KR20000001579A - Separation and recovery of nickel, vanadium, and molybdenum from waste catalyst of vacuum residue desulfurization - Google Patents

Separation and recovery of nickel, vanadium, and molybdenum from waste catalyst of vacuum residue desulfurization Download PDF

Info

Publication number
KR20000001579A
KR20000001579A KR1019980021919A KR19980021919A KR20000001579A KR 20000001579 A KR20000001579 A KR 20000001579A KR 1019980021919 A KR1019980021919 A KR 1019980021919A KR 19980021919 A KR19980021919 A KR 19980021919A KR 20000001579 A KR20000001579 A KR 20000001579A
Authority
KR
South Korea
Prior art keywords
nickel
vanadium
molybdenum
waste catalyst
leaching
Prior art date
Application number
KR1019980021919A
Other languages
Korean (ko)
Other versions
KR100277503B1 (en
Inventor
김준수
장희동
이후인
박형규
Original Assignee
이경운
한국자원연구소
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이경운, 한국자원연구소 filed Critical 이경운
Priority to KR1019980021919A priority Critical patent/KR100277503B1/en
Publication of KR20000001579A publication Critical patent/KR20000001579A/en
Application granted granted Critical
Publication of KR100277503B1 publication Critical patent/KR100277503B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G31/00Compounds of vanadium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G39/00Compounds of molybdenum
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/40Valorisation of by-products of wastewater, sewage or sludge processing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE: Nickel, vanadium, and molybdenum are separated and recovered individually and continuously, i.e., nickel components by the form of NiSO4 in the solution of oxidation-roasting vacuum residue desulfurization in low temperature and in the solution of precipitating ammonium sulfate; vanadium components by the form of V2O5 from its residual in high temperature; and molybdenum components by the form of CaMoO4. CONSTITUTION: Nickel components which contain in the valuable metals containing in the waste catalysts of the vacuum residue desulfurization are separated and recovered by the form of NiSO4 through the procedure of oxidation-roasting in low temperature, precipitation of ammonium sulfate, and solvent extract, and then crystallization; vanadium and molybdenum components which have in the residue after recovering nickel are separated and recovered by each forms of V2O5 and CaMoO4. through the procedure of soda-roasting in high temperature, the precipitation in water, the selective precipitation, and the calcination.

Description

석유탈황 폐촉매로부터 니켈 및 바나디움과 몰리브덴의 분리, 회수방법Separation and Recovery of Nickel, Vanadium, and Molybdenum from Petroleum Desulfurization Waste Catalyst

본 발명은 석유탈황 폐촉매 중에 함유된 유가금속 중 니켈성분을 저온 산화배소, 황산암모늄 침출, 용매추출 및 결정화 공정을 통해서 분리, 회수한 후 상기 니켈 회수 후의 폐촉매 잔사중에 함유된 바나디움 및 몰리브덴 성분을 고온소다배소, 수침출, 선택적 침전 및 하소 공정을 통해서 효과적으로 분리, 회수하여 회수된 NiSO4는 도금액으로 사용되고, V2O5및 CaMoO4는 훼로바나디움과 훼로몰리브덴 제조시 첨가원료로 이용할 수 있는 산업상 이용가능성을 극대화할 수 있는 석유화학 폐촉매로부터 니켈 및 바나디움과 몰리브덴의 분리, 회수방법에 관한 것이다.The present invention is to separate and recover the nickel component of the valuable metal contained in the petroleum desulfurization waste catalyst through low-temperature roasting, ammonium sulfate leaching, solvent extraction and crystallization process, and then the vanadium and molybdenum components contained in the spent catalyst residue after the nickel recovery. NiSO 4 is effectively recovered and separated by high temperature soda roasting, water leaching, selective precipitation and calcination process, and V 2 O 5 and CaMoO 4 can be used as additives in the production of ferrovanadium and feromolybdenum. The present invention relates to a method for separating and recovering nickel, vanadium and molybdenum from petrochemical waste catalysts that can maximize industrial applicability.

일반적으로 석유 탈황 폐촉매 중에 함유된 유가금속 중 바나디움과 몰리브덴 성분은 저온배소 하지 않고 직접 고온 소다배소를 한 다음, 수침출, 선택적 침전 및 하소 공정을 거쳐서 V2O5및 CaMoO4혹은 H2MoO4형태로 회수하고, 불용성니켈 성분은 잔사에 남겨 니켈 제련 공장에 보내거나 폐기처분하는 방법을 이용하고 있다. 예를들면 미국 AMAX Co.는 석유화학 탈황 폐촉매를 고온 소다배소 한 다음 수침출 한 용액으로부터 몰리브덴 성분은 MoS3화합물로, 바나디움은 V2O5화합물로 회수하고, 1차 침출잔사를 다시 가압 증기솥에서 반응시켜 알루미나 성분은 Al(OH)3으로 제조하였고 최종 남은 잔사에는 니켈성분이 함유되어 있으므로 재처리를 위해서 니켈 제련소로 보내는 공정을 이용하고 있다.In general, vanadium and molybdenum components of valuable metals in petroleum desulfurization waste catalysts are subjected to direct high temperature soda roasting without low temperature roasting, followed by water leaching, selective precipitation and calcination, and then V 2 O 5 and CaMoO 4 or H 2 MoO. It recovers in 4 forms, and insoluble nickel component is left in the residue and sent to a nickel smelting plant or discarded. For example, the US AMAX Co. recovers molybdenum as MoS 3 , Vanadium as V 2 O 5 , and pressurizes the primary leach residue from the solution of high temperature soda after petrochemical desulfurization waste catalyst. The alumina component was made of Al (OH) 3 by the reaction in the steam cooker, and the remaining residue contained nickel component. Therefore, the process is sent to the nickel smelter for reprocessing.

그리고 일본의 Taiyoukoukou Co.와 대만의 Full-Yield Co.는 전술한 방법에 의해서 바나디움과 몰리브덴 성분만 분리, 회수한 다음, 잔사 중에 함유된 니켈성분은 Nickel concentrate 형태로 만드는 공정을 이용하고 있다.Japan's Taiyoukoukou Co. and Taiwan's Full-Yield Co. use a process of separating and recovering only vanadium and molybdenum components by the method described above, and then forming nickel in the residue into a nickel concentrate form.

