi rice transformed crop was produced by the Gateway method, and FIG. 8 (A) is a cloning method through the Gateway method of the OsGlu2 gene to produce a rice transformed crop. , Figure 8 (B) is to prepare a rice transformed crop using the over-expression vector OsCcl and RNAi vector P-Ai which is the basic vector of the present invention.
도 9는 아그로박테리움 형질전환법으로 형질전환 벼의 생산과정임.9 is a process of producing transformed rice by Agrobacterium transformation method.
도 10은 형질전환 벼의 생산과정에 사용되어진 여러 가지 조건과 생육과정에 따라 사용되어진 배지들의 구성성분.10 is a constituent of the medium used in accordance with the various conditions and growth process used in the production of transformed rice.
도 11은 Northern blot 분석과 Western blot 분석에 의한 벼 형질전환체 각 라인의 발현양상.Figure 11 is the expression pattern of each line of rice transformant by Northern blot analysis and Western blot analysis.
도 12는 각각의 형질전환 된 벼 식물체(OsCcl::OsGlu2와 Ai::OsGlu2)와 대조구인 낙동벼(WT)의 초장 비교에 따른 사진.Figure 12 is a photograph of the comparison of the height of the transformed rice plants (OsCcl :: OsGlu2 and Ai :: OsGlu2) and control Nakdong rice (WT).
도 13은 각각의 형질전환 된 벼 식물체(OsCcl::OsGlu2와 Ai::OsGlu2)와 대조구인 낙동벼(WT)의 Stem 비교 사진.Figure 13 is a comparison of Stem of each transformed rice plant (OsCcl :: OsGlu2 and Ai :: OsGlu2) and control Nakdong rice (WT).
도 14는 Ai::OsGlu2의 벼 형질전환체와 대조구인 낙동벼(WT)의 결실에 따른 비교 사진.Figure 14 is a comparative photograph according to the deletion of the rice transformant of Ai :: OsGlu2 and control Nakdong rice (WT).
도 15는 각각의 형질전환 된 벼 식물체(OsCcl::OsGlu2와 Ai::OsGlu2)와 대조구인 낙동벼(WT)의 수량구성 요소에 따른 비교표.Figure 15 is a comparison table according to the quantity components of each transformed rice plants (OsCcl :: OsGlu2 and Ai :: OsGlu2) and control Nakdong rice (WT).
도 16은 Ai::OsGlu2의 벼 형질전환체와 대조구인 낙동벼(WT) 잎에 벼 도열병을 48시간 처리한 후 저항성을 비교한 것임.FIG. 16 is a comparison of resistance after 48 hours of rice blast treatment to Na: dong rice (WT) leaves of Ai :: OsGlu2 and control.
본 발명은 OsGlu2 유전자를 이용한 도열병 저항성 및 수량 증진 형질전환 식물체에 관한 것으로, 식물(벼)의 질병에 대하여 직접적으로 방어 작용을 하는 벼잎 도열병 저항성 유전자(OsGlu2)를 포함하는 형질전환 식물체에 관한 것이다. 벼에서 질병에 대하여 특이적으로 발현되는 이 유전자를 벼에 도입하여 과다 발현시킴으로써 벼 도열병과 같은 질병에 대한 저항성을 증가시켜 벼의 생육을 촉진하고 결과적으로 수량을 확대할 수 있는 신품종의 벼를 제공할 수 있다.The present invention relates to a blast resistant and yield enhancing transgenic plant using OsGlu2 gene, and to a transgenic plant comprising a rice leaf blast resistant gene (OsGlu2) that directly protects against diseases of plants (rice). This gene, which is specifically expressed in rice, is introduced into the rice and overexpressed, thereby increasing resistance to diseases such as rice blasts, thereby promoting the growth of rice, and consequently providing new varieties of rice that can increase yield. can do.
식물은 성장하면서 여러 가지 다양한 환경 스트레스(stress)에 노출되며, 이러한 스트레스는 식물의 성장, 발달, 생산성 등에 큰 영향을 미친다. 식물은 생존하기 위해 다양한 방어체제를 가동하여 적극적으로 환경 스트레스에 대항한다. 식물 방 어 체제의 한 부류로 잘 알려진 질병관련 유전자(pathogen-related genes, PRs)에 속하는 가수분해효소(hydrolytic enzyme)인 β-1,3-glucanases는 대부분의 필라멘트형 곰팡이(filamentous fungi)의 세포벽 구성 물질인 β-1,3-글루칸(glucan)을 감소시킴으로 방어 작용을 하고 있다. 그뿐만 아니라, β-1,3-glucanase는 작물 자체의 소포자형성(microsporogenesis), 화분이나 종자(pollen or seed)의 발아(germination), 수정(fertilization)의 생리학적, 혹은 발생학적 여러 단계에 영향을 미친다. As the plant grows, it is exposed to various environmental stresses, which have a great influence on the growth, development, and productivity of the plant. Plants actively combat environmental stress by operating various defenses to survive. A hydrolytic enzyme, β-1,3-glucanases, a member of the pathogen-related genes (PRs), a class of plant defense systems, is the cell wall of most filamentous fungi. By reducing the constituent β-1,3-glucan (glucan) is acting as a defense. In addition, β-1,3-glucanase affects the physiological or developmental stages of microsporogenesis of the crop itself, germination of pollen or seeds, and fertilization. Crazy
질병 및 해충의 방제는 벼의 경작에서 매우 중요한 요소이다. 특히 벼잎 도열병(Pyricularia oryzae)은 생장 및 수량을 결정짓는 중요한 질병이므로 지금까지는 보편적으로 화학적 살균제(농약) 및 방제방법이 개발되어 이용되어 왔으나, 화학제가 지닌 유독성, 안전성(잔류 문제) 및 방제효과 등의 극복해야 할 많은 결점을 지니고 있다. 지금까지 재조합 유전자를 도입하여 식물체가 병충해에 대한 저항성을 갖도록 한 분자생물학적인 노력이 일부 식물군에서 시도되어 왔다. Control of diseases and pests is a very important factor in the cultivation of rice. Especially Pyricularia oryzae ) is an important disease that determines growth and yield. Until now, chemical fungicides (pesticides) and control methods have been developed and used, but many chemicals have to overcome such as toxicity, safety (residual problems) and control effects. It has a flaw. To date, molecular biology efforts have been attempted in some plant groups to introduce recombinant genes to make plants resistant to pests.
본 발명은 벼 도열병에 대한 최적의 방어 능력을 지닌 질병관련 단백질을 분석하던 중, 두 종류의 β-1,3-glucanase (OsGlu1, OsGlu2)를 동정할 수 있었다. 이 중 β-1,3-glucanase(OsGlu2)를 클로닝(cloning)하고, 그 항체(antibody)를 생산하여 그 기능 연구에 사용하고자 하였다. 이 유전자를 벼에 형질도입하기 위하여 과발현 벡터(over-expression vector)인 Oryza sativa cytochrome C promoter(OsCc1)나 ABA-inducible vector인 ABA-inducible promoter(Ai-P)를 사용하여 형질전환 벼를 제작, 증식함으로써 도열병 등의 질병 저항성이 증가함과 동시에 생장촉진 및 수량구성요소의 증가로 인한 획기적인 수확량의 증가를 기대할 수 있는 새로운 품종의 형질전환 벼를 발명하고자 하였다.The present invention was able to identify two types of β-1,3-glucanase (OsGlu1, OsGlu2) during the analysis of disease-related proteins with optimal protection against rice blast. Among them, β-1,3-glucanase (OsGlu2) was cloned, and the antibody was produced to be used for its functional studies. To transduce the gene into rice, transgenic rice was prepared using an over-expression vector, Oryza sativa cytochrome C promoter (OsCc1) or an ABA-inducible vector, ABA-inducible promoter (Ai-P). By multiplying, disease resistance such as blast disease was increased, and new varieties of transformed rice were expected to be expected to increase the yields by promoting growth and yield components.
따라서 본 발명의 목적은 벼(Oryza sativa)의 잎 도열병에 대한 방어 저항성을 지닌 유전자(OsGlu2)를 포함하는 수량이 증진되고 벼 도열병의 질병 저항성이 증진된 형질전환 식물체를 제공하는 것이다. Therefore, the object of the present invention is rice ( Oryza The present invention provides a transgenic plant having an increased yield containing genes (OsGlu2) having a defensive resistance against leaf blasts of sativa ) and enhanced disease resistance of rice blasts.
본 발명의 다른 목적은 벼의 잎 도열병에 대한 방어 저항성을 지닌 유전자(OsGlu2)를 포함하는 식물 형질전환용 재조합벡터를 제공하는 것이다. Another object of the present invention to provide a recombinant vector for plant transformation comprising a gene (OsGlu2) having a protective resistance against rice leaf blast.
본 발명의 또 다른 목적은 벼의 형질전환체를 제조함으로써, 질병에 대한 저항성과 수량을 획기적으로 증진시키는 새로운 품종의 벼 및 그 제조방법을 제공하는 것을 목적으로 한다.Another object of the present invention is to provide a new varieties of rice and a method of producing the same by significantly improving the resistance and yield to diseases by producing a transformant of rice.
상기 목적을 달성하기 위하여 본 발명은 식물(벼)의 질병에 대하여 직접적으로 방어 작용을 하는 벼잎 도열병 저항성 유전자(OsGlu2)를 포함하는 발현벡터인 OsCcl::OsGlu2 또는 Ai::OsGlu2를 제작하여 벼(Oryza sativa)를 형질전환시키는 것에 관한 것이다. 벼에서 질병에 대하여 특이적으로 발현되는 이 유전자를 벼에 도입하여 과다 발현시킴으로써 벼 도열병과 같은 질병에 대한 저항성을 증가시켜 벼의 생육을 촉진하고 결과적으로 수량을 확대할 수 있는 신품종의 벼를 제공한다.In order to achieve the above object, the present invention provides an expression vector OsCcl :: OsGlu2 or Ai :: OsGlu2 that includes a rice leaf blast resistance gene (OsGlu2) that directly defends against diseases of plants (rice). Oryza sativa ). This gene, which is specifically expressed in rice, is introduced into the rice and overexpressed, thereby increasing resistance to diseases such as rice blasts, thereby promoting the growth of rice, and consequently providing new varieties of rice that can increase yield. do.
본 발명은 β-1,3-글루카나제(OsGlu2) cDNA 유전자를 포함하는 식물 형질전환용 재조합 벡터 OsCcl::OsGlu2 또는 Ai::OsGlu2를 제공하며, 상기의 식물 형질전환용 재조합 벡터로 형질전환되어 수량이 증진되고 벼 도열병의 질병 저항성이 증진된 형질전환 벼를 제공한다.The present invention provides a recombinant vector OsCcl :: OsGlu2 or Ai :: OsGlu2 for plant transformation, comprising β-1,3-glucanase (OsGlu2) cDNA gene, and transforming with the recombinant vector for plant transformation. The result is a transgenic rice with improved yield and improved disease resistance in rice blasts.
부수적으로는 벼 도열병에 의해 단백질 발현이 증가하는 β-1,3-글루카나제(OsGlu2)를 암호화하는 유전자를 포함하는 형질전환용 재조합 벡터인 OsCcl::OsGlu2 또는 Ai::OsGlu2를 이용하여 벼를 형질전환시켜 벼의 생육을 촉진하고 질병에 대한 저항성을 증진시키는 방법까지도 포함한다.Incidentally, rice was prepared using OsCcl :: OsGlu2 or Ai :: OsGlu2 , a recombinant vector for transformation containing a gene encoding β-1,3-glucanase (OsGlu2), which increases protein expression by rice blast. Transformation to promote the growth of rice and to improve the resistance to disease, including.
이하 본 발명의 내용을 실시예에 의해 보다 상세하게 설명하기로 한다. 다만, 이들 실시예는 본 발명의 내용을 이해하기 위해 제시되는 것일 뿐 본 발명의 권리범위가 이들 실시예에 한정되는 것으로 해석돼서는 안 될 것이다.Hereinafter, the content of the present invention will be described in more detail with reference to Examples. However, these examples are only presented to understand the content of the present invention, the scope of the present invention should not be construed as being limited to these embodiments.
<실시예 1: 벼 도열병에 대한 방어관련 단백질 중 β-1,3-glucanase 동정>Example 1 Identification of β-1,3-glucanase in Defense Related Proteins against Rice Blast
벼 잎으로부터 도열병을 접종한 후 단백질을 추출하여 벼 도열병에 의해 단백질 발현이 증가한 단백질을 중심으로 방어관련 단백질을 확인하고자 했다. After inoculating the plaque from the rice leaves, the proteins were extracted to identify defense-related proteins, mainly on the proteins with increased protein expression by the rice plaque.
단백질 추출, 2-DE 분석, MALDI-TOF 동정 Protein Extraction, 2-DE Assay, MALDI-TOF Identification
단백질 추출: 20~30°C의 온실에서 4~5주 정도 자란 진흥벼 잎에 도열병(rice blast fungus, M. grisea)을 48시간, 72시간 접종하여 샘플링(sampling)하였다. 도열병을 처리하지 않은 진흥벼를 대조구(control)로 하였다. 이로부터 단백질을 분리하기 위해 페그(PEG) 침전법을 이용했다. 이 방법은 녹색식물 단백질체 분석에 있어 현저하게 많이 발현되는 루비스코(Rubisco) 단백질을 효과적으로 제거함으로써 상대적으로 발현이 적은 단백질을 분석하는데 효과적인 방법이다. 샘플링한 벼 잎을 액체질소로 갈은 다음, 각각의 샘플 2g에 Mg/NP-40 완충액(0.5 M Tris-HCl (pH 8.3), 2% v/v NP-40, 20 mM MgCl2, 2% v/v b-mercaptoethanol, 1 mM phenyl methyl sulfonyl fluoride, and 1% w/v polyvinyl polypyrrolidone)을 넣어 12000xg에서 15분간 원심분리한 후 상등액을 추출한 후, 50% w/v PEG을 넣어 최종 샘플 상등액 농도가 15% w/v PEG 가 되도록 한다. 이 상등액을 30분 얼음에 방치한 후, centrifugation (12000xg) 15분 하여 이로부터 얻은 상등액 단백질 추출물을 아세톤으로 침전했다.Protein Extraction: Samples of rice blast fungus (M. grisea) were inoculated for 48 hours and 72 hours on the leaves of Jinheung rice grown for 4-5 weeks in a greenhouse at 20-30 ° C. The promotion rice which did not treat blasting was used as a control. Peg (PEG) precipitation was used to separate proteins from this. This method is an effective method for analyzing relatively low-expression proteins by effectively eliminating rubisco proteins, which are significantly expressed in green plant protein analysis. The sampled rice leaves were ground with liquid nitrogen, and then 2 g of each sample was treated with Mg / NP-40 buffer (0.5 M Tris-HCl (pH 8.3), 2% v / v NP-40, 20 mM MgCl2, 2% v). / v b-mercaptoethanol, 1 mM phenyl methyl sulfonyl fluoride, and 1% w / v polyvinyl polypyrrolidone) were centrifuged at 12000xg for 15 minutes, the supernatant was extracted, and 50% w / v PEG was added to give a final sample supernatant concentration. 15% w / v PEG. The supernatant was left on ice for 30 minutes and then centrifugation (12000xg) for 15 minutes to precipitate supernatant protein extracts obtained from acetone.
2-DE 분석: 15% PEG 상등액 단백질 추출물을 2-DE 분석하였다. IEF (1-DE) gel (4.5% w/v acrylamide solution, 9.5 M urea, 2% v/v NP-40, and 2.5% v/v ampholytes (pH 310 : pH 58 : pH 46.5 = 1 : 3.5 : 2.5)을 6시간 정도 굳힌다. 각 각의 sample (silver stainin한 단백질은 150ug, CBB staining한 단백질은 500ug)을 sample buffer에 녹인 후, IEF gel에 loading하여 600V에 12시간, 800V에 6시간, 1000V에 3시간 건다. 각각의 gel을 20 mL screw-cap tube에 넣고 5 mL의 equilibration buffer (10% v/v glycerol, 2.5% w/v SDS, 125 mM Tris-HCl (pH 6.8), 5% v/v β-mercaptoethanol, and 0.1 mg/mL bromophenol blue)를 넣어 실온에서 30분 둔다. equilbration한 gel을 Low-Melting Agarose (low-melting agarose: 0.2g,4× buffer5ml, H2O : 15ml, 10% SDS : 200ul)를 흘려 미리 굳힌 2-DE gel, SDS-PAGE (second dimension) 위에 얹어 40~50V로 overnight 시킨다. 다음날 dye가 빠지고 나면 충분하게 fix (50% methanol, 10% acetic acid, 40% dd H2O)시킨 다음 silver stain (Pretreat, Impregnate, Develop) 한다. silver-staine된 단백질 spots을 gel로부터 떼어 씻어 낸 (50% v/v ACN in 0.1 M NH4HCO3) 후 vacuum으로 말린다. gel fragments은 55°C 에서 45분간 10 mM DTT solution (55 mM iodoacetamide in 0.1 M NH4HCO3) in 0.1 M NH4HCO3 넣어 얼음에서 차갑게 한 뒤, (50% ACN in 0.1 M NH4HCO3)으로 씻은 후, (10 mL digestion buffer containing 25 mM NH4HCO3 and 12.5 ng/mL trypsin)을 넣고 건조 시킨다. 도 1(A)에 나타난 바와 같이 2-DE 분석을 통해 8종류의 방어관련 단백질을 확인했다.2-DE Assay: 15% PEG supernatant protein extract was analyzed as 2-DE. IEF (1-DE) gel (4.5% w / v acrylamide solution, 9.5 M urea, 2% v / v NP-40, and 2.5% v / v ampholytes (pH 310: pH 58: pH 58: pH 46.5 = 1: 3.5: 2.5) is hardened for 6 hours Each sample (150ug for silver stained protein and 500ug for CBB stained protein) is dissolved in sample buffer and loaded into IEF gel for 12 hours at 600V, 6 hours at 800V, and 1000V. Place each gel in a 20 mL screw-cap tube and add 5 mL of equilibration buffer (10% v / v glycerol, 2.5% w / v SDS, 125 mM Tris-HCl, pH 6.8), 5% v Add / v β-mercaptoethanol, and 0.1 mg / mL bromophenol blue) at room temperature for 30 minutes, equilbration gel Low-Melting Agarose (low-melting agarose: 0.2g, 4 × buffer5ml, H2O: 15ml, 10% SDS : 200ul) and put it on the pre-hardened 2-DE gel, SDS-PAGE (second dimension) overnight at 40 ~ 50 V. After the dye is removed the next day, fix (50% methanol, 10% acetic acid, 40% dd H2O). ) And then silver stain (Pretreat, Impregnate, Develop). The taine protein spots are removed from the gel, washed (50% v / v ACN in 0.1 M NH4HCO3), and dried in vacuo.The gel fragments are 10 mM DTT solution (55 mM iodoacetamide in 0.1 M NH4HCO3) in 55 ° C for 45 minutes. Add 0.1 M NH4HCO3, cool on ice, wash with (50% ACN in 0.1 M NH4HCO3), add (10 mL digestion buffer containing 25 mM NH4HCO3 and 12.5 ng / mL trypsin), and dry. As shown in FIG. 1 (A), eight types of defense-related proteins were identified through 2-DE analysis.
MALDI-TOF 동정: 모든 단백질은 Voyager-DE STR MALDI-TOF mass spectrometer (PerSeptive Biosystems, Framingham, MA, USA)을 사용했다. 도 1(B)는 MALDI-TOF 분석으로 두 종류의 β-1,3-glucanase (OsGlu1, OsGlu2)유전자를 동정한 것이다.MALDI-TOF Identification: All proteins were run using a Voyager-DE STR MALDI-TOF mass spectrometer (PerSeptive Biosystems, Framingham, Mass., USA). Figure 1 (B) is to identify two types of β-1,3-glucanase (OsGlu1, OsGlu2) gene by MALDI-TOF analysis.
<< 실시예Example 2: 2: 동정된Identified β-1,3- β-1,3- glucanaseglucanase (( OsGlu2Osglu2 ) 유전자 규명>Genetic Identification>
동정된Identified β-1,3- β-1,3- glucanaseglucanase ( ( OsGlu2Osglu2 )를 ) cDNAcDNA librarylibrary 로부터 from cloningcloning
동정된 β-1,3-glucanase (OsGlu2)를 National Center for Biotechnology Information (NCBI)의 데이터베이스 프로그램을 사용하여 유전자에 대한 정보를 확인하였으며 specific primers를 제작하였다. 도열병으로부터 유도된 벼 잎에서 조제한 mRNA를 반응시켜 얻어진 cDNA 유전자 library로부터 β-1,3-glucanase (OsGlu2)를 gene-specific primers를 사용하여 PCR로 증폭시킨 다음, pGEM-T Easy Vector (Promega, Madison, WI, USA)를 사용하여 cloning하여 sequence 확인했다. 도 2(A)는 OsGlu2의 specific한 프라이머 조합을 나타낸 것이다.The identified β-1,3-glucanase (OsGlu2) was identified using a database program of the National Center for Biotechnology Information (NCBI) to identify genes and specific primers were prepared. Β-1,3-glucanase (OsGlu2) was amplified by PCR using gene-specific primers from cDNA gene library obtained by reacting mRNA prepared from rice leaves derived from blasts, and then pGEM-T Easy Vector (Promega, Madison). , WI, USA) and confirmed the sequence by cloning. Figure 2 (A) shows a specific primer combination of OsGlu2.
OsGlu2 (AB027430) Forward 5'- ATG GGT TTC GCT CCC ATG-3' (서열번호 3) OsGlu2 (AB027430) Forward 5'- ATG GGT TTC GCT CCC ATG-3 '(SEQ ID NO: 3)
OsGlu2 (AB027430) Reverse 5'-TAA GAA ACT AAT GCT GTA CGA-3' (서열번호 4) OsGlu2 (AB027430) Reverse 5'-TAA GAA ACT AAT GCT GTA CGA-3 '(SEQ ID NO: 4)
아가로스 겔로부터 DNA 마커와 OsGlu2 PCR 산물을 로딩하여 확인한 결과, 1008 bp임을 확인 할 수 있었다. 도 2(B)는 PCR에 의해 증폭된 DNA단편을 나타낸 것이다.DNA markers and OsGlu2 PCR products were loaded from the agarose gel and confirmed to be 1008 bp. Figure 2 (B) shows a DNA fragment amplified by PCR.
동정된Identified β-1,3- β-1,3- glucanaseglucanase (( OsGlu1OsGlu1 , , OsGlu2Osglu2 )와 다른 식물체 내 β-1,3-Β-1,3- in other plants glucanaseglucanase 아미노산 서열 Amino acid sequence 상동성Homology 비교 compare
Cloning된 OsGlu2는 동정된 또 다른 하나의 β-1,3-glucanase (OsGlu1)와 다른 식물체 내 존재하는 β-1,3-glucanase (애기장대와 담배)로부터 phylogenetic tree using Neighbor Joining methods of Clustal X 프로그램을 사용하여 비교해 보았다(도 3(A) 참조). 각기 두 종류의 애기장대의 β-1,3-glucanase 유전자들(AtGLU1 (NCBI Acc. No AY096465)와 AtGLU2 (AY096541)), 담배의 β-1,3-glucanase 유전자들 NtGLU1(NCBI Acc. No M20618)와 NtGLU2 (M20619))이 서로 유사성이 높았으며, 벼에 존재하는 OsGlu1 (AB027428)과 OsGlu2간에는 62%의 상동성을 가짐으로써 비교적 낮았다(도 3(B) 참조). 이로써 유전자가 β-1,3-glucanase (OsGlu2)임을 확정하였다.Cloned OsGlu2 is a phylogenetic tree using Neighbor Joining methods of Clustal X program from another identified β-1,3-glucanase (OsGlu1) and other β-1,3-glucanases present in other plants. The comparison was made using (see FIG. 3 (A)). Β-1,3-glucanase genes (AtGLU1 (NCBI Acc. No AY096465) and AtGLU2 (AY096541)) and two β-1,3-glucanase genes NtGLU1 (NCBI Acc. No M20618) ) And NtGLU2 (M20619)) had high similarities to each other, and relatively low, with 62% homology between OsGlu1 (AB027428) and OsGlu2 present in rice (see FIG. 3 (B)). This confirmed that the gene is β-1,3-glucanase (OsGlu2).
CloningCloning 된 Done OsGlu2Osglu2 의 of genomegenome 상에서의 On copycopy 수 확인 Can be ok
pGEM-T Easy Vector에 cloning된 OsGlu2의 DNA단편(10ug)을 제한효소들 (EcoR I, Hind III, Xba I)을 사용하여 37°C에서 3~6시간 잘라 1% DNA 아가로스 겔에 로딩한 다음, nylon membrane (GeneScreen Plus, NEN)에 transfer 했다. 이 membrane에 [-32P] dCTP를 사용하여 OsGlu2 probe를 레이블 하였다(도 4 참조).DNA fragment of OsGlu2 cloned into pGEM-T Easy Vector (10ug) was cut for 3-6 hours at 37 ° C using restriction enzymes (EcoR I, Hind III, Xba I) and loaded onto 1% DNA agarose gel. Next, transfer to nylon membrane (GeneScreen Plus, NEN). The membrane was labeled with OsGlu2 probe using [-32P] dCTP (see FIG. 4).
단백질 발현 및 항체(Protein expression and antibodies ( antibodyantibody ) 제작Production
도 5에 나타난 바와 같이 histag가 달린 단백질 발현 벡터를 이용한 OsGlu2의 재조합 단백질의 발현을 확인, 제작하였다. Antibody를 제작하고자 단백질 발현 벡터의 한 종류인 histag가 달린 pET28를 사용하여 OsGlu2 유전자를 cloning 하였다. 먼저 pET28 벡터에 OsGlu2를 cloning 하고자 primer를 제작했다.As shown in FIG. 5, expression of the recombinant protein of OsGlu2 was confirmed and produced using a protein expression vector with histag. To construct the antibody, the OsGlu2 gene was cloned using pET28 with histag, a protein expression vector. First, primers were prepared to clone OsGlu2 into pET28 vector.
OsGlu2 Nde I Forward 5'- GCG CAT ATG ATG GGT TTC GCT CCC ATG-3' (서열번호 5) OsGlu2 Nde I Forward 5'- GCG CAT ATG ATG GGT TTC GCT CCC ATG-3 '(SEQ ID NO: 5)
OsGlu2 BamH I Reverse 5'- GCG GGA TCC TTA GAA ACT AAT GCT GTA CGA-3' (서열번호 6) OsGlu2 BamH I Reverse 5'- GCG GGA TCC TTA GAA ACT AAT GCT GTA CGA-3 '(SEQ ID NO: 6)
제작된 primer를 이용하여 PCR하여 증폭시킨 insert를 회수한 다음, pGEM-T Easy Vector에 ligation하여 추출한 plasmid DNA로부터, Nde I/ BamH I 제한효소로 잘라 그 insert를 회수하고 pET28 벡터로부터 DNA를 추출하여 Nde I/ BamH I 제한효소로 잘라 회수한 OsGlu2의 insert 회수물을 ligation하여 cloning했다.After recovering the amplified insert by PCR using the prepared primers, the plasmid DNA extracted by ligation to the pGEM-T Easy Vector was cut with Nde I / BamH I restriction enzyme to recover the insert, and the DNA was extracted from the pET28 vector. The insert recovered from OsGlu2 was cut and cloned with Nde I / BamH I restriction enzyme.
단백질 발현을 확인하고자 pET28벡터와 pET28::OsGlu2를 XL-1 blue cells에 transformation하여 생긴 colony를 LB broth에 접종하여 37°C에서 IPTG를 넣고 키운다. 이렇게 키운 cells을 centrifugation (6000xg) 5분하여 얻은 pellet을 단백질 loading butter를 넣고 10분 끓여 centrifugation (6000xg) 5분한 뒤 상등액만을 12% SDS-polyacrylamide gel에 loading한다. Soluble하게 뽑은 재조합 단백질 pET28::OsGlu2와 단백질 마커도 같이 loading한다. Gel을 떼어 comssie brilliant blue R250으로 염색하여 단백질의 발현양상과 OsGlu2의 단백질 사이즈를 확인하였다. To confirm protein expression, colonies generated by transforming pET28 vector and pET28 :: OsGlu2 into XL-1 blue cells were inoculated into LB broth and grown with IPTG at 37 ° C. The pellet obtained by centrifugation (6000xg) for 5 minutes was added to the protein loading butter, boiled for 10 minutes, centrifugation (6000xg) for 5 minutes, and only the supernatant was loaded on a 12% SDS-polyacrylamide gel. Soluble recombinant protein pET28 :: OsGlu2 and protein markers are also loaded. The gel was removed and stained with comssie brilliant blue R250 to confirm protein expression and OsGlu2 protein size.
재조합 단백질 pET28::OsGlu2로부터 antibody를 제작하고자 1~2mg/mL 의 단백질과 freund's complete adiuvants를 1:1로 30분 이상 emulsion 시켰다. 이렇게 하여 토끼에 1차 주입, 4주 후 2차 주입, 2주 후 3차 주입한다. 3차 주입 후 7일 경과 뒤 혈액을 채취하여 미리 tittering 한다. 3차 주입 경과 2주 후에 단백질 (antigen) 만을 4차 주입하고 일주일 후 혈액을 채취하고, 혈액으로부터 serum만을 회수하였다. To prepare an antibody from the recombinant protein pET28 :: OsGlu2, 1 ~ 2mg / mL protein and freund's complete adiuvants were emulsified 1: 1 or more for 30 minutes. In this way, the rabbit is injected first, secondly after 4 weeks, and thirdly after 2 weeks. Seven days after the third injection, blood is collected and tittered. Two weeks after the third injection, only four (4) injections of protein (antigen) were taken and a week later, blood was collected, and only serum was recovered from the blood.
식물 호르몬 및 벼 도열병에 대한 For plant hormones and rice blast OsGlu2Osglu2 의 발현양상 분석 Expression Analysis of
4~5주 정도 자란 진흥벼 잎에 식물 호르몬인 Jasmonic acid (JA, 250uM), Salicylic acid (SA, 5mM), Abscisic acid (ABA, 200uM)와 스트레스 처리 Cantharidin (CN, 1uM), Cycolheximide (CHX, 1uM), Staurosporine (ST, 10uM)을 48시간 처리(+), 무처리(-)하여 RNA를 분리하였다. 뿐만 아니라 벼 도열병 (KJ401, 저항성(incompatible)과 KJ101, 이병성(compatible))을 시간 별(12, 18, 24, 36, 48, 60, 72시간)로 처리하여 RNA와 단백질을 분리하였다. Jasmonic acid (JA, 250uM), Salicylic acid (SA, 5mM), Abscisic acid (ABA, 200uM) and cantharidin (CN, 1uM), Cycolheximide (CHX, 1uM), Staurosporine (ST, 10uM) was treated for 48 hours (+), no treatment (-) RNA was isolated. In addition, RNA and protein were isolated by treating rice blasts (KJ401, incompatible and KJ101, compatible) with time (12, 18, 24, 36, 48, 60, 72 hours).
도 6에 나타난 바와 같이 식물 호르몬 (JA, SA, ABA)과 스트레스 (CN, CHX, ST)에 따른 OsGlu2 유전자의 Northern blot 분석을 통해, 이 유전자는 JA에 의해 발현이 유도되었으나 ABA에 의해서는 발현이 억제되었다. 도 7(A)는 벼 잎으로부터 도열병을 시간별로 처리한 RNA 시료로부터 확인한 Northern blot 분석이며, 도 7(B)는 protein 시료로부터 확인한 Western blot 분석이다. 발현되는 mRNA (Northern blot)과 단백질(Western blot)양은 저항성(incompatible)반응에서 이병성(compatible)반응에서 보다 더 일찍 더 많은 양이 확인되었다.As shown in FIG. 6, Northern blot analysis of the OsGlu2 gene according to plant hormones (JA, SA, ABA) and stress (CN, CHX, ST) revealed that this gene was induced by JA but expressed by ABA. This was suppressed. FIG. 7 (A) shows Northern blot analysis confirmed from RNA samples treated with blasting from rice leaves by time, and FIG. 7 (B) shows Western blot analysis confirmed from protein samples. The amount of mRNA (Northern blot) and protein (Western blot) expressed was found to be higher in the incompatible reaction earlier than in the compatible reaction.
RNA 분리: Sampling한 벼 잎을 액체질소로 갈은 다음, RNA extraction butter(0.2M tris (pH 9.0), 0.4M Licl, 25mM EDTA, 1% SDS) 와 RNA용 phenol, β mercaptoethanol을 넣고 voltex하여 centrifugation (3000xg) 5분 하여 상등액만을 취한 뒤, P.C.I (RNA용 phenol 25: chroloform 24: isoamine alcohol 1) 넣고 voltex, centrifugation (7500xg) 10분 하여 상등액만을 분리한다. 여기에 chroloform을 1:1로 넣어 centrifugation (7500xg) 10분 한 뒤, 상등액만을 취해 isoprophanol을 (1:1)로 넣고 3M sodium acetate (1/10)을 넣어 -20°C에서 1시간 정도 침전시킨다. 1시간 뒤, centrifugation (7500xg) 10분하여 상등액을 버리고 남은 pellet만을 말린 후, RNA용 TE용액을 넣어 녹인 다음 최종농도가 2M LiCl이 되도록 LiCl을 넣어준다. centrifugation (12000xg) 15분 하여 70% EtOH로 씻은 다음, 말린 후 TE용액을 넣어 녹여 P.C.I용액, chroloform, 100% EtOH 와 3M sodium acetate (1/10)넣은 용액 순으로 넣어 RNA를 깨끗하게 해 준다. 마지막으로 -20° 보관했다가 10mM tris-Hcl (pH7.5)로 녹여 사용한다.RNA isolation: Sampled rice leaves are ground with liquid nitrogen, followed by voltex with RNA extraction butter (0.2M tris (pH 9.0), 0.4M Licl, 25mM EDTA, 1% SDS) and phenol for RNA and β mercaptoethanol. (3000xg) 5 minutes to take only the supernatant, then PCI (phenol 25: chroloform 24:
Northern blot 분석: RNA sample (20uM)되게 formaldehyde denaturing 아가로스 겔에 로딩하여 nylon membrane (GeneScreen Plus, NEN)에 transfer 했다. 이 membrane에 [-32P] dCTP 를 사용하여 OsGlu2 probe를 레이블 했다. Northern blot analysis: RNA samples (20 uM) were loaded onto formaldehyde denaturing agarose gels and transferred to nylon membrane (GeneScreen Plus, NEN). The membrane was labeled with OsGlu2 probe using [-32P] dCTP.
Western blot 분석: 단백질 loading butter를 넣고 10분 끓여 centrifugation (6000xg) 5분한 뒤 상등액만을 12% SDS-polyacrylamide gel에 loading하여 PVDF membrane에 blotting 하여 Ponceau S로 확인 후, 증류수로 세척한 다음 5% v/v glutaraldehyde solution으로 cross-linking 한다. Cross-linking한 membrane 은 TTBs (50 mM Tris-HCl pH 8.2, 0.1% v/v Tween 20, and 150 mM NaCl) 용액에 녹인 7% w/v nonfat dry milk로 2시간 동안 blocking한 후, purified 되어진 rabbit antibody OsGlu2 (diluted 1:1000) 넣어준다. 이 antigen-anti-body interaction은 2시간 동안하며 이후 TTBs용액으로 3번 20분씩 washing 한다. Secondary goat anti-rabbit IgG antibody conjugated with horseradish peroxidase diluted 1:5000를 TTBs 용액에 넣고 2시간 동안 immunodetection 해 준다. blots은 다시 TTBs 용액으로 3번 20분씩 washing한다. 마지막으로 immunoblot signals 은ECL (PerkinElmer Life Sciences, Boston, MA, USA)을 사용하여 detect 된다.Western blot analysis: Put protein loading butter, boil for 10 minutes, centrifugation (6000xg) for 5 minutes, load only the supernatant onto 12% SDS-polyacrylamide gel, blotting onto PVDF membrane, confirm with Ponceau S, wash with distilled water, and then wash with 5% v / v Cross-link with glutaraldehyde solution. The cross-linked membrane was blocked with 7% w / v nonfat dry milk dissolved in TTBs (50 mM Tris-HCl pH 8.2, 0.1% v /
<< 실시예Example 3: 3: OsGlu2Osglu2 유전자의 벼 형질전환체 제작 및 증식> Gene Production and Growth of Rice Transformant>
GatewayGateway 방식을 통한 Through the way OsGlu2Osglu2 의 벼 형질전환체 벡터 Rice transformant vector cloningcloning
벼 형질전환체를 제작하고자 Gateway 방식 (Invitrogen)을 사용했다. 먼저 adapter PCR 프라이머를 제작하고자 NCBI의 데이터베이스 프로그램을 사용하여 프라이머를 제작하였다(도 8(A) 참조). Gateway method (Invitrogen) was used to prepare rice transformants. First, primers were prepared using NCBI's database program to prepare adapter PCR primers (see FIG. 8 (A)).
OsGlu2 12b attB1 5'- GGG GAC AAG TTT GTA CAA AAA AGC AGG CTT CAT GGA AAG CAT GGCGTTGCT -3' (서열번호 7)
OsGlu2 12b attB2 5'- GGG GAC CAC TTT GTA CAA GAA AGC TGG GTC GAA ATT GTA GGA GTA TGT CGG CGA -3' (서열번호 8)
attB1 adapter 프라이머 5'- GGG GAC AAG TTT GTA CAA AAA AGC AGG CT-3' (서열번호 9) attB1 adapter primer 5'- GGG GAC AAG TTT GTA CAA AAA AGC AGG CT-3 '(SEQ ID NO: 9)
attB2 adapter 프라이머 5'- GGG GAC CAC TTT GTA CAA GAA AGC TGG GT-3' (서열번호 10) attB2 adapter primer 5'- GGG GAC CAC TTT GTA CAA GAA AGC TGG GT-3 '(SEQ ID NO: 10)
OsGlu2의 full-length cDNA를 가지고 fist PCR 30사이클을 돌려 증폭시켜 회수한 다음 이를 가지고 다시 adapter 프라이머를 사용한 second PCR 25 사이클을 돌려 증폭시켜 adapter가 붙은 OsGlu2의 PCR product를 회수한다. 이를 pDONR201 (Invitrogen) 벡터에 BP reaction한다 (25°C 16시간이상). 이어 LR reaction (BP reaction mixture와 coining 할 vector인 OsCc1 promoter (overexpression 벡터), P-Ai promoter (ABA inducible 벡터)를 사용하여 25°C 8시간 incubation 한 후, proteinase K를 넣고 1시간 37°C에서 incubation한다)하여 DH 5β에 transformation한다. Coining 할 vector에는 3' region of the potato proteinase inhibitor II gene (3'pinII)과 the bar gene expression cassette that contains a 35S promoter, bar coding region, 3' region of the nopaline synthase gene (3'nos)가 들어있다.Using a full-length cDNA of OsGlu2, amplify and recover 30 cycles of fist PCR, and then amplify again by rotating 25 cycles of second PCR using an adapter primer to recover the PCR product of OsGlu2 with an adapter. It is BP reacted with pDONR201 (Invitrogen) vector (more than 25 ° C for 16 hours). Subsequently, incubation at 25 ° C for 8 hours using an LR reaction (OsCc1 promoter (overexpression vector), a P-Ai promoter (ABA inducible vector), which is the vector to be coined with the BP reaction mixture, followed by adding proteinase K at 37 ° C for 1 hour at 37 ° C). incubation) to transform to DH 5β. The vector to be coined contains the 3 'region of the potato proteinase inhibitor II gene (3'pinII) and the bar gene expression cassette that contains a 35S promoter, bar coding region, 3' region of the nopaline synthase gene (3'nos). have.
본 발명의 기본벡터인 Over-expression 벡터인 OsCcl과 RNAi 벡터인 P-Ai를 이용하여 벼 형질전환작물을 제작했다(도 8(B) 참조). A rice transgenic crop was prepared using OsCcl, an over-expression vector of the present invention, and P-Ai, an RNAi vector (see FIG. 8 (B)).
아그로박테리움을 이용한 벼 형질전환체 제작Preparation of Rice Transformant Using Agrobacterium
각각의 overexpression 벡터와 ABA-nducible 벡터에 들어있는 OsGlu2 유전자는 Agrobacterium tumefaciens strain (LBA4404)와 E. coli HB101(pRK2013)와의 cell mix 방법에 의해 ABST 배지에서 3일간 28°C에서 암 배양하여 벼의 embryo callus에 transformation 하였다. OsGlu2 gene in each of the overexpression vector and ABA-nducible vector was cultured at 28 ° C for 3 days in ABST medium by cell mix with Agrobacterium tumefaciens strain (LBA4404) and E. coli HB101 (pRK2013). transformation to callus.
낙동벼 씨를 70% EtOH로 소독하여 세척한 뒤, 3% Chlorax에 1시간shaking한 후 세척하여 2N6 배지에서 심어 암 상태에서 28°C 3~4주 callus를 유기했다. 형성된 좋은 callus만을 선별하여 transformation하기 4일전에 2N6 배지에 28°C에서 암 배양 했다. AAM용액과 AS를 섞은 용액에 cell mix 한 Agrobacterium 농도가 OD600nm에서 3이 되도록 한 후 선별한 callus를 넣어 infection한 다음, 2N6-AS 배지에 옮겨 20°C 3일간 암 배양했다. 멸균수에 cefortaxiume을 넣은 용액에 callus를 1시간 정도 담근 후, filter paper 에 건조시켜 2N6-CP배지에 얹어 28°C 3주간 암 배양 하였다. 성장을 보이며 갈변하지 않은 callus만을 선별하여 N6-70CP배지에 옮긴 후, 28°C에서 10일간 암 배양 하였다. 선별된 callus를 MSCP배지에 옮겨 light상태에서 배양했다. 뿌리와 줄기가 유도된 식물체를 magent 배지로 옮겨 키운 후, 흙에서 증식했다 (도 9는 벼 형질전환체의 callus로부터의 증식과정과 도 10은 이에 사용된 배지와 그 조성들을 보여준다). Nakdong rice seeds were disinfected with 70% EtOH, washed in 3% Chlorax for 1 hour, washed, and planted in 2N6 medium to incubate at 28 ° C for 3-4 weeks in the dark. Only good callus formed was screened and cultured at 28 ° C in
OsGlu2Osglu2 의 벼 형질전환체 라인 증식 및 검증Transformation and Verification of Rice Transformant Lines
아그로박테리움 형질전환법에 의해 유도된 callus로부터 증식한 ABA- inducible 벡터의 벼 형질전환체 Ai::OsGlu2의 To세대 라인을 검증하기 위해 Northern blot 분석과 Western blot 분석을 하였다. 도 11에 나타난 바와 같이, Northern blot 분석과 Western blot 분석에 의한 벼 형질전환체 각 라인의 발현양상을 살펴보고, 발현이 되는 라인들을 선발한 후 차후 육성하였다.Northern blot analysis and Western blot analysis were performed to verify the To generation line of rice transformant Ai :: OsGlu2 of ABA-inducible vector grown from callus induced by Agrobacterium transformation. As shown in FIG. 11, the expression patterns of each line of rice transformants by Northern blot analysis and Western blot analysis were examined, and lines were expressed after the expression of the lines.
<< 실시예Example 4: 4: OsGlu2Osglu2 유전자의 벼 형질전환체로부터 기능 검증> Functional Verification from Rice Transformants of Genes>
OsGlu2Osglu2 의 벼 형질전환체의 생육조사Growth of Rice Transformants in Korea
검증된 벼 형질전환체 Ai::OsGlu2의 라인을 선별하여 T2세대들로 증식하여 그의 생육모습을 관찰하였다. 대조구로 낙동벼를 이용했다. 그 중 Ai::OsGlu2 T2세대의 2-2라인과 10-3의 라인을 집중적으로 관찰하였다. OsCc1 promoter (overexpression 벡터)를 사용한 OsCcl::OsGlu2의 1번 라인도 관찰 비교했다. 성장의 비교, 키(초장), flag 잎의 길이, 줄기의 두께 비교, 분얼수, 이삭 당 벼알수, 천립중 등의 수량구성요소를 조사하였다.The lines of verified rice transformant Ai :: OsGlu2 were selected and propagated to T2 generations to observe their growth. Nakdong rice was used as a control. Among them, Ai :: OsGlu2 T2 generation line 2-2 and 10-3 line were observed intensively. We also observed and compared
도 12에 나타난 바와 같이, 각각의 형질전환 된 벼 식물체(OsCcl::OsGlu2와 Ai::OsGlu2)와 대조구인 낙동벼(WT)의 초장 비교에 따른 사진으로, Ai::OsGlu2 형 질 전환체 (T2-2-2, T2-10-3) 라인들이 대조구(WT) 라인, 과 발현(OsCcl::OsGlu2 T2-2-1) 라인보다 생육이 촉진됨을 확인할 수 있었다. 도 13은 각각의 형질전환 된 벼 식물체(OsCcl::OsGlu2와 Ai::OsGlu2)와 대조구인 낙동벼(WT)의 Stem 비교사진으로, 형질전환체 중 Ai::OsGlu2 라인들이 훨씬 강하게 생육하였다. 도 14는 Ai::OsGlu2의 벼 형질전환체와 대조구인 낙동벼(WT)의 결실에 따른 비교 사진으로, 형질전환체가 생육이 큰 것을 알 수 있다. 도 15는 각각의 형질전환 된 벼 식물체(OsCcl::OsGlu2와 Ai::OsGlu2)와 대조구인 낙동벼(WT)의 수량구성 요소에 따른 비교표로서, 형질전환체가 키, 분얼수, 이삭당 벼알 수가 많음을 확인할 수 있었다.As shown in FIG. 12, the photographs of the transgenic rice plants (OsCcl :: OsGlu2 and Ai :: OsGlu2) and the control of Nakdong rice (WT) were compared to show the Ai :: OsGlu2 transformant (T2). -2-2, T2-10-3) line was found to promote growth than the control (WT) line, overexpression (OsCcl :: OsGlu2 T2-2-1) line. FIG. 13 is a Stem comparison photograph of each of the transformed rice plants (OsCcl :: OsGlu2 and Ai :: OsGlu2) and the control Nakdong rice (WT), wherein the Ai :: OsGlu2 lines of the transformants were grown more strongly. Figure 14 is a comparison picture of the deletion of the Ai :: OsGlu2 rice transformant and the control Nakdong rice (WT), it can be seen that the transformant growth is large. FIG. 15 is a comparison table according to the yield components of each transformed rice plant (OsCcl :: OsGlu2 and Ai :: OsGlu2) and a control, Nakdong rice (WT), where the transformants have a large number of heights, grains and rice grains per ear. Could confirm.
OsGlu2Osglu2 의 벼 형질전환체의 도열병에 대한 저항성 검증Of rice transformants against rice blast disease
Pathogen-related genes (PRs)에 속하는 Hydrolytic enzyme인 β-1,3-glucanases의 방어관련 기능을 검증하고자 OsGlu2의 벼 형질전환체에 도열병을 접종하였다. 4~4주 정도 잘 자란 Ai::OsGlu2 T2세대를 라인 별로 도열병(KJ101)을 접종하여 3일간 배양하여 관찰하였다. 그 중Ai::OsGlu2 T2세대 중 18번과 27의 라인의 잎에서 병반의 수가 크게 감소하는 모습을 관찰할 수 있었으며 저항성을 보였다. 이어 검증하고자 Northern blot 분석과 Western blot 분석을 하였다. 이때 도열병(KJ101)을 접종하기 전에 ABA를 처리하여 OsGlu2유전자를 발현하고자 했다. To verify the protective function of β-1,3-glucanases, a hydrolytic enzyme belonging to pathogen-related genes (PRs), OsGlu2 rice transformants were inoculated with blasts. Ai :: OsGlu2 T2 generation, which grew well for 4 to 4 weeks, was inoculated with a blast bottle (KJ101) for each line and observed for 3 days. Among them, the number of lesions on the leaves of
도 16에 나타난 바와 같이 Ai::OsGlu2의 벼 형질전환체와 대조구인 낙동벼(WT) 잎에 벼 도열병을 48시간 처리한 후 비교한 것이다. 도 16(A)는 Ai::OsGlu2의 벼 형 질전환체와 대조구인 낙동벼(WT) 잎에 미리 ABA를 처리한 후, 벼 도열병을 48시간 처리하여 이들 잎의 병 반을 살펴보았다. 도 16(B)는 벼 도열병을 처리한 Ai::OsGlu2의 벼 형질전환체와 대조구인 낙동벼(WT) 잎으로부터 RNA와 단백질을 분리하여 각각 Northern blot 분석과 Western blot 분석을 통해 OsGlu2의 발현양상을 살펴 보았다. 두 형질전환체벼(Ai::OsGlu2 T2-2-2, T2-10-3)의 라인들은 대조구(WT)에 비해 도열병 저항성을 보였으며 이는 식물체내의 유전자 발현양도 증가되어 β-1,3-glucanase의 발현 양 증가에 따른 도열병 저항성도 동시에 증가된 것으로 추정된다. 이는 Ai::OsGlu2 형질전환체에서 도열병 저항성을 나타내서 β-1,3-glucanase의 발현양의 증가로 인한 도열병 저항성과 연관성을 입증해 주고 있다.As shown in FIG. 16, a rice transformant of Ai :: OsGlu2 and a control group of Nakdong rice (WT) leaves were treated after 48 hours of rice blasting. Figure 16 (A) was treated with ABA in advance of the A :: OsGlu2 rice-type transformant and control Nakdong rice (WT) leaves, and then treated the rice blast for 48 hours to examine the lesions of these leaves. FIG. 16 (B) shows RNA and protein separation from Ai :: OsGlu2 rice transformants treated with rice blast and Nakdong rice (WT) leaves. I looked. The lines of the two transformant rice (Ai :: OsGlu2 T2-2-2, T2-10-3) were resistant to blast disease compared to the control (WT), which increased the amount of gene expression in the plant, resulting in β-1,3- Increasing expression of glucanase also suggests that blast resistance is also increased. This shows that the disease resistance in Ai :: OsGlu2 transformants is correlated with blast resistance due to the increased expression of β-1,3-glucanase.
본 발명은 식물(벼)의 질병에 대하여 직접적으로 방어 작용을 하는 벼잎 도열병 저항성 유전자를 포함하는 발현벡터인 OsCcl::OsGlu2 또는 Ai::OsGlu2를 제작하여 벼(Oryza sativa)를 형질전환시키는 것에 관한 것이다. 벼에서 질병에 대하여 특이적으로 발현되는 이 유전자를 벼에 도입하여 과다 발현시킴으로써 벼 도열병과 같은 질병에 대한 저항성을 증가시켜 벼의 생육을 촉진하고 결과적으로 수량을 확대할 수 있는 신품종의 벼를 제공할 수 있다. 결과적으로 종래의 많은 문제점을 지니고 있는 농약 등의 화학물질 사용을 줄이면서도 질병에 대한 환경적 스트레스 저항력을 획기적으로 높여 수확량 확대 및 양질의 쌀을 생산함으로써 경제성에 크게 이 바지할 수 있을 것으로 기대된다. The present invention provides a rice ( Oryza) by making the expression vector OsCcl :: OsGlu2 or Ai :: OsGlu2 containing a rice leaf blast resistance gene that directly protects against diseases of plants (rice) sativa ). This gene, which is specifically expressed in rice, is introduced into the rice and overexpressed, thereby increasing resistance to diseases such as rice blasts, thereby promoting the growth of rice, and consequently providing new varieties of rice that can increase yield. can do. As a result, while reducing the use of chemicals such as pesticides, which have many conventional problems, it is expected to significantly increase the environmental stress resistance to diseases, thereby increasing yields and producing high quality rice, thereby greatly improving the economics.
<110> Gyeongsang National University Industial & Academic Collaboration Foundation <120> OsGlu2 gene for increasing Disease Resistant and crop yield <160> 10 <170> KopatentIn 1.71 <210> 1 <211> 336 <212> PRT <213> Oryza sativa <400> 1 Lys Met Gly Phe Ala Pro Met Leu Ser Val Ala Val Leu Leu Gly Thr 1 5 10 15 Leu Ala Ala Phe Pro Ala Ala Val His Ser Ile Gly Val Cys Tyr Gly 20 25 30 Val Val Ala Asn Asn Leu Pro Gly Pro Ser Glu Val Val Gln Leu Tyr 35 40 45 Arg Ser Lys Gly Ile Asp Ser Met Arg Ile Tyr Phe Ala Asp Ala Ala 50 55 60 Ala Leu Asn Ala Leu Ser Gly Ser Asn Ile Gly Leu Ile Met Asp Val 65 70 75 80 Gly Asn Gly Asn Leu Ser Ser Leu Ala Ser Ser Pro Ser Ala Ala Ala 85 90 95 Gly Trp Val Arg Asp Asn Ile Gln Ala Tyr Pro Gly Val Ser Phe Arg 100 105 110 Tyr Ile Ala Val Gly Asn Glu Val Gln Gly Ser Asp Thr Ala Asn Ile 115 120 125 Leu Pro Ala Met Arg Asn Val Asn Ser Ala Leu Val Ala Ala Gly Leu 130 135 140 Gly Asn Ile Lys Val Ser Thr Ser Val Arg Phe Asp Ala Phe Ala Asp 145 150 155 160 Thr Phe Pro Pro Ser Ser Gly Arg Phe Arg Asp Asp Tyr Met Thr Pro 165 170 175 Ile Ala Arg Phe Leu Ala Thr Thr Gly Ala Pro Leu Leu Ala Asn Val 180 185 190 Tyr Pro Tyr Phe Ala Tyr Lys Asp Asp Gln Glu Ser Gly Gln Lys Asn 195 200 205 Ile Met Leu Asn Tyr Ala Thr Phe Gln Pro Gly Thr Thr Val Val Asp 210 215 220 Asn Gly Asn Arg Leu Thr Tyr Thr Cys Leu Phe Asp Ala Met Val Asp 225 230 235 240 Ser Ile Tyr Ala Ala Leu Glu Lys Ala Gly Thr Pro Ser Val Ser Val 245 250 255 Val Val Ser Glu Ser Gly Trp Pro Ser Ala Gly Gly Lys Val Gly Ala 260 265 270 Ser Val Asn Asn Ala Gln Thr Tyr Asn Gln Gly Leu Ile Asn His Val 275 280 285 Arg Gly Gly Thr Pro Lys Lys Arg Arg Ala Leu Glu Thr Tyr Ile Phe 290 295 300 Ala Met Phe Asp Glu Asn Gly Lys Pro Gly Asp Glu Ile Glu Lys His 305 310 315 320 Phe Gly Leu Phe Asn Pro Asn Lys Ser Pro Ser Tyr Ser Ile Ser Phe 325 330 335 <210> 2 <211> 1159 <212> DNA <213> Oryza sativa <400> 2 ctaagatggg tttcgctccc atgctttcag tggccgtgct ccttggaacc ttggcagcat 60 ttcctgcagc ggtacactcc atcggcgtgt gttacggcgt ggtcgccaac aacctgcccg 120 ggccgagcga agtcgtgcag ctgtacagat ccaaggggat cgattcgatg cgcatctact 180 tcgcggacgc cgccgccctc aatgcactca gcggctcgaa catcggtctc atcatggacg 240 tcggcaacgg caacctctcg agcttagctt ccagcccctc cgccgcagcc ggttgggtca 300 gggacaacat ccaggcctac ccgggcgtct ccttccgcta catcgccgtc ggcaacgagg 360 ttcaaggcag cgacaccgcg aacatccttc cggccatgcg gaacgtcaac agcgcgctgg 420 tggcggccgg cctcggcaac atcaaggtat ccacgtcggt caggttcgac gcgttcgccg 480 acaccttccc gccctccagc ggcaggttca gggacgacta catgaccccg atcgcgaggt 540 tcttggccac caccggcgcg ccgctgttgg cgaacgtgta cccctacttc gcctacaaag 600 acgaccagga aagcgggcag aaaaacatca tgctcaacta cgccaccttc cagccgggca 660 cgacggtggt ggacaacggg aacaggctga cctacacgtg cctcttcgac gcgatggtcg 720 actccatcta cgccgcgctg gagaaggccg gcacaccgag cgtcagcgtc gtcgtgtccg 780 agagcgggtg gccgtccgcc ggagggaagg ttggggccag cgtgaacaac gcgcagacat 840 acaaccaggg gctgatcaac catgtccgag gcggcacgcc caagaagcgc agggcgttgg 900 agacttacat atttgctatg ttcgacgaga acggcaagcc tggggatgag atcgagaagc 960 actttgggct gttcaacccc aataagtcgc catcgtacag cattagtttc taaggggatc 1020 gtacagactg atatatattt ttatatggaa taagttgctc ccgtgatagg ccaaacgcaa 1080 gcatgggaag caagcatagt gccgtgtggt gtccatgcat ctttcccaat ttgtgaaata 1140 tatactccca gtgaatttt 1159 <210> 3 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> forward primer of OsGlu2 <400> 3 atgggtttcg ctcccatg 18 <210> 4 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> reverse primr of OsGlu2 <400> 4 taagaaacta atgctgtacg a 21 <210> 5 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> forward primer of OsGlu2 for cloning into pET28 vector <400> 5 gcgcatatga tgggtttcgc tcccatg 27 <210> 6 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> reverse primer of OsGlu2 for cloning into pET28 vector <400> 6 gcgggatcct tagaaactaa tgctgtacga 30 <210> 7 <211> 51 <212> DNA <213> Artificial Sequence <220> <223> OsGlu2 12b attB1 primer <400> 7 ggggacaagt ttgtacaaaa aagcaggctt catggaaagc atggcgttgc t 51 <210> 8 <211> 54 <212> DNA <213> Artificial Sequence <220> <223> OsGlu2 12b attB2 primer <400> 8 ggggaccact ttgtacaaga aagctgggtc gaaattgtag gagtatgtcg gcga 54 <210> 9 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> attB1 adapter primer <400> 9 ggggacaagt ttgtacaaaa aagcaggct 29 <210> 10 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> attB2 adapter primer <400> 10 ggggaccact ttgtacaaga aagctgggt 29 <110> Gyeongsang National University Industial & Academic Collaboration Foundation <120> OsGlu2 gene for increasing Disease Resistant and crop yield <160> 10 <170> KopatentIn 1.71 <210> 1 <211> 336 <212> PRT <213> Oryza sativa <400> 1 Lys Met Gly Phe Ala Pro Met Leu Ser Val Ala Val Leu Leu Gly Thr 1 5 10 15 Leu Ala Ala Phe Pro Ala Ala Val His Ser Ile Gly Val Cys Tyr Gly 20 25 30 Val Val Ala Asn Asn Leu Pro Gly Pro Ser Glu Val Val Gln Leu Tyr 35 40 45 Arg Ser Lys Gly Ile Asp Ser Met Arg Ile Tyr Phe Ala Asp Ala Ala 50 55 60 Ala Leu Asn Ala Leu Ser Gly Ser Asn Ile Gly Leu Ile Met Asp Val 65 70 75 80 Gly Asn Gly Asn Leu Ser Ser Leu Ala Ser Ser Pro Ser Ala Ala Ala 85 90 95 Gly Trp Val Arg Asp Asn Ile Gln Ala Tyr Pro Gly Val Ser Phe Arg 100 105 110 Tyr Ile Ala Val Gly Asn Glu Val Gln Gly Ser Asp Thr Ala Asn Ile 115 120 125 Leu Pro Ala Met Arg Asn Val Asn Ser Ala Leu Val Ala Ala Gly Leu 130 135 140 Gly Asn Ile Lys Val Ser Thr Ser Val Arg Phe Asp Ala Phe Ala Asp 145 150 155 160 Thr Phe Pro Pro Ser Ser Gly Arg Phe Arg Asp Asp Tyr Met Thr Pro 165 170 175 Ile Ala Arg Phe Leu Ala Thr Thr Gly Ala Pro Leu Leu Ala Asn Val 180 185 190 Tyr Pro Tyr Phe Ala Tyr Lys Asp Asp Gln Glu Ser Gly Gln Lys Asn 195 200 205 Ile Met Leu Asn Tyr Ala Thr Phe Gln Pro Gly Thr Thr Val Val Asp 210 215 220 Asn Gly Asn Arg Leu Thr Tyr Thr Cys Leu Phe Asp Ala Met Val Asp 225 230 235 240 Ser Ile Tyr Ala Ala Leu Glu Lys Ala Gly Thr Pro Ser Val Ser Val 245 250 255 Val Val Ser Glu Ser Gly Trp Pro Ser Ala Gly Gly Lys Val Gly Ala 260 265 270 Ser Val Asn Asn Ala Gln Thr Tyr Asn Gln Gly Leu Ile Asn His Val 275 280 285 Arg Gly Gly Thr Pro Lys Lys Arg Arg Ala Leu Glu Thr Tyr Ile Phe 290 295 300 Ala Met Phe Asp Glu Asn Gly Lys Pro Gly Asp Glu Ile Glu Lys His 305 310 315 320 Phe Gly Leu Phe Asn Pro Asn Lys Ser Pro Ser Tyr Ser Ile Ser Phe 325 330 335 <210> 2 <211> 1159 <212> DNA <213> Oryza sativa <400> 2 ctaagatggg tttcgctccc atgctttcag tggccgtgct ccttggaacc ttggcagcat 60 ttcctgcagc ggtacactcc atcggcgtgt gttacggcgt ggtcgccaac aacctgcccg 120 ggccgagcga agtcgtgcag ctgtacagat ccaaggggat cgattcgatg cgcatctact 180 tcgcggacgc cgccgccctc aatgcactca gcggctcgaa catcggtctc atcatggacg 240 tcggcaacgg caacctctcg agcttagctt ccagcccctc cgccgcagcc ggttgggtca 300 gggacaacat ccaggcctac ccgggcgtct ccttccgcta catcgccgtc ggcaacgagg 360 ttcaaggcag cgacaccgcg aacatccttc cggccatgcg gaacgtcaac agcgcgctgg 420 tggcggccgg cctcggcaac atcaaggtat ccacgtcggt caggttcgac gcgttcgccg 480 acaccttccc gccctccagc ggcaggttca gggacgacta catgaccccg atcgcgaggt 540 tcttggccac caccggcgcg ccgctgttgg cgaacgtgta cccctacttc gcctacaaag 600 acgaccagga aagcgggcag aaaaacatca tgctcaacta cgccaccttc cagccgggca 660 cgacggtggt ggacaacggg aacaggctga cctacacgtg cctcttcgac gcgatggtcg 720 actccatcta cgccgcgctg gagaaggccg gcacaccgag cgtcagcgtc gtcgtgtccg 780 agagcgggtg gccgtccgcc ggagggaagg ttggggccag cgtgaacaac gcgcagacat 840 acaaccaggg gctgatcaac catgtccgag gcggcacgcc caagaagcgc agggcgttgg 900 agacttacat atttgctatg ttcgacgaga acggcaagcc tggggatgag atcgagaagc 960 actttgggct gttcaacccc aataagtcgc catcgtacag cattagtttc taaggggatc 1020 gtacagactg atatatattt ttatatggaa taagttgctc ccgtgatagg ccaaacgcaa 1080 gcatgggaag caagcatagt gccgtgtggt gtccatgcat ctttcccaat ttgtgaaata 1140 tatactccca gtgaatttt 1159 <210> 3 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> forward primer of OsGlu2 <400> 3 atgggtttcg ctcccatg 18 <210> 4 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> reverse primr of OsGlu2 <400> 4 taagaaacta atgctgtacg a 21 <210> 5 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> forward primer of OsGlu2 for cloning into pET28 vector <400> 5 gcgcatatga tgggtttcgc tcccatg 27 <210> 6 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> reverse primer of OsGlu2 for cloning into pET28 vector <400> 6 gcgggatcct tagaaactaa tgctgtacga 30 <210> 7 <211> 51 <212> DNA <213> Artificial Sequence <220> <223> OsGlu2 12b attB1 primer <400> 7 ggggacaagt ttgtacaaaa aagcaggctt catggaaagc atggcgttgc t 51 <210> 8 <211> 54 <212> DNA <213> Artificial Sequence <220> <223> OsGlu2 12b attB2 primer <400> 8 ggggaccact ttgtacaaga aagctgggtc gaaattgtag gagtatgtcg gcga 54 <210> 9 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> attB1 adapter primer <400> 9 ggggacaagt ttgtacaaaa aagcaggct 29 <210> 10 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> attB2 adapter primer <400> 10 ggggaccact ttgtacaaga aagctgggt 29
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020060120965A KR100839027B1 (en) | 2006-12-01 | 2006-12-01 | Transgenic Plant for Increasing Disease Resistant and Crop Yield Using OsGlu2 Gene |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020060120965A KR100839027B1 (en) | 2006-12-01 | 2006-12-01 | Transgenic Plant for Increasing Disease Resistant and Crop Yield Using OsGlu2 Gene |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20080050127A true KR20080050127A (en) | 2008-06-05 |
KR100839027B1 KR100839027B1 (en) | 2008-06-17 |
Family
ID=39805630
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020060120965A KR100839027B1 (en) | 2006-12-01 | 2006-12-01 | Transgenic Plant for Increasing Disease Resistant and Crop Yield Using OsGlu2 Gene |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100839027B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019083061A1 (en) * | 2017-10-26 | 2019-05-02 | 경상대학교 산학협력단 | Recombinant vector for plant transformation and use thereof |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0252A (en) * | 1987-10-01 | 1990-01-05 | Konica Corp | High contrast image forming method |
-
2006
- 2006-12-01 KR KR1020060120965A patent/KR100839027B1/en not_active IP Right Cessation
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019083061A1 (en) * | 2017-10-26 | 2019-05-02 | 경상대학교 산학협력단 | Recombinant vector for plant transformation and use thereof |
Also Published As
Publication number | Publication date |
---|---|
KR100839027B1 (en) | 2008-06-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2008515458A5 (en) | ||
US20150232876A1 (en) | Use of a Receptor Kinase Having LysM Motifs in Order to Improve the Response of Plants to Lipochitooligosaccharides | |
EP2195432B1 (en) | Plants having increased biomass | |
Zhang et al. | ShORR-1, a novel tomato gene, confers enhanced host resistance to Oidium neolycopersici | |
AU2017310264B2 (en) | Metabolite production in endophytes | |
CN114369609B (en) | Phospholipase D gene for promoting plant root system development and application thereof | |
CN110713994A (en) | Plant stress tolerance associated protein TaMAPK3, and coding gene and application thereof | |
US20150267220A1 (en) | Maize RING-H2 Genes and Methods of Use | |
KR100839027B1 (en) | Transgenic Plant for Increasing Disease Resistant and Crop Yield Using OsGlu2 Gene | |
WO2007019616A2 (en) | Modification of endophyte infection | |
US7244875B2 (en) | Expression vectors comprising nucleic acids encoding SEBF proteins and uses thereof | |
KR100781076B1 (en) | Osglu2 gene for increasing disease resistant and crop yield | |
US6956149B1 (en) | Method of conveying BNYVV resistance to sugar beet plants | |
CN107663231B (en) | Nicotiana benthamiana TMP14 protein and application thereof in resisting plant viruses | |
KR101028113B1 (en) | CaHB1 gene involved in growth enhancement, salt tolerance and senescence regulation of Capsicum annuum and uses thereof | |
CN116426548B (en) | Tartary buckwheat cytochrome P450 enzyme FtCYP94C1, and coding gene and application thereof | |
KR101256277B1 (en) | The pepper cytochrome P450 gene CaCYP450A in resistance responses against microbial pathogens and transgenic disease resistant plants using the same | |
KR101360542B1 (en) | RICE OsSERK1 GENE AND TRANSGENIC RICE TRANSFORMED WITH THE SAME | |
Tang | Genetic and Functional Analysis of Host Genes Involved in Pathogenic and Symbiotic Legume-Microbe Interactions | |
CN105177030B (en) | The FvSnRK2.1 genes of Fraxinus velutina salt tolerant and its application | |
AU2006281976B2 (en) | Modification of endophyte infection | |
Huffaker | A novel peptide signal, AtPep1, regulates pathogen defense in Arabidopsis | |
CN115305250A (en) | Application of MYR1 in improving disease resistance of gramineous plants | |
van Bers et al. | Overexpression of the SECPEP3 peptide from the potato cyst nematode Globodera rostochiensis alters development of potato and Arabidopsis | |
Knecht et al. | Chapter II The gene BvGLP-1 encoding for a germin-like protein regulates the Hs1pro-1-mediated nematode (Heterodera schachtii Schm.) resistance by its oxalate oxidase activity in sugar beet (Beta vulgaris L.) and Arabidopsis thaliana |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
AMND | Amendment | ||
E601 | Decision to refuse application | ||
AMND | Amendment | ||
J201 | Request for trial against refusal decision | ||
B701 | Decision to grant | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20120530 Year of fee payment: 5 |
|
FPAY | Annual fee payment |
Payment date: 20130327 Year of fee payment: 6 |
|
LAPS | Lapse due to unpaid annual fee |