KR20080032057A - Method of recovering valuable metals from the vrds spent catalyst - Google Patents

Method of recovering valuable metals from the vrds spent catalyst Download PDF

Info

Publication number
KR20080032057A
KR20080032057A KR20080023169A KR20080023169A KR20080032057A KR 20080032057 A KR20080032057 A KR 20080032057A KR 20080023169 A KR20080023169 A KR 20080023169A KR 20080023169 A KR20080023169 A KR 20080023169A KR 20080032057 A KR20080032057 A KR 20080032057A
Authority
KR
South Korea
Prior art keywords
sodium
oxide
spent catalyst
recovering
vanadate
Prior art date
Application number
KR20080023169A
Other languages
Korean (ko)
Other versions
KR101008496B1 (en
Inventor
김만주
Original Assignee
김만주
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김만주 filed Critical 김만주
Publication of KR20080032057A publication Critical patent/KR20080032057A/en
Application granted granted Critical
Publication of KR101008496B1 publication Critical patent/KR101008496B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/20Obtaining niobium, tantalum or vanadium
    • C22B34/22Obtaining vanadium
    • C22B34/225Obtaining vanadium from spent catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D11/00Solvent extraction
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G31/00Compounds of vanadium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G31/00Compounds of vanadium
    • C01G31/02Oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G39/00Compounds of molybdenum
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G39/00Compounds of molybdenum
    • C01G39/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/44Treatment or purification of solutions, e.g. obtained by leaching by chemical processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/30Obtaining chromium, molybdenum or tungsten
    • C22B34/34Obtaining molybdenum
    • C22B34/345Obtaining molybdenum from spent catalysts
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • C22B7/008Wet processes by an alkaline or ammoniacal leaching
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/009General processes for recovering metals or metallic compounds from spent catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Processing Of Solid Wastes (AREA)
  • Catalysts (AREA)

Abstract

A method for recovering available metal from waste catalyst is provided to recover vanadium component and molybdenum component, which are contained in the waste catalyst, at a high yield. Oil and sulfur are removed from waste catalyst for petroleum desulfurization. The waste catalyst reacts with a caustic soda aqueous solution at a temperature of 135-160°C, thereby separating and forming aqueous reactants, such as sodium aluminate, sodium molybdate, and sodium vanadate, and non-aqueous reactants, such as nickel oxide, cobalt oxide, and impurities. The nickel oxide, the cobalt oxide, and the impurities are filtered off, and the sodium aluminate, the sodium molybdate, and the sodium vanadate are dissolved in a residual liquid.

Description

석유탈황용 폐촉매로부터 가용 금속을 회수하는 방법{ METHOD OF RECOVERING VALUABLE METALS FROM THE VRDS SPENT CATALYST}METHODS OF RECOVERING VALUABLE METALS FROM THE VRDS SPENT CATALYST}

본 발명은 원유에 존재하는 황 성분을 제거하기 위하여 사용된 석유탈황 폐촉매에 함유되어 있는 바나듐, 몰리브덴, 니켈 등과 같은 금속(이하, "가용금속"이라 한다.)을 회수하는 방법에 관한 것이다.The present invention relates to a method for recovering metals (hereinafter referred to as "soluble metals"), such as vanadium, molybdenum, nickel, and the like contained in spent petroleum desulfurization catalysts used to remove sulfur components present in crude oil.

종래의 탈황용 폐촉매 중에 포함된 바나듐, 몰리브덴 등과 같은 가용금속을 회수 분리하는 방법으로는 다음과 같다.A method of recovering and separating soluble metals such as vanadium and molybdenum contained in a conventional spent catalyst for desulfurization is as follows.

회수한 폐촉매에 스며있는 유분을 제거하기 위해 비점(BP)이상의 온도를 가하여 증유방식으로 기름을 회수하여 자원화한 다음, 유분을 제거한 폐촉매는(유분제거로 인한 열이 400℃ 유지됨) 냉각 전에 배소로에 유도하여 400~600℃로 유지하면서 황과 금속의 산화에 필요한 산소(공기)를 적당하게 공급한다.In order to remove oil from the recovered waste catalyst, the oil is recovered and recycled by applying a boiling point (BP) or higher to increase the temperature.The waste catalyst from which the oil is removed (heat is maintained at 400 ° C due to the removal of oil) is cooled before cooling. It guides the roasting furnace and maintains it at 400 ~ 600 ℃ and supplies oxygen (air) appropriately for the oxidation of sulfur and metal.

이때 황은 산화되고, 몰리브덴, 바나듐, 니켈, 코발트도 MoO3, V2O5, NiO, CoO 로 산화된다. 황은 산화되어 아황산가스(SO2)로 되고, 흡수탑(cap식 정유탑)으로 유도하여 상부로부터 흘러내리는 가성소다(NaOH) 수용액에 흡수되어 아황산소 다(Na2SO3) 수용액이 되어 아래로 배출된다.At this time, sulfur is oxidized, and molybdenum, vanadium, nickel, and cobalt are also oxidized to MoO 3 , V 2 O 5 , NiO, and CoO. Sulfur is oxidized to sulfurous acid gas (SO 2 ), which is led to an absorption tower (cap refinery) and absorbed in an aqueous solution of caustic soda (NaOH) flowing down from the top to form an aqueous solution of sodium sulfite (Na 2 SO 3 ). Discharged.

여기서, 니켈산화물, 코발트산화물의 경우, 종래에는 회수하는 데 분쇄하여 암모니아수로 추출한 후 물이 스며있어 건조하여야 하는 번거로움이 있고, 더구나바나듐과 몰리브덴의 일부가 암모니아염으로 변하여 분리에 혼선을 일으킬 수 있어 폐촉매에서 니켈을 회수하는 것은 비경제적이므로 실제 생산현장에서는 니켈회수절차를 포기하고 곧 바로 소다배소로 진행한다.Here, in the case of nickel oxide and cobalt oxide, it is conventionally pulverized to recover, extracted with ammonia water, and then water has permeated, and has to be dried. Moreover, part of vanadium and molybdenum is converted into ammonia salt, which may cause confusion in separation. Since it is uneconomical to recover nickel from waste catalysts, the actual production site gives up the nickel recovery procedure and immediately proceeds to soda roasting.

이상과 같이 니켈회수를 포기한 채 산화된 폐촉매를 탄산소다(Na2CO3)와 혼합하여 로터리킬른에 정량적이고 연속적으로 투입하면서 배소온도를 900℃로 유지되도록 함으로 금속산화물과 탄산소다는 용융되어 알루미늄은 불용성인 알민산소다 등 혼합물로, 바나듐과 몰리브덴은 소다염으로 변하여 수용성인 바나딘산소다(NaVO3)와 몰리브덴산소다(Na2MoO4)를 얻을 수 있으며,As mentioned above, metal oxide and sodium carbonate are melted by mixing the oxidized waste catalyst with sodium carbonate (Na 2 CO 3 ) while maintaining the roasting temperature at 900 ° C while continuously and quantitatively and continuously injecting the nickel recovery into the rotary kiln. Aluminum is insoluble With a mixture such as sodium aldehyde, vanadium and molybdenum can be converted into soda salt to obtain water-soluble sodium vanadate (NaVO 3 ) and sodium molybdate (Na 2 MoO 4 ).