또한 일본의 CCIT Co.는 폐촉매를 산화배소한 다음, 배소 산물 전체를 황산으로 용해시켜 용액중에 함유된 전성분을 다단계 용매추출법으로 분리 정제시키고, 얻어진 용액으로부터 침전법에 의해 원소별로 제조하는 방법을 이용하고 있으나, 전술한 기존의 처리방법들은 니켈을 직접 회수할 수 없을 뿐만 아니라, 2차적으로 회수한 니켈 화합물의 순도가 낮고 경제성에 있어서 문제점이 있다.In addition, CCIT Co. of Japan oxidizes waste catalyst, dissolves the entire roasted product with sulfuric acid, and separates and purifies all components contained in the solution by multi-step solvent extraction. However, the conventional treatment methods described above are not only able to recover nickel directly, but also have problems in terms of low purity and economical efficiency of the secondaryly recovered nickel compound.

본 발명은 전술한 바와같이 종래의 고온 소다배소법에 의해 바나디움과 몰리브덴만 분리, 회수할 수 있는 방법에서 벗어나 니켈 성분까지도 효과적으로 회수하기 위해 연구개발된 것이다.The present invention has been researched and developed to effectively recover nickel even from the method of separating and recovering only vanadium and molybdenum by the conventional high temperature soda roasting method as described above.

특히 본 발명은 석유탈황(Vacuum Residue Desulfurization, VRDS) 폐촉매의 저온 산화배소, 니켈 성분의 선택적인 황산암모늄 침출, LIX84에 의한 용매추출 및 결정화 공정을 거쳐서 고순도 NiSO4제조와 니켈 회수 후의 폐촉매 잔사로부터 V2O5와 CaMoO4화합물을 기존의 방법보다 더욱 고순도로 제조하는 방법을 제공하는데 그 목적이 있다.In particular, the present invention is a low-temperature oxidation of the waste catalyst (Vacuum Residue Desulfurization, VRDS), selective ammonium sulfate leaching of nickel components, solvent extraction and crystallization process by LIX84 to produce high-purity NiSO 4 and waste catalyst residue after nickel recovery It is an object of the present invention to provide a method for preparing V 2 O 5 and CaMoO 4 compounds with a higher purity than conventional methods.

상기한 목적을 달성하기 위하여 본 발명에서는 석유탈황 폐촉매를 저온 산화 배소시켜 고온 소다배소시 생성되는 불용성 니켈 알루미네이트(NiAl2O4)화합물의 생성을 억제함으로써 니켈성분을 효과적으로 침출시킨 다음, 니켈 침출용액으로부터 분리, 회수 공정을 거쳐서 황산니켈을 제조하는 방법을 제공하는 것이다.In order to achieve the above object, in the present invention, by oxidizing the petroleum desulfurization waste catalyst at low temperature, the nickel component is effectively leached by inhibiting the production of insoluble nickel aluminate (NiAl 2 O 4 ) compound produced during high temperature soda roasting, and then nickel It is to provide a method for producing nickel sulfate through a separation and recovery process from the leaching solution.

또한 유황성분이 제거된 니켈 회수 후의 폐촉매잔사를 다시 고온 소다배소하여 바나디움과 몰리브덴 성분을 분리, 회수하면, 기존의 방법보다 순도가 훨씬 양호한 V2O5와 CaMoO4를 제조할수 있는 부수적인 효과도 얻을 수 분리방법을 제공함에 있다.In addition, the waste catalyst residue after the recovery of the sulfur removed nickel is calcined again at high temperature so as to separate and recover the vanadium and molybdenum components, which is a side effect of producing V 2 O 5 and CaMoO 4 with much higher purity than the conventional method. The present invention also provides a separation method.

도 1은 본 발명의 처리 공정도.1 is a process chart of the present invention.

이하, 본 발명에 대하여 첨부된 도면을 참조하여 보다 상세히 설명하기로 한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

즉, 본 발명에서는 석유탈황 폐촉매를 로드밀(rod mill)로 분쇄하여 200mesh 이하의 입자 크기로 만든후, 폐촉매중에 함유된 수분 및 황성분을 350℃의 저온배소를 통하여 제거하는 공정을 취하였다.That is, in the present invention, the petroleum desulfurization waste catalyst was pulverized with a rod mill to make a particle size of 200 mesh or less, and the water and sulfur components contained in the waste catalyst were removed through low temperature roasting at 350 ° C. .

이와같이 저온배소하여 얻어진 폐촉매를 황산암모늄으로 니켈성분을 침출하였고, 침출액중의 니켈성분을 유기용매 LIX84로 추출하여 황산니켈 형태로 회수하였다. 그리고 니켈이 추출된 폐촉매 잔사중의 바나디움 및 몰리브덴 성분을 900℃의 소다배소, 80℃의 수침출, 염화암모늄 첨가에 의한 암모늄 바나데이트(NH4VO3) 침전법과 염화칼슘 첨가에 의한 칼슘몰리브데이트(CaMoO4) 침전법을 통해 분리, 회수하였다.The waste catalyst obtained by roasting at low temperature was leached into the nickel component with ammonium sulfate, and the nickel component in the leachate was extracted with an organic solvent LIX84 and recovered in the form of nickel sulfate. The vanadium and molybdenum components in the spent catalyst residue from which nickel was extracted were subjected to soda roasting at 900 ° C, water leaching at 80 ° C, ammonium vanadate (NH 4 VO 3 ) precipitation by ammonium chloride addition, and calcium molybdate by addition of calcium chloride. It was isolated and recovered by date (CaMoO 4 ) precipitation method.

