KR20080041663A - Mems 장치를 위한 지지 구조물 및 그 방법들 - Google Patents

Mems 장치를 위한 지지 구조물 및 그 방법들 Download PDF

Info

Publication number
KR20080041663A
KR20080041663A KR1020087004236A KR20087004236A KR20080041663A KR 20080041663 A KR20080041663 A KR 20080041663A KR 1020087004236 A KR1020087004236 A KR 1020087004236A KR 20087004236 A KR20087004236 A KR 20087004236A KR 20080041663 A KR20080041663 A KR 20080041663A
Authority
KR
South Korea
Prior art keywords
sacrificial material
layer
forming
portions
substrate
Prior art date
Application number
KR1020087004236A
Other languages
English (en)
Inventor
테루오 사사가와
클래런스 츄이
매니쉬 코타리
수르야 프라캐쉬 간티
제프리 비. 샘프셀
Original Assignee
콸콤 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 콸콤 인코포레이티드 filed Critical 콸콤 인코포레이티드
Publication of KR20080041663A publication Critical patent/KR20080041663A/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
    • G02B26/0841Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD the reflecting element being moved or deformed by electrostatic means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00436Shaping materials, i.e. techniques for structuring the substrate or the layers on the substrate
    • B81C1/00555Achieving a desired geometry, i.e. controlling etch rates, anisotropy or selectivity
    • B81C1/00595Control etch selectivity
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/001Optical devices or arrangements for the control of light using movable or deformable optical elements based on interference in an adjustable optical cavity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/04Optical MEMS
    • B81B2201/042Micromirrors, not used as optical switches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/03Static structures
    • B81B2203/0307Anchors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/01Manufacture or treatment of microstructural devices or systems in or on a substrate
    • B81C2201/0101Shaping material; Structuring the bulk substrate or layers on the substrate; Film patterning
    • B81C2201/0128Processes for removing material
    • B81C2201/013Etching
    • B81C2201/0135Controlling etch progression
    • B81C2201/0136Controlling etch progression by doping limited material regions
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/3564Mechanical details of the actuation mechanism associated with the moving element or mounting mechanism details
    • G02B6/3584Mechanical details of the actuation mechanism associated with the moving element or mounting mechanism details constructional details of an associated actuator having a MEMS construction, i.e. constructed using semiconductor technology such as etching

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Geometry (AREA)
  • Manufacturing & Machinery (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Computer Hardware Design (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Micromachines (AREA)

Abstract

도판트(dopant) 물질로 선택적으로 확산 된 희생물질로 형성되거나 선택적으로 산화된 금속 희생 물질로 형성된 지지 구조들을 갖는 마이크로 전자 기계 시스템 장치(MEMS:microelectromechanical systems). 마이크로 전자 기계 시스템 장치는 그 위에 형성된 전극을 갖는 기판을 포함한다. 또 다른 전극은 공동에 의해 제1전극과 분리되어 있고, 확산 되거나 산화된 희생 물질로 구성된 지지구조들에 의해 지지 되는 이동층을 형성한다.
기판, 제1전극, 마이크로 전자 기계 시스템