소다용융에서 얻은 배소물을 분쇄하여 약 80℃의 온수로 교반하면서 한시간 가량 침출시킨 후 여과하고 이를 1~2회 세척한 액을 모아 pH8로 조절하여 염화암모늄(NH4Cl) 수용액을 주입하여 교반하면 meta 바나딘산암모늄(NH4VO3)의 결정이 석출되기 시작한다.Grind the roasted product obtained from soda melting and leaching with warm water at about 80 ℃ for 1 hour, filter it, collect the washed solution 1 ~ 2 times, adjust the pH to 8 and inject ammonium chloride (NH 4 Cl) aqueous solution. Crystals of ammonium vanadate (NH 4 VO 3 ) begin to precipitate.

이 때, 염화암모늄의 사용량은 이론보다 과량을 사용하게 되며, 결정석출이 끝나면 여과하여 회수한 후 모액중의 황산근(SO4 -2)을 제거하기 위해 pH 2~3으로 저하시킨 후 염화칼슘(CaCl2)용액을 투입하여 황산칼슘(CaSO4)의 침전을 제거한 후 다 시 pH 7로 상승시켜 염화칼슘 용액을 주입하여 몰리브덴산칼슘(CaMoO4)의 완전 침전후 여과하여 수세하고 염산으로 분해하여 산화몰리브덴으로 만든다.At this time, the amount of ammonium chloride is used more than the theory, and after the crystallization is finished, it is recovered by filtration and lowered to pH 2-3 to remove sulfate root (SO 4 -2 ) in the mother liquor and then calcium chloride ( CaCl 2 ) solution was added to remove the precipitate of calcium sulfate (CaSO 4 ), and then the pH was raised to 7 again. Calcium chloride solution was injected. After complete precipitation of calcium molybdate (CaMoO 4 ), it was filtered, washed with hydrochloric acid and oxidized. Made of Molybdenum

상기한 바와 같이 탄산소다와 혼합하여 고온에서 배소과정을 거치기 위한 설비로 로터리킬른의 설비가 필요로하며, 소다의 융점이상을 유지하기 위해 고온(900℃)의 열이 필요로 하는점 그리고 상기한 바와 같이 경제성이 없다는 이유로 니켈회수를 포기하여야하며, 폐촉매가 수종이 있으나 부형제로 사용되는 산화알루미늄의 함량은 약 65% 정도를 차지하지만 이를 분리하지 못하여 불용성인 알루미늄화합물을 만들어 폐기물로 처리하여야하는 자원낭비의 문제점과 폐기물로 처리하는 불용성알루미늄화합물에는 귀금속인 바나듐과 몰리브덴이 융합되어 침출하여도 20% 정도는 잔존함으로 실제 바나듐과 몰리브덴의 회수율은 80%에도 미치지 아니한 점 등으로 볼 때 설비비의 가중과 회수율의 저하로 인해 경제적 측면에서 볼 때 엄청난 손실이 아닐 수 없기에 실용성에 재고가 되어야하는 점이 있다. As described above, a rotary kiln facility is required as a facility for roasting at high temperature by mixing with soda carbonate, and a high temperature (900 ° C.) heat is required to maintain the melting point of soda. As it is not economical, nickel recovery should be given up, and waste catalyst has several species, but the amount of aluminum oxide used as excipient is about 65%, but it cannot be separated to make insoluble aluminum compound and treat it as waste. As the problem of waste of resources and insoluble aluminum compound treated as waste, 20% of noble metal vanadium and molybdenum are fused and leached, and the recovery rate of vanadium and molybdenum is less than 80%. The economic recovery is not a huge loss because of Groups are points that should be in stock on practicality.

본 발명은 상기와 같은 문제점을 해결하기 위하여, 탈황 폐촉매 중에 함유되어 있는 바나듐과 몰리브덴 성분을 저온에서 고수율로 회수할 수 있고, 니켈(NiO)과 코발트(CoO)를 다른 추가공정없이 취득할 수 있으며, 부형제로 사용된 알루미늄(Al2O3)도 전량 회수할 수 있는 경제적이고 수율 높은 석유탈황(VRDS) 폐촉매의 가용금속 회수방법을 제공하는 것을 목적으로 한다.In order to solve the above problems, the present invention can recover the vanadium and molybdenum components contained in the desulfurization waste catalyst at low temperature and high yield, and obtain nickel (NiO) and cobalt (CoO) without any additional steps. The present invention aims to provide a method for recovering soluble metals in a high-efficiency petroleum desulfurization (VRDS) waste catalyst which can recover the entire amount of aluminum (Al 2 O 3 ) used as an excipient.

또한, 종래의 방법으로 필연적으로 발생되는 암모니아성 질소가 포함된 다량의 폐수로 인한 환경 오염 또는 정화경비 상승의 문제가 없는 친환경적인 석유탈황(VRDS) 폐촉매의 저온 금속회수방법을 제공하는 것을 목적으로 한다.In addition, it is an object of the present invention to provide a low-temperature metal recovery method of environmentally friendly petroleum desulfurization (VRDS) waste catalyst without the problem of environmental pollution or increased cost of purification due to a large amount of waste water containing ammonia nitrogen inevitably generated by the conventional method It is done.

상기 목적을 달성하기 위한 본 발명은 석유탈황용 폐촉매에 포함된 유분과 황을 제거하고 산화하는 과정을 포함한 전처리단계; 상기 전처리단계를 거친 폐촉매를 가성소다(NaOH) 수용액에 넣고 135~160 ℃이상에서 반응시켜, 수용성의 반응물인 알민산소다, 몰리브덴산소다, 바다딘산소다와 비수용성의 비반응물인 산화니켈, 산화코발트 및 불순물을 분리 형성하는 단계; 및 상기 비수용성의 산화니켈, 산화코발트 및 불순물을 여과하여 제거하고, 여액에는 알민산소다, 몰리브덴산소다, 바나딘산소다를 모액에 잔류시키는 단계;를 포함한다.The present invention for achieving the above object comprises a pretreatment step including a process of removing and oxidizing the oil and sulfur contained in the spent catalyst for petroleum desulfurization; The spent catalyst after the pretreatment step was put in an aqueous solution of caustic soda (NaOH) and reacted at 135 ~ 160 ° C. or higher, so that the water-soluble reactants such as sodium almine, sodium molybdate, sodium ammonium acid and water-insoluble non-reactant nickel oxide Separating and forming cobalt oxide and impurities; And filtering and removing the non-aqueous nickel oxide, cobalt oxide, and impurities, and the filtrate is left with sodium amine, sodium molybdate, and sodium vanadate in the mother liquor.

또 본 발명은 상기 알민산소다, 몰리브덴산소다, 바나딘산소다를 포함한 pH15의 여액을 가열하여 80℃ 이상으로 상승 시킨 후 교반하면서 염산 또는 황산 등을 주입하여 pH9.5로 유지시키는 단계; 상기 단계에서 pH9.5가 되면 산의 주입을 중지하고 반응열에 의해 110℃ 이상이 되어 비등하며 여과에 용이한 산화알미늄이 생성되는 단계; 및 상기 산화알미늄을 여과하여 회수하는 단계를 더 포함한다.In another aspect, the present invention is the step of heating the filtrate of pH 15 including the sodium phosphate, sodium molybdate, sodium vanadate, heated to 80 ℃ or more, and then injecting hydrochloric acid or sulfuric acid while stirring to maintain the pH 9.5; Stopping the injection of acid when the pH is 9.5 in the above step and boiling over the reaction at 110 ° C. or higher to generate aluminum oxide, which is easy to filter; And recovering by filtering the aluminum oxide.