상기의 소다배소시 사용된 소다염으로는 Na2SO4나 NaOH보다 침출효과가 좋은 Na2CO3를 사용하였는데, 니켈이 회수된 폐촉매는 Na2CO3와 혼합 후 Na2CO3융점인 850℃이상으로 가열하여 Na2CO3가 폐촉매 중의 바나디움 및 몰리브덴과 식(1),(2)와 같이 반응하여 수용성인 NaVO3와 Na2MoO4가 잘 생성되도록 하였다.As the sodium salt used in the soda roasting is Na 2 SO were 4 or leaching effect is to use a good Na 2 CO 3 than NaOH, the nickel is recovered spent catalyst is Na 2 CO 3 and then mixing the Na 2 CO 3 Melting point Na 2 CO 3 was reacted with vanadium and molybdenum in the spent catalyst as shown in formulas (1) and (2) by heating to above 850 ° C. to produce water-soluble NaVO 3 and Na 2 MoO 4 .

V2O5(S) + Na2CO3(l) = 2NaVO3(S) + CO2(g) ------ (1)V 2 O 5 (S) + Na 2 CO 3 (l) = 2 NaVO 3 (S) + CO 2 (g) ------ (1)

MoO3(S) + Na2CO3(l) = Na2MoO4(S) + CO2(g) ------ (2)MoO 3 (S) + Na 2 CO 3 (l) = Na 2 MoO 4 (S) + CO 2 (g) ------ (2)

식(1),(2)와 같이 생성된 NaVO3와 Na2MoO4는 수침출에 의해 추출하였다.NaVO 3 and Na 2 MoO 4 produced as in Formulas (1) and (2) were extracted by water leaching.

침출 여액중의 바나디움은 다음 식(3)과 같이 암모니아와 반응하여 NH4VO3침전으로 석출시켜 회수하였다. 바나디움을 회수한 여액 중에 존재하는 몰리브덴 성분은 식(4)와같이 CaCl2를 첨가하여 칼슘몰리브데이트(CaMoO4)로 회수하였다.Vanadium in the leaching filtrate was recovered by precipitation with NH 4 VO 3 precipitate by reacting with ammonia as shown in the following equation (3). The molybdenum component present in the filtrate from which the vanadium was recovered was recovered by calcium molybdate (CaMoO 4 ) by adding CaCl 2 as in Formula (4).

Na++ VO3 -+ NH4Cl = NH4VO3+ Na++ Cl-------(3) Na + + VO 3 - + NH 4 Cl = NH 4 VO 3 + Na + + Cl - ------ (3)

2Na++ MoO4 -2+ CaCl2= CaMoO4+ 2Na++ 2Cl-------(4) 2Na + + MoO 4 -2 + CaCl 2 = CaMoO 4 + 2Na + + 2Cl - ------ (4)

이러한 공정으로 분리 회수된 NiSO4는 니켈 도금용으로 이용되고, NH4VO3를 500℃에서 하소하여 얻어진 V2O5및 CaMoO4는 합금강 첨가 소재인 훼로바나디움(FeV)와 훼로몰리브덴(FeMo)의 제조에 유용하게 이용된다.NiSO 4 separated and recovered by this process is used for nickel plating, and V 2 O 5 and CaMoO 4 obtained by calcining NH 4 VO 3 at 500 ° C. are ferrovanadium (FeV) and feromolybdenum (FeMo), which are alloy steel addition materials. It is useful for the preparation of

다음은 전술한 바와같은 본 발명을 보다 구체화 하고자 행한 여러 실험 례 및 제조 예를 나타낸 것으로, 이에 의하여 본 발명을 구체적으로 상세히 설명한다.The following shows a number of experimental examples and preparations made to further refine the present invention as described above, whereby the present invention will be described in detail.

(1) 석유탈황 폐촉매에 대한 저온배소 실험 례(1) Experimental example of low temperature roasting for petroleum desulfurization waste catalyst

폐촉매로부터 유가금속을 효과적으로 회수하기 위해서는 탄소 및 황 성분을 산화 배소에 의하여 제거하여야 한다. 배소온도가 증가할수록 탄소 및 황 성분의 제거율이 높겠지만, 높은 온도에서는 NiO가 Al2O3와 반응하여 spinel 구조를 갖는 불용성 NiAl2O4화합물이 생성되어 고온과 고압의 침출 조건외에는 니켈의 침출이 어렵다고 알려져 있다. 이에 본 발명에서는 NiAl2O3화합물이 생성되지 않는 조건에서 니켈을 침출시키기 위해 저온 배소 실험을 수행하였다.In order to effectively recover valuable metals from spent catalysts, carbon and sulfur components must be removed by oxidation. The higher the roasting temperature, the higher the removal rate of carbon and sulfur components, but at high temperature NiO reacts with Al 2 O 3 to form insoluble NiAl 2 O 4 compound with spinel structure, which leaches nickel under high and high temperature leaching conditions. This is known to be difficult. Accordingly, in the present invention, a low temperature roasting experiment was performed to leach nickel under the condition that the NiAl 2 O 3 compound was not produced.

저온 배소 실험은 파분쇄한 -200mesh 폐촉매 시료를 전기 가열형 회전 배소로(rotary kiln)에서 분당 45g을 공급하면서 300-500℃ 온도 범위에서 1시간 동안 실시하였다. 이때 회전 배소로의 회전수는 4rpm, 경사각은 1.5°이었다.Low temperature roasting experiment was carried out for 1 hour in a crushed -200mesh waste catalyst sample at 300-500 ℃ temperature while feeding 45g per minute in an electric heating rotary kiln (rotary kiln). At this time, the rotation speed of the rotary roaster was 4 rpm, and the inclination angle was 1.5 degrees.

하기의 표 1은 시료인 석유탈황 폐촉매의 화학조성을 나타낸 것이다.Table 1 below shows the chemical composition of the petroleum desulfurization waste catalyst as a sample.

시료인 석유탈황 폐촉매의 화학조성Chemical Composition of Petroleum Desulfurization Waste Catalyst as Sample 성분ingredient CC SS VV MoMo NiNi AlAl 함량(%)content(%) 5.05.0 14.114.1 18.618.6 1.361.36 4.744.74 25.425.4

상기 표 1에서 보는 바와같이 폐촉매중에는 제거하여야 할 많은 양의 황 및 탄소성분이 함유되어 있고, 또한 바나디움 및 니켈 등 유가금속도 다량 포함되어 있다.As shown in Table 1, the spent catalyst contains a large amount of sulfur and carbon components to be removed, and also contains a large amount of valuable metals such as vanadium and nickel.