Description

MEMS 장치를 위한 지지 구조물 및 그 방법들{SUPPORT STRUCTURE FOR MEMS DEVICE AND METHODS THEREFOR}
본 발명은 마이크로 전자 기계 시스템(MEMS:microelectromechanical systems)에 관한 것이다. 더욱 구체적으로는, 본 발명은 간섭계 변조기들과, 이동층들을 위한 지지대들을 갖는 그러한 간섭계 변조기들을 제조하는 방법들에 관련되어 있다.
마이크로 전자 기계 시스템들(MEMS)은 마이크로 기계 부품들, 액추에이터들 (actuators), 및 전자 기기들을 포함한다. 마이크로 기계 부품들은 기판들 및/또는 증착된 물질층들의 일부분들을 에칭해내거나 층들을 추가하여 전기 및 전자 기계 장치들을 형성하는 증착, 에칭, 및/또는 다른 마이크로머시닝(micromachining) 공정들을 이용하여 생성될 수도 있다. MEMS 장치의 한 형태로는 간섭계 변조기가 있다. 본 명세서에서 사용된 것처럼, 간섭계 변조기 또는 간섭 광 변조기라는 용어는 광학적 간섭 원리들을 이용하여 빛을 선택적으로 흡수 및/또는 반사하는 장치를 의미한다. 어떤 실시예들에 있어서, 간섭계 변조기는 한 쌍의 전도판들을 포함할 수 도 있는데, 상기 한 쌍의 전도판은 적어도 하나가 전체 또는 부분적으로 투과형 및/또는 반사형일 수도 있고 적절히 인가된 전기 신호에 의해 상대 운동을 할 수 있다. 특별한 실시예에서, 하나의 전도판은 기판에 증착된 고정층을 포함할 수도 있고, 다른 하나의 전도판은 에어 갭(air gap)에 의해 고정층과 분리된 금속막을 포함할 수도 있다. 본 명세서에서 보다 더 상세히 설명하는 바와 같이, 전도판들의 상대적 위치에 의해서 간섭계 변조기로 입사되는 빛의 광학적 간섭은 변경될 수 있다. 이러한 장치들의 사용범위는 광범위한데, 기존의 제품들을 향상시키는데 있어서, 그리고 아직 개발되지 않은 새로운 제품들을 만들어 내는데 있어서 이러한 유형의 장치 특성들이 사용될 수 있도록 이들 장치들의 특징들을 이용 및/또는 변경하는 것은 해당 기술 분야에서 유용할 것이다.
본 발명의 시스템, 방법, 및 장치들은 각각 수개의 형태들을 가지고 있으며, 상기 각각의 어느 하나만이 단독으로 그것의 이루고자하는 성질들의 원인이 되지는 않는다. 본 발명의 범위를 한정하지 않고, 본 발명의 더욱 뛰어난 특징들은 지금부터 간단하게 논의될 것이다. 이 논의에 대한 고려 후에, 그리고 특히 "특정 실시예들에 대한 상세한 설명" 이라는 제목의 부분을 읽은 후에 사람들은 어떻게 본 발명의 특징들이 다른 디스플레이 장치들에 비해 장점들을 제공하는지 이해할 수 있을 것이다.
실시예는 마이크로 전자 기계 시스템 장치를 만드는 방법을 기술하고 있다. 기판은 제공되어 있다. 제1전극은 기판 위에 형성된다. 적어도 하나의 장치 지지 구조는 제1전극층 위에 형성된 금속 희생 물질의 일부분들을 산화시키는 단계에 의해 형성된다. 이동층은 적어도 하나의 지지구조를 형성하는 단계 후에 희생 물질 위에 형성된다. 이동층이 형성된 후에, 기판과 이동층 사이에 공동(cavity)이 생성된다.
다른 실시예에 따르면, 방해되지 않은 간섭계 변조기 장치가 기술되어 있다. 방해되지 않은 간섭계 변조기 장치는 기판, 기판 위에 형성된 제1전극, 제1전극 위에 형성된 층, 및 층위의 이동층을 포함한다. 층은 금속과 지지 부분으로 형성된 희생 부분을 포함한다. 지지 부분은 금속의 산화물이다.
또 다른 실시예에 따르면, 마이크로 전자 기계 시스템 장치를 만드는 방법이 기술되어 있다. 기판은 제공되어 있다. 기판은 기판 위에 형성된 제1전극층을 가지고 있다. 적어도 하나의 지지 구조는 제1전극위에 형성된 희생물질의 선택된 부분들을 아노다이징(anodizing)하는 단계에 의해 형성된다. 제1전극층과 제2전극층 사이에 공동이 생성된다.
다른 실시예에 따르면, 간섭계 변조기 장치를 만드는 방법이 기술되어 있다. 기판은 제공되어 있다. 제1전극층은 기판 위에 형성된다. 희생 물질은 제1전극층 위에 증착된다. 적어도 하나의 장치 지지 구조는 희생 물질속으로 도판트(dopant) 물질을 선택적으로 확산시키는 단계에 의해 형성된다.
본 발명의 이러한 및 다른 형태들은 뒤따르는 설명과 부가된 도면들(not to scale)로부터 용이하게 판단될 수 있으며, 도면들은 도시화되고 본 발명을 제한하지는 않는다.
도1은 제1간섭계 변조기의 이동가능한 반사층이 이완(relaxed) 위치에 있고, 제2간섭계 변조기의 이동가능한 반사층이 작동 위치에 있는 간섭계 변조기 디스플레이의 일 실시예의 일부를 도시하는 등각 투상도이다.
도2는 3×3 간섭계 변조기 디스플레이를 결합한 전자 장치의 일 실시예를 도시하는 시스템 블록도이다.
도3은 도1의 간섭계 변조기의 예시적 일 실시예에 대해 이동가능한 미러(mirror)의 위치 대 인가된 전압을 도시하는 도면이다.
도4는 간섭계 변조기 디스플레이를 구동하는데 사용될 수도 있는 로우(row) 전압들 및 칼럼(column) 전압들의 세트를 도시하는 도면이다.
도5a와 도5b는 도2의 3×3 간섭계 변조기 디스플레이에 디스플레이 데이타의 프레임을 쓰는데(write) 이용될 수도 있는 로우 신호들 및 칼럼 신호들에 대한 예시적인 일 타이밍 도면을 도시한다.
도6a와 도6b는 복수개의 간섭계 변조기들을 포함하는 비쥬얼 디스플레이 장치의 일 실시예를 도시하는 시스템 블록도들이다.
도7a는 도1의 장치를 도시하는 단면도이다.
도7b는 간섭계 변조기의 대안적인 실시예를 도시하는 단면도이다.
도7c는 간섭계 변조기의 다른 대안적인 실시예를 도시하는 단면도이다.
도7d는 간섭계 변조기의 또 다른 대안적인 실시예를 도시하는 단면도이다.
도7e는 간섭계 변조기의 추가적이고 대안적인 실시예를 도시하는 단면도이다.
도8a 내지 도8h는 실시예에 따라서, 희생 물질을 선택적으로 산화시키는 단계에 의해 형성된 기둥들을(posts) 갖는 간섭계 변조기의 단면도들이다.
도9a 내지 도9d는 도판트 물질이 희생 물질속으로 선택적으로 확산되는 다른 실시예에 따라서 형성되는 간섭계 변조기의 단면도들이다.
아래의 상세한 설명은 본 발명의 어떤 특정 실시예들에 관한 것이지만, 본 발명은 다양한 방법들로 구현될 수 있다. 본 설명에서, 전체적으로 동일한 구성 요소들은 동일한 참조 번호들로 표시된다. 아래의 설명을 통해서 분명해지겠지만, 실시예들은 동영상(예를 들어, 비디오) 또는 정지 영상(예를 들어, 스틸 이미지(still image)), 및 문자 영상 또는 그림 영상과 같은 영상을 보여주도록 구성되는 어떠한 장치에서 구현될 수도 있다. 더 상세하게는, 휴대폰, 무선 장치들, PDA(personal data assistant), 초소형 또는 휴대용 컴퓨터, GPS 수신기/네비게이션, 카메라, MP3 플레이어, 캠코더, 게임 콘솔(game consoles), 손목 시계, 시계, 계산기, 텔레비젼 모니터, 평면 패널 디스플레이 장치, 컴퓨터 모니터, 자동차 디스플레이 장치(예를 들어, 주행 기록계 디스플레이 장치), 콕핏 제어기(cockpit control) 및/또는 디스플레이 장치, 카메라 뷰 디스플레이 장치(예를 들어, 차량의 리어 뷰(rear view) 디스플레이 장치), 전자 사진, 전자 광고판 또는 사인(sign), 프로젝터, 건축 구조물, 포장물, 및 미술 구조물(예를 들어 보석류의 이미지 디스플레이 장치)를 포함하지만 이에 한정되지는 않는 다양한 전자 장치들로 또는 그 다양한 전자 장치들과 관련되어 구현될 수도 있다는 것은 주목할 만하다. 여기에서 설명하는 것들과 유사한 구조체의 MEMS 장치들은 또한 전자 스위치 장치들에서와 같이 디스플레이 장치가 아닌 응용품들에 사용될 수 있다.
바람직한 실시예들에 따르면, 간섭계 변조기 디스플레이는 산화된 금속 희생 물질로 형성된 지지 구조들(예를 들어, 기둥들)을 가지고 있다. 몇 가지 실시예들에 따르면 희생 물질은 금속 또는 실리콘을 포함할 수도 있으며 지지 구조들을 형성하기 위해 선택적으로 아노다이징(anodizing)된다. 다른 실시예들에 따르면, 도판트 물질은 지지 구조들을 형성하기 위하여 희생 물질속으로 선택적으로 확산된다.
간섭계 MEMS 디스플레이 소자를 포함하는 간섭계 변조기 디스플레이의 일 실시예가 도 1에 도시된다. 이들 장치들에서 화소들은 밝은 상태나 어두운 상태이다. 밝은("온(on) 또는 "열린") 상태에서, 디스플레이 구성 소자는 입사되는 가시 광선의 많은 부분을 사용자에게 반사한다. 어두운("오프(off)" 또는 "닫힌")상태에서, 디스플레이 소자는 입사되는 가시 광선을 사용자에게 거의 반사하지 않는다. 실시예에 따라서, "온" 및 "오프" 상태의 빛의 반사 특성들은 역전될 수도 있다. MEMS 화소들은 선택되는 색깔에서 주로 반사하도록 구성되어 흑백 디스플레이 외에도 컬 러 디스플레이가 가능하다.
도 1은 비쥬얼 디스플레이의 화소들의 집합에 있어서, 두 개의 인접하는 화소들을 도시하는 등각 투상도인데, 여기서 각 화소는 MEMS 간섭계 변조기를 포함한다. 몇몇 실시예에서, 간섭계 변조기 디스플레이는 이러한 간섭계 변조기들의 로우/칼럼 어레이(array)를 포함한다. 각각의 간섭계 변조기는 서로 간에 가변적이고 제어 가능한 거리에 위치한 한 쌍의 반사층들을 포함하여 적어도 하나의 가변 치수로 공진 광학 갭(resonant optical gap)을 형성한다. 일 실시예에서, 반사층들 중 하나는 두 위치들 사이에서 움직일 수도 있다. 이완 위치를 의미하는 제1위치에서, 이동가능한 반사층은 고정된 부분 반사층으로부터 상대적으로 먼 거리에 위치한다. 작동 위치를 의미하는 제2위치에서, 이동가능한 반사층은 고정된 부분 반사층에 더 가까이 인접하여 위치한다. 두 반사층에서 반사된 입사광은 이동가능한 반사층의 위치에 따라서 보강 간섭 또는 소멸 간섭하여 각 화소에 대해 전체 반사 상태 또는 비반사 상태를 생성한다.
도1의 화소 어레이의 묘사된 부분은 두 개의 인접하는 간섭계 변조기들(12a, 12b)을 포함한다. 왼쪽에 위치한 간섭계 변조기(12a)에는 광학 스택(optical stack)(16a)에서 소정 거리 이격되고 이완 위치에 있는 이동가능한 반사층(14a)이 도시되는데, 광학 스택(16a)은 부분 반사층을 포함한다. 오른쪽에 위치한 간섭계 변조기(12b)에는 광학 스택(16b)에 인접한 작동 위치에 있는 이동가능한 반사층(14b)이 도시된다.
여기서 참조기호로 표시된 광학 스택(16a, 16b)(합쳐서 광학 스택(16))은 몇 개의 퓨즈층들(fused layers)을 일반적으로 포함하는데, 퓨즈층들은 인듐 주석 산화물(indium tin oxide(ITO))과 같은 전극층, 크롬과 같은 부분 반사층, 및 투명 유전체를 포함할 수 있다. 따라서, 광학 스택(16)은 전도성이고, 부분적으로 투명하며, 부분적으로 반사한다. 그리고, 예를 들어 하나 이상의 상기 층들을 투명 기판(20)에 증착함으로써 제조할 수도 있다. 부분 반사층은 다양한 금속들, 반도체들, 및 유전체들과 같이 부분 반사적인 다양한 물질들로 형성될 수 있다. 부분 반사층은 하나 이상의 층으로 형성될 수 있는데, 각각의 층은 단일 물질 또는 조합된 물질들로 형성될 수 있다.
아래에 설명되는 바와 같이, 몇몇 실시예에서, 광학 스택(16)의 층들은 패터닝되어 병렬 스트립(strip)들이 되고 디스플레이 장치 내에서 로우 전극들을 형성할 수도 있다. 이동가능한 반사층들(14a, 14b)은 기둥들(18) 사이에 증착되는 중재 희생 물질 및 기둥들(18)의 상면에 증착된 증착 금속층 또는 증착 금속층들(광학 스택들(16a, 16b)의 로우 전극들에 직교)로 이루어진 일련의 병렬 스트립들로 형성될 수도 있다. 희생 물질을 에칭하여 제거했을 때, 이동가능한 반사층들(14a, 14b)은 정의된 갭(19)에 의해 광학 스택들(16b, 16b)로부터 분리된다. 알루미늄과 같은 고 전도 및 반사 물질이 반사층들(14)로 사용될 수 있고, 이들 스트립들은 디스플레이 장치에서 칼럼 전극들을 형성할 수도 있다.
도 1에 도시된 화소(12a)에서와 같이, 이동가능한 반사층(14a)은 인가된 전압 없이 기계적으로 이완 상태인 채로, 갭(19)은 이동가능한 반사층(14a)과 광학 스택(16a) 사이에서 유지된다. 그러나, 전위차가 선택된 로우 및 칼럼에 인가될 경 우, 대응하는 화소의 로우 전극들과 칼럼 전극들의 교차점에 형성된 캐패시터는 충전되고 정전기력은 전극들을 함께 끌어당긴다. 전압이 충분히 높다면, 이동가능한 반사층(14)은 변형이 일어나고 광학 스택(16)에 반하여 힘을 받는다. 도1의 오른편에 위치한 화소(12b)에 도시된 바와 같이, 광학 스택(16)의 범위내에 있는 유전층(미도시)은 단락을 방지할 수도 있고 층들(14 및 16)간의 이격 거리를 조절할 수도 있다. 상기 거동은 인가된 전위차의 극성에 상관없이 동일하다. 이와 같이, 반사 화소 상태 대 비 반사 화소 상태를 조절할 수 있는 로우/칼럼 작동은 종래의 LCD 및 다른 디스플레이 기술들에서 사용되는 것과 여러 면에서 유사하다.
도 2 내지 도 5b는 디스플레이 애플리케이션에 있어서 간섭계 변조기들의 어레이를 사용하기 위한 하나의 예시적 과정 및 시스템을 도시한다.
도 2는 본 발명의 측면들을 포함할 수도 있는 전자 장치의 일 실시예를 도시하는 시스템 블록도이다. 예시적 실시예에서, 전자 장치는 프로세서(21)를 포함하는데, 상기 프로세서(21)는 ARM, Pentium®, Pentium II®, Pentium III®, Pentium IV®, Pentium® Pro, 8051, MIPS®, Power PC®, ALPHA®와 같은 범용 단일 칩 프로세서 또는 멀티 칩 마이크로 프로세서, 또는 디지털 신호 프로세서, 마이크로 제어기와 같은 특수 목적의 마이크로 프로세서, 또는 프로그램 가능한 게이트 어레이일 수도 있다. 종래 기술에서와 같이, 프로세서(21)는 하나 이상의 소프트웨어 모듈을 실행하도록 구성될 수도 있다. 오퍼레이팅 시스템(operating system)의 실행과 더불어, 프로세서는 웹 브라우저(web browser), 전화 애플리케이션(application), 이 메일 프로그램, 또는 다른 어떤 소프트웨어 애플리케이션을 포함하는 하나 이상의 소프트웨어 애플리케이션들을 실행하도록 구성될 수도 있다.
일 실시예에서, 프로세서(21)는 또한 어레이 드라이버(22)와 통신하도록 구성된다. 일 실시예에서, 어레이 드라이버(22)는 디스플레이 어레이 또는 패널(30)에 신호들을 제공하는 로우 드라이버 회로(24) 및 칼럼 드라이버 회로(26)를 포함한다. 도 1에 도시된 어레이의 단면이 도 2의 1-1 라인들을 통해 도시된다. MEMS 간섭계 변조기들에 대해서, 로우/칼럼 작동 프로토콜은 도 3에 도시된 이러한 장치들의 히스테리시스(hysteresis) 특성을 이용할 수도 있다. 예를 들어, 이완 상태에서부터 작동 상태로 이동가능층을 변화시키기 위해 10 볼트 전위차가 요구될 수도 있다. 그러나, 이러한 값에서 전압이 줄어들어, 전압이 10 볼트 미만으로 다시 떨어질때에 이동가능층의 상태는 유지되고, 도 3의 예시적 실시예에서, 전압이 2 볼트 미만으로 떨어진 이후에야 이동가능층은 완전히 이완된다. 따라서, 도 3에 도시되는 예에서 약 3 볼트 내지 7 볼트의 인가 전압 창이 존재하는데, 이 범위 사이에 있는 장치는 이완 또는 작동 상태에서 안정적이다. 이것을 여기서는 "히스테리시스 창" 또는 "안정성 창"이라고 칭한다. 도 3의 히스테리시스 특성들을 가지는 디스플레이 어레이에 대해서, 로우 스트로빙(strobing)동안, 스트로빙된 로우에 있는 작동될 화소들이 약 10 볼트의 전압차에 노출되고, 이완될 화소들이 제로 볼트에 근접한 전압차에 노출되도록 로우/칼럼 작동 프로토콜을 설계할 수 있다. 스트로빙 후에, 화소들은 약 5 볼트의 정상 상태 전압차에 노출되고 로우 스트로빙이 화소들을 어떤 상태에 두었던지 그 상태를 유지하게 된다. 이러한 예에서, 쓰기(writing) 후에, 각 화소는 3 볼트 내지 7 볼트의 "안정성 창" 내에서 전위차를 보인다. 이러한 특성으로 작동 또는 이완의 기존 상태에 있는 동일한 인가 전압 조건들하에서 도 1에 도시된 화소 설계는 안정된다. 작동 상태나 이완 상태에서, 본질적으로, 간섭계 변조기의 각 화소는 고정된 이동가능한 반사층들에 의해 형성된 캐패시터이기 때문에, 이러한 안정한 상태는 전력 손실이 거의 없이 히스테리시스 창 안의 전압에서 유지될 수 있다. 본질적으로, 인가된 전위가 고정되어 있다면 화소로 들어가는 전류 흐름은 없다.