한편, 본 발명은 폐촉매를 처리하여 바나딘산소다와 몰리브덴산소다를 포함한 용액을 수득하는 단계; 상기 용액을 pH 1.0~-1.0로 유지하면서, 80~90℃로 가열하는 단계; 및 상기 용액을 교반하면서 폭기시켜 산화몰리브덴과 산화바나듐을 석출시키는 단계;를 포함한다.On the other hand, the present invention comprises the steps of treating the spent catalyst to obtain a solution containing sodium vanadate and sodium molybdate; Heating the solution to 80-90 ° C. while maintaining the pH at 1.0-1.0; And agitating the solution while stirring to precipitate molybdenum oxide and vanadium oxide.

그리고, 본 발명은 상기 산화몰리브덴과 산화바나듐이 석출된 용액에 혼합물을 80~90℃의 온수에 투입하고 암모니아수를 주입하여 교반시킴으로써, 바나딘산 암모늄을 석출시키는 단계; 및 상기 석출된 바나딘산암모늄 결정을 분리하여 회수하는 단계;를 더 포함한다.In addition, the present invention comprises the steps of depositing ammonium vanadate by adding the mixture to the solution in which the molybdenum oxide and vanadium oxide precipitated in warm water at 80 ~ 90 ℃ and injecting ammonia water; And separating and recovering the precipitated ammonium vanadate crystals.

본 발명은 정유공장에서 발생하는 탈황 폐촉매 중에 함유되어 있는 바나듐과 몰리브덴 성분을 고수율로 회수할 수 있을 뿐만 아니라 니켈(NiO)과 코발트(CoO)를 별다른 공정없이 취득하며 부형제로 사용된 알루미늄(Al2O3)은 전량 회수할 수 있는 경제적이고 수율이 높은 효과를 제공한다.The present invention not only recovers the vanadium and molybdenum components contained in the desulfurization waste catalyst generated in the refinery in high yield, but also obtains nickel (NiO) and cobalt (CoO) without any special process and uses aluminum as an excipient. Al 2 O 3 ) provides an economical and high yield effect that can be recovered in its entirety.

또한, 고온배소를 이용하지 않으므로 고가의 로터리킬른이 필요 없이 무압 이중자켓 교반기가 부설된 반응관으로도 가능함으로써 상당한 설비비용을 절감할 수 있는 이점이 있으며, 열효율 또한 소다배소에 필요한 900℃의 고온이 필요한 것이 아니라 저온교반에 필요한 최소한의 온도가 필요하며 이 또한 중화열 발생으로 인한 자연적 가열을 고려하면 연료비를 대폭 절감할 수 있다.In addition, since it does not use a high-temperature roaster, it is possible to use a reaction tube equipped with a pressureless double jacketed stirrer without the need for an expensive rotary kiln, which has the advantage of saving considerable equipment costs. Thermal efficiency is also high temperature of 900 ° C required for soda roasting. This is not necessary, but the minimum temperature required for low temperature agitation is required, which can also significantly reduce fuel costs in consideration of natural heating due to neutralization heat generation.

또한, 종래의 방법으로 필연적으로 발생되는 암모니아성 질소를 포함한 다량의 폐수가 배출되어 환경오염을 일으키는 문제 또는 정화경비 상승의 문제가 없는 친환경적인 이점이 있다. In addition, a large amount of wastewater including ammonia nitrogen, which is inevitably generated by the conventional method, is discharged, and there is an environmentally friendly advantage without causing a problem of environmental pollution or a problem of rising purification cost.

이하, 도 1을 참조하여 본 발명의 일 실시예를 설명한다.Hereinafter, an embodiment of the present invention will be described with reference to FIG. 1.

석유 탈황 폐촉매를 공지의 방법으로 전처리할 수 있다. 즉, 폐촉매의 유분제거, 황분제거 그리고 금속산화 등은 재료의 정제과정은 특별히 제한되지 않으며, 공지의 방법을 이용할 수 있다. The petroleum desulfurization waste catalyst can be pretreated by a known method. That is, the oil removal, sulfur removal, and metal oxidation of the spent catalyst are not particularly limited in the purification process of the material, and a known method may be used.

일례로, 폐촉매에 스며있는 유분을 제거하기 위해 비점(BP)이상의 온도를 가하여 증유방식으로 기름을 회수하여 재활용하거나 용제추출로써 안전하고 정확하게 제거할 수 있다. For example, by applying a temperature above the boiling point (BP) to remove the oil permeated to the spent catalyst, the oil can be recovered and recycled by steaming method or can be safely and accurately removed by solvent extraction.

유분을 제거한 폐촉매는 유분제거에 잔존하는 열때문에 400℃로 유지되는데, 냉각 전에 배소로에 유도하여 400~600℃로 유지하면서 황과 금속의 산화에 필요한 산소를 적당하게 공급한다.The waste catalyst from which oil is removed is maintained at 400 ° C because of the heat remaining in oil removal, and it leads to the roasting furnace before cooling and maintains it at 400 ~ 600 ° C while adequately supplying the oxygen necessary for the oxidation of sulfur and metal.

이때 황의 산화와 함께 몰리브덴, 바나듐, 니켈, 코발트(MoO3, V2O5, NiO, CoO 등으로) 등도 동시에 산화되며 황은 산화되어 아황산가스(SO2)로 되고, 흡수탑(cap식 정유탑)으로 유도하여 상부로부터 흘러내리는 가성소다(NaOH) 수용액에 흡수되어 아황산소다(Na2SO3) 수용액이 되어 아래로 배출된다.At this time, along with the oxidation of sulfur, molybdenum, vanadium, nickel, cobalt (as MoO 3 , V 2 O 5 , NiO, CoO, etc.) are also oxidized and sulfur is oxidized to sulfurous acid gas (SO 2 ). ) Is absorbed by aqueous solution of caustic soda (NaOH) flowing down from the top, and is discharged downward as aqueous solution of sodium sulfite (Na 2 SO 3 ).

다음, 산화 처리 등 전처리된 폐촉매를 가성소다(NaOH) 용액과 혼합하여 교반시켜 산화니켈(NiO), 산화철(Fe2O3)을 포함한 미 반응물을 여과하여 분리하는 단계를 거친다.Next, the pretreated waste catalyst, such as oxidation treatment, is mixed with a caustic soda (NaOH) solution, stirred, and filtered to separate unreacted materials including nickel oxide (NiO) and iron oxide (Fe 2 O 3 ).

일례로, 교반기가 부설된 반응기에 물 80 중량을 주입하고 가성소다(NaOH) 80중량을 투입하여 교반을 시작하면 용해열로 가성소다는 용해한다. 무압하에서 더 욱 열을 가하여 증기가 배출되지 않는 135~160로 유지하면서 산화된 폐촉매 100중량을 조금씩 투입한 후, 투입이 종료되면 135~160℃로 유지하게 한다. 이때 안전을 위해 배기 밸브는 열어두나 증기는 별로 나오지 않으니 압력은 있을 수 없다. 왜냐하면 용매에 용질을 용해했을 때 용질의 투입량(Mol단위)에 따라 비점은 상승하고 빙점은 하강하기 때문이다.In one example, when 80 weight of water is injected into a reactor equipped with a stirrer and 80 weight of caustic soda (NaOH) is added to start stirring, caustic soda is dissolved by heat of dissolution. After heating at no pressure, it keeps 135 ~ 160 where steam is not discharged and inputs 100 weight of oxidized waste catalyst little by little, and keeps it at 135 ~ 160 ℃ when the input is finished. At this time, the exhaust valve is open for safety, but the steam does not come out very much, there can be no pressure. This is because when the solute is dissolved in the solvent, the boiling point increases and the freezing point decreases depending on the amount of the solute (Mol unit).