하기의 표 2는 시료인 폐촉매를 회전 배소로에서 온도를 변화시키면서 저온산화 배소한 산물의 화학조성을 나타낸 것이다.Table 2 below shows the chemical composition of the products subjected to low temperature oxidation roasting while changing the temperature of the sample waste catalyst in a rotary roaster.

저온 산화배소한 폐촉매의 온도변화에 따른 함량 변화 (단위 : %)Changes in Contents with Temperature Changes of Low Temperature Oxidized Waste Catalyst (Unit:%) 원소성분\배소온도Elemental component \ roasting temperature CC SS VV MoMo NiNi AlAl 300℃300 ℃ 3.53.5 11.211.2 18.918.9 1.41.4 4.84.8 27.527.5 350℃350 ℃ 2.02.0 5.05.0 19.319.3 1.51.5 4.94.9 30.430.4 400℃400 ℃ 1.51.5 4.24.2 19.619.6 1.51.5 4.94.9 30.330.3 500℃500 ℃ 0.30.3 0.950.95 20.320.3 1.61.6 5.05.0 30.630.6

상기 표 2에서 보는 바와같이 배소온도가 증가됨에 따라 탄소 및 황 성분은 점점 제거되는데, 그에 반하여 기타 유가성분들은 배소시 무게 감량 때문에 증가되는 경향을 보이고 있다. 온도 350℃ 부근에서 저온 산화배소시 잔류 황 성분은 5.0%이었고 탄소 성분은 2.0%로 많은 양이 제거되었음을 알 수 있다.As shown in Table 2, as the roasting temperature is increased, carbon and sulfur components are gradually removed, whereas other valuable components tend to increase due to weight loss during roasting. Residual sulfur component was 5.0% and carbon component was 2.0% at low temperature roasting near 350 ℃.

(2) 저온배소 산물중에 함유된 니켈 성분의 황산암모늄 침출 실험 례(2) Experimental example of leaching ammonium sulfate of nickel component in low temperature roasting products

강산(HCl, H2SO4) 혹은 강알카리 용액은 저온 배소한 폐촉매중에 함유된 여러 가지 유가금속 원소들을 동시에 용해시키기 때문에, 분리·정제 공정을 거쳐서 고순도 유가금속 화합물을 제조하기가 어렵다. 그러므로 본 발명에서는 폐촉매 중의 니켈 성분만을 선택적으로 침출시키기에 적합한 황산암모늄 용액을 사용하여 침출시킨 다음, 침출용액중의 니켈을 용매추출법으로 분리 및 결정화시켜 황산화 니켈을 얻고자 하였다. 이때 사용한 침출조는 5l 용량의 pyrex 반응기로서 교반 및 온도조절 장치가 부착된 장치를 사용하였고, 침출제 농도 400g/l, 침출시간 1시간 및 광액농도는 10%로 고정하였다.Since strong acid (HCl, H 2 SO 4 ) or strong alkali solution simultaneously dissolves various valuable metal elements contained in the low temperature roasted waste catalyst, it is difficult to produce high purity valuable metal compounds through a separation and purification process. Therefore, in the present invention, the leaching was carried out using an ammonium sulfate solution suitable for selectively leaching only the nickel component in the spent catalyst, and then the nickel in the leaching solution was separated and crystallized by a solvent extraction method to obtain nickel sulfate. At this time, the leaching tank was used as a pyrex reactor of 5l capacity with a device equipped with a stirring and temperature control device, the leaching agent concentration 400g / l, leaching time 1 hour and mineral solution concentration was fixed to 10%.

하기의 표 3은 전술한 장치와 같은 조건하에서 저온 배소한 폐촉매를 황산암모늄 용액으로 반응온도 80℃에서 니켈성분을 침출시킬 때, 저온 배소 온도가 침출율에 미치는 영향을 나타낸 것이다.Table 3 below shows the effect of low temperature roasting temperature on the leaching rate when leaching the waste catalyst, which is roasted at low temperature under the same conditions as the above-mentioned device, with a nickel sulfate at a reaction temperature of 80 ° C. with ammonium sulfate solution.

저온배소 시 산화배소 온도가 폐촉매 중 니켈 성분의 침출율에 미치는 영향Effect of Roasting Oxide Temperature on Leaching Rate of Nickel in Waste Catalyst at Low Temperature Roasting 배소온도(%)Roasting temperature (%) 300300 350350 400400 450450 500500 침출율(%)Leaching rate (%) 4040 8080 4848 2020 1717

상기의 표 3에서 보는 바와같이 배소 온도가 300℃에서 350℃로 증가됨에 따라 니켈의 침출율이 급격히 증가하다가, 그 이상의 온도에서는 다시 급격히 감소하는 경향을 보이고 있는데 배소온도 350℃에서 침출율 80%로 최대치를 나타내고 있다.As shown in Table 3, the leaching rate of nickel rapidly increases as the roasting temperature is increased from 300 ° C. to 350 ° C., and then rapidly decreases at a higher temperature, but the leaching rate is 80% at the roasting temperature of 350 ° C. Indicates the maximum value.

이와같이 니켈 침출율이 350℃에서 최대치를 보이다가 그 이상의 온도에서 다시 급격히 감소하는 것은 전술한 바와같이 니켈성분이 폐촉매 중의 알루미나와 화합하여 NiAl2O4의 불용성 물질을 생성시키기 때문이다.As described above, the nickel leaching rate reaches a maximum value at 350 ° C. and then rapidly decreases at a higher temperature because the nickel component is combined with alumina in the spent catalyst to generate an insoluble material of NiAl 2 O 4 .

하기의 표 4는 전술한 장치와 같은 조건하에 350℃에서 저온 배소한 폐촉매를 황산암모늄용액으로 니켈성분을 침출시킬 때, 침출온도가 침출율에 미치는 영향을 나타낸 것이다.Table 4 below shows the effect of the leaching temperature on the leaching rate when the nickel catalyst is leached from the waste catalyst calcined at 350 ° C. under the same conditions as those described above with ammonium sulfate solution.