전형적인 응용들에서, 제1로우(row)에 있는 원하는 작동 화소들의 세트에 따라 칼럼(column) 전극들의 세트를 어서트(assert)함으로써 디스플레이 프레임을 생성할 수도 있다. 다음으로 로우(row) 펄스가 로우 1(row 1) 전극에 인가되어 어서트된 칼럼 라인들에 대응하는 화소들을 작동시킨다. 이후 칼럼 전극들 중 어서트된 세트는 제2로우에 있는 작동 화소들의 원하는 세트에 대응하도록 변경된다. 다음으로 펄스가 제2로우 전극에 인가되어, 어서트된 칼럼 전극들에 따라서 제2로우에 있는 적절한 화소들을 작동시킨다. 로우 1 화소들은 로우 2 펄스들의 영향을 받지 않고 로우 1 펄스 동안 그것들이 설정되었던 상태로 유지된다. 이는 프레임을 생성하기 위하여 일련의 전체 로우들에 대해서 순차적으로 반복될 수도 있다. 일반적으로, 이러한 과정을 초 당 원하는 프레임 수만큼 끊임없이 반복함으로써 프레임들은 새로운 디스플레이 데이터로 업데이트 및/또는 리프레시(refresh)된다. 더불어, 디스플레이 프레임들을 생성하는 화소 어레이들의 행 전극들 및 칼럼 전극들을 구동하기 위한 매우 다양한 프로토콜들은 잘 알려져 있고 본 발명과 관련하여 사용될 수도 있다.
도 4, 도 5a, 및 도 5b는 도 2의 3×3 어레이 위에 디스플레이 프레임을 생성하기 위한 가능한 작동 프로토콜을 도시한다. 도 4는 도 3의 히스테리시스 곡선들을 나타내는 화소들을 위해 사용될 수도 있는, 가능한 로우 전압 레벨들 및 칼럼 전압 레벨들의 세트를 도시한다. 도 4의 실시예에서, 화소를 작동시키기 위해서는 적절한 칼럼을 -Vbias로 설정하고 적절한 로우를 +ΔV로 설정하는 것이 필요한데, -Vbias 및 +ΔV는 -5 볼트 및 +5 볼트에 각각 대응한다. 화소에 대한 볼트 전위차가 제로가 되는 동일한 +ΔV로 적절한 로우를 설정하고 +Vbias로 적절한 칼럼을 설정함으로써 화소를 이완한다. 로우 전압이 제로 볼트로 유지되는 이러한 로우들에서, 칼럼이 -Vbias이거나 +Vbias 인 것에 상관없이, 화소들은 그것들의 원래 상태가 어떠하든 그 상태에서 안정하다. 도 4에 또한 도시된 바와 같이, 앞서 설명한 것과 반대 극성의 전압이 사용될 수 있다는 것을 이해할 것이다. 예를 들어, 화소를 작동시키는 것은 적절한 칼럼을 +Vbias로 설정하고 적절한 로우를 -ΔV 로 설정하는 것을 수반한다. 본 실시예에서, 화소에 대한 제로 볼트 전위차를 생성하는 동일한 -ΔV로 적절한 로우를 설정하고 -Vbias로 적절한 칼럼을 설정함으로써 화소를 이완한다.
도 5b는 도 5a에 도시된 디스플레이 배열을 나타내는 도 2의 3×3 어레이에 인가되는 일련의 로우 신호들 및 칼럼 신호들을 도시하는 타이밍도로서, 여기서 작동 화소들은 비반사적이다. 도 5a에 도시된 프레임을 쓰기에 앞서, 화소들은 어떤 상태에 있을 수 있고, 이 예에서, 모든 로우들은 제로 볼트이고 모든 칼럼들은 +5 볼트이다. 이러한 인가 전압들로, 모든 화소들은 그것들의 현재 작동 또는 이완 상태에서 안정하다.
도 5a의 프레임에서, (1,1), (1,2), (2,2), (3,2) 및 (3,3) 화소들이 작동된다. 이렇게 하기 위해서, 로우 1에 대한 "라인 시간(line time)"동안 칼럼 1과 2는 -5 볼트로 설정되고, 칼럼 3은 +5 볼트로 설정된다. 이러한 설정은 화소들의 상태를 변화시키지 않는데, 이는 모든 화소들이 3 볼트 내지 7 볼트 안정성 창에 유지되기 때문이다. 다음으로 로우 1은 0 볼트에서 5 볼트로 가서 다시 0 볼트로 가는 펄스로 스트로빙된다. 이는 (1,1) 화소 및 (1,2) 화소를 작동시키고 (1,3) 화소를 이완시킨다. 어레이의 다른 화소들은 영향을 받지 않는다. 원하는 로우 2를 설정하기 위하여, 칼럼 2를 -5 볼트로 설정하고 칼럼 1 및 칼럼 3을 +5 볼트로 설정한다. 다음으로 로우 2에 동일한 스트로빙을 적용하여 (2,2) 화소를 작동시키고 (2,1) 및 (2,3) 화소를 이완시킬 것이다. 어레이의 다른 화소들은 또한 영향을 받지 않는다. 로우 3은 칼럼 2 및 칼럼 3을 -5 볼트로 설정하고 칼럼 1을 +5 볼트로 설정함으로써 유사하게 설정된다. 도 5a에 도시된 바와 같이, 로우 3 스트로브(strobe)는 로우 3 화소들을 설정한다. 프레임을 쓴 후에, 로우 전위들은 제로이고 칼럼 전위들은 +5 볼트 또는 -5 볼트로 유지될 수 있게 되어 디스플레이는 도 5a의 배열에서 안정하다. 수십 수백 개의 로우와 칼럼들을 가진 어레이들에 대해서 동일한 과정을 이용할 수 있다는 것을 인지할 것이다. 로우 및 칼럼을 작동시키는데 사용되는 타이밍, 순서(sequence), 및 전압 레벨들은 상기의 일반적인 원리 범위 안에서 매우 다양할 수 있고, 상기 예는 다만 예시적인 것에 불과하며, 여기에서 설명되는 시스템들 및 방법들을 이용하여 다른 작동 전압 방법이 사용될 수 있다는 것을 또한 인지할 것이다.
도 6a 및 도 6b는 디스플레이 장치(40)의 실시예를 도시하는 시스템 블록도이다. 예를 들어, 디스플레이 장치(40)는 이동 전화기 또는 휴대 전화기일 수 있다. 그러나, 텔레비젼 및 휴대용 미디어 플레이어와 같은 디스플레이 장치(40)의 동일한 구성 요소들 또는 그것의 약간의 변형들이 다양한 유형으로 또한 예시된다.
디스플레이 장치(40)는 하우징(housing)(41), 디스플레이(30), 안테나(43), 스피커(45), 입력 장치(48), 및 마이크(46)를 포함한다. 일반적으로 하우징(41)은 사출 성형 및 진공 성형을 포함하는 해당 기술 분야의 당업자들에게 잘 알려진 다양한 제조 과정들 중의 어떤 것으로 형성된다. 또한 하우징(41)은 플라스틱, 금속, 유리, 고무, 및 세라믹, 또는 이들의 조합을 포함하지만, 이에 한정되지않는 다양한 재질들 중의 어떤 것으로 만들어질 수도 있다. 일 실시예에서, 하우징(41)은 다른 색깔을 가지거나 다른 로고, 그림 또는 심볼을 포함하는 분리 가능한 부분들과 상호 교환할 수도 있는 분리 가능한 부분(미도시)을 포함한다.
예시적인 디스플레이 장치(40)의 디스플레이(30)는 여기에서 설명되는 바와 같이, 쌍안정(bi-stable) 디스플레이를 포함하는 다양한 디스플레이들 중의 어떤 것일 수도 있다. 다른 실시예들에서, 해당 기술 분야의 당업자들에게 잘 알려진 바와 같이, 디스플레이(30)는 앞서 설명한 바와 같은 플라즈마, EL, OLED, STN LCD 또는 TFT LCD와 같은 평면 패널 디스플레이, 또는 CRT나 다른 종류의 튜브(tube) 장치와 같은 비평면 패널 디스플레이를 포함한다. 그러나, 본 실시예를 설명하기 위해서, 여기에서 설명하는 바와 같이, 디스플레이(30)는 간섭계 변조기 디스플레이를 포함한다.
예시적 디스플레이 장치(40)의 일 실시예에 포함되는 구성 요소들이 도 6b에 개략적으로 도시된다. 도시된 예시적 디스플레이 장치(40)는 하우징(41)을 포함하고 적어도 여기에서 부분적으로 개시된 추가적인 구성 요소들을 포함할 수 있다. 예를 들어, 일 실시예에서, 예시적 디스플레이 장치(40)는 트랜시버(transceiver)(47)에 결합된 안테나(43)를 포함하는 네트워크 인터페이스(27)를 포함한다. 트랜시버(47)는 컨디셔닝 하드웨어(conditioning hardware)(52)에 연결된 프로세서(21)에 연결된다. 컨디셔닝 하드웨어(52)는 신호를 조절(예를 들어, 신호를 필터링)하도록 구성될 수도 있다. 컨디셔닝 하드웨어(52)는 스피커(45) 및 마이크(46)에 연결된다. 프로세서(21)는 입력 장치(48) 및 드라이버 제어기(29)에도 연결된다. 드라이버 제어기(29)는 프레임 버퍼(frame buffer)(28) 및 어레이 드라이버(22)에 결합된다. 어레이 드라이버(22)는 디스플레이 어레이(30)에 교대로 결합된다. 전력 공급 장치(50)는 특정한 예시적 디스플레이 장치(40) 설계에 요구되는 바와 같이 모든 구성 요소들에게 전력을 제공한다.
예시적 디스플레이 장치(40)가 네트워크를 통해 하나 이상의 장치와 통신할 수 있도록 네트워크 인터페이스(27)는 안테나(43) 및 트랜시버(47)를 포함한다. 일 실시예에서, 네트워크 인터페이스(27)는 프로세서(21)의 요구사항들을 분담할 수 있는 몇몇 프로세싱 성능들을 또한 가질 수도 있다. 안테나(43)는 신호들을 전송하 거나 수신하기 위해, 해당 기술 분야의 당업자들에게 알려진 어떤 안테나이다. 일 실시예에서, 안테나는 IEEE 802.11(a), (b), 또는 (g)를 포함하는 IEEE 802.11 표준에 따라서 RF 신호들을 전송하거나 수신한다. 다른 실시예에서, 안테나는 블루투스(BLUETOOTH) 표준에 따라서 RF 신호들을 전송하고 수신한다. 이동 전화기의 경우, 안테나는 CDMA, GSM, AMPS, 또는 무선 이동 전화 네트워크 안에서 통신하기 위해 사용되는 다른 기존의 신호들을 수신하도록 설계된다. 트랜시버(47)는 안테나(43)로부터 수신된 신호들을 미리 처리하여 신호들이 프로세서(21)에 의해 수신되고 나아가 조작될 수도 있다. 트랜시버(47)는 프로세서(21)로부터 수신된 신호들도 처리하여 신호들이 안테나(43)를 경유하여 예시적 디스플레이 장치(40)로부터 전송될 수 있게 한다.
대안적인 실시예에서, 트랜시버(47)는 수신기로 대체될 수 있다. 또 다른 대안적인 실시예에서, 네트워크 인터페이스(27)는 프로세서(21)에 보내질 이미지 데이터를 저장하고 생성할 수 있는 이미지 소스(image source)로 대체될 수 있다. 예를 들어, 이미지 소스는 이미지 데이터를 포함하는 디지털 비디오 디스크(digital video disc (DVD))나 하드 디스크 드라이브 또는 이미지 데이터를 생성하는 소프트웨어 모듈일 수 있다.
일반적으로 프로세서(21)는 예시적 디스플레이 장치(40)의 전체적인 동작을 제어한다. 프로세서(21)는 네트워크 인터페이스(27) 또는 이미지 소스에서 나온 압축된 이미지 데이터와 같은 데이터를 수신하고 데이터를 원천 이미지 데이터(raw image data) 또는, 원천 이미지 데이터로 즉시 처리할 수 있는 포맷으로 처리한다. 이후 프로세서(21)는 처리된 데이터를 드라이버 제어기(29) 또는 저장을 위해 프레임 버퍼(28)로 보낸다. 일반적으로 원천 데이터는 이미지 안의 각각의 위치에서 이미지 특성들을 식별하는 정보를 의미한다. 예를 들어, 이러한 이미지 특성들은 색깔, 순도(saturation), 계조 레벨(gray scale level)을 포함할 수 있다.
일 실시예에서, 프로세서(21)는 마이크로 제어기, CPU, 또는 예시적 디스플레이 장치(40)의 동작을 제어하는 제어부를 포함한다. 일반적으로 컨디셔닝 하드웨어(52)는 신호들을 스피커(45)에 전송하기 위해, 그리고 마이크(46)로부터 신호들을 수신하기 위해 증폭기들 및 필터(filter)들을 포함한다. 컨디셔닝 하드웨어(52)는 예시적 디스플레이 장치(40) 안에 있는 별도의 구성 요소일 수도 있거나 프로세서(21) 또는 다른 구성 요소들 안에서 결합되어 있을 수도 있다.
드라이버 제어기(29)는 프로세서(21)에서 생성된 원천 이미지 데이터를 프로세서(21)에서 직접 받거나 프레임 버퍼(28)로부터 받고 어레이 드라이버(22)로 고속 전송하기 위해 원천 이미지 데이터를 적절히 재포맷한다. 특히, 드라이버 제어기(29)는 유사 래스터 포맷(raster like format)을 가진 데이터 흐름으로 원천 이미지 데이터를 재포맷하여 디스플레이 어레이(30)에 걸쳐 스캐닝하기에 적합한 시간 순서를 가진다. 다음으로 드라이버 제어기(29)는 포맷된 정보를 어레이 드라이버(22)에 보낸다. 비록 LCD 제어기와 같은 드라이버 제어기(29)가 독립형 집적 회로(stand-alone Integrated Circuit (IC))로서 시스템 프로세서(21)와 종종 관련되지만, 이러한 제어기들은 다양한 방법들로 구현될 수도 있다. 이러한 제어기들은 프로세서(21) 안에 하드웨어로서 끼워질 수도 있고, 소프트웨어로서 프로세서 안에 넣어질 수도 있거나 어레이 드라이버(22)와 함께 하드웨어에 완전 일체형으로 결합될 수도 있다.
일반적으로, 어레이 드라이버(22)는 포맷된 정보를 드라이버 제어기(29)로부터 받고 디스플레이의 x-y 매트릭스 화소들로부터 나온 수 백 리드들(leads), 때에 따라서는 수 천 리드들에 초당 여러번 인가되는 병렬 세트의 파형들로 비디오 데이터를 재포맷한다.
일 실시예에서, 드라이버 제어기(29), 어레이 드라이버(22), 및 디스플레이 어레이(30)는 여기서 설명하는 디스플레이들의 유형 중 어느 것에나 적합하다. 예를 들어, 일 실시예에서, 드라이버 제어기(29)는 종래의 디스플레이 제어기 또는 쌍안정 디스플레이 제어기(예를 들어, 간섭계 변조기 제어기)이다. 다른 실시예에서, 어레이 드라이버(22)는 종래의 드라이버 또는 쌍안정 디스플레이 드라이버(예를 들어, 간섭계 변조기 드라이버)이다. 일 실시예에서, 드라이버 제어기(29)는 어레이 드라이버(22)와 일체형이다. 이러한 일 실시예는 이동 전화기, 시계, 및 다른 소형 디스플레이와 같은 고집적 시스템에 일반적이다. 또 다른 실시예에서, 디스플레이 어레이(30)는 일반적인 디스플레이 어레이 또는 쌍안정 디스플레이 어레이이다(예를 들어, 간섭계 변조기들의 어레이를 포함하는 디스플레이).
입력 장치(48)는 사용자로 하여금 예시적 디스플레이 장치(40)의 동작을 제어하도록 한다. 일 실시예에서, 입력 장치(48)는 QWERTY 키보드 또는 전화기 키패드와 같은 키패드, 버튼, 스위치, 터치 센스 스크린, 또는 압력 또는 열 센스 막을 포함한다. 일 실시예에서, 마이크(46)는 예시적 디스플레이 장치(40)에 대한 입력 장치이다. 장치에 데이터를 입력하기 위해 마이크(46)가 사용되는 경우, 음성 명령들이 사용자들에 의해 제공되어 예시적 디스플레이 장치(40)의 동작들을 제어할 수도 있다.
전력 공급 장치(50)는 해당 기술 분야에서 잘 알려져 있는 다양한 에너지 저장 장치들을 포함할 수 있다. 예를 들어, 일 실시예에서, 전력 공급 장치(50)는 니켈-카드뮴 배터리 또는 리튬 이온 배터리와 같은 충전용 배터리이다. 다른 실시예에서, 전력 공급 장치(50)는 재생 가능 에너지 원, 캐패시터, 또는 플라스틱 태양 전지와 태양 전지 페인트를 포함하는 태양 전지이다. 다른 실시예에서, 전력 공급 장치(50)는 벽에 붙은 콘센트에서 전력을 받도록 구성된다.
몇몇 실시예에서, 앞서 설명한 바와 같이, 전자 디스플레이 시스템 안의 몇몇 장소에 위치될 수 있는 드라이버 제어기 안에서 제어 프로그램이 가능하다. 몇몇 실시예들에서는 어레이 드라이버(22) 안에서 제어 프로그램이 가능하다. 해당 기술 분야의 당업자들은 앞서 설명한 최적화들을 다양한 하드웨어 및/또는 소프트웨어 구성 요소들 및 다양한 구성물들 안에서 구현할 수도 있음을 인식할 것이다.
앞서 설명한 원리들에 따라서 작동되는 간섭계 변조기의 상세한 구조는 매우 다양할 수 있다. 예를 들어, 도 7a 내지 도 7e는 이동가능한 반사층(14) 및 그의 지지 구조물들에 대한 다섯 개의 서로 다른 실시예들을 도시한다. 도 7a는 도1의 실시예에 대한 단면도인데, 여기서 금속물질(14)의 스트립은 직교하게 연장된 지지부들(18) 상에 증착된다. 도 7b에서, 이동가능한 반사층(14)은 지지부들의 가장자리에 있는 줄(32)에 부착된다. 도 7c에서, 이동가능한 반사층(14)은 연성 금속을 포함할 수도 있는 변형 가능층(34)으로부터 떨어져 있다. 변형 가능층(34)은 변형가능층(34) 주변의 기판(20)에 직접적으로나 간접적으로 연결된다. 여기서 이러한 연결부들은 길게 된 벽들 또는 가로대들(rails) 및/또는 고립된 기둥들을 포함하는, 지지 구조들을 의미한다. 예를 들어, 공동들의 어레이는, 기둥들이 각각의 공동안에서 기계층을 강화할 수 있는 동안 지지 가로대들의 로우들(rows) 위에 기계층들의 칼럼들(columns)을 공중에 뜨게 하는 것(suspending) 것에 의해 형성될 수 있다. 도 7d에 도시된 실시예는 변형 가능층(34)이 안착되는 지지 기둥 플러그들(42)을 가진다. 도 7a 내지 도 7c에 도시된 바와 같이, 이동가능한 반사층(14)은 갭 위에 떠있지만, 변형 가능층(34)은 변형 가능층(34)과 광학 스택(16) 사이의 홀들을 채움으로써 지지 기둥들을 형성하지 않는다. 오히려, 지지 기둥들은 지지 기둥 플러그들(42)을 형성하는데 사용하기 위한 평탄화 물질들로 형성된다. 도 7e에 도시된 실시예는 도 7d에 도시된 실시예를 기초로 하지만, 도시되지 않은 추가적인 실시예들 뿐만 아니라 도 7a 내지 도 7c에 도시된 다른 실시예들 중 어느 것과 함께 기능하도록 적용할 수도 있다. 도 7e에 도시된 실시예에서, 버스 구조(bus structure)(44)를 형성하기 위해 금속 또는 다른 전도성 물질로 이루어진 별도층이 사용되었다. 이 버스 구조(44)로 인해 신호는 간섭계 변조기들의 뒤쪽을 따라 흐르는데, 버스 구조(44)가 없었다면 기판(20) 상에 형성되었을 많은 전극들이 필요 없게 된다.
도 7에 도시된 것들과 같은 실시예들에서, 간섭계 변조기들은 직시형(direct-view) 장치들로 기능하는데, 직시형 장치들에서 이미지들은 투명 기 판(20)의 앞면에 나타나고 반대편에는 조절 장치들이 배열된다. 이러한 실시예들에서, 반사층(14)은 변형 가능층(34)을 포함하는 기판(20)의 반대편 반사층 면 상에 있는 간섭계 변조기의 일부를 광학적으로 차단한다. 이렇게 해서 차단된 영역은 화질에 나쁜 영향을 미치지 않게 구성되고 작동된다. 어드레싱(addressing) 및 어드레싱에 기인한 움직임과 같은 조절 장치의 전자 기계적 특성들과 광학적 특성들을 분리할 수 있는 도 7e의 버스 구조(44)에도 이러한 차단 방법이 적용된다. 이러한 분리 가능한 구조로 조절 장치의 광학적 측면들 및 전자 기계적 측면들에 대해 사용되는 재질들 및 구조 설계가 선택되어 서로 독립적으로 기능 하게 된다. 더욱이, 도 7c 내지 도 7e에 도시된 실시예들은 변형 가능층(14)에 의해 수행되는, 기계적 특성들로부터 반사층(14)의 광학적 특성들을 분리함으로써 얻어지는 추가적인 장점들을 가진다. 이로 인해 반사층(14)을 위한 구조 설계 및 재질들이 광학적 특성들과 관련되어 최적화되고, 변형가능층(34)을 위한 구조 설계 및 재질들이 원하는 기계적 특성들과 관련되어 최적화된다.
층들, 물질들, 및/또는 다른 구조적 요소들은 여기에서 다른 구조적 요소들과 관계하여 "~위에(on)", "~위쪽에(over)", "~보다 위에(above)", "~사이에(between)", 기타등등의 형태로 설명되고 있다. 여기에서 사용된 것처럼, 이러한 용어들은 직접적 또는 간접적으로, 다양한 형태의 중간층들, 물질, 및/또는 다른 구조적 요소들이 여기에서 설명된 구조적 요소들 사이에서 중재(interpose)될수 있는 것과 같이, ~위에(on), ~위쪽에(over), ~보다 위에(above), ~사이에(between), 기타등등을 의미할수 있다. 유사하게, 기판들이나 층들과 같이 여기에서 설명된 구 조적 요소들은 단일 구성 요소 구조(예를 들어 단층막) 또는 복수 구성 요소 구조(예를 들어 부가적인 물질들의 층들이 있거나 또는 없는, 인용된 물질의 복수층들을 포함하는 적층물(laminate))를 포함한다. 상기 언급된 함축의미들에 더하여, 여기에서 사용된 용어 "~위에(on)"는 구조적 요소들이 부착, 연결, 결합 또는 그렇지 않으면 다른 요소와 근접한 요소들을 유지하는 어떤 방법에 있어서 또 다른 구성 요소와 결합 되어있는 것을 의미한다. 또 다른 "~위에(on)"로서 설명된 구조적 요소는 다른 요소에 필수적일수 있고, 또는 다른 요소와 분리/구별될 수 있며, 요소들은 영구적으로, 불가역적으로, 기타등등, 또는 제거할 수 있게, 분리되어, 기타등등, 으로 관련될 수 있다. 물체 또는 요소에 대하여 용어 "하나 또는 그 이상의(one or more)"의 사용은 물체들의 잠재적인 복수 배열의 부재 또는 용어가 사용되지 않은 요소들을 어떤 방법으로 가리키지는 않는다. "마이크로 전자 기계 장치"라는 용어는 여기에서 쓰여진 대로 일반적으로 어떤 단계의 제품에서 그러한 장치를 의미한다.
도 8a 내지 8h는 옵티컬 스택(16)의 유전체층(130) 위에 형성된 금속 희생 물질을 선택적으로 산화시키는 단계에 의해 형성된 지지구조들이나 기둥들을 가진 간섭계 변조기를 형성하는 방법을 나타낸다. 금속 희생물질의 산화된 부분들은 화학적으로 릴리즈 에치(release-etch)에 저항력을 가지도록 변경된다. 예를 들어 지지 구조들은 심지어는 릴리즈 에치(release-etch)에 앞서 공동을 채우는 동일한 금속 물질로부터 형성될 수 있다. 금속 희생 물질의 산화되지 않은 부분들은 광학 공동을 형성하기 위해 릴리즈 에치(release-etch)에 의해 제거된다.
이 실시예에 따르면 도 7a 내지 도 7e에 도시된 광학 스택(16)은 투명 기판(20) 위에 형성된다. 위에서 논의된 것처럼, 광학 스택(16)은 전형적으로 ITO와 같은 제1전극층(110), 크롬과 같은 부분 반사층(120), 및 유전체층(130)을 포함하는, 수개의 통합되거나 퓨즈된(fused) 층들을 포함한다. 광학 스택(16)의 층들은 q바람직하게는 병렬 스트립으로 패터닝되어 로우 전극들을 형성한다. 도 8a에 보여지는 것처럼, 전형적으로 광학 스택(16)의 층들은 투명 기판(20) 위에 증착되고, 바람직하게는 예를 들어 스푸터링(sputtering), 물리 기상 증착(PVD), 화학 기상 증착(CVD), spin-on dielectric(SOD) 및 spin-on glass(SOG)의 몇몇 형태와 같은 전통적인 증착 기술들에 의해 증착된다. 광학 스택(16)의 유전체층(130)은 바람직하게는 실리콘 이산화물(SiO₂)로 형성된다. 다른 배열들에 있어서, 유전체층(130)은 다른 절연(insulating) 물질들로 형성되고 다음의 에칭 단계들로부터 광학 스택(16)을 보호하기 위한 하나 또는 그 이상의 에칭 정지(etch stop) 층들을 선택적으로 포함할 수 있다. 숙련된 기술공들이 이해하는 것과 같이, 에칭 정지 층들은 보호하기 위한 물질들 위에 형성되어 특정 에칭 기술들에 대해 높은 저항력을 가진다. 에칭 정지 층들에 적절한 물질들은 기술 분야에서 알려져 있고, 예를 들어 Al₂O₃,티타늄, 텅스텐, 비결정질 실리콘, 게르마늄, 및 그들의 조합들을 포함한다.
이 실시예에 따르면, 도 8b에서 도시된 것처럼 희생 물질(140)은 유전체층(130)위에 증착된다. 희생 물질(140)은 바람직하게는 광학 스택(16)과 희생 물질(140) 위에 증착될 이동층(170)(도 8h) 사이에 공진 광학 공동(180)(도 8h)을 생성하기 위한 적당한 두께로 광학 스택 위에 증착된다(그리고 후에 선택적으로 제거 된다). 따라서 희생 물질(140)의 두께는 이완상태에 있는 반사된 색의 특정한 선택을 위해 선택된다. 몇몇 배열들에서, 복수의 두께들은 RGB 디스플레이 시스템에서 빨강, 녹색, 및 파랑과 같은 복수의 다른 색들을 표현하기 위한 기판의 다른 영역들에 증착된다. 예시적인 실시예에서, 가장 높은 높이의 공동을 가진 변조기(가장 두꺼운 두께를 가진 희생 물질에 의해 형성된)는 빨강 빛을 반사하고, 중간 높이의 공동을 가진 변조기(중간 두께를 가진 희생 물질에 의해 형성된)는 녹색 빛을 반사하며, 가장 낮은 높이의 공동을 가진 변조기(가장 얇은 두께를 가진 희생 물질에 의해 형성된)는 파랑 빛을 반사한다.
바람직한 실시예에서, 희생 물질(140)은 알루미늄(Al)을 포함한다. 다른 실시예들에서, 이 희생 물질은 탄탈(Ta), 텅스텐(W), 마그네슘(Mg), 티타늄(Ti), 및 몰리브덴(Mo)을 포함하지만 이에 한정되지는 않는 다른 금속들로 형성될 수도 있다. 이런 모든 금속 희생 물질들은 노출된 유전체 및 전극 물질들과 비교하여 선택적인 에칭 화학물들로 선택적으로 에칭될 수 있다. 예를 들어, 에칭액을 함유하는 불소(예를 들어, XeF₂)는 SiO₂,Al₂O₃, 또는 Al 보다도 상당히 빠르게(예를 들어, 10배 이상, 바람직하게는 40배 이상 빠르게) 각각의 언급된 금속들을 에칭한다. 당업자는 아래에서 설명되는 것들을 포함한 다른 에칭액들이 금속 희생 물질들을 선택적으로 에칭하는데 사용될 수도 있다는 것을 이해할 것이다.
도 8c와 도 8d에 도시된 것처럼, 일 실시예에 따르면, 간섭계 변조기 구조 제조는 산화된 부분들 또는 금속 산화물 부분들(160)을 형성하기 위해 선택적으로 희생 물질(140)을 산화시키는 단계에 의해 계속된다. 이러한 산화된 부분들은(160) 장치의 지지 구조들을 형성할 것이며, 아래에서 더욱 상세하게 설명될 것이다. 바람직한 실시예에 따르면, 부분들(160)은 희생 물질(140) 위에 마스크(예를 들어, 포토레지스트)(150)를 형성하는 단계와 희생 물질(140)의 마스크 되지 않은 부분들을 산화시키는 단계에 의해 산화된다. 이러한 금속 산화물 부분들(160)은 화학적으로 변형이 되어 이후에 릴리즈 에치(release etch)에 저항력을 갖게 되며, 이에 대해서는 아래에서 더욱 상세하게 설명할 것이다.
바람직한 실시예에 따르면, 금속 희생물질(140)의 부분들(160)은 희생 물질(140)을 포함하는 금속 산화물을 형성하기 위해 아노다이징될 수 있다. 희생 물질(140)은 알루미늄, 마그네슘, 티타늄, 탄탈, 및 몰리브덴을 포함하지만 이에 한정되지는 않는 아노다이징될 수 있는 물질을 포함한다. 대부분의 이러한 물질들의 산화물들(예를 들어, Ta2O5, 및 TiO)은 절연체들이고 XeF₂와 같은 대부분의 금속 에칭 화학물들에 저항력을 갖는다. 당업자는 알루미늄을 포함하는 희생 물질(140)을 위한 적절한 에칭액들이 이에 한정되지는 않지만, 인산(phosphoric acid) 및 HCl과 같은 염소를 기반으로 한 에칭액들을 포함하는 것을 이해할 것이다. 부분들(160)은 희생 물질(140)을 마스킹하는 단계와 희생 물질(140)의 마스크되지 않은 부분들을 아노다이징하는 단계에 의해 아노다이징된다. 당업자는 아노다이징이 희생 물질(140)과 다른 전극들 사이에 전압을 인가하는 단계에 의해 수행될 수도 있다는 것을 이해할 것이다. 전압은 예를 들어, 전해질 용액을 통해서 인가될 수도 있다. 금속 산화물 부분들(160)은 장치의 지지 구조들을 형성할 것이다. 당업자는 희생 물질(140)의 특정 부분들(160)을 아노다이징하는 단계는 그런 부분들(160)의 화학적 특성들을 변형시키고 아노다이징으로 인해 금속 산화물 부분들(160)이 이후의 릴리즈 에치(release etch)에 저항력을 갖게 된다는 것을 이해할 것이다. 당업자는 아노다이징된 부분들(160)이 기계적으로 그리고 화학적으로 매우 안정하다는 것과 매우 매끄럽고 평평한 표면을 갖는다는 것을 알 수 있을 것이다.
대안적인 실시예에 따르면, 금속을 포함하는 희생 물질(140)을 아노다이징하는 대신에, 실리콘을 포함하는 희생 물질(140)은 장치의 지지 구조들로서 작용하게 될 아노다이징된 부분들(160)을 형성하기 위해 아노다이징하는 단계에 의해 선택적으로 산화된다. 이 실시예에서, 이런 아노다이징된 부분들(160)은 실리콘 산화물이며 XeF₂와 같은 화학 에칭액들에 의한 이후의 릴리즈 에치에 저항력을 가진다는 것을 알 수 있을 것이다. 당업자는 아노다이징될수 있고 릴리즈 에치에 저항력을 가질수 있는 어떤 물질들이, 위에서 설명한 방법에 따라서, 장치의 지지 구조들을 형성하기 위해 희생 물질(140)로서 사용될 수도 있다는 것을 이해할 것이다. 당업자는 희생 물질(140)이 그것의 산화물과 비교하여 선택적으로 에칭이 가능하고, 또한 화학적으로 안정한 아노다이징될 수 있는 어떤 물질을 포함할 수도 있다는 것을 알 수 있을 것이다.
희생 물질(140)은 바람직하게는, 릴리즈 에치에 있어서 노출된 유전체(130)와 전극 물질들 위에서 선택적 및/또는 우선적으로 에칭이 될 수 있는 것으로 선택된다. 만약 노출된 유전체(130)와 전극 물질들보다 충분히 더 빠른 속도로(예를 들어, 노출된 유전체와 전극 물질들의 에칭 속도에 있어서 대략 5X보다 더 빠른 속도로, 바람직하게는 대략 10X보다 더 빠른 속도로, 더욱 바람직하게는 대략 40X보다 더 빠른 속도로) 에칭액이 희생 물질(140)을 에칭할 수 있다면, 희생물질(140)은 노출된 유전체(130)와 전극 물질들과 비교하여 선택적으로 또는 우선적으로 에칭될 수 있다. 노출된 유전체(130)와 전극 물질들은 따라서, 희생 물질(140)이 충분히 에칭되기 쉬운 조건하에서 에칭에 충분히 저항력을 갖는다. 기술분야에서 숙련된 자들은 물질들을 증착하는데 사용되는 방법들과 조건들(물질들의 물리적 및/또는 화학적 특성들에 영향을 끼칠 수 있는), 희생 물질의 제거 동안의 에칭 조건들(에칭 과정과 사용된 특정한 에칭액의 특성을 포함하는)을 포함하는 다양한 요인들에 희생물질(140)의 선택이 달려 있다는 것을 이해할 것이다. 당업자는 또한, 모든 물질들이 적절한 조건들 하에서 에칭이 될 수 있는 것과, 물질들이 노출되는 특별한 조건들하에서 현재 장치에 있는 다른 물질들과 비교하여 여기에 설명된 물질들은 선택적으로 또는 우선적으로 에칭이 될 수 있거나 에칭에 저항력을 가진다는 것을 알수 있을 것이다. 따라서, 많은 예들에서 보면, 다른 물질들과 비교하여 선택적으로 또는 우선적으로 에칭될 수 있는 희생 물질의 선택은 조절 가능한 조건들하에서 경험칙적으로 결정된다. 대안적으로, 관심 물질들의 선택적인 에칭을 위해 제공하는 다양한 형태의 에칭 방법들, 시스템들, 및 물질들은 기술 분야에서 및/또는 상업적으로 이용가능하다고 알려져 있다.
도 8e에 도시된 것처럼, 산화물 부분들(160)이 형성된 후에, 바람직하게는 마스크(150)가 제거된다. 마스크(150)가 제거된 후, 이동층(170)은 바람직하게는 도 8f에 도시된 미리 해방(pre-release)되거나 해방되지 않은 구조를 형성하기 위해 구조 위에 증착된다(그 후에 패터닝되고 에칭된다). 도시된 실시예에서, 이동 층(170)은 이동 반사층 또는 기계층뿐만 아니라 제2전극으로서 기능하고, 따라서 기계층, 이동층, 변형가능한 층, 및/또는 전극으로서 설명될 수도 있다. 이동층(170)은 도 7a, 7b, 및 8f에서 도시된 것처럼 완전히 반사적인,구부리기 쉬운 금속을 포함할 수도 있고, 또는 도 7c 내지 도7e에서 보여지는 것처럼(미러층(들)은 첫번째로 증착, 패터닝, 에칭되고, 희생물질은 그 위에 증착 및 패터닝되고, 기계층은 그 위에 증착되는 경우에 있어서) 분리된 미러를 지지할 수도 있다. 이동층(170)을 위한 적절한 물질들은, 이에 한정되는 것은 아니지만, 알루미늄, 크롬, 및 전극에 전형적으로 사용되는 다른 물질들을 포함한다. 바람직한 실시예에서, 이동층(170)은 알루미늄 미러층 위에 있는 니켈 기계층을 포함한다. 이동층(170)은 바람직하게는, 직접적 또는 간접적으로, 이동층(170)의 주위 둘레에 있는 기판(20)에 연결된다.
이동층(170)이 증착되고 다른 것들이 장치를 완성하기 위한 단계(예를 들어, 칼럼들을 로우들과 직교시키기 위해 패터닝하는 단계)를 밟은 후에, 희생 물질(140)은 선택적으로 제거된다. 당업자는 도 8g에 보여지는 것처럼, 희생층 제거를 위해 사용되는 에칭 가스가 희생 물질(140)에 도달할 수 있도록 이동층(170)이 또한 입구들 또는 홀들(holes)(172)로 에칭될 수도 있다는 것을 이해할 것이다. 당업자는 예를 들면, 포토레지스트로 형성된 마스크(미도시)로 이동층(170)을 마스킹하는 단계와 마스크를 통해 에칭하는 단계에 의해 입구들(172)이 에칭될 수 있다는 것을 이해할 수 있을 것이다. 마스크는 입구들(172)이 에칭된 후에 제거된다. 전반적인 패킹 과정의 부분으로서, 간섭계 변조기들은 그 이후에 봉인되고 간섭계 변조 기를 포함하는 패키지를 둘러싼 환경으로부터 보호되는 것에 대해 이해 할것이다. 바람직하게는, 그러한 홀들과 입구들은 포토리소그래픽(photolithographic) 시스템이 허용할 만큼 작은 지름을 가지고 있다. 실시예에서, 홀들과 입구들은 대략 2㎛ 내지 6㎛의 범위 내에 있는 지름을 가진다. 스테퍼 툴(stepper tool)이, 1㎛보다 작게, 더 바람직하게는 0.5㎛보다 작게, 입구들을 형성하기 위해 사용될 수도 있다는 것을 이해할 수 있을 것이다. 당업자는 입구들의 크기, 공간, 및 숫자가 희생 물질(140)의 제거 속도에 영향을 미칠 수 있다는 것을 이해할 것이다.
도 8h에서 도시된 것처럼, 희생 물질(140)은 바람직하게는 선택적인 가스 에칭 과정을 사용하여(예를 들어, 미러 또는 이동층(170) 및 유전체(130)를 선택하는), 산화되거나 아노다이징된 부분들(도 8h에 있는 지지 구조(18)로서 도시된 것처럼) 사이에서 제거되어, 광학 스택(16)의 이동층(170)과 유전체층(130)사이에서 광학 공동(180)을 생성한다. 따라서, 희생 물질(140)의 변형되지 않은 부분들은 선택적인 에칭과 같은 제거 과정에 의해 제거된다. 희생 물질(140)의 선택적인 에칭 후에, 이동층(170)은 희생 물질(140)의 산화되거나 아노다이징된 부분들에 의해 형성된 지지 구조들(18)에 의해 지지되고 그 위에 위치한다.
다양한 에칭 과정들과 식각액들은 희생물질(140)을 제거하는데 사용될 수도 있다. 기술 분야에서 잘 알려진 표준적인 에칭 기술들은 희생 물질(140)을 제거하는데 사용될 수도 있다. 적절한 에칭 기술들은, 예를 들어 습식 에칭 방법들과 건식 에칭 방법들을 포함한다. 특정한 가스 에칭 과정은 제거되는 물질에 좌우될 것이다.
화학적 건식 에칭 방법들은 전형적으로 희생물질(140)에 가스상태의, 화학적으로 반응하는 에칭액들의 노출을 수반하며, 예를 들어 진공 소스에 의해 제거된 휘발성 제품들로 물질을 전환시킨다. 건식 에칭 방법들에 유용한 에칭액들의 예들은, 예를 들어 불활성 기체(예를 들어, Xe 또는 Ar)의 혼합물들, 예를 들어 F2, Cl2, NxFy(예를 들어, NF₃),CxFy(예를 들어, C2F6), 및/또는 SixFy(예를 들어, SiF₄)와 같은 하나 또는 그 이상의 가스들의 혼합물들을 포함한다. 예를 들어, 가스 상태의 또는 증기상태의 크세논 디플루오라이드(XeF₂)는 유전체(130)와 미러 또는 이동층(170)과 비교하여 실리콘, 탄탈, 몰리브덴, 티타늄, 또는 텅스텐 희생 층을 선택적으로 제거하기 위한 건식 에칭액 방출 가스로서 사용될 수도 있다. 이 에칭 과정은 유전체, 도시된 이동층(170)과 하부의 유전체층(130)과 같은, 반반사적인, 또는 전극 물질들, 또는 이러한 구조들 위에 있는 어떤 에칭-정지 물질들을 에칭하지 않는 선택적인 에칭 과정이라는 것을 알 것이다. 예를 들어, XeF₂는 실리콘 이산화물, 알루미늄, 알루미늄 산화물, 니켈, 또는 포토레지스트를 감지할 정도로 에칭하지는 않는다.
예시적 습식 에칭액은, 실리콘 산화물, 실리콘 질화물, 티타늄, 니켈, 크롬, ITO, 실리콘 탄화물, 및 비결정질의 실리콘을 포함하지만 이에 한정되지는 않는 다양한 물질들과 비교하여, 예를 들어, Al 또는 Ge을 선택적으로 제거할 수 있는 인산/아세트산/질산 또는 "PAN" 에칭액이다. 당업자는 탄탈과 티타늄을 포함하는 희생 물질(140)이 예를 들어, XeF₂,불소 플라즈마(CF₄,NF₃,SF6), 및 Cl₂와 같은 식각액들에 의해 에칭되는 단계를 포함하지만 이에 한정되지는 않는 양 습식 및 건식 에칭 화학물들에 의해 제거될 수도 있다는 것을 알 것이다. 마그네슘을 포함하는 희생물질(140)은 바람직하게는, 이에 한정되지는 않지만, HCl 및 HNO₃와 같은 에칭액들에 의해 에칭하는 것을 포함하는 습식 에칭 화학을 이용하여 제거된다.
알루미늄을 포함하는 희생 물질(140)은 바람직하게는 건식 에칭 화학보다는 습식 에칭 화학을 이용하여 제거된다. 알루미늄 희생 물질(140)에 적절한 습식 식각액들은, 암모늄 하이드록사이드(NH4OH) 및 TMAH 유기 성분과 같은 주성분들, 인산, HCl, PAN 식각액, NaOH, 및 KOH를 포함하지만 이제 한정되지는 않는다. 습식 에칭액이 알루미늄을 제거하는데 바람직하여도, Cl₂플라즈마와 같은 건식 에칭액은 알루미늄을 제거하는데 사용될 수 있다. 당업자는 알루미늄 희생 물질을 에칭하는데 사용하는 습식 에칭액들이 또한, 만약 있다면, 이동층(170)의 뒷부분에 있는 알루미늄을 제거할수도 있다는 것과 이동층(170)의 뒷부분에 있는 그런 알루미늄이 얇은(예를 들어, 100Å 미만) 유전체 층으로 에칭으로부터 보호된다는 것을 알수 있을 것이다. 당업자는, 뒷부분에 알루미늄이 있는 이동층(170)에 관한 실시예들에 있어서, 니켈이 알루미늄을 위한 에칭액들에 저항력을 갖고 있기 때문에, 니켈(또는 에칭액에 저항력을 가진 어떤 금속)이 이동층(170)의 뒷부분에 있는 반사 물질로서 사용될 수 있다는 것을 알 수 있을 것이다.
몇 가지 실시예들에 있어서, 예를 들어 장치의 반사도, 또는 방출된 에칭 물질들을 관찰하는 것에 의해 에칭 단계는 관찰된다. 다른 실시예들에 있어서, 에칭 단계는 소정의 시간동안 실행된다. 기술분야의 당업자들은 층의 에칭 속도는 층의 두께에 달려있다는 것을 이해할 것이다. 에칭 속도는 또한 압력, 온도, 및 만약 O2, Ar, He, Ne, N₂기타등등과 같은 다른 가스와 혼합되어있다면, 가스의 농도와 같은 진행 조건들에 달려있다. 상기에서 설명한 것처럼, 희생층을 제거하는데 사용되는 에칭 가스가 희생물질(140)에 도달할 수 있도록 이동층(170)은 또한 입구들 또는 홀들(172)을 가지도록 패터닝될 수도 있다. 당업자는 에칭 속도는 또한 입구들(172)의 숫자와 입구들(172)의 크기에 달려있다는 것을 이해할 것이다.
이 실시예에 따르면, 간섭계 변조기의 최종 결과의 구조는 도 8h에서 도시되어 있다. 도 8h에서 도시된 것처럼, 산화되거나 아노다이징된 부분들은 장치의 지지구조들(18)로서 작용한다.
다른 실시예에 따르면, 장치의 지지 구조들(18)은 희생 물질(140)이 증착된 후에 도판트 물질을 희생 물질(140)속으로 선택적으로 확산시키는 단계에 의해 형성된다. 도 9a 내지 9d에 도시된 바와 같이, 이 실시예에서는, 희생물질(140)(도 8b)의 증착후에, 간섭계 변조기 구조 생성은 도판트 물질(210)을 희생물질(140) 속으로 선택적으로 확산시키는 단계에 의해 계속된다. 이 실시예에서, 희생물질(140)은 또한 상기에 열거된 적절한 물질들을 포함한다. 대안적으로, 이 실시예에서, 희생물질(140)은 몰리브덴(Mo)을 포함할 수도 있다. 이 실시예에서, 기판(20)은 바람직하게는, 확산 과정들은 낮은 온도에서 사용될 수도 있을지라도 전형적으로 높은 온도를 요구하기 때문에, 도판트 물질들(210)과 희생 물질들(140)에 의존하는 높은 온도들(예를 들어, 바람직하게는 600℃이상, 및 더욱 바람직하게는 800℃이상)을 견딜수 있는 물질로 형성되는 것을 이해할 수 있을 것이다. 당업자는 만약 투명 기판(20)이 비결정질 유리로 구성된다면, 전형적으로 대략 666℃인, 유리 기판의 스트레인(strain) 지점보다도 높은 온도에 지배를 받지 않게 될 것이라는 것에 대해 이해할것이다. 그러나, 당업자는 사파이어와 수정과 같은 다른 물질들이 투명 기판(20)에 사용될 수도 있다는 것과 그러한 다른 물질들이 비결정질의 유리보다도 높은 온도에 지배를 받게 될 수도 있다는 것을 이해할 것이다.
도판트 물질(210)은, 예를 들어, 실리콘, 알루미늄, 몰리브덴, 크롬, 니켈, 철, 금, 백금, 및 나트륨과 같은 희생물질을 제거하는데 사용되는 에칭액에 저항력을 가진 물질일 수도 있다. 당업자는 도판트 물질(210)의 선택이 희생물질(140)의 재료에 달려있다는 것을 이해할 것이다. 예를 들어, 만약 희생물질(140)이 실리콘을 포함한다면, 도판트 물질(210)은 예를 들어, 산소, 알루미늄, 아연, 구리, 금, 백금, 또는 나트륨을 포함할 수도 있다. 일 실시예에서, 니켈 도판트 물질(210)은 270℃와 같이 낮은 온도에서 실리콘을 포함하는 희생 물질(140)속으로 선택적으로 확산될수 있다.
일 실시예에 따르면, 도판트 물질(210)은 희생물질(140)위에 증착된 고체 물질이다. 도판트 물질(210)이 증착된 후에, 도판트 물질(210)은 바람직하게는, 희생물질(140)의 특정 부분들이 도 9a에 도시된 구조를 만들어내도록 도판트 물질(210)에 의해 덮히는 것과 같은 기술분야에서 알려진 기술들에 의해, 패터닝된다. 도시되지 않은 일 실시예에 의하면, 희생물질은 첫째로 마스킹되고, 마스크 입구들에 있는 희생물질과 접촉을 하도록 고체 도판트 물질은 마스크 위에 증착된다. 도시된 실시예에 따르면, 도판트 물질(210)을 패터닝하기 위해, 도판트 물질(210)은 첫째로 증착되고 이어서 마스킹되며 선택적으로 에칭된다. 도판트 물질(210)로 덮힌 희생물질(140)의 부분들은 이 실시예에서 지지 구조들(18)(도 9d)로서 작용한다. 도 9b에 도시된 것처럼, 지지구조들로서 작용할 확산된 부분들(220)을 형성하기 위해 희생물질(140) 속으로 도판트 물질(210)이 확산 되도록 구조는 가열(bake)된다. 희생 물질(140)의 부분들(220) 속으로의 도판트 물질(210)의 확산은 그러한 부분들(220)이 릴리즈 에칭에 저항력을 갖도록 만든다.
대안적인 실시예에서, 고체 도판트 물질을 확산시키는 대신에, 가스형태의 도판트 물질은 희생 물질(140) 속으로 선택적으로 확산 된다. 도판트 물질(210)은 희생 물질(140) 위의 마스크(미도시)를 통해 희생물질(140)의 부분들(220) 속으로 가스형태의 도판트 물질(210)을 확산시키는 단계에 의해 선택적으로 확산 되어 도9b에 도시된 구조를 만들어낸다. 가스형태의 도판트 물질(210)을 희생물질(140) 속으로 확산시키는 영역들은 장치의 지지구조들(18)(도 9d)이 된다.
도판트 물질(210)이 선택적으로 희생물질(140) 속으로 확산 된 후에, 이동층(170)은 바람직하게는 도 9c에 도시된 해방되지 않은 구조를 형성하기 위해 증착된다. 상기에서 설명한 것처럼, 이동층(170)은 또한 이동 반사층 또는 제2전극으로 작용을 하며, 따라서 기계층, 변형가능한 층, 및/또는 전극으로 의미 될 수도 있다. 이동층(170)은 도 7a, 7b, 8, 및 9에 도시된 것처럼 완전 반사적인, 구부리기 쉬운 금속을 포함할 수도 있거나, 도 7c 내지 7e에 도시된 것처럼 분리된 미러를 지지할수도 있다. 이동층(170)에 적절한 물질들은 알루미늄, 니켈, 크롬, 및 전극에 전형적으로 사용되는 다른 물질들을 포함하지만 이에 한정되지는 않는다. 이동층(170)은 바람직하게는, 직접적 또는 간접적으로, 이동층(170)의 주위 둘레에 있는 기판(20)에 연결된다. 이동층(170)이 희생물질(140) 위에 증착되고 장치를 완성하기 위한 다른 단계들(예를 들어, 칼럼들을 로우들과 직교되도록 패터닝하는 단계) 후에, 희생 물질(140)은, 도 9d에 도시된 것처럼, 광학 공동(180)으로부터 선택적으로 제거된다. 릴리즈 에칭은, 도 9d에 도시된 것처럼, 지지구조들(18)을 형성하는 도핑된 부분들(변형된 화학적 성질들을 가진 부분들)만을 남긴채, 희생물질(140)의 특정 부분들(도판트 물질(210)으로 확산 되지 않은 부분들)을 제거하도록 수행된다.
상기에서 설명된 것처럼, 일반적인 에칭 기술들은 희생 물질(140)을 제거하는데 사용될 수도 있으며 특정의 가스 에칭 과정이 제거되는 물질에 달려 있다는 것에 대해 알 수 있을 것이다. 에칭 과정이 유전체, 이동층(170)과 하부의 유전체 층(130)에 도시된 것과 같은 반반사적인 또는 전극 물질들, 또는 이런 구조들 위에 있는 어떤 에칭 정지 물질들을 상당하게 에칭하지 않는 선택적인 에칭 과정이라는 것을 알 수 있을 것이다. 당업자는 도판트 물질(210)은 희생 물질(140)의 확산된 부분이, 사용된 에칭액에 저항력을 갖도록 하는 어떤 물질을 포함할 수도 있다는 것을 이해할것이다. 예를 들어, 만약 희생 물질(140)이 실리콘을 포함한다면, 산소와 같은 도판트 물질(210)로 선택적으로 확산될 수 있으며, 플루오르를 기반으로 한 에칭액은 희생 물질(140)을 제거하는데 사용될 수 있다. 실리콘 이산화물이 XeF2와 같은 플루오르를 기반으로 한 에칭액들에 저항력을 가지기 때문에 산소가 도판트 물질(210)로서 사용될 수 있다는 것을 알 수 있을 것이다. 상기에서 설명된 것처럼, 이동층(170)은 희생층의 제거에 사용되는 에칭 가스가 희생물질(140)에 도달할 수 있도록 입구들 또는 홀들(172)로 에칭될 수도 있다.
도 9d에 도시된 것처럼, 희생물질(140)은 희생물질(140)의 부분들 속으로 도판트 물질을 확산시키는 단계에 의해 형성되는 지지구조 부분들 사이에서 제거된다. 희생물질(140)은, 바람직하게는 선택적인 가스 에칭 과정을 이용하여(예를 들어, 미러 또는 기계층(170) 및 유전체(130)에서 선택되는) 선택적으로 제거되어, 광학 공동(180)을 생성한다. 희생물질(140)의 선택적인 에칭 후에 이동층 (170)은 희생물질(140)의 선택적인 확산에 의해 형성되는 지지구조들(18)에 의해 지지되고 기초를 둔다.
또 다른 실시예에서, 선택적인 확산 대신에, 이온들에 의한 희생물질(140)의 선택적인 주입 후에 지지구조들을 형성하기 위한 주입된 영역들의 레이저 어닐링(annealing)이 뒤따른다. 실시예에 따르면, 비결정질의 실리콘을 포함하는 희생 물질(140)은 이온들로 주입된다. 이온들의 선택적인 주입은 마스크의 사용을 통해 행해질수도 있다. 특정 실시예에서, 이러한 이온들은 산소, 질소, 또는 탄소 이온들이 될 수도 있다. 레이저는 주입된 이온들을 선택적으로 작동시키는데 사용되어, 주입된 영역들을 어닐링시키고, 그에 따라 지지 구조를 형성한다. 지지 구조의 구 성은 주입된 이온들에 좌우될 것이다. 예를 들어, 만약 주입된 이온들이 산소라면, 지지구조는 SiO₂를 포함할 것이며, 만약 주입된 이온들이 질소 또는 탄소라면 지지구조는 상대적으로 SiNx 또는 SiCx를 포함할 것이다. 유리하게는, 레이저는 가열된 영역에서 매우 선택적 일수 있기 때문에, 이 과정은 보통 지지 물질의 산화로부터 초래되는, 매우 높은 온도에 다른 성분들의 노출을 피한다. 일 실시예에서, 이 선택적인 노출은 마스크의 사용를 통해 행해질 수 있고, 추가적인 실시예에서, 이것은 이온들에 의한 희생물질(140)의 선택적인 주입을 조절하는데 사용되는 마스크이다. 게다가, 이 실시예가 간섭계 변조기의 지지구조의 형성에 관해 설명되는 것일지라도, 이 과정의 사용은 간섭계 변조기의 제조에만 국한되는 것이 아니라, 매우 높은 온도들에서 인접한 성분들을 노출시키지 않고 선택적인 변형이 바람직한 다른 과정들에 적용될 수도 있다는 것을 이해할 수 있을 것이다. 예를 들어, 이 과정은 MEMS 장치들의 다른 형태들의 제조에 사용될 수도 있다. 또한 레이저 어닐링은, 이에 한정되지는 않지만, 상기에서 설명된 것과 같이 선택적인 확산과 같은 과정에 의해 도판트 물질(210)로 선택적으로 변형된 희생물질(140)의 영역에서 사용될수 있다는 것을 알 수 있을 것이다.
상기 기술된 설명들이 다양한 실시예들에 적용되는 발명의 새로운 특징들을 보여주고, 묘사하고, 지적할지라도, 도시된 장치 또는 과정의 형태나 상세부분에 있어서 다양한 생략, 대체, 및 변화들이 이 발명의 개념에서 벗어남 없이 기술분야에서 당업자에 의해 만들어질 수 있다는 것을 알 수 있을 것이다. 현재 발명이 여기에서 설명된 모든 특징들과 장점들을 제공하지 않는 형태 안에서 구체화 될 수 있는 것에 대해 인식하는 바와 같이, 몇몇 특징들은 다른 것들과 분리되어 사용되거나 실행될 수도 있다.