이 때 압력을 가하면 160℃이상으로 상승시켜 사용할 때 더욱 효율적이나 압력을 가할 시 용기의 두께가 두꺼워져야 하는 시설비의 부담과 압으로 인한 폭발의 위험성이 존재한다.At this time, if the pressure is increased to 160 ℃ or more, it is more efficient when used, but there is a risk of explosion due to the burden of facility cost and pressure that the thickness of the container should be thickened when the pressure is applied.

160℃에서 2~3시간 반응시키면, NiO, FeO, CoO 등만 녹지않고 (금속산화물이 음이온으로 변하지 않은 금속은 알카리와 반응하지 않는다) 잔존하게 되며, 물 400 중량부를 주입하여 반응물의 결정석출을 방지하기 위하여 교반을 하여 희석한 후 교반을 중지하고 여과한다. 잔사에는 산화니켈(NiO)이 57%정도가 포함되어 있으므로 간편하게 니켈을 분리할 수 있게 된다. When reacted at 160 ° C. for 2 to 3 hours, only NiO, FeO, CoO, etc. do not dissolve (the metal in which the metal oxide does not turn into an anion does not react with alkali), and 400 parts by weight of water is injected to crystallize the reactants. To prevent, dilute by stirring, stop the stirring and filter. The residue contains about 57% of nickel oxide (NiO), so that nickel can be easily separated.

다음, 통상 탈황촉매에는 알루미늄(Al)이 포함되어 있으므로 상기 여액에는 알루미늄이 존재하며, 이 경우 이를 분리하는 것이 요구된다.Next, since aluminum (Al) is usually included in the desulfurization catalyst, aluminum is present in the filtrate, in which case it is required to separate it.

상기 여과된 여액에는 알민산소다(NaAl(OH)4)가 존재하므로, 먼저 이를 제거하기 위해서는 교반기를 회전하면서 가열하여 85~90℃로 상승시킨 후 황산 또는 염산을(HCl 20%~30%) 여액에 주입한다.Sodium phosphate (NaAl (OH) 4) is present in the filtrate, and in order to remove it, first, by heating while rotating a stirrer, the temperature is raised to 85-90 ° C., followed by sulfuric acid or hydrochloric acid (HCl 20% -30%). Inject into the filtrate.

중화열로 온도는 상승하여 반응 종말에는 110℃ 이상 정도 되기에 증기 배출 밸브를 열어 안전을 기해야한다. 이때 염산도 배출될 수 있으니 염산공급량을 적절히 조절할 필요가 있다. 반응의 종료는 pH9.5가 되게 유지하며, 이 때 산화알루미늄(Al2O3)이 생성되고, 생성된 산화알루미늄(Al2O3)은 여과 후 세척수에 바나듐이 검출되지 않을 때까지 세척하여 진공펌프로 스며있는 수분을 흡인 제거하여 건조하여 얻는다.The temperature of the neutralization heat rises and the steam discharge valve should be opened for safety at the end of the reaction. At this time, hydrochloric acid may also be discharged, so it is necessary to properly adjust the amount of hydrochloric acid supplied. The end of the reaction is maintained at pH9.5, at which time aluminum oxide (Al 2 O 3 ) is produced, and the produced aluminum oxide (Al 2 O 3 ) is washed until vanadium is not detected in the wash water after filtration. Obtained by drying by sucking off the moisture permeated by the vacuum pump.

상기 방법은 텅스텐의 경우에도 동일하게 적용될 수 있다. 이때 상기 알민산소다(NaAl(OH)4)는 Al2O3가 되고 텅스텐산소다(Na2WO4)는 수용액으로 존재한다.The method is equally applicable to tungsten. At this time, the sodium almate (NaAl (OH) 4) is Al 2 O 3 And sodium tungstate (Na 2 WO 4 ) is present in the aqueous solution.

상기 여액과 염산 수용액의 반응은 pH9~14의 범위내에서, 95~120℃의 온도 범위내에서 수행하는 것이 좋다. The reaction between the filtrate and aqueous hydrochloric acid solution is preferably carried out in a temperature range of 95 ~ 120 ℃ in the range of pH 9 ~ 14.

상기 여액과 염산수용액의 반응에서 100℃~120℃와 pH 9.5~14 조건은 매우 중요하다. In the reaction between the filtrate and aqueous hydrochloric acid solution, the conditions of 100 ℃ ~ 120 ℃ and pH 9.5 ~ 14 is very important.

온도에 의한 산화알루미늄반응은 다음 반응식과 같다. The aluminum oxide reaction by temperature is shown in the following reaction formula.

P.H9.5~14의 조건하에서Under the conditions of P.H9.5 ~ 14

① NaAl(OH)4+HCl=Al(OH)3+NaCl+ H2O(0℃ ~ 상온) ① NaAl (OH) 4 + HCl = Al (OH) 3 + NaCl + H2O (0 ℃ ~ room temperature)

② NaAl(OH)4+HCl=AlO(OH)+NaCl+2H2O(80℃ ~ 95℃): ①이 혼재한다.② NaAl (OH) 4 + HCl = AlO (OH) + NaCl + 2H 2 O (80 ° C. to 95 ° C.): ① is mixed.

③ 2NaAl(OH)4+2HCl=Al2O3 +2NaCl+5H2O(100℃~ 120℃):②가 혼재한다.③ 2NaAl (OH) 4 + 2HCl = Al 2 O 3 + 2NaCl + 5H 2 O (100 ° C. to 120 ° C.): ② is mixed.

종래의 방법에서는, 상기 '①'의 반응에서 생성된 수산화알루미늄(Al(OH)3)이 여과가 되지않으므로 고비용으로 로터리 킬른(Rotery kiln)을 설치하여야 했다.그리고 많은 연료비를 들여 고온배소하면 물에 불용성으로 만들고자하는 목적은 바나딘산소다와 몰리브덴산소다를 분리하고자 하였음에도 불구하고 폐기물인 불용성인 알루미늄화합물에는 바나듐과 몰리브덴을 20%나 포함시킨 상태에서 폐기처분하는 문제점이 있었다. In the conventional method, since aluminum hydroxide (Al (OH) 3 ) produced in the reaction of '①' is not filtered, a rotary kiln should be installed at a high cost. Although the purpose of making it insoluble was to separate soda vanadate and sodium molybdate, there was a problem that the insoluble aluminum compound, which is a waste, was disposed of in the state containing 20% of vanadium and molybdenum.

**

'③'반응에 '②'반응의 생성물이 소량 혼재할 수 있으나 여과되므로, 위와 같은 작업이 무방하다. 따라서, 바람직하게는 80℃이상에서 반응을 진행하면 반응열에 의해 온도는 110℃ 이상으로 상승한다. 특히 수산화알루미늄(Al(OH)3)이 거의 존재하지 않는 온도인 100℃이상에서 수행하는 것이 임계적 의의가 있어 좋으며, 상한의 온도는 제한되지 않으나 불필요한 연료 소모를 방지하기 위해 110℃ 까지 제한하는 것이 필요하고, 특히 용액의 끓는 점 이상으로 상승시키는 것은 불필요하다. The product of the reaction '②' may be mixed in the '③' reaction, but it is filtered, so the above operation is fine. Therefore, preferably, when the reaction proceeds at 80 ° C or higher, the temperature rises to 110 ° C or higher by the heat of reaction. In particular, it is good to perform at a temperature of 100 ° C. or higher, which is almost free of aluminum hydroxide (Al (OH) 3 ), and the upper limit temperature is not limited, but is limited to 110 ° C. to prevent unnecessary fuel consumption. It is necessary, and in particular to raise above the boiling point of the solution.

'③'반응의 단일물(Al2O3)을 생산고자 하면 알카리액(pH9~14)중에서 가압하여 온도를 120℃ 이상으로 유지하면서 염산으로 중화하여 소디움(Na2O)을 제거하면 된다. 산화알미늄을 제거한 모액은 바나딘산소다(NaVo3)와 몰리브덴산소다(Na2MoO4)가 용존한다.If you want to produce a single product (Al 2 O 3 ) of the '③' reaction is to pressurize in alkaline solution (pH9 ~ 14) to neutralize with hydrochloric acid while maintaining the temperature above 120 ℃ to remove the sodium (Na 2 O). The mother liquor from which aluminum oxide was removed is dissolved in sodium vanadate (NaVo 3) and sodium molybdate (Na 2 MoO 4 ).

여액에 염산을 적하하여 pH 2 이하, Mo은 pH1, V은 pH1이하가 되도록 한다. 바람직하기로는 pH1(pH -1)이하까지 하강하여 온도는 85℃로 유지하면서 반응의 종료시까지 교반기를 회전시킨다.Hydrochloric acid is added dropwise to the filtrate so that pH is 2 or less, Mo is 1, and V is 1 or less. Preferably, the stirrer is rotated until the end of the reaction while the temperature is lowered to pH1 (pH-1) or lower and the temperature is maintained at 85 ° C.

다음, 아래 화학식1 및 화학식2에 나타낸 바와 같이, 상기 과정을 거친 여액을 pH1 이하의 산성조건에서, 80~100℃ 범위내의 저온 조건에서 교반시키고, 연속 또는 불연속적으로 액중에 기체를 불어넣어 폭기시킴으로써 산화바나듐(V2O5) 및 산화몰리브덴(MoO3)의 혼합물이 석출되어 침전되므로 여과하는 단계를 갖는다.Next, as shown in the following Chemical Formulas 1 and 2, the filtrate subjected to the above process was stirred at low temperature conditions within the range of 80 ~ 100 ℃, under acidic conditions of pH1 or less, and blown gas into the liquid continuously or discontinuously and aerated As a result, a mixture of vanadium oxide (V 2 O 5 ) and molybdenum oxide (MoO 3 ) is precipitated and precipitated, thereby filtering.

Figure 112008018188985-PAT00001
Figure 112008018188985-PAT00001

Figure 112008018188985-PAT00002
Figure 112008018188985-PAT00002

반응관 액면위의 공기를 흡인하여 흡인된 공기를 다시 액중으로 불어넣어 폭 기시키면 기포가 파열하면서 위 반응식에 나타난 바와 같은 탈수반응이 일어나 금속산화물이 침전된다. 몰리브덴 등의 경우는 pH1~2로 하여 가열하여도 탈수 반응이 일어나지만 단, 속도가 늦고 온도가 상당히 높아야 되는 문제가 있는데, 상기 폭기에 의하여 낮은 온도에서도 탈수반응이 일어나도록 할 수 있으며, 이는 매우 획기적인 방법이 될 수 있다. 산화바나듐(V2O5) 및 산화몰리브덴(MoO3)은 무정형결정으로 석출되며 이를 여과 수세하여 얻는다. When the air on the surface of the reaction tube is sucked and the aspirated air is blown back into the liquid to aeration, bubbles are ruptured and dehydration reactions as shown in the above reaction occur, causing metal oxides to precipitate. In the case of molybdenum, dehydration reaction occurs even when heated to pH1 ~ 2, however, there is a problem that the speed is slow and the temperature must be quite high, but the aeration can cause the dehydration reaction even at low temperatures. It can be a breakthrough. Vanadium oxide (V 2 O 5 ) and molybdenum oxide (MoO 3 ) precipitate as an amorphous crystal and are obtained by filtration washing with water.

상기 산성 조건을 위해 산 수용액을 사용할 수 있으며, pH 2 이하, 더욱 바람직하게는 pH 1이하의 산성조건이 되도록 산을 첨가하여야 하며, 반응 조건은 80℃ 이상에서 수행하는 것이 좋다. 상기 온도는 종래의 방법에 비하여 획기적으로 낮은 온도로서, 특별히 고온을 필요치 않은 장점이 있다. An acid aqueous solution may be used for the acidic condition, and an acid may be added to be an acidic condition of pH 2 or less, more preferably pH 1 or less, and the reaction conditions may be performed at 80 ° C. or higher. The temperature is significantly lower than the conventional method, there is an advantage that does not require a particularly high temperature.

이러한 폭기 현상을 일으키기 위해 반응기내의 공기를 흡인하여 액중으로 불어넣는 방법도 있으며, 대기를 흡인하여 액중으로 불어 넣을 수도 있다. 이 때에는 대기가 가지고 있는 온도와 습도는 반응관내의 조건과 다를 수 있으므로 이를 맞추기 위한 별도의 장치를 마련하는 것이 좋다. In order to cause such an aeration phenomenon, there is also a method of sucking the air in the reactor and blowing into the liquid, or may suck the atmosphere and blow into the liquid. At this time, the temperature and humidity of the atmosphere may be different from the conditions in the reaction tube, it is good to provide a separate device to match this.

이로써, 귀금속인 바나듐과 몰디브덴을 회수할 수 있게 된다.This makes it possible to recover noble metals vanadium and molybdenum.

추가적으로, 상기에서 석출된 산화바나듐(V2O5) 및 산화몰리브덴(MoO3) 혼합물에 암모니아수를 넣고 교반시켜 형성된 바나딘산암모늄(NH4VO3)과 몰리브덴산암모 늄((NH4)2MoO4)의 용해도차를 이용하여, 바나딘산암모늄(NH4VO3)의 석출된 결정을 여과시킴으로써, 바나딘산암모늄(NH4VO3)과 몰리브덴산암모늄((NH4)2MoO4)을 분리하는 단계를 더 수행할 수 있다.In addition, ammonium vanadate (NH 4 VO 3 ) and ammonium molybdate (NH 4 ) 2 formed by adding ammonia water to the mixture of vanadium oxide (V 2 O 5 ) and molybdenum oxide (MoO 3 ) precipitated above and stirring By filtering the precipitated crystals of ammonium vanadate (NH 4 VO 3 ) using the solubility difference of MoO 4 ), ammonium vanadate (NH 4 VO 3 ) and ammonium molybdate ((NH 4 ) 2 MoO 4 ) May be further performed.

얻어진 산화바나듐과 산화몰리브덴은 공침하므로 모액으로부터 분리 세척한 후 80~90℃ 정도의 물에 투입하고 교반하면서 암모니아수(NH4OH)로 중화한다. 상기 반응으로 바나딘산암모늄(NH4VO3)과 몰리브덴산암모늄((NH4)2MoO4)이 형성되며, 용해도가 바나딘산암모늄(NH4VO3)이 상대적으로 낮으므로, 용해도 차이를 이용한 재결정 등의 분리방법을 사용하여 이들을 분리할 수 있다.Since the obtained vanadium oxide and molybdenum oxide are co-precipitated, they are separated and washed from the mother liquor, and then poured into water at 80 to 90 ° C. and neutralized with ammonia water (NH 4 OH) while stirring. The reaction results in the formation of ammonium vanadate (NH 4 VO 3 ) and ammonium molybdate ((NH 4 ) 2 MoO 4 ), solubility of ammonium vanadate (NH 4 VO 3 ) is relatively low. These can be separated using a separation method such as recrystallization.

결정이 석출되면 이를 여과하고 수세하여 건조하며, 모액에는 몰리브덴산암모늄이 비중이 낮으면 V2O5와 MoO3를 투입하고 NH4OH를 주입하여 다시 가열하여 용해 후 냉각하여 반복적 수행으로 바나딘산암모늄(NH4VO3)을 얻고, 모액의 비중이 2.5 정도가 될 때까지 반복함으로 모액중의 NH4VO3의 용존량을 최소화하여 순도높은 바나딘산암모늄(NH4VO3)과 몰리브덴산암모늄((NH4)2MoO4)를 얻는다.When the crystals are precipitated, they are filtered, washed with water, and dried. When the ammonium molybdate is low in the mother liquor, V 2 O 5 and MoO 3 are added, NH 4 OH is injected, heated again, dissolved, cooled, and vanadine repeatedly. Ammonium vanadate (NH 4 VO 3 ) and molybdenum were obtained by minimizing the dissolved amount of NH 4 VO 3 in the mother liquor by obtaining ammonium acid (NH 4 VO 3 ) and repeating it until the specific gravity of the mother liquor was about 2.5. Ammonium acid ((NH 4 ) 2 MoO 4 ) is obtained.

상기 과정을 거친 후의 모액은 용해도가 큰 몰리브덴산암모늄이며 비중은 높을 수도 낮을 수도 있다. 원인은 용매인 물의 양이 적고 많음에 따라 기인할 수도 있으며 폐촉매(원료)중에 몰리브덴의 함량의 다소에 기인될 수도 있으나 비중이 2.5이하 일때는 상기한 반응(공침물과 암모니아의 반응)액으로 재사용하여 비중이 2.5이상이 되었을 시 냉각하여 12시간 후 바나딘산암모늄을 제거하면 모액은 몰리브덴산암모늄(NH4)2MoO4이고 바나듐은 0.0x%이하임으로 상당히 우수한 순도를 가진 제품이 될 수 있다.The mother liquor after the above process is a high solubility of ammonium molybdate and may have a high specific gravity or a low specific gravity. The cause may be due to the small and large amount of water as a solvent, and may be due to the amount of molybdenum in the spent catalyst (raw material), but when the specific gravity is 2.5 or less, the above reaction (reaction of coprecipitation and ammonia) may occur. If the specific gravity becomes more than 2.5 by reuse and remove ammonium vanadate after 12 hours, the mother liquor is ammonium molybdate (NH 4 ) 2 MoO 4 and the vanadium is 0.0x% or less. have.

더 추가적으로, 상기 각각 얻어진 바나딘산암모늄(NH4VO3)과 몰리브덴산암모늄((NH4)2MoO4) 중 적어도 하나 이상을 열분해하여 다시 산화바나듐(V2O5) 또는/및 산화몰리브덴(MoO3)으로 얻을 수 있으며, 이때 발생하는 암모니아 가스는 물에 용해시켜 전술한 암모니아수로 재사용하게 된다. Further additionally, at least one or more of the ammonium vanadate (NH 4 VO 3 ) and the ammonium molybdate ((NH 4 ) 2 MoO 4 ) obtained above may be thermally decomposed again to vanadium oxide (V 2 O 5 ) or / and molybdenum oxide. (MoO 3 ), and the ammonia gas generated at this time is dissolved in water and reused as the ammonia water described above.

이상과 같이 폐촉매는 10 여종이 있고 함량의 비율이 다르고 성분이 바뀌어 있는 것도 있으나, 본 발명의 특허청구범위에 기재된 사항내에서 모두 본 발명의 회수방법을 적용할 수 있으므로 본 발명에 포함된다. As mentioned above, there are about 10 kinds of spent catalysts, and the ratios of the contents are different and the components are changed. However, all of the waste catalysts are included in the present invention because the recovery method of the present invention can be applied within the scope of the claims of the present invention.

도 1은 본 발명의 일실시예에 따른 방법의 순서도이다.1 is a flowchart of a method according to an embodiment of the present invention.

Claims (4)

석유탈황용 폐촉매에서 가용 금속을 회수하는 방법에 있어서, In the method for recovering the soluble metal from the spent catalyst for petroleum desulfurization, 석유탈황용 폐촉매에 포함된 유분과 황을 제거하는 과정을 포함한 전처리단계;A pretreatment step including removing oil and sulfur contained in the spent catalyst for petroleum desulfurization; 상기 전처리단계를 거친 폐촉매를 가성소다(NaOH) 수용액에 넣고 135~160℃이상에서 반응시켜, 수용성의 반응물인 알민산소다, 몰리브덴산소다, 바나딘산소다와 비수용성의 비반응물인 산화니켈, 산화코발트 및 불순물을 분리 형성하는 단계; 및 The spent catalyst after the pretreatment step was put in an aqueous solution of caustic soda (NaOH) and reacted at 135 ~ 160 ° C. or higher, so that the water-soluble reactants such as sodium almine, sodium molybdate, sodium vanadate and non-aqueous non-reactant nickel oxide Separating and forming cobalt oxide and impurities; And 상기 비수용성의 산화니켈, 산화코발트 및 불순물을 여과하여 제거하고, 여액에는 알민산소다, 몰리브덴산소다, 바나딘산소다를 용존시키는 단계;를 포함하는 것을 특징으로 하는 석유탈황용 폐촉매에서 가용 금속을 회수하는 방법.The non-aqueous nickel oxide, cobalt oxide and impurities are filtered and removed, and the filtrate is dissolved in sodium phosphate, sodium molybdate and sodium vanadate. The soluble metal in the spent catalyst for petroleum desulfurization, comprising: How to recover. 제1항에 있어서, The method of claim 1, 상기 알민산소다, 몰리브덴산소다, 바나딘산소다를 포함한 여액을 가열하여 80℃ 이상으로 상승 시킨 후 교반하면서 염산 또는 황산 등을 주입하여 pH9.5에서 반응을 유지시키는 단계;Maintaining the reaction at pH 9.5 by heating the filtrate including sodium phosphate, sodium molybdate, and sodium vanadate to be heated to 80 ° C. or higher and then injecting hydrochloric acid or sulfuric acid with stirring; 상기 단계에서 pH9.5가 되면 산의 주입을 중지하고 반응열에 의해 110℃ 이상이 되어 비등하며 여과에 용이한 산화알미늄이 생성되는 단계; 및Stopping the injection of acid when the pH is 9.5 in the above step and boiling over the reaction at 110 ° C. or higher to generate aluminum oxide, which is easy to filter; And 상기 산화알미늄을 여과하여 회수하는 단계를 더 포함한 석유탈황용 폐촉매에서 가용 금속을 회수하는 방법.And recovering the soluble metal from the spent catalyst for petroleum desulfurization further comprising filtering and recovering the aluminum oxide. 석유탈황(VRDS)용 폐촉매에서 가용 금속을 회수하는 방법에 있어서, In the method for recovering the soluble metal from the spent catalyst for petroleum desulfurization (VRDS), 폐촉매를 처리하여 바나딘산소다와 몰리브덴산소다를 포함한 용액을 수득하는 단계; Treating the waste catalyst to obtain a solution containing sodium vanadate and sodium molybdate; 상기 용액을 pH 1.0~-1.0로 유지하면서, 80~100℃로 가열하는 단계; 및Heating the solution to 80-100 ° C. while maintaining the pH at 1.0-1.0; And 상기 용액을 교반하면서 폭기시켜 산화몰리브덴과 산화바나듐을 석출시키는 단계;를 포함한 석유탈황용 폐촉매에서 가용 금속을 회수하는 방법. Aerated while stirring the solution to precipitate the molybdenum oxide and vanadium oxide; Method for recovering the soluble metal from the spent catalyst for petroleum desulfurization. 제3항에 있어서,The method of claim 3, 상기 산화몰리브덴과 산화바나듐이 석출된 용액에 혼합물을 80~90℃의 온수에 투입하고 암모니아수를 혼합주입하여 교반시킴으로써, 용해도가 낮은 바나딘산 암모늄을 석출시키고 모액에는 상대적으로 용해도가 높은 몰리브덴산암모늄을 용존시켜 분리시키는 단계; 및Into the solution of molybdenum oxide and vanadium oxide, the mixture was poured into hot water at 80 to 90 ° C., and mixed with ammonia water to stir to precipitate ammonium vanadate having low solubility and ammonium molybdate having relatively high solubility in the mother liquid. Dissolving to dissolve; And 상기 석출된 바나딘산암모늄 결정을 분리하여 회수하는 단계;를 더 포함한 석유탈황용 폐촉매에서 가용 금속을 회수하는 방법. Separating and recovering the precipitated ammonium vanadate crystals; Method for recovering the soluble metal in the spent catalyst for petroleum desulfurization.
KR20080023169A 2007-03-13 2008-03-13 Method of recovering valuable metals from the vrds spent catalyst KR101008496B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020070025283 2007-03-13
KR20070025283A KR20070043736A (en) 2007-03-13 2007-03-13 A recovering method of 98% of precious metals including vanadium and molybdenum from discarded desulfurization catalyst used in oil via lower temperature roaster

Publications (2)

Publication Number Publication Date
KR20080032057A true KR20080032057A (en) 2008-04-14
KR101008496B1 KR101008496B1 (en) 2011-01-14

Family

ID=38178057

Family Applications (2)

Application Number Title Priority Date Filing Date
KR20070025283A KR20070043736A (en) 2007-03-13 2007-03-13 A recovering method of 98% of precious metals including vanadium and molybdenum from discarded desulfurization catalyst used in oil via lower temperature roaster
KR20080023169A KR101008496B1 (en) 2007-03-13 2008-03-13 Method of recovering valuable metals from the vrds spent catalyst

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR20070025283A KR20070043736A (en) 2007-03-13 2007-03-13 A recovering method of 98% of precious metals including vanadium and molybdenum from discarded desulfurization catalyst used in oil via lower temperature roaster

Country Status (7)

Country Link
US (1) US20100111787A1 (en)
EP (1) EP2125136A4 (en)
JP (1) JP2010521286A (en)
KR (2) KR20070043736A (en)
CN (1) CN101631598A (en)
CA (1) CA2679442A1 (en)
WO (1) WO2008111802A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101041378B1 (en) * 2009-08-28 2011-06-15 한국지질자원연구원 Recovery method of valuable metals and sulfur from spent petroleum catalyst
KR101101755B1 (en) * 2009-09-16 2012-01-05 주식회사 리싸이텍코리아 Method for recycling waste cemented carbide sludge
KR101487549B1 (en) * 2008-04-30 2015-01-29 주식회사 코캣 A Separation and Recovery Process of Metals from Petroleum Desulfurization Waste Catalyst
CN110195161A (en) * 2019-06-10 2019-09-03 江西理工大学 The method of Al, Co are recycled from useless aluminium-based catalyst sodium roasting water logging slag
KR20210067248A (en) * 2019-11-29 2021-06-08 주식회사 모노리스 Separation and recovery of valuable metals from desulfurized waste catalyst

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2404649A1 (en) * 2010-07-06 2012-01-11 Total Raffinage Marketing Flakes management in hydrocarbon processing units
NL2005158C2 (en) 2010-07-26 2012-01-30 Greenshores Patent B V Process for isolating vanadium from a solid composition.
CN101967007B (en) * 2010-11-23 2012-01-04 云南临沧鑫圆锗业股份有限公司 Process method for improving chlorination distillation recovery rate of coarse germanium dioxide
EP2465605A3 (en) 2010-12-20 2014-04-30 Sachtleben Chemie GmbH Titania-supported hydrotreating catalysts
CN102950010B (en) * 2011-08-31 2015-05-20 中国石油化工股份有限公司 Method for utilizing molybdenum in waste cobalt-molybdenum-system sulfur-tolerant shift catalyst
CN103521046B (en) * 2012-07-04 2015-12-09 北京三聚环保新材料股份有限公司 A kind of method preparing ambient temperature desulfuration agent with copper zinc dead catalyst
CN103058286A (en) * 2013-01-08 2013-04-24 苏州科技学院 Synthetic method of novel meso-porous metal oxide material
TWI465579B (en) 2013-03-25 2014-12-21 ping tao Wu Method for recycling metal in waste catalyst comprised of aluminum
CN104232902A (en) * 2014-09-03 2014-12-24 陈敏 Method for recycling tungsten, molybdenum, aluminum and cobalt from waste catalyst through wet process
CN104384167B (en) * 2014-09-09 2018-12-25 华电高科环保技术有限公司 A kind of comprehensive reutilization method of discarded titanium-based vanadium system SCR catalyst
CN105457973B (en) * 2015-12-23 2017-07-14 中国石油大学(北京) The method and processing system handled chlorine aluminium acidic ionic liquids dead catalyst
CN110387471B (en) * 2018-04-23 2021-12-17 中国石油化工股份有限公司 Deep nickel removing method for waste catalytic cracking catalyst, silicon-aluminum material obtained by deep nickel removing method and application of silicon-aluminum material
CN110387470B (en) * 2018-04-23 2022-01-04 中国石油化工股份有限公司 Treatment method of waste catalytic cracking catalyst, silicon-aluminum material obtained by treatment method and application of silicon-aluminum material
CN110527834A (en) * 2018-05-23 2019-12-03 国家能源投资集团有限责任公司 The method for handling waste flue gas denitration catalyst
CN111573733A (en) * 2020-05-14 2020-08-25 大连众智创新催化剂有限公司 Method for recycling waste catalyst
CN111690812B (en) * 2020-06-15 2022-06-07 南方科技大学 Recovery method of waste ternary lithium battery
CN114075623B (en) * 2020-08-12 2023-03-31 中国科学院过程工程研究所 Resource utilization method for two-stage extraction of vanadium-containing waste petroleum catalyst
CN114075625A (en) * 2020-08-18 2022-02-22 刘虎 Method for recovering valuable metals in carbon black
CN114480857A (en) * 2020-10-27 2022-05-13 中国石油化工股份有限公司 Method for recovering valuable metals in gasified ash
CN112408482A (en) * 2020-10-28 2021-02-26 沈阳化工大学 Comprehensive utilization method of alkali-soluble mother liquor of molybdenum-modified aluminum-nickel amorphous alloy catalyst
CN112410562A (en) * 2020-10-30 2021-02-26 岳阳鼎格云天环保科技有限公司 Treatment process of vanadium-titanium denitration waste catalyst
CN112301227A (en) * 2020-10-30 2021-02-02 岳阳鼎格云天环保科技有限公司 Recycling method of hydrogenation type waste catalyst
CN113430383B (en) * 2021-06-29 2022-09-16 中国科学院过程工程研究所 Method for extracting vanadium, nickel and molybdenum by leaching waste catalyst with ammonium sulfate solution
CN113981207A (en) * 2021-10-11 2022-01-28 北京工业大学 Method for leaching tungsten and molybdenum and application
CN114438332A (en) * 2022-01-25 2022-05-06 中南大学 Treatment method and application of waste hydrogenation catalyst
CN114635032B (en) * 2022-02-24 2024-01-30 湖南长宏新能源材料有限责任公司 Comprehensive recycling method of waste catalyst
CN115401060B (en) * 2022-08-24 2023-11-14 浙江红狮环保股份有限公司 Method for removing chlorine content from organic hazardous waste
CN117660767B (en) * 2024-01-31 2024-04-26 中国科学院过程工程研究所 Method for recycling sodium vanadate from nickel-aluminum slag by adopting multi-section microbubbles

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS549995B2 (en) * 1973-11-06 1979-04-28
JPS5521088B2 (en) * 1975-01-25 1980-06-07
JPS5319118A (en) * 1976-08-06 1978-02-22 Baba Risaachi Inst Kk Extraction of v and mo from oxidizing roasted ores containing same components
US4666685A (en) * 1986-05-09 1987-05-19 Amax Inc. Selective extraction of molybdenum and vanadium from spent catalysts by oxidative leaching with sodium aluminate and caustic
US4670229A (en) * 1986-05-09 1987-06-02 Amax Inc. Cyclic process for recovering metal values and alumina from spent catalysts
FR2668938B1 (en) * 1990-11-12 1995-03-17 Inst Francais Du Petrole NOVEL PROCESS FOR ANTI-POLLUTION TREATMENT OF A REFINING CATALYST IN THE USED CONDITION AND TOTAL RECOVERY OF THE DIFFERENT METAL CONSTITUENTS OF SAID CATALYST.
JP3355362B2 (en) * 1991-12-05 2002-12-09 太陽鉱工株式会社 Method for leaching valuable metals from spent catalyst
FR2687170B1 (en) * 1992-02-07 1994-09-30 Eurecat Europ Retrait Catalys RECOVERY OF MOLYBDENE AND VANADIUM FROM USED CATALYSTS.
JP3887511B2 (en) * 1999-05-19 2007-02-28 三菱レイヨン株式会社 Catalyst production method
JP3835148B2 (en) * 2000-09-25 2006-10-18 住友金属鉱山株式会社 Mo and V separation and recovery method
JP3703813B2 (en) 2003-04-25 2005-10-05 有限会社ワイエスケイテクノシステム Method for separating and recovering valuable metals
JP4502674B2 (en) * 2004-03-22 2010-07-14 日本キャタリストサイクル株式会社 Method for separating phosphorus-containing material from spent catalyst
JP2006328440A (en) * 2005-05-23 2006-12-07 Sumitomo Metal Mining Co Ltd Method for recovering nickel from spent catalyst
KR100674438B1 (en) 2005-12-09 2007-01-25 서안켐텍 주식회사 A process for separating vanadium and molybdenum from desulfurization waste catalyst

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101487549B1 (en) * 2008-04-30 2015-01-29 주식회사 코캣 A Separation and Recovery Process of Metals from Petroleum Desulfurization Waste Catalyst
KR101041378B1 (en) * 2009-08-28 2011-06-15 한국지질자원연구원 Recovery method of valuable metals and sulfur from spent petroleum catalyst
KR101101755B1 (en) * 2009-09-16 2012-01-05 주식회사 리싸이텍코리아 Method for recycling waste cemented carbide sludge
CN110195161A (en) * 2019-06-10 2019-09-03 江西理工大学 The method of Al, Co are recycled from useless aluminium-based catalyst sodium roasting water logging slag
CN110195161B (en) * 2019-06-10 2021-02-12 江西理工大学 Method for recovering Al and Co from waste aluminum-based catalyst sodium-modification roasting water-immersed slag
KR20210067248A (en) * 2019-11-29 2021-06-08 주식회사 모노리스 Separation and recovery of valuable metals from desulfurized waste catalyst

Also Published As

Publication number Publication date
KR20070043736A (en) 2007-04-25
CN101631598A (en) 2010-01-20
KR101008496B1 (en) 2011-01-14
WO2008111802A1 (en) 2008-09-18
EP2125136A4 (en) 2011-11-09
US20100111787A1 (en) 2010-05-06
EP2125136A1 (en) 2009-12-02
CA2679442A1 (en) 2008-09-18
JP2010521286A (en) 2010-06-24

Similar Documents

Publication Publication Date Title
KR101008496B1 (en) Method of recovering valuable metals from the vrds spent catalyst
CN103922416B (en) A kind of method of Separation and Recovery iron from red mud
CN101760651B (en) Process for extracting vanadium by acid leaching of stone coal
CN102424914B (en) Method for comprehensively recovering aluminum and potassium from vanadium extraction from stone coal
CN102321812B (en) Method for comprehensive utilization of laterite nickel ore
CN105152216B (en) A kind of method and device that Ti and W is reclaimed from waste flue gas denitration catalyst
WO2015176429A1 (en) Method for extracting vanadium by leaching vanadium-containing raw material fired clinkers with ammonium bicarbonate solution
CN109355514B (en) Method for extracting vanadium from vanadium slag by low-calcium roasting-countercurrent acid leaching
KR20190089903A (en) Treatment of primary cobalt sulfate / dithionate solution from a cobalt source
CN102011010A (en) Method for totally extracting vanadium, gallium and scandium by using titanium dioxide hydrolysis waste acid to leach steel slag containing vanadium
CN101525143A (en) Method for preparing magnesia, silicon dioxide and nickel oxide products from lateritic nickel ore
CN104775041A (en) Clean vanadium extraction method for self-circulation utilization of vanadium-solution-calcium-process precipitated vanadium, mother liquor and solid waste
CN106435197A (en) Process and device for alkaline extraction and recovery from waste catalysts in SCR (selective catalytic reduction) denitrification
CN107459059A (en) A kind of method that tungsten vanadium is realized from discarded SCR denitration and is efficiently carried altogether
CN101182037A (en) Method for reclaiming vanadium oxide from dephosphorization underflow slag
CN101746822A (en) Method for extracting sodium metavanadate from vanadium extraction leaching solution
CN107720801A (en) A kind of method that blanc fixe is prepared using titanium white waste acid
CN110218859A (en) The method of the useless denitrating catalyst valuable element of middle temperature tunnel type solid-state activation extraction
CN109022806A (en) A method of utilizing the vanadium liquid removal of impurities clay standby vanadic anhydride of vanadium
CN113293297B (en) Multi-element recycling of residual oil hydrogenation waste catalyst
CN111115674A (en) Ground underground salt, alkali and calcium circulation green production method
CN109354072A (en) A kind of alkali round-robin method hamlessizing technology ferric oxide red colorant technique
CN103773956A (en) Method for separating and recycling vanadium and chromium
CN108017089A (en) A kind of method that ammonium molybdate is recycled from useless molybdenum catalyst
CN105668597B (en) The method of flyash soda acid combined extracting aluminium base product and silica-based products

Legal Events

Date Code Title Description
A201 Request for examination
G15R Request for early opening
N231 Notification of change of applicant
E902 Notification of reason for refusal
N231 Notification of change of applicant
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee