KR101041378B1 - Recovery method of valuable metals and sulfur from spent petroleum catalyst - Google Patents

Recovery method of valuable metals and sulfur from spent petroleum catalyst Download PDF

Info

Publication number
KR101041378B1
KR101041378B1 KR20090080341A KR20090080341A KR101041378B1 KR 101041378 B1 KR101041378 B1 KR 101041378B1 KR 20090080341 A KR20090080341 A KR 20090080341A KR 20090080341 A KR20090080341 A KR 20090080341A KR 101041378 B1 KR101041378 B1 KR 101041378B1
Authority
KR
South Korea
Prior art keywords
leaching
waste catalyst
sulfur
valuable metals
recovering
Prior art date
Application number
KR20090080341A
Other languages
Korean (ko)
Other versions
KR20110022863A (en
Inventor
김동진
미시라 데바라즈
안종관
Original Assignee
한국지질자원연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국지질자원연구원 filed Critical 한국지질자원연구원
Priority to KR20090080341A priority Critical patent/KR101041378B1/en
Publication of KR20110022863A publication Critical patent/KR20110022863A/en
Application granted granted Critical
Publication of KR101041378B1 publication Critical patent/KR101041378B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/12Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic alkaline solutions
    • C22B3/14Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic alkaline solutions containing ammonia or ammonium salts
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/005Preliminary treatment of scrap
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/06Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
    • C22B3/08Sulfuric acid, other sulfurated acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/30Obtaining chromium, molybdenum or tungsten
    • C22B34/34Obtaining molybdenum
    • C22B34/345Obtaining molybdenum from spent catalysts
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • C22B7/007Wet processes by acid leaching
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • C22B7/008Wet processes by an alkaline or ammoniacal leaching
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

본 발명은 탈황 폐촉매로부터 유가금속 및 황의 회수방법에 관한 것으로, 그 목적은 유가금속과 코크스, 타르, 황 성분을 동시에 함유하고 있는 탈황 폐촉매를 전처리하여 탄소 및 유해성분을 제거함과 동시에 몰리브데늄의 침출반응을 억제하는 단체 황 성분을 동시에 제거하여 침출과정에서 몰리브데늄의 침출율을 높임과 동시에 침출잔사를 통해서도 유가금속을 재차 회수하고, 사용된 황을 회수하는 방법을 제공하는 데 있다. The present invention relates to a method for recovering valuable metals and sulfur from a desulfurized waste catalyst, and an object thereof is to pretreat a desulfurized waste catalyst containing both a valuable metal, coke, tar and sulfur, and to remove carbon and harmful components. It is to provide a method of simultaneously recovering valuable metals through the leaching residues while increasing the leaching rate of molybdenum in the leaching process by simultaneously removing the elemental sulfur component that inhibits the leaching reaction of denium. .

본 발명의 구성은 탈황 폐촉매를 아세톤으로 세척하여 폐촉매 표면의 탄소 및 오일 성분을 제거하는 1차 전처리 단계와; 1차 전처리된 탈황 폐촉매에 포함된 황을 제거하여 몰리브데늄의 침출율을 높이기 위해 CS2로 세척 및 건조하는 2차 전처리 단계와; 상기 2차 전처리 단계에서 사용된 CS2에 녹아있는 단체황 성분을 회수하는 증류처리단계와; 상기 2차 전처리 단계를 거친 탈황 폐촉매를 (NH4)2CO3로 알카리 처리하여 유가금속을 회수하는 1차 침출 단계와; 1차 침출 단계에서 배출된 침출잔사를 황산으로 산처리하여 유가금속을 회수하는 2차 침출 단계를 포함하여 구성된 탈황 폐촉매로부터 유가금속 및 황의 회수방법을 특징으로 한다.The present invention comprises a first pretreatment step of removing carbon and oil components on the surface of the spent catalyst by washing the desulfurized spent catalyst with acetone; A second pretreatment step of washing and drying with CS 2 to remove sulfur contained in the primary pretreated desulfurization waste catalyst to increase the leaching rate of molybdenum; A distillation step of recovering the elemental sulfur component dissolved in CS 2 used in the second pretreatment step; A first leaching step of recovering valuable metals by alkali treating the desulfurized waste catalyst which has undergone the second pretreatment step with (NH 4 ) 2 CO 3 ; Characterizing a method for recovering valuable metals and sulfur from the desulfurization waste catalyst comprising a second leaching step of recovering the valuable metals by acid treatment of the leaching residues discharged from the first leaching step with sulfuric acid.

탈황 폐촉매, 유가금속, 아세톤, CS2, 침출반응, 자원재활용 Desulfurization waste catalyst, valuable metals, acetone, CS2, leaching reaction, resource recycling

Description

탈황 폐촉매로부터 유가금속 및 황의 회수방법{Recovery method of valuable metals and sulfur from spent petroleum catalyst}Recovery method of valuable metals and sulfur from spent petroleum catalyst

본 발명은 탈황 폐촉매로부터 유가금속 및 황의 회수방법에 관한 것으로, 자세하게는 탈황 폐촉매로부터 오일 및 황 성분을 제거한 후, 몰리브데늄, 바나듐 및 니켈과 같은 유가금속을 효율적으로 침출하고 및 사용된 황을 회수하여 재활용하는 방법에 관한 것이다.The present invention relates to a method for recovering valuable metals and sulfur from a desulfurization waste catalyst. Specifically, after removing oil and sulfur components from a desulfurization waste catalyst, valuable metals such as molybdenum, vanadium and nickel are efficiently leached and used. The present invention relates to a method for recovering and recycling sulfur.

정유공장에서 촉매를 장시간 사용시 금속황화물, 산화물 기타 금속성분의 화합물이 촉매 표면에 흡착되어 촉매의 활성과 특성을 저해하게 되어 주기적으로 교환처리하고 있다. When the catalyst is used for a long time in a refinery, metal sulfides, oxides and other metal compounds are adsorbed on the surface of the catalyst, thereby inhibiting the activity and properties of the catalyst.

탈황탑(반응기)으로부터 빼낸 폐촉매는 발화하는 경우가 있기 때문에 반응기에서 배출과 동시에 컨테이너 백에 넣고 밀봉하여 공기와의 접촉을 차단함으로써 발화를 방지한다. Since the waste catalyst removed from the desulfurization tower (reactor) may ignite, it is placed in a container bag and sealed at the same time as it is discharged from the reactor to prevent ignition by blocking contact with air.

중유의 탈황 목적으로 사용하는 VRHDS(Vacuum Residue Hydro- Desulfurization) 촉매에는 탈황시 원유로부터 바나듐(V)이 10 % 이상, 가연성 물질인 탄소가 5 % 이상, 황이 10 % 이상 촉매로 유입된다. In the case of desulfurization, the VRHDS (Vacuum Residue Hydro-Desulfurization) catalyst used for the desulfurization of heavy oil is introduced into the catalyst from crude oil by at least 10% vanadium (V), at least 5% carbon combustible, and at least 10% sulfur.

따라서 탈황 폐촉매를 처리하는 경우에는 가연성 물질인 황, 탄소의 제거와 유가금속 중에서 가장 함량이 많은 V의 처리를 우선적으로 고려하고 다음에 Mo, Ni 등 유가금속을 회수하게 된다. Therefore, in the case of treating the desulfurization waste catalyst, the removal of sulfur, carbon, which is a combustible substance, and the treatment of V, which has the most content among the valuable metals, are considered first, and then valuable metals such as Mo and Ni are recovered.

탈황 폐촉매는 국내에서 연간 약 20,000 톤이 발생하고 있으며 발생량중 약 70 %는 국내에서 재활용되고, 23 %는 수출되고, 약 8 %는 매립 처리하고 있는 실정이다. Desulfurization waste catalysts generate about 20,000 tons annually in Korea, and about 70% of them are recycled in Korea, 23% are exported, and about 8% are landfilled.

한편, 2005년부터 V, Mo가격의 폭등에 따라 일부기업들이 폐촉매에서 V, Mo를 회수하는 사업에 관심을 갖기 시작하였으며 특히 10 %의 바나듐이 함유된 탈황 폐촉매의 경우 경제적 가치가 높아 재활용하는 것이 유망한 것으로 판단되고 있다. On the other hand, since 2005, some companies have been interested in the business of recovering V and Mo from spent catalysts due to the surge in V and Mo prices. Especially, desulfurized spent catalysts containing 10% of vanadium have high economic value and are recycled. It is judged to be promising.

이러한 폐기된 탈황 폐촉매는 유해 폐기물이기 때문에 안전한 처리나 금속 회수를 위한 추가공정이 필요하기 때문에 친환경적인 처리 및 회수 기술의 개발이 절실히 요구되고 있다. Since these waste desulfurized waste catalysts are hazardous wastes, additional processes for safe treatment or recovery of metals are required, and thus, development of environment-friendly treatment and recovery technologies is urgently required.

미국의 GCMC社, 대만의 Full-Yield Industry社, 일본의 太陽鑛工, NCC 등은 소다배소 후 수침출법을 사용하여 탈황 폐촉매로부터 유가금속을 회수하는 상업화 공장을 가동 중에 있다. GCMC in the United States, Full-Yield Industry in Taiwan, Taiyang Industrial in Japan, and NCC are operating commercialization plants to recover valuable metals from desulfurized spent catalysts after soda roasting using water leaching.

이러한 상업화 공장에서의 적용 공정은 전체적으로 유사하나, 목적성분을 어떠한 물질 형태로 회수할 것인가와 파쇄, 배소, 침출, 침전반응 등 각 단위공정 상에서 채택하는 조업방법에 따라 조금씩의 차이점이 있다.The application process in such a commercial plant is similar in general, but there are some differences depending on the type of material to be recovered in the form of the target component and the operation method adopted in each unit process such as crushing, roasting, leaching, and precipitation reaction.

현재 상용화된 건식법에서는 직접 용융법, 하소 및 용융법, 염화배소법 등이 있으나 건식법으로 탈황 폐촉매를 처리할 경우 유해 가스인 SO2가 방출되는 단점이 있다. Current commercially available dry methods include direct melting, calcination and melting, and chlorinated chloride. However, when the desulfurization waste catalyst is treated by the dry method, SO 2 is released.

한편 습식법은 폐촉매를 우선 배소 처리한 후 산 또는 알칼리 침출을 실시하게 된다. 그러나 이 방법 역시 폐 촉매로부터 몰리브데늄의 침출율이 매우 낮고 SO2 가스 처리공정이 추가로 필요한 문제점이 대두되고 있다. In the wet method, the waste catalyst is roasted first, followed by acid or alkali leaching. However, this method also has a problem that the leaching rate of molybdenum from the waste catalyst is very low and additional SO 2 gas treatment process is required.

또한 탈황 폐촉매는 니켈, 바나듐 그리고 몰리브데늄 등 유가금속 뿐만 아니라 코크스, 타르, 황 성분을 동시에 함유하고 있기 때문에 침출반응에 앞서서 유해 성분을 미리 제거해야 유가금속의 침출율을 증가시킬 수 있으므로, 침출반응에 앞서서 유해 성분을 미리 제거할 필요성이 있다. In addition, since desulfurization waste catalyst contains not only valuable metals such as nickel, vanadium and molybdenum, but also coke, tar, and sulfur components at the same time, it is necessary to remove harmful components prior to the leaching reaction to increase the leaching rate of the valuable metals. There is a need to remove harmful components before leaching.

상기와 같은 문제점을 해결하기 위한 본 발명의 목적은 유가금속과 코크스, 타르, 황 성분을 동시에 함유하고 있는 탈황 폐촉매를 전처리하여 탄소 및 유해성분을 제거함과 동시에 몰리브데늄의 침출반응을 억제하는 단체 황 성분을 동시에 제거하여 침출과정에서 몰리브데늄의 침출율을 높임과 동시에 침출잔사를 통해서도 유가금속을 재차 회수하고, 동시에 탈황 폐촉매 속 황 성분 제거공정에 사용된 CS2를 증류처리하여 단체 황을 회수하는 공정을 포함하여 유가금속을 회수하는 방법을 제공하는데 있다.An object of the present invention for solving the above problems is to pretreat the desulfurization waste catalyst containing valuable metals, coke, tar, sulfur components at the same time to remove carbon and harmful components and to suppress the leaching reaction of molybdenum Simultaneous removal of sulfur components increases the leaching rate of molybdenum in the leaching process, and recovers valuable metals again through the leaching residue, and simultaneously distills CS 2 used in the sulfur removal process in the desulfurization waste catalyst. It provides a method for recovering valuable metals, including the process of recovering sulfur.

상기한 바와 같은 목적을 달성하고 종래의 결점을 제거하기 위한 과제를 수행하는 본 발명은 탈황 폐촉매를 아세톤으로 세척하여 폐촉매 표면의 탄소 및 오일 성분을 제거하는 1차 전처리 단계와; The present invention to achieve the object as described above and to perform the problem for removing the conventional drawbacks comprises a first pretreatment step of removing carbon and oil components on the surface of the spent catalyst by washing the desulfurized spent catalyst with acetone;

1차 전처리된 탈황 폐촉매에 포함된 황을 제거하여 몰리브데늄의 침출율을 높이기 위해 CS2로 세척 및 건조하는 2차 전처리 단계와;A second pretreatment step of washing and drying with CS 2 to remove sulfur contained in the primary pretreated desulfurization waste catalyst to increase the leaching rate of molybdenum;

상기 2차 전처리 단계에서 사용된 CS2에 녹아있는 단체황 성분을 회수하는 증류처리단계와;A distillation step of recovering the elemental sulfur component dissolved in CS 2 used in the second pretreatment step;

상기 2차 전처리 단계를 거친 탈황 폐촉매를 (NH4)2CO3로 알카리 처리하여 유가금속을 회수하는 1차 침출 단계와;A first leaching step of recovering valuable metals by alkali treating the desulfurized waste catalyst which has undergone the second pretreatment step with (NH 4 ) 2 CO 3 ;

1차 침출 단계에서 배출된 침출잔사를 황산으로 산처리하여 유가금속을 회수하는 2차 침출 단계를 포함하여 구성된 것을 특징으로 하는 탈황 폐촉매로부터 유가금속 및 황의 회수방을 제공함으로써 달성된다.It is achieved by providing a recovery of valuable metals and sulfur from the desulfurization waste catalyst, characterized in that it comprises a second leaching step of recovering the valuable metals by acid treatment of the leaching residue discharged from the first leaching step with sulfuric acid.

상기 2차 전처리 후, 탈황 폐촉매로부터 유가금속의 침출속도를 증가시키기 위한 분쇄단계;를 더 포함하는 것을 특징으로 한다.After the second pre-treatment, a pulverization step for increasing the leaching rate of the valuable metal from the desulfurization waste catalyst; characterized in that it further comprises.

상기 분쇄단계는 세척, 건조된 탈황 폐촉매를 45 - 106 ㎛의 입도로 분쇄하는 것을 특징으로 한다.The crushing step is characterized in that the washed, dried desulfurized waste catalyst is pulverized to a particle size of 45-106 ㎛.

상기 1차 침출 단계는 탈황 폐촉매와 침출용액의 고액비 10 %, (NH4)2CO3 첨가량 10 - 40 g/L, 산소를 3.5 - 5.0 cc/min 공급하면서 반응온도 30 ℃에서 60분간 반응시켜 유가금속을 침출시키는 단계인 것을 특징으로 한다.The first leaching step is a solid solution ratio of the desulfurization waste catalyst and the leaching solution 10%, (NH 4 ) 2 CO 3 addition amount 10-40 g / L, oxygen-3.5-5.0 cc / min while supplying a reaction temperature of 30 60 minutes It is characterized in that the step of leaching the valuable metal by the reaction.

상기 2차 침출 단계는 (NH4)2CO3 첨가량 10 - 40 g/L, 황산농도 1M인 조건에서 산소를 3.5 - 5.0 cc/min 공급하면서 반응온도 30 ℃에서 60분간 반응시켜 유가금속을 침출시키는 단계인 것을 특징으로 한다.The second leaching step (NH 4 ) 2 leaching the valuable metals by reacting for 60 minutes at a reaction temperature of 30 ℃ while supplying 3.5-5.0 cc / min oxygen 2 CO 3, 10-40 g / L, sulfuric acid concentration 1M conditions Characterized in that the step.

상기 1차 전처리단계는 탈황 폐촉매를 3 - 7일간 세척하여 오일 및 탄소성분 을 제거하는 단계인 것을 특징으로 한다.The first pretreatment step is characterized in that the step of removing the oil and carbon components by washing the desulfurization waste catalyst for 3-7 days.

상기 2차 전처리단계는 아세톤 처리후의 탈황 폐촉매를 1 - 2시간 세척한 후 50 ℃에서 24 - 48시간 건조하여 황 성분을 제거하는 단계인 것을 특징으로 한다.The second pretreatment step is characterized in that the step of removing the sulfur component by washing the desulfurized waste catalyst after acetone treatment for 1-2 hours and then dried at 50 ℃ for 24 to 48 hours.

상기 2차 전처리단계에서 세척은 CS2를 이용 1 - 2 시간동안 환류로 세척하는 것을 특징으로 한다.In the second pretreatment step, the washing is characterized by washing at reflux for 1 to 2 hours using CS 2 .

상기 탈황 폐촉매는 알루미나 기지 19.5 %에 니켈 2.0 %, 몰리브데늄 1.4 %, 바나듐 9.0 % 그리고 황 11.6 %가 주요 성분으로 존재하는 폐촉매를 사용하는 것을 특징으로 한다.The desulfurization waste catalyst is characterized by using a waste catalyst in which 19.5% of alumina matrix is present as nickel, 2.0% molybdenum, 1.4%, vanadium 9.0% and 11.6% sulfur as main components.

상기 1차 및 2차 침출단계를 거쳐 회수되는 유가금속은 니켈, 바나듐 및 몰리브데늄인 것을 특징으로 한다.Valuable metals recovered through the first and second leaching steps are characterized in that nickel, vanadium and molybdenum.

본 발명은 탈황 폐촉매로부터 유가금속 추출시 공정단계가 간단하여 경제적으로 회수할 수 있다는 장점과,The present invention has the advantage that the process step is simple and economically recoverable when extracting valuable metals from the desulfurization waste catalyst,

탈황 폐촉매로부터 (NH4)2CO3에 의한 1단계 침출과정에서 몰리브데늄의 침출 율을 높일 수 있으며 침출잔사를 H2SO4으로 2차 처리함으로써 니켈 97 %, 바나듐 99 %, 몰리브데늄 84 %를 회수함으로써 유가금속(V, Ni, Mo)의 침출율을 극대화하였다는 장점과,It is possible to increase the leaching rate of molybdenum in the first stage leaching process by (NH 4 ) 2 CO 3 from the desulfurization waste catalyst, and by treating the leaching residue with H 2 SO 4 , 97% nickel, 99% vanadium, molybdenum By recovering 84% of denium, the leaching rate of valuable metals (V, Ni, Mo) was maximized.

탈황 폐촉매속 황 성분 제거에 사용된 CS2를 증류처리하여 단체 황은 회수하고 CS2는 재활용할 수 있다는 장점을 가진 유용한 발명으로 산업상 그 이용이 크게 기대되는 발명이다.Desulfurization waste catalyst in the distillation process to the CS 2 used for removing sulfur and sulfur recovery groups CS 2 is the invention that the use of industrially useful with advantages that can be recycled invention greatly expected.

이하 본 발명의 실시 예인 구성과 그 작용을 첨부도면에 연계시켜 상세히 설명하면 다음과 같다. 또한 본 발명을 설명함에 있어서, 관련된 공지기능 혹은 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명은 생략한다.Hereinafter, the configuration and the operation of the embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the following description of the present invention, a detailed description of known functions and configurations incorporated herein will be omitted when it may make the subject matter of the present invention rather unclear.

도 1은 본 발명의 한실시예에 따라 탈황 폐촉매로부터 단체 황 제거 및 유가금속 회수 공정도이다.1 is a process for removing elemental sulfur and recovering valuable metals from a desulfurization waste catalyst according to one embodiment of the present invention.

도시된 바와 같이 본 발명에 따른 유가금속 회수방법은, As shown is a valuable metal recovery method according to the present invention,

탈황 폐촉매를 아세톤으로 세척하여 폐촉매 표면의 탄소 및 오일 성분을 3일간 제거하는 1차 전처리 단계와; Washing the desulfurized waste catalyst with acetone to remove carbon and oil components on the surface of the spent catalyst for three days;

1차 전처리된 탈황 폐촉매에 포함된 황을 제거하여 몰리브데늄의 침출율을 높이기 위해 CS2로 세척 및 건조하는 2차 전처리 단계와;A second pretreatment step of washing and drying with CS 2 to remove sulfur contained in the primary pretreated desulfurization waste catalyst to increase the leaching rate of molybdenum;

상기 2차 전처리 단계에서 사용된 CS2에 녹아있는 단체황 성분을 회수하는 증류처리단계와;A distillation step of recovering the elemental sulfur component dissolved in CS 2 used in the second pretreatment step;

상기 2차 전처리 단계를 거친 탈황 폐촉매를 (NH4)2CO3로 알카리 처리하여 유가금속을 회수하는 1차 침출 단계와;A first leaching step of recovering valuable metals by alkali treating the desulfurized waste catalyst which has undergone the second pretreatment step with (NH 4 ) 2 CO 3 ;

1차 침출 단계에서 배출된 침출잔사를 황산으로 산처리하여 유가금속을 회수하는 2차 침출 단계를 포함하여 구성된다.It comprises a second leaching step of recovering the valuable metals by acid treatment of the leaching residue discharged from the first leaching step with sulfuric acid.

또한 본 발명은 상기 2차 전처리 후, 탈황 폐촉매로부터 유가금속의 침출속도를 증가시키기 위한 분쇄단계를 더 포함한다.The present invention further includes a pulverization step for increasing the leaching rate of the valuable metal from the desulfurization waste catalyst after the second pretreatment.

상기에서 1차 침출 단계는 탈황 폐촉매와 침출용액의 고액비 10 %, (NH4)2CO3 첨가량 10 - 40 g/L, 산소를 3.5 - 5.0 cc/min 공급하면서 반응온도 30 ℃에서 60분간 반응시켜 유가금속을 침출시키는 단계이다. 이와 같은 수치 범위에서 유가금속의 침출율이 가장 좋았다.In the first leaching step, the solid solution ratio of the desulfurization catalyst and the leaching solution is 10%, (NH 4 ) 2 CO 3 addition amount of 10-40 g / L, oxygen 3.5-5.0 cc / min while supplying a reaction temperature of 30 60 It is a step of leaching valuable metals by reacting for a minute. The leaching rate of valuable metals was the best in this range.

상기에서 2차 침출 단계는 황산농도 1M인 조건에서 산소를 3.5 - 5.0 cc/min 공급하면서 반응온도 30 ℃에서 60분간 반응시켜 유가금속을 침출시키는 단계이다. 이와 같은 수치 범위에서 유가금속의 침출율이 가장 좋았다.In the second leaching step is a step of leaching valuable metals by reacting for 60 minutes at the reaction temperature of 30 ℃ while supplying oxygen 3.5-5.0 cc / min in the condition of sulfuric acid concentration of 1M. The leaching rate of valuable metals was the best in this range.

이하 단계별 공정을 보다 구체적으로 설명한다.The step-by-step process will be described in more detail below.

본 발명에서 한 실시예에 따라 침출시료로 사용한 촉매는 탈황 폐촉매이며, 알루미나 기지에 니켈 2.0 %, 몰리브데늄 1.4 %, 바나듐 9.0 % 그리고 황 11.6 % 등이 주요 성분으로 존재한다. (표 1. 참고) According to one embodiment of the present invention, the catalyst used as the leaching sample is a desulfurization waste catalyst, and alumina base includes nickel 2.0%, molybdenum 1.4%, vanadium 9.0% and sulfur 11.6% as main components. (See Table 1.)

표 1. 탈황 폐촉매 시료의 화학조성 Table 1. Chemical Composition of Desulfurization Waste Catalyst Sample

Element contentElement content Weight %Weight% AlAl 19.519.5 VV 99 NiNi 22 MoMo 1.41.4 SS 11.611.6 FeFe 0.40.4

이러한 탈황 폐촉매는 타르, 오일 성분 등을 포함하고 있기 때문에 후처리 공정의 효율성을 높이기 위하여 본 발명에서는 아세톤을 용매로 사용하여 이들 성분을 제거하였다. Since the desulfurization waste catalyst contains tar and oil components, in the present invention, acetone is used as a solvent to remove these components in order to increase the efficiency of the post-treatment process.

즉, 본 발명은 침출 전단계로 탈황 폐촉매로부터 오일 및 탄소성분을 제거하기 위하여 soxhlet 장치(oil extractor)와 아세톤을 용매로 사용하여 3 ~ 7일간 세척하였다. 이와 같은 기간에서 제거 효율이 가장 좋았다.That is, the present invention was washed for 3-7 days using a soxhlet device (oil extractor) and acetone as a solvent in order to remove the oil and carbon components from the desulfurization waste catalyst before the leaching step. In this period, the removal efficiency was the best.

종래에는 일부 특허에서 톨루엔 또는 크실렌을 탈황 폐촉매의 탈오일 용매로 사용하였지만 크실렌 또는 톨루엔 같은 용매는 끓는점이 100 ℃, 110 ℃ 이상이기 때문에 폐촉매의 활성도가 변할 수 있고, 반응온도를 100 ℃ 이상으로 높이게 되면 에너지 사용량에 따른 비용이 증가하기 때문에 용매로서 적당하지 않다.Conventionally, in some patents, toluene or xylene is used as the deoiling solvent of the desulfurization waste catalyst, but solvents such as xylene or toluene may change the activity of the waste catalyst because the boiling point is 100 ° C. or 110 ° C. or higher, and the reaction temperature is 100 ° C. or more. If it is increased, the cost of energy consumption increases, so it is not suitable as a solvent.

하지만 본 발명에 사용된 용매인 아세톤은 끓는점이 56 ℃ 이므로 오일제거에 적합하다. However, acetone, a solvent used in the present invention, is suitable for removing oil because its boiling point is 56 ° C.

또한 본 발명은 아세톤으로 오일 성분을 세척한 후 SO2 가스에 의한 대기 오염을 억제함과 동시에 탈황 폐촉매 표면 즉, 몰리브데늄 금속위에 단체황이 흡착된 경우 반응층을 생성하여 침출을 방해하는 단체 황을 제거하는 것이 필요하며, 이를 위해 아세톤으로 세척한 탈황 폐촉매를 CS2로 환류(refluxing)하여 세척하는 전처리 공정을 포함하였다.In addition, the present invention is to inhibit the air pollution by SO 2 gas after washing the oil component with acetone and at the same time, when the elemental sulfur is adsorbed on the surface of the desulfurization waste catalyst, that is, molybdenum metal to form a reaction layer to prevent leaching It is necessary to remove sulfur, and to this end, a pretreatment process of washing the desulfurized waste catalyst washed with acetone by refluxing with CS 2 is included.

그 후 몰리브데늄 금속위에 반응층을 생성하여 몰리브데늄의 침출을 방해하는 황 성분을 제거하기 위하여 CS2로 세척과정을 실시하였다. Thereafter, a reaction layer was formed on the molybdenum metal, and a washing process was performed with CS 2 to remove sulfur components that hinder the leaching of molybdenum.

이를 위해 soxhlet 장치와 CS2를 용매로 사용하여 1 - 2시간동안 세척한 후 50℃에서 24 - 48시간 건조하여 오일성분과 단체 황을 제거하였다.To this end, using a soxhlet device and CS 2 as a solvent to wash for 1-2 hours, and then dried at 50 ℃ for 24-48 hours to remove the oil components and single sulfur.

단체 황을 제거하는 용매로 사용된 CS2는 휘발성을 같는 무색의 용매로써 끓는점(46 ℃)이 낮고 , CS2에 용해된 단체 황은 다음 단계인 증류(Distillation) 공정에 의해 회수한다.CS 2 used as a solvent to remove single sulfur is a colorless solvent having the same volatility, has a low boiling point (46 ° C.), and single sulfur dissolved in CS 2 is recovered by the next step of distillation.

따라서 최종 반응단계에서 황은 단체 상태로 얻어지고 CS2는 세척 과정에 재사용하게 된다. Thus, in the final reaction stage, sulfur is obtained in a single state and CS 2 is reused in the washing process.

이러한 과정을 통하여 황을 단체 황으로 회수하므로 배소공정을 삭제하고 SO2 가스로 인한 대기 오염 방지할 수 있게 되었다. Through this process, the sulfur is recovered as the elemental sulfur, thereby eliminating the roasting process and preventing air pollution by SO 2 gas.

상기한 세척단계에서 세척시간이 짧으면 탄소 및 오일 성분을 완전히 제거할 수 없고, 너무 장시간 세척시 비경제적인 문제점 발생한다. 마찬가지로 건조도 비슷한 이유이다. If the cleaning time is short in the above washing step, the carbon and oil components cannot be completely removed, and an uneconomical problem occurs when washing for too long. Similarly, drying is the same reason.

이후 상기한 세척, 건조 과정을 거친 탈황 폐촉매는 막자사발로 분쇄한 후 45 - 106 ㎛ 입도로 체질하여 진공데시케이터에 보관하였다. 이러한 입도일대 가장 침출효율이 좋았다.Then, the desulfurized waste catalyst, which was subjected to the washing and drying process, was crushed into a mortar and sieved to a particle size of 45-106 μm and stored in a vacuum desiccator. The leaching efficiency of the granularity was the best.

즉, 아세톤 및 CS2로 전처리한 폐촉매를 분쇄할 경우 금속의 침출속도를 증가시킬 수 있으므로 볼밀로 분쇄하고 106 ㎛이하로 체질하여 45 - 106 ㎛크기의 침출시료로 사용하였다. That is, when the waste catalyst pretreated with acetone and CS 2 was ground, the leaching rate of the metal could be increased, so it was pulverized with a ball mill and sieved below 106 μm and used as a leaching sample having a size of 45-106 μm.

상기한 분쇄과정을 거친 탈황 폐촉매는 (NH4)2CO3 및 H2SO4으로 침출하여 탈황 폐촉매로부터 니켈, 바나듐, 몰리브데늄의 침출, 회수를 극대화였다.The desulfurization waste catalyst after the pulverization process was leached with (NH 4 ) 2 CO 3 and H 2 SO 4 to maximize leaching and recovery of nickel, vanadium and molybdenum from the desulfurization waste catalyst.

본 발명에 따른 시료에 대한 X-ray 회절 분석 결과 대부분의 금속은 산화물 과 황화물 상태로 존재한다. 바나듐은 산화물 형태인 V4O9로, 니켈은 황화물 형태인 Ni3-xS2로 존재하는 반면, 몰리브데늄은 산화물인 e MoO3와 황화물인 Mo3S4 형태로 존재한다. X-ray diffraction analysis of the sample according to the present invention shows that most of the metal is present in oxide and sulfide states. Vanadium is present in oxide form V 4 O 9 and nickel is present in sulfide form Ni 3-x S 2 , while molybdenum is present in oxide form e MoO 3 and sulfide Mo 3 S 4 .

바나듐 산화물 및 니켈 황화물은 산에 침출되지만, 몰리브데늄 산화물과 황화물은 산 보다는 알칼리에 용이하게 침출된다. 이러한 금속 산화물 및 황화물의 침출 특성을 이용하여 본 발명에서는 전처리에 의한 세척 단계를 거친 탈황 폐촉매를 알칼리인 (NH4)2CO3 로 1차 침출하여 몰리브데늄을 상당량 침출하고 H2SO4를 이용한 2차 침출에서 바나듐과 니켈의 침출율을 높이고자 하였다. Vanadium oxides and nickel sulfides are leached in acids, but molybdenum oxides and sulfides are more easily leached in alkali than acids. In the present invention using the leaching characteristics of the metal oxides and sulfides in the present invention, the desulfurized waste catalyst, which has undergone the washing step by pretreatment, is first leached with alkali phosphorus (NH 4 ) 2 CO 3 to leach molybdenum to a considerable amount, and H 2 SO 4 We tried to increase the leaching rate of vanadium and nickel in the secondary leaching using.

본 발명의 한실시예에 따른 침출실험은 500cc 용량의 pyrex 반응기에서 실시하였으며, 반응용액은 기계교반기를 사용하여 500 rpm으로 교반하였다.The leaching test according to an embodiment of the present invention was carried out in a 500cc pyrex reactor, the reaction solution was stirred at 500 rpm using a mechanical stirrer.

(NH4)2CO3에 의한 1차 알칼리 침출 및 H2SO4에 의한 2차 산 침출 반응시 반응용기와 반응온도는 동일한 조건이었으며 반응시 산소는 3.5∼5.0 cc/min 일정하게 공급하였다.The reaction vessel and the reaction temperature were the same in the first alkali leaching with (NH 4 ) 2 CO 3 and the second acid leaching with H 2 SO 4 , and oxygen was constantly supplied at 3.5 to 5.0 cc / min.

상기 1단계 (NH4)2CO3 침출시 실험조건은 탈황 폐촉매와 침출용액의 고액비 10 %, 반응온도 30 ℃, 반응시간 60분 이었으며 (NH4)2CO3의 첨가량은 10 - 40 g/L 범위에서 변화시켰다.Experimental conditions for the first step (NH 4 ) 2 CO 3 leaching was the solid-liquid ratio of desulfurization catalyst and leaching solution 10%, reaction temperature 30 ℃, reaction time 60 minutes and (NH 4 ) 2 CO 3 addition amount is 10-40 The change was in the g / L range.

이러한 침출조건에 따라 CS2로 세척된 폐촉매는 (NH4)2CO3로 1차 침출하여 탈황 폐촉매 중 몰리브데늄을 상당량 침출할 수 있었다. 이후 상당량의 니켈과 바나 듐이 함유되어 있는 침출잔사를 1M H2SO4으로 2차 침출하여 니켈과 바나듐을 침출하였다. According to these leaching conditions, the waste catalyst washed with CS 2 was leached first with (NH 4 ) 2 CO 3 to leach molybdenum in the desulfurized waste catalyst. Thereafter, a leaching residue containing a considerable amount of nickel and vanadium was leached secondly with 1M H 2 SO 4 to leach nickel and vanadium.

1, 2차 침출시 30 ℃에서 60분 반응시 니켈과 바나듐은 97 % 이상, 몰리브데늄은 약 84 % 침출, 회수할 수 있었다. When the first and second leaching reactions were carried out at 30 ° C. for 60 minutes, nickel and vanadium were more than 97% and molybdenum was leached and recovered about 84%.

특히 본 발명에서 도출한 최적조건의 침출액에는 니켈 97 %, 바나듐 99 %, 몰리브데늄 84 %가 용해되어 있으며 유가금속이 용해된 침출용액은 용매추출(Solvent Extraction) 기술을 이용하여 니켈, 바나듐, 몰리브데늄을 각각 분리하게 된다. In particular, the leaching solution of the optimum conditions derived from the present invention is dissolved in nickel 97%, vanadium 99%, molybdenum 84%, leaching solution in which valuable metals are dissolved by using a solvent extraction (Solvent Extraction) technology, Molybdenum is separated separately.

이와 같이 본 발명은 탈황 폐촉매로부터 유가금속(V, Ni, Mo)의 침출율을 극대화하고, 단체 황을 회수하기 위한 경제적인 공정이다. As described above, the present invention is an economical process for maximizing the leaching rate of valuable metals (V, Ni, Mo) from the desulfurization waste catalyst and recovering elemental sulfur.

이하 구체적인 본 발명에 대한 변수에 대한 설명이다.Hereinafter, a description will be given of the specific variables for the present invention.

(CS2에 의한 황 성분의 제거 특성분석)Characterization of Removal of Sulfur Components by CS 2

탈황 폐촉매로부터 산 및 알카리 처리시 유가금속의 침출율을 향상시키기 위하여 탈황 폐촉매 표면에 흡착된 단체 황을 제거하였다. 즉, 아세톤으로 1차 세척한 탈황 폐촉매를 Soxhlet 장치에 장입한 후 46 oC 이상으로 CS2를 가열하면서 1 - 2 시간동안 환류(refluxing)시켜 단체 황 성분을 제거하였다. In order to improve the leaching rate of valuable metals during acid and alkali treatment from the desulfurization waste catalyst, the elemental sulfur adsorbed on the desulfurization waste catalyst surface was removed. That is, the desulfurized waste catalyst first washed with acetone was charged to a Soxhlet apparatus, and the elemental sulfur component was removed by refluxing for 1-2 hours while heating CS 2 at 46 ° C. or higher.

도 2a는 아세톤으로 세척한 시료에 대한 X-ray 회절 분석결과를 자세히 나타 내고 있고, 도 2b는 CS2로 황 성분을 제거한 시료에 대한 X-ray 회절 분석결과를 자세히 나타내고 있다. Figure 2a shows in detail the X-ray diffraction analysis results for the sample washed with acetone, Figure 2b shows the X-ray diffraction analysis results for the sample removed the sulfur component with CS 2 in detail.

도시된 바와 같이 아세톤으로 세척한 시료에서는 단체 황의 피크를 볼 수 있으나, CS2로 세척한 시료에서는 단체 황의 피크가 나타나지 않았다. 즉 CS2로 세척함에 따라 탈황 폐촉매로부터 단체 황이 대부분 제거되었음을 알 수 있다. As shown in the sample washed with acetone, the peak of the single sulfur can be seen, the sample washed with CS 2 showed no peak of single sulfur. That is, it can be seen that most of the elemental sulfur was removed from the desulfurization waste catalyst by washing with CS 2 .

((NH4)2CO3의 첨가량 변화 특성 분석 1)(Analysis of Changes in Addition Amount of (NH 4 ) 2 CO 3 1)

아세톤 및 CS2로 세척한 탈황 폐촉매 시료에 대한 침출실험을 실시하였다. 탈황 폐촉매와 침출용액의 고액비 10 %, 반응온도 30 ℃, 반응시간 60분, 산소 투입량 3.5∼5.0 cc/min, (NH4)2CO3의 첨가량 10 g/L(증류수 1L 기준)인 조건에서 1차 침출실험을 실시하였다. (표 2. 참조). Leaching experiments were performed on desulfurized spent catalyst samples washed with acetone and CS 2 . Desulfurization of waste catalyst and the solid-liquid ratio of 10% of the leaching solution, the reaction temperature 30 ℃, reaction time 60 minutes, the oxygen amount 3.5~5.0 cc / min, (NH 4 ) 2 The amount 10 g / L (distilled water 1L basis) of CO 3 The first leaching experiment was carried out under the conditions. (See Table 2.).

표 2. 아세톤, CS2 세척후 1차 침출시 유가금속의 침출율 (고액비 10 %, 반응온도 30 ℃, 반응시간 60분, 산소 투입량 3.5∼5.0 cc/min) Table 2. Leaching rate of valuable metals in the first leaching after washing with acetone and CS 2 (solid solution ratio 10%, reaction temperature 30 ℃, reaction time 60 minutes, oxygen input amount 3.5 ~ 5.0 cc / min)

(NH4)2CO3, (g/L)(NH 4 ) 2 CO 3 , (g / L) Ni (%)Ni (%) V (%)V (%) Mo (%)Mo (%) 1010 1One 2121 5050 2020 22 3434 5454 3030 33 3636 5656 4040 55 3838 6060

침출실험 결과 Mo은 50 %, V은 21 % 침출되었으나 Ni은 1 %로 거의 침출반응 이 일어나지 않았다. 즉 니켈 황화물은 pH 0.5 - 1.0 인 산성영역에서는 용이하게 침출되지만 본 실험조건인 알칼리 영역(pH 8.68) 에서는 니켈은 거의 침출되지 않았다. As a result of leaching, 50% of Mo and 21% of V were leached, but 1% of Ni was hardly leached. In other words, nickel sulfide was easily leached in the acidic region of pH 0.5-1.0, but nickel was almost not leached in the alkaline region (pH 8.68).

((NH4)2CO3의 첨가량 변화 특성 분석 2)(Analysis of Changes in Addition Amount of (NH 4 ) 2 CO 3 2)

아세톤 및 CS2로 세척한 탈황 폐촉매 시료에 대한 침출실험을 실시하였다. 탈황 폐촉매외 침출용액의 고액비 10 %, 반응온도 30 ℃, 반응시간 60분, 산소 투입량 3.5∼5.0 cc/min, (NH4)2CO3의 첨가량 40 g/L(증류수 1L 기준)인 조건에서 1차 침출실험을 실시하였다. (표 2. 참조). Leaching experiments were performed on desulfurized spent catalyst samples washed with acetone and CS 2 . Solids ratio of leaching solution other than desulfurization waste catalyst 10%, reaction temperature 30 ℃, reaction time 60 minutes, oxygen input amount 3.5-5.0 cc / min, (NH 4 ) 2 CO 3 addition amount 40 g / L (based on 1L distilled water) The first leaching experiment was carried out under the conditions. (See Table 2.).

침출실험 결과 Mo은 60 %, V은 38 %, Ni은 5 %가 침출되었다. 몰리브데늄, 바나듐에 비하여 니켈의 침출율은 여전히 매우 낮은 수준이었다. In the leaching test, 60% of Mo, 38% of V, and 5% of Ni were leached. Compared with molybdenum and vanadium, the leaching rate of nickel was still very low.

((NH4)2CO3 첨가시 반응시간의 영향 분석)(Analysis of the reaction time when (NH 4 ) 2 CO 3 is added)

아세톤 및 CS2로 세척한 탈황 폐촉매 시료에 대한 침출실험을 실시하였다. 탈황 폐촉매외 침출용액의 고액비 10 %, 반응온도 30 ℃, 산소 투입량 3.5∼5.0 cc/min, (NH4)2CO3의 첨가량 40 g/L 인 조건에서 반응시간을 5 - 60 분까지 변화시켜 유가금속의 침출거동을 조사하였다. (도 3 참조). Leaching experiments were performed on desulfurized spent catalyst samples washed with acetone and CS 2 . Reaction time up to 5-60 minutes under conditions of 10% solids ratio of leaching solution other than desulfurization catalyst, reaction temperature 30 ℃, oxygen input amount 3.5 ~ 5.0 cc / min, addition amount of (NH 4 ) 2 CO 3 40 g / L The leaching behavior of valuable metals was investigated by changing the values. (See Figure 3).

침출실험 결과 Mo은 15분 반응시 48 %, 30분 반응시 58 % 가 침출된 후 그 이상의 반응시간에서는 Mo의 침출율은 변화가 없었다. V의 경우 15분 반응시 26 %, 30분 반응시 30 %, 45분 반응시 36 %, 60분 반응시 38 % 가 침출되었다. Ni의 침출율은 1.5 - 5.2 %로 Mo과 V의 침출율에 비하면 매우 낮은 수준이었다. As a result of the leaching test, the leaching rate of Mo was 48% in the 15-minute reaction and 58% in the 30-minute reaction. In the case of V, 26% in 15 minutes, 30% in 30 minutes, 36% in 45 minutes, 38% in 60 minutes were leached. The leaching rate of Ni was 1.5-5.2%, which was very low compared to the leaching rates of Mo and V.

(H2SO4에 의한 2차 침출 특성 분석)(Secondary Leaching Characteristics Analysis by H 2 SO 4 )

아세톤 및 CS2로 세척한 탈황 폐촉매를 (NH4)2CO3, 10 - 40 g/L 첨가한 알칼리 조건에서 침출실험을 실시한 후 유가금속이 상당량 함유된 침출잔사를 황산으로 2차 침출을 실시하였다. 이때 침출 실험조건은 탈황 폐촉매와 침출용액의 고액비 10 %, 반응온도 30 ℃, 반응시간 60분, 산소 투입량 3.5∼5.0 cc/min, H2SO4 1M 250cc였다. After the leaching of the desulfurized waste catalyst washed with acetone and CS 2 (NH 4 ) 2 CO 3, 10-40 g / L, the leaching experiment was carried out with sulfuric acid for the second leaching of the leaching residue containing valuable metals. Was carried out. At this time, the leaching experiment conditions were the solid-liquid ratio of desulfurization catalyst and leaching solution 10%, reaction temperature 30 ℃, reaction time 60 minutes, oxygen input amount 3.5-5.0 cc / min, H 2 SO 4 1M 250cc.

황산으로 2차 침출한 결과 니켈의 경우 1차 침출실험에서 첨가한 알칼리 양에 관계없이 90 - 93 %가 침출되어 비슷한 결과를 얻었다. 그러나 바나듐은 알칼리 첨가량에 따라 50 - 61 %, 그리고 몰리브데늄은 12 - 24 %가 침출되었다. (표 3 참고)As a result of the second leaching with sulfuric acid, 90-93% of nickel was leached regardless of the amount of alkali added in the first leaching experiment. However, vanadium leached 50-61% and molybdenum 12-24%, depending on the amount of alkali added. (See Table 3)

표 3. 아세톤, CS2 세척후 2차 침출시 유가금속의 침출율 (H2SO4 1M, 반응온도 30 ℃, 반응시간 60분, 산소 투입량 3.5∼5.0 cc/min) Table 3. Leaching rate of valuable metals in the second leaching after washing with acetone, CS 2 (H 2 SO 4 1M, reaction temperature 30 ℃, reaction time 60 minutes, oxygen input amount 3.5 ~ 5.0 cc / min)

1차 침출조건Primary leaching condition 각 금속의 침출율Leaching rate of each metal (NH4)2CO3, (g/L)(NH 4 ) 2 CO 3 , (g / L) Ni (%)Ni (%) V (%)V (%) Mo (%)Mo (%) 1010 9090 5050 1212 2020 9191 5555 1414 3030 9393 6060 2020 4040 9292 6161 2424

본 발명은 상술한 특정의 바람직한 실시 예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형실시가 가능한 것은 물론이고, 그와 같은 변경은 청구범위 기재의 범위 내에 있게 된다. The present invention is not limited to the above-described specific preferred embodiments, and various modifications can be made by any person having ordinary skill in the art without departing from the gist of the present invention claimed in the claims. Of course, such changes will fall within the scope of the claims.

도 1은 본 발명의 한실시예 따라 탈황 폐촉매로부터 단체 황 제거 및 유가금속 회수 공정도이고,1 is a process for removing elemental sulfur and valuable metals from a desulfurization waste catalyst according to one embodiment of the present invention,

도 2a는 본 발명에 따라 아세톤으로 세척한 시료의 X-ray 분석결과도이고,Figure 2a is an X-ray analysis of the sample washed with acetone in accordance with the present invention,

도 2b는 본 발명에 따라 CS2로 세척한 시료의 X-ray 분석결과도이고,2b is an X-ray analysis result of the sample washed with CS 2 according to the present invention,

도 3은 본 발명에 따른 1차 침출시 반응시간에 따른 유가금속의 침출율 변화율 그래프이다.3 is a graph of the leaching rate change rate of valuable metals according to the reaction time during the first leaching according to the present invention.

Claims (10)

탈황 폐촉매를 아세톤으로 세척하여 폐촉매 표면의 탄소 및 오일 성분을 제거하는 1차 전처리 단계와; A first pretreatment step of washing the desulfurization waste catalyst with acetone to remove carbon and oil components on the surface of the waste catalyst; 1차 전처리된 탈황 폐촉매에 포함된 황을 제거하여 몰리브데늄의 침출율을 높이기 위해 CS2로 세척 및 건조하는 2차 전처리 단계와;A second pretreatment step of washing and drying with CS 2 to remove sulfur contained in the primary pretreated desulfurization waste catalyst to increase the leaching rate of molybdenum; 상기 2차 전처리 단계에서 사용된 CS2에 녹아있는 단체황 성분을 회수하는 증류처리단계와;A distillation step of recovering the elemental sulfur component dissolved in CS 2 used in the second pretreatment step; 상기 2차 전처리 단계를 거친 탈황 폐촉매를 (NH4)2CO3로 알카리 처리하여 유가금속을 회수하는 1차 침출 단계와;A first leaching step of recovering valuable metals by alkali treating the desulfurized waste catalyst which has undergone the second pretreatment step with (NH 4 ) 2 CO 3 ; 1차 침출 단계에서 배출된 침출잔사를 황산으로 산처리하여 유가금속을 회수하는 2차 침출 단계를 포함하여 구성된 것을 특징으로 하는 탈황 폐촉매로부터 유가금속 및 황의 회수방법.A method for recovering valuable metals and sulfur from a desulfurization waste catalyst comprising a second leaching step of recovering valuable metals by acid-treating the leaching residue discharged from the first leaching step with sulfuric acid. 청구항 1에 있어서,The method according to claim 1, 상기 2차 전처리 후, 탈황 폐촉매로부터 유가금속의 침출속도를 증가시키기 위한 분쇄단계;를 더 포함하는 것을 특징으로 하는 탈황 폐촉매로부터 유가금속 및 황의 회수방법.After the second pre-treatment, a pulverizing step for increasing the leaching rate of the valuable metals from the desulfurization waste catalyst; recovery method of valuable metals and sulfur from the desulfurization waste catalyst further comprising. 청구항 2에 있어서,The method according to claim 2, 상기 분쇄단계는 세척, 건조된 탈황 폐촉매를 45 - 106㎛의 입도로 분쇄하는 것을 특징으로 하는 탈황 폐촉매로부터 유가금속 및 황의 회수방법.The crushing step is a method for recovering valuable metals and sulfur from the desulfurized waste catalyst, characterized in that the washed, dried desulfurized waste catalyst is crushed to a particle size of 45-106㎛. 청구항 1 또는 청구항 2에 있어서,The method according to claim 1 or 2, 상기 1차 침출 단계는 탈황 폐촉매와 침출용액의 고액비 10 %, (NH4)2CO3 첨가량 10 - 40 g/L, 산소를 3.5 - 5.0 cc/min 공급하면서 반응온도 30 ℃에서 60분간 반응시켜 유가금속을 침출시키는 단계인 것을 특징으로 하는 탈황 폐촉매로부터 유가금속 및 황의 회수방법.The first leaching step is a solid solution ratio of the desulfurization waste catalyst and the leaching solution 10%, (NH 4 ) 2 CO 3 addition amount 10-40 g / L, oxygen-3.5-5.0 cc / min while supplying a reaction temperature of 30 ℃ 60 minutes A method for recovering valuable metals and sulfur from the desulfurization waste catalyst, characterized in that the step of leaching the valuable metal by the reaction. 청구항 1 또는 청구항 2에 있어서,The method according to claim 1 or 2, 상기 2차 침출 단계는 (NH4)2CO3 첨가량 10 - 40 g/L, 황산농도 1M인 조건에서 산소를 3.5 - 5.0 cc/min 공급하면서 반응온도 30 ℃에서 60분간 반응시켜 유가금속을 침출시키는 단계인 것을 특징으로 하는 탈황 폐촉매로부터 유가금속 및 황의 회수방법.The second leaching step (NH 4 ) 2 leaching the valuable metals by reacting for 60 minutes at a reaction temperature of 30 ℃ while supplying 3.5-5.0 cc / min oxygen 2 CO 3, 10-40 g / L, sulfuric acid concentration 1M conditions Method for recovering valuable metals and sulfur from the desulfurization waste catalyst, characterized in that the step of. 청구항 1에 있어서,The method according to claim 1, 상기 1차 전처리단계는 탈황 폐촉매를 3 - 7일간 세척하여 오일 및 탄소성분을 제거하는 단계인 것을 특징으로 하는 탈황 폐촉매로부터 유가금속 및 황의 회수방법.The first pretreatment step is a method for recovering valuable metals and sulfur from the desulfurized waste catalyst, characterized in that to remove oil and carbon components by washing the desulfurized waste catalyst for 3 to 7 days. 청구항 1에 있어서,The method according to claim 1, 상기 2차 전처리단계는 아세톤 처리후의 탈황 폐촉매를 1 - 2시간 세척한 후 50 ℃에서 24 - 48시간 건조하여 황 성분을 제거하는 단계인 것을 특징으로 하는 탈황 폐촉매로부터 유가금속 및 황의 회수방법.The second pretreatment step is a method for recovering valuable metals and sulfur from the desulfurized waste catalyst, characterized in that the desulfurized waste catalyst after acetone treatment is washed for 1-2 hours and dried at 50 ° C. for 24 to 48 hours to remove sulfur components. . 청구항 1에 있어서,The method according to claim 1, 상기 2차 전처리단계에서 세척은 CS2를 이용 1 - 2 시간동안 환류로 세척하는 것을 특징으로 하는 탈황 폐촉매로부터 유가금속 및 황의 회수방법.In the second pretreatment step, the washing is carried out at reflux for 1 to 2 hours using CS 2 to recover valuable metals and sulfur from the desulfurized waste catalyst. 청구항 1에 있어서,The method according to claim 1, 상기 탈황 폐촉매는 알루미나 기지 19.5 %에 니켈 2.0 %, 몰리브데늄 1.4 %, 바나듐 9.0 % 그리고 황 11.6 %가 주요 성분으로 존재하는 폐촉매를 사용하는 것을 특징으로 하는 탈황 폐촉매로부터 유가금속 및 황의 회수방법.The desulfurization waste catalyst is composed of valuable metals and sulfur from the desulfurization waste catalyst, characterized in that a waste catalyst having 19.5% alumina base, nickel 2.0%, molybdenum 1.4%, vanadium 9.0% and sulfur 11.6% is used as a main component. Recovery method. 청구항 1에 있어서,The method according to claim 1, 상기 1차 및 2차 침출단계를 거쳐 회수되는 유가금속은 니켈, 바나듐 및 몰리브데늄인 것을 특징으로 하는 탈황 폐촉매로부터 유가금속 및 황의 회수방법.The valuable metals recovered through the first and second leaching steps are nickel, vanadium and molybdenum, and recovering valuable metals and sulfur from the desulfurization waste catalyst.
KR20090080341A 2009-08-28 2009-08-28 Recovery method of valuable metals and sulfur from spent petroleum catalyst KR101041378B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR20090080341A KR101041378B1 (en) 2009-08-28 2009-08-28 Recovery method of valuable metals and sulfur from spent petroleum catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20090080341A KR101041378B1 (en) 2009-08-28 2009-08-28 Recovery method of valuable metals and sulfur from spent petroleum catalyst

Publications (2)

Publication Number Publication Date
KR20110022863A KR20110022863A (en) 2011-03-08
KR101041378B1 true KR101041378B1 (en) 2011-06-15

Family

ID=43931069

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20090080341A KR101041378B1 (en) 2009-08-28 2009-08-28 Recovery method of valuable metals and sulfur from spent petroleum catalyst

Country Status (1)

Country Link
KR (1) KR101041378B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101434437B1 (en) 2013-06-05 2014-08-27 케이씨코트렐 주식회사 Re-generating system and method of used-catalyst for RHDS and VRHDS desulfurization
KR102503805B1 (en) 2021-10-18 2023-02-24 도담케미칼 주식회사 METHOD OF EXTRACTING AND COLLECTING Ni, Al AND NaOH FROM PETROLEUM DESULFURIZATION WASTE CATALYST

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102560084A (en) * 2012-01-14 2012-07-11 长春黄金设计院 Arsenic removal process containing post-combustion technology

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07252548A (en) * 1994-03-11 1995-10-03 Sumitomo Metal Mining Co Ltd Method for recovering valuable metal from waste catalyst
KR20000001579A (en) * 1998-06-12 2000-01-15 이경운 Separation and recovery of nickel, vanadium, and molybdenum from waste catalyst of vacuum residue desulfurization
KR20020040736A (en) * 2002-05-16 2002-05-30 유정근 Recovery of V,W,Ti components from waste de-Nox catalyst
KR20080032057A (en) * 2007-03-13 2008-04-14 김만주 Method of recovering valuable metals from the vrds spent catalyst

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07252548A (en) * 1994-03-11 1995-10-03 Sumitomo Metal Mining Co Ltd Method for recovering valuable metal from waste catalyst
KR20000001579A (en) * 1998-06-12 2000-01-15 이경운 Separation and recovery of nickel, vanadium, and molybdenum from waste catalyst of vacuum residue desulfurization
KR20020040736A (en) * 2002-05-16 2002-05-30 유정근 Recovery of V,W,Ti components from waste de-Nox catalyst
KR20080032057A (en) * 2007-03-13 2008-04-14 김만주 Method of recovering valuable metals from the vrds spent catalyst

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101434437B1 (en) 2013-06-05 2014-08-27 케이씨코트렐 주식회사 Re-generating system and method of used-catalyst for RHDS and VRHDS desulfurization
KR102503805B1 (en) 2021-10-18 2023-02-24 도담케미칼 주식회사 METHOD OF EXTRACTING AND COLLECTING Ni, Al AND NaOH FROM PETROLEUM DESULFURIZATION WASTE CATALYST

Also Published As

Publication number Publication date
KR20110022863A (en) 2011-03-08

Similar Documents

Publication Publication Date Title
Akcil et al. A review of metal recovery from spent petroleum catalysts and ash
CN109705635B (en) Method for deashing and recycling ZnO of waste tire pyrolysis carbon black
Vitolo et al. Recovery of vanadium from heavy oil and Orimulsion fly ashes
CN101500944B (en) Process for metals recovery from spent catalyst
CN100594246C (en) Method for recovering high-purity molybdenum from molybdenum-containing dead catalyst
JP2013522454A (en) Metal recovery from refining residues
Lin et al. Recycling of waste lead storage battery by vacuum methods
CN108067245B (en) Recycling method of hydrotreating catalyst
TW201144451A (en) A method for recovering rhenium and other metals from rhenium-bearing materials
JPS63260984A (en) Hydroconversion of heavy oil and residual oil
KR101041378B1 (en) Recovery method of valuable metals and sulfur from spent petroleum catalyst
Liang et al. A review of metallurgical processes and purification techniques for recovering Mo, V, Ni, Co, Al from spent catalysts
Wang et al. Ultrasound-assisted oil removal of γ-Al2O3-based spent hydrodesulfurization catalyst and microwave roasting recovery of metal Mo
Rojas-Rodríguez et al. Chemical treatment to recover molybdenum and vanadium from spent heavy gasoil hydrodesulfurization catalyst
Wang et al. Comprehensive recovery and recycle of jarosite residues from zinc hydrometallurgy
KR101107010B1 (en) Recovery method of valuable metals by pretreatment of spent petroleum catalyst and sulphuric acid
US2878163A (en) Purification process
KR100686247B1 (en) Method for pretreating spent catalyst in recovering process of valued metal from spent catalyst
CN108067272B (en) Preparation method of hydrogenation catalyst
Marafi et al. Utilization of waste spent hydroprocessing catalyst: development of a process for full recovery of deposited metals and alumina support
KR102366743B1 (en) Recovery Method of Valuable Metal from Wasted Desulfurization Catalyst
CA2389354A1 (en) A process for recovering hydrocarbons from a carbon containing material
CN110512082B (en) Recovery method of waste metal sludge
KR20220126466A (en) Method For Recovering Molybdenium And Vanadium From Spent Catalysts by nonaqueous systems
Mohammed et al. Extraction of valuable metals from spent hydrodesulfurization catalyst by two stage leaching method

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160325

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20170327

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20180406

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20181226

Year of fee payment: 19