Claims (55)

  1. 기판 위에 형성된 제1전극을 가진 상기 기판을 제공하는 단계;
    상기 제1전극층 위에 금속 희생(sacrificial) 물질을 형성하는 단계와 상기 희생 물질의 일부분을 산화시키는 단계에 의해 적어도 하나의 장치 지지 구조를 형성하는 단계;
    적어도 하나의 상기 지지구조를 형성한 후에 상기 희생 물질 위에 이동층을 형성하는 단계; 및
    상기 기판과 상기 이동층 사이에 공동(cavity)을 생성하는 단계를 포함하는 마이크로 전자 기계 시스템(MEMS : microelectromechanical systems) 장치 제조 방법.
  2. 제1항에 있어서, 상기 공동을 생성하는 단계는, 상기 이동층을 형성하는 단계 후에 상기 희생 물질의 산화되지 않은 부분들을 선택적으로 제거하는 단계를 포함하는 마이크로 전자 기계 시스템 장치 제조 방법.
  3. 제2항에 있어서, 상기 선택적으로 제거하는 단계는, 불소 소스(source of fluorine), NH4OH, H3PO4, Cl₂플라즈마 및 PAN(phosphoric acetic nitric) 에천트(etchant)로 구성되는 군으로부터 선택되는 에천트로 상기 희생 물질의 산화되지 않은 부분들을 에칭하는 단계를 포함하는 마이크로 전자 기계 시스템 장치 제조 방법.
  4. 제2항에 있어서, 상기 선택적으로 제거하는 단계는 XeF₂로 상기 희생 물질의 산화되지 않은 부분들을 에칭하는 단계를 포함하는 마이크로 전자 기계 시스템 장치 제조 방법.
  5. 제1항에 있어서, 상기 산화시키는 단계는 상기 희생 물질의 마스크(mask)되지 않은 부분들을 산화시키는 단계 전에 상기 희생 물질의 일부분을 마스킹하는 단계를 포함하는 마이크로 전자 기계 시스템 장치 제조 방법.
  6. 제1항에 있어서, 상기 산화시키는 단계는 상기 희생 물질의 일부분을 아노다이징(anodizing)하는 단계를 포함하는 마이크로 전자 기계 시스템 장치 제조 방법.
  7. 제6항에 있어서, 상기 아노다이징하는 단계는 상기 희생 물질의 마스크되지 않은 부분들을 아노다이징하는 단계 전에 상기 희생 물질의 일부분을 마스킹하는 단계를 포함하는 마이크로 전자 기계 시스템 장치 제조 방법.
  8. 제1항에 있어서, 상기 금속은 알루미늄을 포함하는 마이크로 전자 기계 시스템 장치 제조 방법.
  9. 제1항에 있어서, 상기 금속은 알루미늄, 마그네슘, 탄탈, 티타늄, 텅스텐, 및 몰리브덴으로 구성되는 군으로부터 선택되는 마이크로 전자 기계 시스템 장치 제조 방법.
  10. 제1항에 있어서, 상기 공동을 생성하는 단계는 플라즈마 에칭에 의해 기계층을 형성하는 단계 후에 상기 희생 물질의 산화되지 않은 부분들을 선택적으로 제거하는 단계를 포함하는 마이크로 전자 기계 시스템 장치 제조 방법.
  11. 제1항에 있어서, 상기 공동을 생성하는 단계는 상기 이동층을 이동 가능하도록 만드는 마이크로 전자 기계 시스템 장치 제조 방법.
  12. 제1항에 있어서, 상기 마이크로 전자 기계 시스템 장치는 간섭계 변조기인 마이크로 전자 기계 시스템 장치 제조 방법.
  13. 제12항에 있어서, 상기 이동층은 미러(mirror)층인 마이크로 전자 기계 시스템 장치 제조 방법.
  14. 제1항에 있어서, 상기 마이크로 전자 기계 시스템 장치는:
    디스플레이;
    이미지 데이타를 처리하도록 구성되고, 상기 디스플레이와 전기적인 통신을 하는 프로세서;
    상기 프로세서와 전기적인 통신을 하는 메모리 장치를 포함하는 마이크로 전자 기계 시스템 장치 제조 방법.
  15. 제14항에 있어서, 상기 마이크로 전자 기계 시스템 장치는:
    적어도 하나의 신호를 상기 디스플레이에 보내도록 구성된 드라이버 회로를 더 포함하는 마이크로 전자 기계 시스템 장치 제조 방법.
  16. 제15항에 있어서, 상기 마이크로 전자 기계 시스템 장치는:
    상기 이미지 데이타의 적어도 일부를 상기 드라이버 회로에 보내도록 구성된 제어기를 더 포함하는 마이크로 전자 기계 시스템 장치 제조 방법.
  17. 제14항에 있어서, 상기 마이크로 전자 기계 시스템 장치는:
    상기 이미지 데이타를 상기 프로세서에 보내도록 구성된 이미지 소스 모듈(image source module)을 더 포함하는 마이크로 전자 기계 시스템 장치 제조 방법.
  18. 제15항에 있어서, 상기 이미지 소스 모듈은 수신기(receiver), 트랜시버(transceiver), 및 송신기(transmitter) 중 적어도 하나를 포함하는 마이크로 전자 기계 시스템 장치 제조 방법.
  19. 제14항에 있어서, 상기 마이크로 전자 기계 시스템 장치는:
    입력 데이타를 받고 상기 프로세서에 상기 입력 데이타를 전달하도록 구성된 입력 장치를 더 포함하는 마이크로 전자 기계 시스템 장치 제조 방법.
  20. 기판;
    상기 기판 위에 형성된 제1전극;
    지지부분과 금속으로 형성된 희생 부분을 포함하는, 상기 제1전극 위에 형성된 층; 및
    상기 층 위에 형성된 이동층을 포함하며,
    상기 지지 부분은 상기 금속의 산화물인 해방되지 않은(unreleased) 간섭계 변조기 장치.
  21. 제20항에 있어서, 상기 이동층은 전극을 포함하는 해방되지 않은 간섭계 변조기 장치.
  22. 제20항에 있어서, 상기 이동층은 미러층을 포함하는 해방되지 않은 간섭계 변조기 장치.
  23. 제20항에 있어서, 상기 지지 부분은 불소 소스, NH4OH, H3PO4, Cl₂플라즈마, 및 PAN 에천트로 구성되는 군으로부터 선택된 에천트에 저항력이 있는 해방되지 않은 간섭계 변조기 장치.
  24. 제23항에 있어서, 상기 희생 부분은 불소 소스, NH4OH, H3PO4, Cl₂플라즈마, 및 PAN 에천트로 구성되는 군으로부터 선택된 에천트에 의해 에칭될 수 있는 해방되지 않은 간섭계 변조기 장치.
  25. 제20항에 있어서, 제2전극층을 추가로 포함하며, 상기 제2전극층의 일부분은 상기 제1 전극과 상기 이동층 사이에 위치하는 해방되지 않은 간섭계 변조기 장치.
  26. 제25항에 있어서, 상기 이동층은 상기 제2전극층에 부착된 기계층을 포함하는 해방되지 않은 간섭계 변조기 장치.
  27. 기판 위에 형성된 제1전극층을 가진 상기 기판을 제공하는 단계;
    상기 제1전극층 위에 희생 물질을 형성하는 단계와 상기 희생 물질의 선택된 부분들을 아노다이징하는 단계에 의해 적어도 하나의 지지 구조를 형성하는 단계; 및
    상기 제1전극층과 제2전극층 사이에 공동을 생성하는 단계를 포함하는 마이크로 전자 기계 시스템 장치 제조 방법.
  28. 제27항에 있어서, 상기 희생 물질 위에 상기 제2전극층을 형성하는 단계 전에 상기 제1전극층 위에 상기 희생 물질을 증착시키는 단계를 더 포함하며, 상기 공동을 생성하는 단계는 상기 제2전극층을 형성하는 단계 후에 상기 희생 물질에서 아노다이징되지 않은 부분들을 선택적으로 제거하는 단계를 포함하는 마이크로 전자 기계 시스템 장치 제조 방법.
  29. 제27항에 있어서, 상기 희생 물질은 알루미늄, 탄탈, 티타늄, 및 몰리브덴으로 구성되는 군으로부터 선택된 금속을 포함하는 마이크로 전자 기계 시스템 장치 제조 방법.
  30. 제27항에 있어서, 상기 희생 물질은 몰리브덴을 포함하는 마이크로 전자 기계 시스템 장치 제조 방법.
  31. 제27항에 있어서, 상기 희생 물질은 실리콘을 포함하는 마이크로 전자 기계 시스템 장치 제조 방법.
  32. 제27항에 있어서, 상기 공동을 생성하는 단계는, 불소 소스, NH4OH, H3PO4, Cl2 플라즈마, 및 PAN 에천트로 구성되는 군으로부터 선택된 에천트로 상기 희생 물질의 아노다이징되지 않은 부분들을 에칭하는 단계를 포함하는 마이크로 전자 기계 시스템 장치 제조 방법.
  33. 제27항에 있어서, 상기 공동을 생성하는 단계는 XeF₂로 상기 희생 물질의 아노다이징되지 않은 부분들을 에칭하는 단계를 포함하는 마이크로 전자 기계 시스템 장치 제조 방법.
  34. 제27항에 있어서, 상기 공동을 생성하는 단계는 상기 희생 물질의 상기 선택된 부분들을 아노다이징하는 단계 전에 상기 희생 물질의 일부분들을 마스킹하는 단계를 포함하며, 상기 선택된 부분들은 상기 희생 물질의 마스크되지 않은 부분들인 마이크로 전자 기계 시스템 장치 제조 방법.
  35. 제27항에 있어서, 상기 마이크로 전자 기계 시스템 장치는 간섭계 변조기 장치인 마이크로 전자 기계 시스템 장치 제조 방법.
  36. 제35항에 있어서, 상기 제2전극층은 미러층을 포함하는 마이크로 전자 기계 시스템 장치 제조 방법.
  37. 기판 위에 형성된 제1전극층을 가진 상기 기판을 제공하는 단계;
    상기 제1전극층 위에 금속 희생 물질을 증착시키는 단계; 및
    상기 금속 희생 물질속으로 도판트(dopant) 물질을 선택적으로 확산시키는 단계에 의해 적어도 하나의 장치 지지 구조를 형성하는 단계를 포함하는 간섭계 변 조기 장치 제조 방법.
  38. 제37항에 있어서, 적어도 하나의 상기 지지 구조를 형성하는 단계 후에 상기 희생 물질 위에 이동층을 형성하는 단계; 및
    상기 기판과 상기 이동층 사이에 공동을 생성하는 단계를 더 포함하는 간섭계 변조기 장치 제조 방법.
  39. 제37항에 있어서, 상기 기판은 사파이어와 수정(quartz)으로 구성된 군으로부터 선택된 물질을 포함하는 간섭계 변조기 장치 제조 방법.
  40. 제37항에 있어서, 적어도 하나의 지지 구조를 형성하는 단계는 상기 희생 물질 위에 상기 도판트 물질을 패터닝(patterning)하는 단계를 포함하는 간섭계 변조기 장치 제조 방법.
  41. 제40항에 있어서, 상기 패터닝하는 단계는:
    상기 희생 물질 위에 상기 도판트 물질을 증착시키는 단계; 및
    상기 도판트 물질을 선택적으로 에칭하는 단계를 포함하는 간섭계 변조기 장치 제조 방법.
  42. 제40항에 있어서, 상기 패터닝하는 단계는:
    상기 제1전극층을 마스킹하는 단계; 및
    마스킹하는 단계 후에 상기 희생 물질 위에 상기 도판트 물질을 증착시키는 단계를 포함하는 간섭계 변조기 장치 제조 방법.
  43. 제37항에 있어서, 상기 선택적으로 확산시키는 단계는 적어도 600℃ 의 온도에 상기 장치를 대는(subjecting) 단계를 포함하는 간섭계 변조기 장치 제조 방법.
  44. 제 37항에 있어서, 상기 희생물질은 실리콘을 포함하며, 상기 도판트 물질은 산소, 알루미늄, 아연, 구리, 금, 백금, 나트륨으로 구성된 군으로부터 선택되는 물질을 포함하는 간섭계 변조기 장치 제조 방법.
  45. 제41항에 있어서, 상기 도판트 물질은, 선택적 에칭에 사용되는 에천트에 저 항력이 있는 물질을 포함하는 간섭계 변조기 장치 제조 방법.
  46. 제37항에 있어서, 상기 도판트 물질은 고체인 간섭계 변조기 장치 제조 방법.
  47. 기판;
    상기 기판 위에 형성된 제1전극;
    지지 부분과 금속 물질로 형성된 희생 부분을 포함하는, 상기 제1전극 위에 형성된 층; 및
    상기 층 위에 형성된 이동층을 포함하며, 상기 지지 부분은 도판트 물질로 도핑된 물질을 포함하는 해방되지 않은 간섭계 변조기 장치.
  48. 제47항에 있어서, 상기 기판은 사파이어와 수정으로 구성되는 군으로부터 선택된 물질을 포함하는 해방되지 않은 간섭계 변조기 장치.
  49. 제47항에 있어서, 상기 도판트 물질은 고체인 해방되지 않은 간섭계 변조기 장치.
  50. 제47항에 있어서, 상기 희생 물질의 상기 물질은 상기 지지 부분에 대하여 선택적으로 에칭 가능한 해방되지 않은 간섭계 변조기 장치.
  51. 기판 위에 형성된 제1전극층을 가진 상기 기판을 제공하는 단계;
    상기 제1전극층 위에 희생 물질을 증착시키는 단계; 및
    상기 희생 물질속으로 선택적으로 이온들을 주입시키는 단계와 상기 희생 물질의 주입된 부분들을 열처리(anneal)하기 위해 레이저를 사용하는 단계에 의해 적어도 하나의 장치 지지 구조를 형성하는 단계를 포함하는 간섭계 변조기 장치 제조 방법.
  52. 제51항에 있어서, 적어도 하나의 상기 지지 구조를 형성하는 단계 전에 상기 희생 물질 위에 패터닝된 마스크를 형성하는 단계를 더 포함하는 간섭계 변조기 장치 제조 방법.
  53. 제51항에 있어서, 상기 이온들은 산소 이온들을 포함하는 간섭계 변조기 장치 제조 방법.
  54. 제51항에 있어서, 상기 이온들은 탄소 이온들을 포함하는 간섭계 변조기 장치 제조 방법.
  55. 제51항에 있어서, 상기 이온들은 질소 이온들을 포함하는 간섭계 변조기 장치 제조 방법.
KR1020087004236A 2005-07-22 2006-07-19 Mems 장치를 위한 지지 구조물 및 그 방법들 KR20080041663A (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US70208005P 2005-07-22 2005-07-22
US60/702,080 2005-07-22
US71001905P 2005-08-19 2005-08-19
US60/710,019 2005-08-19