저온배소 산물중 니켈 성분의 침출례 침출온도가 미치는 영향Influence of Leaching Temperature of Nickel Components in Low Temperature Roast Product 침출온도(%)Leaching temperature (%) 2020 4040 6060 8080 9090 침출율(%)Leaching rate (%) 2020 4545 6262 8080 7979

상기 표 4에서 보는 바와같이 침출온도가 상승됨에 따라 니켈의 침출율이 계속 증가되다가 80℃에서 최대치를 나타내고 그 이상의 온도에서는 큰 변화가 없었다. 이와같은 침출율의 결과는 침출온도에 따른 일반적인 침출 거동과 큰 차이가 없었다.As shown in Table 4, as the leaching temperature is increased, the leaching rate of nickel continues to increase, and the maximum value is shown at 80 ° C. The results of this leaching rate were not significantly different from the general leaching behavior according to leaching temperature.

하기의 표 5는 전술한 장치와 조건하에서 저온 배소한 폐촉매 중의 니켈 성분을 침출시킨 후 얻어진 침출용액의 조성을 나타낸 것이다.Table 5 below shows the composition of the leaching solution obtained after leaching the nickel component in the waste catalyst roasted at low temperature under the above-described apparatus and conditions.

니켈 침출용액의 산도 변화에 따른 조성의 변화 (단위 : ppm)Change in composition according to acidity change of nickel leach solution (unit: ppm) 원소성분\산도(pH)Elemental component acidity (pH) NiNi VV MoMo FeFe AlAl 3.53.5 810810 6565 2.62.6 1.21.2 700700 8.58.5 750750 1717 2.42.4 < 1<1 55

상기 표 5에서 보는 바와같이 니켈 침출 후 얻어진 침출 원액의 pH는 3.5이었고, 니켈의 함량은 810ppm이었으며, 알루미늄의 함량은 700ppm이었다. 그러나 침출원액에 암모니아수를 가하여 용매추출에 적합한 pH 8.5로 조절하면, 용매추출시 문제가 되는 알루미늄 성분이 대부분 침전물(수산화물) 형태로 제거되었으며, 목적성분인 니켈 성분은 니켈암모늄 착화물을 형성하므로 큰 변화가 없었다.As shown in Table 5, the pH of the leaching stock solution obtained after nickel leaching was 3.5, the content of nickel was 810 ppm, and the content of aluminum was 700 ppm. However, when ammonia water was added to the leachate to adjust the pH to 8.5 for solvent extraction, most of the aluminum components, which are problematic during solvent extraction, were removed in the form of precipitates (hydroxides), and the target nickel component forms a nickel ammonium complex. There was no change.

(3) 용매추출법에 의한 고순도 황산니켈 제조 실험 례(3) Experimental Example of Manufacturing High Purity Nickel Sulfate by Solvent Extraction

하기의 표 6은 니켈 침출원액에 암모니아수를 가하여 침출용액의 산도(pH)를 조절한 다음 생성된 불순물 침전을 제거한 후 얻어진 용액을 용매추출제인 10% LIX 84로 용매추출하였을 때, 용액의 pH변화가 니켈 성분의 분리에 미치는 영향을 나타낸 것이다. 용매추출시 유기용매와 수용액의 부피비(O/A)는 1로 하였다.Table 6 below shows the pH change of the solution when ammonia water was added to the nickel leachate to adjust the acidity (pH) of the leachate, and then the resulting impurity precipitate was removed. Shows the effect on the separation of nickel components. At the time of solvent extraction, the volume ratio (O / A) of the organic solvent and the aqueous solution was set to 1.

니켈 침출용액의 용매추출시 니켈의 분리에 미치는 산도의 영향 (단위 : %)Effect of Acidity on Separation of Nickel during Solvent Extraction of Nickel Leaching Solution (Unit:%) 원소성분\산도(pH)Elemental component acidity (pH) NiNi VV MoMo AlAl 7.57.5 2525 6161 00 1One 8.58.5 6666 3737 1One 22 9.59.5 9292 55 22 33 10.510.5 7171 00 33 44

상기 표 6에서 보는 바와같이 용매추출 용액의 pH가 9.5일 경우 니켈 성분의 추출율이 가장 높을 뿐만 아니라 선택성도 가장 양호하였다. 또한 용매추출 용액중의 바나디움, 몰리브덴 및 알루미늄 성분의 함량이 니켈성분에 비하여 매우 적으므로 다단계 추출, 세정, 역추출과 세척의 용매추출 시험 단계를 거치면 효과적으로 고순도 니켈 화합물을 얻을 수 있을 것으로 판단된다.As shown in Table 6, when the pH of the solvent extraction solution was 9.5, the extraction rate of the nickel component was the highest as well as the selectivity was the best. In addition, since the content of vanadium, molybdenum and aluminum components in the solvent extraction solution is very small compared to the nickel component, it is determined that high purity nickel compounds can be effectively obtained by performing the solvent extraction test steps of multi-step extraction, washing, back extraction and washing.

이상의 결과를 활용하여 bench scale 규모의 mixer-settler(추출 3단, 세정 2단, 역추출 2단 및 세척 1단으로 구성) 용매추출기로 분리·정제한 다음, 1N H3SO4로 역추출하여 얻어진 농축 황산니켈 용액을 결정화시켜서 99% 이상의 황산니켈 화합물(NiSO47H20)을 제조할 수 있었다.Using the above results, the bench-scale mixer-settler (composed of three stages of extraction, two stages of washing, two stages of back extraction, and one stage of washing) was separated and purified by a solvent extractor, and then back extracted with 1N H 3 SO 4 . The obtained concentrated nickel sulfate solution was crystallized to prepare a nickel sulfate compound (NiSO 4 7H 20 ) of 99% or more.

하기의 표 7은 전술한 mixer-settler 용매추출장치로 침출 용액중의 니켈 성분을 분리정제하여 얻어진 황산니켈 용액의 조성을 나타낸 것이다.Table 7 below shows the composition of the nickel sulfate solution obtained by separating and purifying the nickel component in the leaching solution by the above-described mixer-settler solvent extraction apparatus.

침출 용액의 용매추출 시험 결과 얻어진 황산 니켈 용액의 화학조성Chemical Composition of Nickel Sulfate Solution Obtained by Solvent Extraction Test of Leaching Solution 성분ingredient NiNi VV MoMo AlAl 함량(ppm)Content (ppm) 2,2002,200 0.650.65 < 0.1<0.1 2.12.1

상기 표 7에서 보는 바와같이 침출용액의 용매추출 시험 결과 얻어진 황산니켈 용액을 결정화시키면, 바나디움, 몰리브덴 및 알루미늄 성분이 미량 함유된 99%이상의 황산니켈 화합물(NiSO47H2O)을 제조할 수 있다.As shown in Table 7, when the nickel sulfate solution obtained as a result of the solvent extraction test of the leaching solution is crystallized, more than 99% of the nickel sulfate compound (NiSO 4 7H 2 O) containing a small amount of vanadium, molybdenum and aluminum components can be prepared. .

(4) 니켈 회수후 폐촉매 잔사로부터 바나디움 성분의 회수 실험 례(4) Example of recovery of vanadium component from spent catalyst residue after nickel recovery

본 발명에서는 니켈 회수 후 폐촉매 잔사에 4당량의 탄산나트륨을 가하여 900℃에서 2시간동안 소다배소한 후, 소다배소 산물을 80℃에서 10% 광액농도의 조건하에서 1시간 동안 수침출하면, 바나디움 및 몰리브덴 성분이 88%정도 침출되었다. 그리고 바나디움 및 몰리브덴 침출용액의 산도를 pH 8.0으로 조절한 후, 침출용액에 염화암모늄 3당량을 가하여 30분동안 반응시키면, 바나디움 성분을 암모늄바나데이트(NH4VO3)형태로 얻을 수 있었다. 이러한 실험조건에서의 바나듐 회수율은 98%였다. 이와같이 얻어진 암모늄바나데이트 침전물을 건조 및 하소하여 순도 99%이상의 바나디움 산화물(V2O5)을 제조할 수 있었다.In the present invention, after the recovery of nickel, 4 equivalents of sodium carbonate is added to the spent catalyst residue and soda roasted at 900 ° C. for 2 hours, after which the soda roast product is leached at 80 ° C. under 10% mineral solution concentration for 1 hour, vanadium and The molybdenum component was leached about 88%. And after adjusting the acidity of the vanadium and molybdenum leaching solution to pH 8.0, by adding 3 equivalents of ammonium chloride to the leaching solution and reacted for 30 minutes, the vanadium component was obtained in the form of ammonium vanadate (NH 4 VO 3 ). The vanadium recovery in these experimental conditions was 98%. The ammonium vanadate precipitate thus obtained was dried and calcined to produce vanadium oxide (V 2 O 5 ) having a purity of 99% or more.

한편, 저온 산화배소 하지않고 같은 실험조건에서 바로 탄산소다 배소한 후 얻어진 바나디움 산화물에는 상당량의 불순물이 함유되어 순도가 99% 미만이었다. 즉, 저온 산화배소하여 니켈성분을 회수한 후 얻어진 폐촉매 잔사로부터 회수한 바나디움 순도가 저온 산화배소하지 않고 바로 탄산소다 배소하여 회수한 바나디움의 순도보다 높다는 것을 알 수 있다.On the other hand, vanadium oxide obtained after roasting sodium carbonate immediately under the same experimental conditions without low-temperature oxidation was contained a considerable amount of impurities, which was less than 99% pure. In other words, it can be seen that the vanadium purity recovered from the spent catalyst residue obtained by recovering the nickel component by low temperature oxidation is higher than the purity of the vanadium recovered by roasting directly with sodium carbonate without low temperature oxidation.

(5)바나디움 회수 후 여액으로부터 몰리브덴 성분의 회수 실험 례(5) Example of recovery of molybdenum component from filtrate after vanadium recovery

본 발명에서는 바나디움 회수 후 여액의 산도를 pH 6.0으로 조절한 다음, 이여액에 염화칼슘 30당량을 가하여 30분동안 반응시키면, 몰리브덴 성분을 칼슘몰리브데이트(CaMoO4)형태로 회수율 80%의 조건하에서 얻을 수 있었다. 이와같이 얻어진 칼슘몰리브데이트 침전물을 건조하면 품위 95%정도의 칼슘몰리브데이트를 제조할 수 있었다. 또한 석유 탈황 폐촉매를 저온 산화배소한 경우와 저온 산화배소하지 않고 바로 탄산소다 배소한 후 얻어진 CaMoO4의 품위를 상호 비교하면, 저온 산화배소하지 않고 바로 탄산소다 배소한 후 얻어진 칼슘몰리브데이트에는 많은 양의 황산칼슘(CaSO4)불순물이 함유되어 품위가 80% 미만이었다.In the present invention, after adjusting the acidity of the filtrate after recovery of vanadium to pH 6.0, 30 equivalents of calcium chloride is added to the filtrate for 30 minutes, the molybdenum component in the form of calcium molybdate (CaMoO 4 ) under the conditions of recovery of 80% Could get When the calcium molybdate precipitate thus obtained was dried, calcium molybdate having a grade of about 95% was produced. In addition, when comparing the quality of CaMoO 4 obtained by roasting petroleum desulfurization waste catalyst with low temperature oxidation and immediately roasting sodium carbonate without low temperature oxidation, calcium molybdate obtained after roasting sodium carbonate immediately without low temperature oxidation It contained a large amount of calcium sulfate (CaSO 4 ) impurity and less than 80%.

이와같이 저온 산화배소하지 않은 경우에 칼슘몰리브데이트의 품위가 낮은 이유는 폐촉매중에 함유된 황 성분이 충분히 제거되지않아 침출액중에 SO4 -2이온 형태로 존재하므로 염화칼슘을 가하여 칼슘몰리브데이트 침전물 생성시 황산칼슘이 공침되어 칼슘몰리브데이트 침전물속에 함유되기 때문이다.The reason for the low quality of calcium molybdate in the absence of low temperature oxidation is that the sulfur component in the waste catalyst is not sufficiently removed, so it exists in the form of SO 4 -2 ions in the leachate, and calcium chloride is added to form calcium molybdate precipitate. Calcium sulphate is coprecipitated and contained in calcium molybdate precipitate.

즉, 폐촉매를 저온 산화배소 및 탄산소다 배소한 후 얻어진 침출용액으로 몰리브덴 성분을 회수하면, 저온 산화배소하지 않은 경우에 비하여 칼슘몰리브데이트의 품위가 높은 것으로 보아 효과적인 방법으로 생각된다.That is, when molybdenum component is recovered with the leaching solution obtained after roasting the waste catalyst at low temperature oxidation and sodium carbonate, it is considered to be an effective method because calcium molybdate is higher in quality than the case where no low temperature oxidation is performed.

이상에서 살펴본 바와같은 본 발명은 석유 탈황 폐촉매(VRDS)를 저온 산화배소 및 황산암모늄 침출한 용액중에서 니켈 성분을 도금용 NiSO4형태로 분리, 회수하고 니켈 성분을 회수한 폐촉매 잔사를 다시 고온 소다배소, 수침출 및 침전시켜 합금 첨가용 V2O5와 CaMoO4형태로서 효과적으로 분리, 회수할 수 있다.As described above, the present invention separates and recovers the nickel component in the form of NiSO 4 for plating in a solution of petroleum desulfurization waste catalyst (VRDS) at low temperature of roasted oxide and ammonium sulfate, and recovers the spent catalyst residue from which the nickel component is recovered. Soda roasting, water leaching and precipitation can effectively separate and recover as V 2 O 5 and CaMoO 4 forms for alloy addition.

이러한 본 발명의 방법은 폐촉매 중에 함유된 니켈, 바나디움 및 몰리브덴 성분을 연속적으로 분리, 회수할 뿐만 아니라, 얻어진 V2O5및 CaMoO4화합물의 순도가 종래의 단순한 소다배소 처리 공정에 의해 제조된 화합물보다 훨씬 양호한 결과를 얻을 수 있는 여러 장점을 갖는다.This method of the present invention not only continuously separates and recovers the nickel, vanadium and molybdenum components contained in the spent catalyst, but also the purity of the obtained V 2 O 5 and CaMoO 4 compounds prepared by a conventional simple soda roasting process. It has several advantages that result in much better results than compounds.

Claims (4)

석유 탈황 폐촉매로부터 니켈, 바나디움 및 몰리브덴을 분리, 회수함에 있어서,In separating and recovering nickel, vanadium and molybdenum from petroleum desulfurization waste catalyst, 상기 석유 탈황 폐촉매 중에 함유된 유가금속 중 니켈 성분을 산화배소, 황산암모늄 침출, 용매추출 및 결정화 공정을 통해서 NiSO4형태로 분리, 회수하고 상기의 니켈 회수 후의 폐촉매 잔사 중에 함유된 바나디움 및 몰리브덴 성분을 고온 소다배소, 수침출, 선택적 침전 및 하소 공정을 통해서 V2O5및 CaMoO4형태로 분리, 회수하는 것을 특징으로 하는 석유탈황 폐촉매로부터 니켈 및 바나디움과 몰리브덴의 분리, 회수방법.The nickel component of the valuable metal contained in the petroleum desulfurization waste catalyst is separated and recovered in the form of NiSO 4 through roasting, ammonium sulfate leaching, solvent extraction, and crystallization, and vanadium and molybdenum contained in the spent catalyst residue after nickel recovery. A method for separating and recovering nickel, vanadium and molybdenum from a petroleum desulfurization waste catalyst, characterized in that the components are separated and recovered in the form of V 2 O 5 and CaMoO 4 through high temperature soda roasting, water leaching, selective precipitation and calcination. 제1항에 있어서,The method of claim 1, 상기 석유 탈황 폐촉매의 저온 산화배소시 온도는 340℃∼360℃, 시간은 1시간으로 하고, 저온 산화배소 산물의 황산암모늄 침출시 침출온도는 80℃, 침출시간은 1시간, 침출제 농도는 400g/l로 하는 것을 특징으로 하는 석유 탈황 폐촉매로부터 니켈 및 바나디움과 몰리브덴의 분리, 회수방법.The low temperature oxidation of the petroleum desulfurization waste catalyst is 340 ° C. to 360 ° C., and the time is 1 hour. The leaching temperature is 80 ° C., the leaching time is 1 hour, and the leach concentration is 1 hour. Separation and recovery method of nickel, vanadium and molybdenum from petroleum desulfurization waste catalyst, characterized in that 400g / l. 제1항에 있어서,The method of claim 1, 상기 용매추출 공정은 상기 황산암모늄 침출 용액의 산도를 pH 9.5로 조절하고 10% LIX 84 용매추출제를 사용하여 mixer-settler 용매추출기에서 니켈 성분만을 선택적으로 추출한 다음, 1N H2SO4용액으로 역추출 함으로써 황산니켈로 회수하는 것을 특징으로 하는 석유 탈황 폐촉매로부터 니켈 및 바나디움과 몰리브덴의 분리, 회수방법.In the solvent extraction process, the acidity of the ammonium sulfate leaching solution was adjusted to pH 9.5, and the nickel component was selectively extracted from a mixer-settler solvent extractor using a 10% LIX 84 solvent extractant, and then reversed into a 1N H 2 SO 4 solution. Separation and recovery of nickel, vanadium and molybdenum from petroleum desulfurization waste catalyst, characterized in that the recovery is carried out with nickel sulfate by extraction. 제1항에 있어서,The method of claim 1, 상기 니켈 회수 후 얻어진 석유 탈황 폐촉매의 잔사를 900℃ 고온 소다배소,80℃ 수침출, 수침출 용액중에 3당량의 염화암모늄 첨가에 의한 바나디움에 분리, 회수와 바나디움 회수후 산도 pH 8.0 여액중에 30당량의 염화칼슘 첨가에 의한 몰리브덴을 분리, 회수하는 것을 특징으로 하는 석유 탈황 폐촉매로부터 니켈 및 바나디움과 몰리브덴의 분리, 회수방법.The residue of the petroleum desulfurization waste catalyst obtained after the nickel recovery was separated into vanadium by addition of 3 equivalents of ammonium chloride in a 900 ° C. high temperature soda roast, 80 ° C. water leach, and a water leach solution. A method for separating and recovering nickel, vanadium and molybdenum from a petroleum desulfurization waste catalyst, characterized in that the molybdenum is separated and recovered by adding an equivalent amount of calcium chloride.
KR1019980021919A 1998-06-12 1998-06-12 Separation and recovery of nickel, vanadium and molybdenum from petroleum desulfurization spent catalyst KR100277503B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980021919A KR100277503B1 (en) 1998-06-12 1998-06-12 Separation and recovery of nickel, vanadium and molybdenum from petroleum desulfurization spent catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980021919A KR100277503B1 (en) 1998-06-12 1998-06-12 Separation and recovery of nickel, vanadium and molybdenum from petroleum desulfurization spent catalyst

Publications (2)

Publication Number Publication Date
KR20000001579A true KR20000001579A (en) 2000-01-15
KR100277503B1 KR100277503B1 (en) 2001-01-15

Family

ID=19539175

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980021919A KR100277503B1 (en) 1998-06-12 1998-06-12 Separation and recovery of nickel, vanadium and molybdenum from petroleum desulfurization spent catalyst

Country Status (1)

Country Link
KR (1) KR100277503B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100674438B1 (en) * 2005-12-09 2007-01-25 서안켐텍 주식회사 A process for separating vanadium and molybdenum from desulfurization waste catalyst
KR101041378B1 (en) * 2009-08-28 2011-06-15 한국지질자원연구원 Recovery method of valuable metals and sulfur from spent petroleum catalyst
EP2348136A1 (en) * 2010-01-21 2011-07-27 Intevep SA Metal recovery from hydroconverted heavy effluent
US8835351B2 (en) 2010-01-21 2014-09-16 Intevep, S.A. Additive for hydroconversion process and method for making and using same
KR101469814B1 (en) * 2007-06-08 2014-12-05 문상우 Method for manufacture catalyst material from desulfurization waste catalyst of an oil refinery
CN116162803A (en) * 2022-12-09 2023-05-26 成都虹波钼业有限责任公司 Process for extracting valuable metals from alloy powder

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100843953B1 (en) 2006-09-20 2008-07-03 박재호 Separation, recovery high purity V2O5 and MoO3 from waste catalyst of petrochemisty with vanadium and molybdenum
KR100978999B1 (en) 2008-06-20 2010-08-30 박재호 Separation, recovery V2O5, MoO3 and NiO from waste catalyst of desulfurization with vanadium, molybdenum and nickel

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4554138A (en) * 1984-10-30 1985-11-19 Chevron Research Company Leaching metals from spent hydroprocessing catalysts with ammonium sulfate
JP3355362B2 (en) * 1991-12-05 2002-12-09 太陽鉱工株式会社 Method for leaching valuable metals from spent catalyst

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100674438B1 (en) * 2005-12-09 2007-01-25 서안켐텍 주식회사 A process for separating vanadium and molybdenum from desulfurization waste catalyst
KR101469814B1 (en) * 2007-06-08 2014-12-05 문상우 Method for manufacture catalyst material from desulfurization waste catalyst of an oil refinery
KR101041378B1 (en) * 2009-08-28 2011-06-15 한국지질자원연구원 Recovery method of valuable metals and sulfur from spent petroleum catalyst
EP2348136A1 (en) * 2010-01-21 2011-07-27 Intevep SA Metal recovery from hydroconverted heavy effluent
US8636967B2 (en) 2010-01-21 2014-01-28 Intevep, S.A. Metal recovery from hydroconverted heavy effluent
US8835351B2 (en) 2010-01-21 2014-09-16 Intevep, S.A. Additive for hydroconversion process and method for making and using same
CN116162803A (en) * 2022-12-09 2023-05-26 成都虹波钼业有限责任公司 Process for extracting valuable metals from alloy powder

Also Published As

Publication number Publication date
KR100277503B1 (en) 2001-01-15

Similar Documents

Publication Publication Date Title
EP3093354B1 (en) Scandium recovery method
EP3208352B1 (en) Method for recovering high-purity scandium
JP5652503B2 (en) Scandium recovery method
EP3249062B1 (en) Method for recovering scandium
RU2302997C2 (en) Method of production of the high-purity ammonium dimolybdate (its versions)
JP6583445B2 (en) Method for producing high purity scandium oxide
JPH07252548A (en) Method for recovering valuable metal from waste catalyst
JPS5921929B2 (en) A method of processing manganese nodules and extracting the valuable substances contained therein
US5078786A (en) Process for recovering metal values from jarosite solids
US10570480B2 (en) Method for recovering scandium
WO2018101039A1 (en) Ion exchange processing method, and scandium recovery method
CN115427592A (en) Recovery of vanadium from slag material
KR20000001579A (en) Separation and recovery of nickel, vanadium, and molybdenum from waste catalyst of vacuum residue desulfurization
JP7347083B2 (en) Manufacturing method of high purity scandium oxide
JP7528581B2 (en) How to recover scandium
JP7347084B2 (en) Manufacturing method of high purity scandium oxide
JP7347085B2 (en) Manufacturing method of high purity scandium oxide
JP7380030B2 (en) Manufacturing method of high purity scandium oxide
RU2797855C2 (en) Method for producing high-pure hydrated nickel sulfate
JP6128166B2 (en) Method for producing scandium oxide
JP2020147809A (en) Manufacturing method of high purity scandium oxide

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120816

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20130905

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20141010

Year of fee payment: 15

LAPS Lapse due to unpaid annual fee