Publications (1)

Publication Number Publication Date
KR20080041663A true KR20080041663A (ko) 2008-05-13

Family

ID=37450920

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020087004236A KR20080041663A (ko) 2005-07-22 2006-07-19 Mems 장치를 위한 지지 구조물 및 그 방법들

Country Status (6)

Country Link
US (1) US7534640B2 (ko)
EP (1) EP1910216A1 (ko)
JP (1) JP2009503564A (ko)
KR (1) KR20080041663A (ko)
TW (1) TW200710017A (ko)
WO (1) WO2007013939A1 (ko)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8928967B2 (en) 1998-04-08 2015-01-06 Qualcomm Mems Technologies, Inc. Method and device for modulating light
WO1999052006A2 (en) 1998-04-08 1999-10-14 Etalon, Inc. Interferometric modulation of radiation
US7944599B2 (en) 2004-09-27 2011-05-17 Qualcomm Mems Technologies, Inc. Electromechanical device with optical function separated from mechanical and electrical function
US7372613B2 (en) 2004-09-27 2008-05-13 Idc, Llc Method and device for multistate interferometric light modulation
EP2495212A3 (en) 2005-07-22 2012-10-31 QUALCOMM MEMS Technologies, Inc. Mems devices having support structures and methods of fabricating the same
EP1910218A1 (en) * 2005-07-22 2008-04-16 Qualcomm Mems Technologies, Inc. Mems devices having support structures and methods of fabricating the same
US7630114B2 (en) * 2005-10-28 2009-12-08 Idc, Llc Diffusion barrier layer for MEMS devices
US7795061B2 (en) 2005-12-29 2010-09-14 Qualcomm Mems Technologies, Inc. Method of creating MEMS device cavities by a non-etching process
US7916980B2 (en) 2006-01-13 2011-03-29 Qualcomm Mems Technologies, Inc. Interconnect structure for MEMS device
US7382515B2 (en) 2006-01-18 2008-06-03 Qualcomm Mems Technologies, Inc. Silicon-rich silicon nitrides as etch stops in MEMS manufacture
US7450295B2 (en) * 2006-03-02 2008-11-11 Qualcomm Mems Technologies, Inc. Methods for producing MEMS with protective coatings using multi-component sacrificial layers
KR20090125087A (ko) * 2007-02-20 2009-12-03 퀄컴 엠이엠스 테크놀로지스, 인크. 마이크로전자기계 시스템〔mems〕의 에칭장치 및 에칭 방법
US7733552B2 (en) 2007-03-21 2010-06-08 Qualcomm Mems Technologies, Inc MEMS cavity-coating layers and methods
CN101652317B (zh) 2007-04-04 2012-12-12 高通Mems科技公司 通过牺牲层中的界面修改来消除释放蚀刻侵蚀
US7719752B2 (en) 2007-05-11 2010-05-18 Qualcomm Mems Technologies, Inc. MEMS structures, methods of fabricating MEMS components on separate substrates and assembly of same
US7851239B2 (en) * 2008-06-05 2010-12-14 Qualcomm Mems Technologies, Inc. Low temperature amorphous silicon sacrificial layer for controlled adhesion in MEMS devices
US7782522B2 (en) * 2008-07-17 2010-08-24 Qualcomm Mems Technologies, Inc. Encapsulation methods for interferometric modulator and MEMS devices
US8303827B2 (en) * 2008-11-13 2012-11-06 Pixart Imaging Incorporation Method for making micro-electro-mechanical system device
US7864403B2 (en) * 2009-03-27 2011-01-04 Qualcomm Mems Technologies, Inc. Post-release adjustment of interferometric modulator reflectivity
US9110200B2 (en) 2010-04-16 2015-08-18 Flex Lighting Ii, Llc Illumination device comprising a film-based lightguide
KR101821727B1 (ko) 2010-04-16 2018-01-24 플렉스 라이팅 투 엘엘씨 필름 기반 라이트가이드를 포함하는 프론트 조명 디바이스
EP2561545B1 (en) 2010-04-19 2017-10-25 Hewlett-Packard Enterprise Development LP Nanoscale switching devices with partially oxidized electrodes
US8988440B2 (en) * 2011-03-15 2015-03-24 Qualcomm Mems Technologies, Inc. Inactive dummy pixels
US9181086B1 (en) 2012-10-01 2015-11-10 The Research Foundation For The State University Of New York Hinged MEMS diaphragm and method of manufacture therof
US20140268273A1 (en) * 2013-03-15 2014-09-18 Pixtronix, Inc. Integrated elevated aperture layer and display apparatus
JP6492893B2 (ja) 2015-04-01 2019-04-03 セイコーエプソン株式会社 電気光学装置、電気光学装置の製造方法、および電子機器

Family Cites Families (172)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2534846A (en) 1946-06-20 1950-12-19 Emi Ltd Color filter
DE1288651B (de) 1963-06-28 1969-02-06 Siemens Ag Anordnung elektrischer Dipole fuer Wellenlaengen unterhalb 1 mm und Verfahren zur Herstellung einer derartigen Anordnung
US3616312A (en) 1966-04-15 1971-10-26 Ionics Hydrazine manufacture
FR1603131A (ko) 1968-07-05 1971-03-22
US3813265A (en) 1970-02-16 1974-05-28 A Marks Electro-optical dipolar material
US3653741A (en) 1970-02-16 1972-04-04 Alvin M Marks Electro-optical dipolar material
US3725868A (en) 1970-10-19 1973-04-03 Burroughs Corp Small reconfigurable processor for a variety of data processing applications
DE2336930A1 (de) 1973-07-20 1975-02-06 Battelle Institut E V Infrarot-modulator (ii.)
US4099854A (en) 1976-10-12 1978-07-11 The Unites States Of America As Represented By The Secretary Of The Navy Optical notch filter utilizing electric dipole resonance absorption
US4196396A (en) 1976-10-15 1980-04-01 Bell Telephone Laboratories, Incorporated Interferometer apparatus using electro-optic material with feedback
US4389096A (en) 1977-12-27 1983-06-21 Matsushita Electric Industrial Co., Ltd. Image display apparatus of liquid crystal valve projection type
US4663083A (en) 1978-05-26 1987-05-05 Marks Alvin M Electro-optical dipole suspension with reflective-absorptive-transmissive characteristics
US4445050A (en) 1981-12-15 1984-04-24 Marks Alvin M Device for conversion of light power to electric power
US4228437A (en) 1979-06-26 1980-10-14 The United States Of America As Represented By The Secretary Of The Navy Wideband polarization-transforming electromagnetic mirror
NL8001281A (nl) * 1980-03-04 1981-10-01 Philips Nv Weergeefinrichting.
DE3012253A1 (de) 1980-03-28 1981-10-15 Hoechst Ag, 6000 Frankfurt Verfahren zum sichtbarmaschen von ladungsbildern und eine hierfuer geeignete vorichtung
US4377324A (en) 1980-08-04 1983-03-22 Honeywell Inc. Graded index Fabry-Perot optical filter device
US4441791A (en) 1980-09-02 1984-04-10 Texas Instruments Incorporated Deformable mirror light modulator
FR2506026A1 (fr) 1981-05-18 1982-11-19 Radant Etudes Procede et dispositif pour l'analyse d'un faisceau de rayonnement d'ondes electromagnetiques hyperfrequence
NL8103377A (nl) 1981-07-16 1983-02-16 Philips Nv Weergeefinrichting.
US4571603A (en) 1981-11-03 1986-02-18 Texas Instruments Incorporated Deformable mirror electrostatic printer
NL8200354A (nl) 1982-02-01 1983-09-01 Philips Nv Passieve weergeefinrichting.
US4500171A (en) 1982-06-02 1985-02-19 Texas Instruments Incorporated Process for plastic LCD fill hole sealing
US4482213A (en) 1982-11-23 1984-11-13 Texas Instruments Incorporated Perimeter seal reinforcement holes for plastic LCDs
US4710732A (en) 1984-07-31 1987-12-01 Texas Instruments Incorporated Spatial light modulator and method
US4566935A (en) 1984-07-31 1986-01-28 Texas Instruments Incorporated Spatial light modulator and method
US4596992A (en) 1984-08-31 1986-06-24 Texas Instruments Incorporated Linear spatial light modulator and printer
US5096279A (en) 1984-08-31 1992-03-17 Texas Instruments Incorporated Spatial light modulator and method
US5061049A (en) 1984-08-31 1991-10-29 Texas Instruments Incorporated Spatial light modulator and method
US4662746A (en) 1985-10-30 1987-05-05 Texas Instruments Incorporated Spatial light modulator and method
US4615595A (en) 1984-10-10 1986-10-07 Texas Instruments Incorporated Frame addressed spatial light modulator
US4617608A (en) 1984-12-28 1986-10-14 At&T Bell Laboratories Variable gap device and method of manufacture
US5172262A (en) 1985-10-30 1992-12-15 Texas Instruments Incorporated Spatial light modulator and method
GB2186708B (en) 1985-11-26 1990-07-11 Sharp Kk A variable interferometric device and a process for the production of the same
GB8610129D0 (en) 1986-04-25 1986-05-29 Secr Defence Electro-optical device
US4748366A (en) 1986-09-02 1988-05-31 Taylor George W Novel uses of piezoelectric materials for creating optical effects
US4786128A (en) 1986-12-02 1988-11-22 Quantum Diagnostics, Ltd. Device for modulating and reflecting electromagnetic radiation employing electro-optic layer having a variable index of refraction
NL8701138A (nl) 1987-05-13 1988-12-01 Philips Nv Electroscopische beeldweergeefinrichting.
DE3716485C1 (de) 1987-05-16 1988-11-24 Heraeus Gmbh W C Xenon-Kurzbogen-Entladungslampe
US4900136A (en) 1987-08-11 1990-02-13 North American Philips Corporation Method of metallizing silica-containing gel and solid state light modulator incorporating the metallized gel
US4956619A (en) 1988-02-19 1990-09-11 Texas Instruments Incorporated Spatial light modulator
US4856863A (en) 1988-06-22 1989-08-15 Texas Instruments Incorporated Optical fiber interconnection network including spatial light modulator
US5028939A (en) 1988-08-23 1991-07-02 Texas Instruments Incorporated Spatial light modulator system
JP2700903B2 (ja) * 1988-09-30 1998-01-21 シャープ株式会社 液晶表示装置
US4982184A (en) 1989-01-03 1991-01-01 General Electric Company Electrocrystallochromic display and element
US5162787A (en) 1989-02-27 1992-11-10 Texas Instruments Incorporated Apparatus and method for digitized video system utilizing a moving display surface
US5214420A (en) 1989-02-27 1993-05-25 Texas Instruments Incorporated Spatial light modulator projection system with random polarity light
US5287096A (en) 1989-02-27 1994-02-15 Texas Instruments Incorporated Variable luminosity display system
US5170156A (en) 1989-02-27 1992-12-08 Texas Instruments Incorporated Multi-frequency two dimensional display system
US5214419A (en) 1989-02-27 1993-05-25 Texas Instruments Incorporated Planarized true three dimensional display
US5079544A (en) 1989-02-27 1992-01-07 Texas Instruments Incorporated Standard independent digitized video system
US5206629A (en) 1989-02-27 1993-04-27 Texas Instruments Incorporated Spatial light modulator and memory for digitized video display
US5192946A (en) 1989-02-27 1993-03-09 Texas Instruments Incorporated Digitized color video display system
US5272473A (en) 1989-02-27 1993-12-21 Texas Instruments Incorporated Reduced-speckle display system
US4900395A (en) 1989-04-07 1990-02-13 Fsi International, Inc. HF gas etching of wafers in an acid processor
US5022745A (en) 1989-09-07 1991-06-11 Massachusetts Institute Of Technology Electrostatically deformable single crystal dielectrically coated mirror
US4954789A (en) 1989-09-28 1990-09-04 Texas Instruments Incorporated Spatial light modulator
US5381253A (en) * 1991-11-14 1995-01-10 Board Of Regents Of University Of Colorado Chiral smectic liquid crystal optical modulators having variable retardation
US5124834A (en) 1989-11-16 1992-06-23 General Electric Company Transferrable, self-supporting pellicle for elastomer light valve displays and method for making the same
US5037173A (en) 1989-11-22 1991-08-06 Texas Instruments Incorporated Optical interconnection network
US5500635A (en) * 1990-02-20 1996-03-19 Mott; Jonathan C. Products incorporating piezoelectric material
CH682523A5 (fr) 1990-04-20 1993-09-30 Suisse Electronique Microtech Dispositif de modulation de lumière à adressage matriciel.
GB9012099D0 (en) 1990-05-31 1990-07-18 Kodak Ltd Optical article for multicolour imaging
US5099353A (en) 1990-06-29 1992-03-24 Texas Instruments Incorporated Architecture and process for integrating DMD with control circuit substrates
US5142405A (en) 1990-06-29 1992-08-25 Texas Instruments Incorporated Bistable dmd addressing circuit and method
US5083857A (en) * 1990-06-29 1992-01-28 Texas Instruments Incorporated Multi-level deformable mirror device
US5216537A (en) 1990-06-29 1993-06-01 Texas Instruments Incorporated Architecture and process for integrating DMD with control circuit substrates
DE69113150T2 (de) 1990-06-29 1996-04-04 Texas Instruments Inc Deformierbare Spiegelvorrichtung mit aktualisiertem Raster.
US5018256A (en) 1990-06-29 1991-05-28 Texas Instruments Incorporated Architecture and process for integrating DMD with control circuit substrates
US5153771A (en) 1990-07-18 1992-10-06 Northrop Corporation Coherent light modulation and detector
US5192395A (en) 1990-10-12 1993-03-09 Texas Instruments Incorporated Method of making a digital flexure beam accelerometer
US5044736A (en) 1990-11-06 1991-09-03 Motorola, Inc. Configurable optical filter or display
US5602671A (en) * 1990-11-13 1997-02-11 Texas Instruments Incorporated Low surface energy passivation layer for micromechanical devices
US5331454A (en) 1990-11-13 1994-07-19 Texas Instruments Incorporated Low reset voltage process for DMD
FR2669466B1 (fr) 1990-11-16 1997-11-07 Michel Haond Procede de gravure de couches de circuit integre a profondeur fixee et circuit integre correspondant.
US5233459A (en) 1991-03-06 1993-08-03 Massachusetts Institute Of Technology Electric display device
US5136669A (en) 1991-03-15 1992-08-04 Sperry Marine Inc. Variable ratio fiber optic coupler optical signal processing element
CA2063744C (en) 1991-04-01 2002-10-08 Paul M. Urbanus Digital micromirror device architecture and timing for use in a pulse-width modulated display system
US5142414A (en) 1991-04-22 1992-08-25 Koehler Dale R Electrically actuatable temporal tristimulus-color device
US5226099A (en) 1991-04-26 1993-07-06 Texas Instruments Incorporated Digital micromirror shutter device
FR2679057B1 (fr) 1991-07-11 1995-10-20 Morin Francois Structure d'ecran a cristal liquide, a matrice active et a haute definition.
US5179274A (en) 1991-07-12 1993-01-12 Texas Instruments Incorporated Method for controlling operation of optical systems and devices
US5287215A (en) 1991-07-17 1994-02-15 Optron Systems, Inc. Membrane light modulation systems
US5168406A (en) 1991-07-31 1992-12-01 Texas Instruments Incorporated Color deformable mirror device and method for manufacture
US5254980A (en) 1991-09-06 1993-10-19 Texas Instruments Incorporated DMD display system controller
US5233385A (en) 1991-12-18 1993-08-03 Texas Instruments Incorporated White light enhanced color field sequential projection
US5233456A (en) 1991-12-20 1993-08-03 Texas Instruments Incorporated Resonant mirror and method of manufacture
US5228013A (en) 1992-01-10 1993-07-13 Bik Russell J Clock-painting device and method for indicating the time-of-day with a non-traditional, now analog artistic panel of digital electronic visual displays
US5296950A (en) 1992-01-31 1994-03-22 Texas Instruments Incorporated Optical signal free-space conversion board
US5231532A (en) 1992-02-05 1993-07-27 Texas Instruments Incorporated Switchable resonant filter for optical radiation
US5212582A (en) 1992-03-04 1993-05-18 Texas Instruments Incorporated Electrostatically controlled beam steering device and method
DE69310974T2 (de) 1992-03-25 1997-11-06 Texas Instruments Inc Eingebautes optisches Eichsystem
US5312513A (en) 1992-04-03 1994-05-17 Texas Instruments Incorporated Methods of forming multiple phase light modulators
US5401983A (en) * 1992-04-08 1995-03-28 Georgia Tech Research Corporation Processes for lift-off of thin film materials or devices for fabricating three dimensional integrated circuits, optical detectors, and micromechanical devices
US5311360A (en) 1992-04-28 1994-05-10 The Board Of Trustees Of The Leland Stanford, Junior University Method and apparatus for modulating a light beam
TW245772B (ko) * 1992-05-19 1995-04-21 Akzo Nv
JPH0651250A (ja) * 1992-05-20 1994-02-25 Texas Instr Inc <Ti> モノリシックな空間的光変調器およびメモリのパッケージ
US5818095A (en) * 1992-08-11 1998-10-06 Texas Instruments Incorporated High-yield spatial light modulator with light blocking layer
US5293272A (en) 1992-08-24 1994-03-08 Physical Optics Corporation High finesse holographic fabry-perot etalon and method of fabricating
US5327286A (en) 1992-08-31 1994-07-05 Texas Instruments Incorporated Real time optical correlation system
US5325116A (en) 1992-09-18 1994-06-28 Texas Instruments Incorporated Device for writing to and reading from optical storage media
US5296775A (en) 1992-09-24 1994-03-22 International Business Machines Corporation Cooling microfan arrangements and process
US6674562B1 (en) * 1994-05-05 2004-01-06 Iridigm Display Corporation Interferometric modulation of radiation
US5324683A (en) 1993-06-02 1994-06-28 Motorola, Inc. Method of forming a semiconductor structure having an air region
US5489952A (en) * 1993-07-14 1996-02-06 Texas Instruments Incorporated Method and device for multi-format television
US5497197A (en) * 1993-11-04 1996-03-05 Texas Instruments Incorporated System and method for packaging data into video processor
US5500761A (en) * 1994-01-27 1996-03-19 At&T Corp. Micromechanical modulator
JPH07253594A (ja) * 1994-03-15 1995-10-03 Fujitsu Ltd 表示装置
US6680792B2 (en) * 1994-05-05 2004-01-20 Iridigm Display Corporation Interferometric modulation of radiation
US7460291B2 (en) * 1994-05-05 2008-12-02 Idc, Llc Separable modulator
US5497172A (en) * 1994-06-13 1996-03-05 Texas Instruments Incorporated Pulse width modulation for spatial light modulator with split reset addressing
US5499062A (en) * 1994-06-23 1996-03-12 Texas Instruments Incorporated Multiplexed memory timing with block reset and secondary memory
US5485304A (en) * 1994-07-29 1996-01-16 Texas Instruments, Inc. Support posts for micro-mechanical devices
US5610624A (en) * 1994-11-30 1997-03-11 Texas Instruments Incorporated Spatial light modulator with reduced possibility of an on state defect
US5726480A (en) * 1995-01-27 1998-03-10 The Regents Of The University Of California Etchants for use in micromachining of CMOS Microaccelerometers and microelectromechanical devices and method of making the same
US5610438A (en) * 1995-03-08 1997-03-11 Texas Instruments Incorporated Micro-mechanical device with non-evaporable getter
US5710656A (en) * 1996-07-30 1998-01-20 Lucent Technologies Inc. Micromechanical optical modulator having a reduced-mass composite membrane
US5884083A (en) * 1996-09-20 1999-03-16 Royce; Robert Computer system to compile non-incremental computer source code to execute within an incremental type computer system
US5867302A (en) * 1997-08-07 1999-02-02 Sandia Corporation Bistable microelectromechanical actuator
US6031653A (en) * 1997-08-28 2000-02-29 California Institute Of Technology Low-cost thin-metal-film interference filters
US6028690A (en) * 1997-11-26 2000-02-22 Texas Instruments Incorporated Reduced micromirror mirror gaps for improved contrast ratio
US6180428B1 (en) * 1997-12-12 2001-01-30 Xerox Corporation Monolithic scanning light emitting devices using micromachining
US6438149B1 (en) * 1998-06-26 2002-08-20 Coretek, Inc. Microelectromechanically tunable, confocal, vertical cavity surface emitting laser and fabry-perot filter
US6016693A (en) * 1998-02-09 2000-01-25 The Regents Of The University Of California Microfabrication of cantilevers using sacrificial templates
US6195196B1 (en) * 1998-03-13 2001-02-27 Fuji Photo Film Co., Ltd. Array-type exposing device and flat type display incorporating light modulator and driving method thereof
US6194323B1 (en) * 1998-12-16 2001-02-27 Lucent Technologies Inc. Deep sub-micron metal etch with in-situ hard mask etch
US6335831B2 (en) * 1998-12-18 2002-01-01 Eastman Kodak Company Multilevel mechanical grating device
JP3592136B2 (ja) * 1999-06-04 2004-11-24 キヤノン株式会社 液体吐出ヘッドおよびその製造方法と微小電気機械装置の製造方法
US6525310B2 (en) * 1999-08-05 2003-02-25 Microvision, Inc. Frequency tunable resonant scanner
US6351329B1 (en) * 1999-10-08 2002-02-26 Lucent Technologies Inc. Optical attenuator
US6960305B2 (en) * 1999-10-26 2005-11-01 Reflectivity, Inc Methods for forming and releasing microelectromechanical structures
US6674090B1 (en) * 1999-12-27 2004-01-06 Xerox Corporation Structure and method for planar lateral oxidation in active
EP1172681A3 (en) * 2000-07-13 2004-06-09 Creo IL. Ltd. Blazed micro-mechanical light modulator and array thereof
US6677225B1 (en) * 2000-07-14 2004-01-13 Zyvex Corporation System and method for constraining totally released microcomponents
US6853129B1 (en) * 2000-07-28 2005-02-08 Candescent Technologies Corporation Protected substrate structure for a field emission display device
TWI226103B (en) * 2000-08-31 2005-01-01 Georgia Tech Res Inst Fabrication of semiconductor devices with air gaps for ultra low capacitance interconnections and methods of making same
US6522801B1 (en) * 2000-10-10 2003-02-18 Agere Systems Inc. Micro-electro-optical mechanical device having an implanted dopant included therein and a method of manufacture therefor
US6859218B1 (en) * 2000-11-07 2005-02-22 Hewlett-Packard Development Company, L.P. Electronic display devices and methods
US6620712B2 (en) 2001-02-14 2003-09-16 Intpax, Inc. Defined sacrifical region via ion implantation for micro-opto-electro-mechanical system (MOEMS) applications
US7005314B2 (en) * 2001-06-27 2006-02-28 Intel Corporation Sacrificial layer technique to make gaps in MEMS applications
JP3740444B2 (ja) * 2001-07-11 2006-02-01 キヤノン株式会社 光偏向器、それを用いた光学機器、ねじれ揺動体
JP4032216B2 (ja) * 2001-07-12 2008-01-16 ソニー株式会社 光学多層構造体およびその製造方法、並びに光スイッチング素子および画像表示装置
KR100439423B1 (ko) * 2002-01-16 2004-07-09 한국전자통신연구원 마이크로전자기계 액튜에이터
US6794119B2 (en) * 2002-02-12 2004-09-21 Iridigm Display Corporation Method for fabricating a structure for a microelectromechanical systems (MEMS) device
US7027200B2 (en) * 2002-03-22 2006-04-11 Reflectivity, Inc Etching method used in fabrications of microstructures
US7029829B2 (en) * 2002-04-18 2006-04-18 The Regents Of The University Of Michigan Low temperature method for forming a microcavity on a substrate and article having same
US6741377B2 (en) * 2002-07-02 2004-05-25 Iridigm Display Corporation Device having a light-absorbing mask and a method for fabricating same
US7071289B2 (en) * 2002-07-11 2006-07-04 The University Of Connecticut Polymers comprising thieno [3,4-b]thiophene and methods of making and using the same
US6822798B2 (en) * 2002-08-09 2004-11-23 Optron Systems, Inc. Tunable optical filter
US6674033B1 (en) * 2002-08-21 2004-01-06 Ming-Shan Wang Press button type safety switch
TW544787B (en) * 2002-09-18 2003-08-01 Promos Technologies Inc Method of forming self-aligned contact structure with locally etched gate conductive layer
TWI289708B (en) * 2002-12-25 2007-11-11 Qualcomm Mems Technologies Inc Optical interference type color display
US6808953B2 (en) * 2002-12-31 2004-10-26 Robert Bosch Gmbh Gap tuning for surface micromachined structures in an epitaxial reactor
TW557395B (en) * 2003-01-29 2003-10-11 Yen Sun Technology Corp Optical interference type reflection panel and the manufacturing method thereof
TW200413810A (en) * 2003-01-29 2004-08-01 Prime View Int Co Ltd Light interference display panel and its manufacturing method
ITTO20030167A1 (it) * 2003-03-06 2004-09-07 Fiat Ricerche Procedimento per la realizzazione di emettitori nano-strutturati per sorgenti di luce ad incandescenza.
US6913942B2 (en) * 2003-03-28 2005-07-05 Reflectvity, Inc Sacrificial layers for use in fabrications of microelectromechanical devices
US6987432B2 (en) * 2003-04-16 2006-01-17 Robert Bosch Gmbh Temperature compensation for silicon MEMS resonator
TW567355B (en) * 2003-04-21 2003-12-21 Prime View Int Co Ltd An interference display cell and fabrication method thereof
US6829132B2 (en) * 2003-04-30 2004-12-07 Hewlett-Packard Development Company, L.P. Charge control of micro-electromechanical device
TW570896B (en) * 2003-05-26 2004-01-11 Prime View Int Co Ltd A method for fabricating an interference display cell
FR2855908B1 (fr) * 2003-06-06 2005-08-26 Soitec Silicon On Insulator Procede d'obtention d'une structure comprenant au moins un substrat et une couche ultramince
US7173314B2 (en) * 2003-08-13 2007-02-06 Hewlett-Packard Development Company, L.P. Storage device having a probe and a storage cell with moveable parts
TW200506479A (en) * 2003-08-15 2005-02-16 Prime View Int Co Ltd Color changeable pixel for an interference display
TWI305599B (en) * 2003-08-15 2009-01-21 Qualcomm Mems Technologies Inc Interference display panel and method thereof
TWI251712B (en) * 2003-08-15 2006-03-21 Prime View Int Corp Ltd Interference display plate
TW593127B (en) * 2003-08-18 2004-06-21 Prime View Int Co Ltd Interference display plate and manufacturing method thereof
TWI231865B (en) * 2003-08-26 2005-05-01 Prime View Int Co Ltd An interference display cell and fabrication method thereof
US6982820B2 (en) * 2003-09-26 2006-01-03 Prime View International Co., Ltd. Color changeable pixel
TW593126B (en) * 2003-09-30 2004-06-21 Prime View Int Co Ltd A structure of a micro electro mechanical system and manufacturing the same
KR101255691B1 (ko) * 2004-07-29 2013-04-17 퀄컴 엠이엠에스 테크놀로지스, 인크. 간섭 변조기의 미소기전 동작을 위한 시스템 및 방법
US7273693B2 (en) * 2004-07-30 2007-09-25 Hewlett-Packard Development Company, L.P. Method for forming a planar mirror using a sacrificial oxide

Also Published As

Publication number Publication date
WO2007013939A1 (en) 2007-02-01
US20070019922A1 (en) 2007-01-25
TW200710017A (en) 2007-03-16
EP1910216A1 (en) 2008-04-16
JP2009503564A (ja) 2009-01-29
US7534640B2 (en) 2009-05-19

Similar Documents

Publication Publication Date Title
KR20080041663A (ko) Mems 장치를 위한 지지 구조물 및 그 방법들
KR101317870B1 (ko) 변형과 관련된 응력을 최소화하도록 구성된 지지 구조들을가진 mems 장치와 그 제조 방법
US7535621B2 (en) Aluminum fluoride films for microelectromechanical system applications
US7944603B2 (en) Microelectromechanical device and method utilizing a porous surface
US7643202B2 (en) Microelectromechanical system having a dielectric movable membrane and a mirror
US7630114B2 (en) Diffusion barrier layer for MEMS devices
US8102590B2 (en) Method of manufacturing MEMS devices providing air gap control
US7679812B2 (en) Support structure for MEMS device and methods therefor
US8394656B2 (en) Method of creating MEMS device cavities by a non-etching process
US20080278788A1 (en) Microelectromechanical system having a dielectric movable membrane and a mirror
US8222066B2 (en) Eliminate release etch attack by interface modification in sacrificial layers
KR20100121676A (ko) 열팽창 균형층 또는 강직층을 지닌 마이크로전자기계 장치
KR20100054788A (ko) 기판 상에 집적된 imods 및 태양전지
KR20110014709A (ko) Mems 장치 내의 제어된 부착성을 위한 저온 비정질 실리콘 희생층
EP1640318A2 (en) Methods of fabricating interferometric modulators by selectively removing a material
US20080180783A1 (en) Critical dimension control for photolithography for microelectromechanical systems devices
US20090195856A1 (en) Methods of reducing cd loss in a microelectromechanical device

Legal Events

Date Code Title Description
N231 Notification of change of applicant
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid