KR101107010B1 - Recovery method of valuable metals by pretreatment of spent petroleum catalyst and sulphuric acid - Google Patents

Recovery method of valuable metals by pretreatment of spent petroleum catalyst and sulphuric acid Download PDF

Info

Publication number
KR101107010B1
KR101107010B1 KR20090078158A KR20090078158A KR101107010B1 KR 101107010 B1 KR101107010 B1 KR 101107010B1 KR 20090078158 A KR20090078158 A KR 20090078158A KR 20090078158 A KR20090078158 A KR 20090078158A KR 101107010 B1 KR101107010 B1 KR 101107010B1
Authority
KR
South Korea
Prior art keywords
waste catalyst
sulfuric acid
leaching
valuable metals
catalyst
Prior art date
Application number
KR20090078158A
Other languages
Korean (ko)
Other versions
KR20110020509A (en
Inventor
김동진
미시라 데바라즈
안종관
Original Assignee
한국지질자원연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국지질자원연구원 filed Critical 한국지질자원연구원
Priority to KR20090078158A priority Critical patent/KR101107010B1/en
Publication of KR20110020509A publication Critical patent/KR20110020509A/en
Application granted granted Critical
Publication of KR101107010B1 publication Critical patent/KR101107010B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/009General processes for recovering metals or metallic compounds from spent catalysts
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/005Preliminary treatment of scrap
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/06Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
    • C22B3/08Sulfuric acid, other sulfurated acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • C22B7/007Wet processes by acid leaching
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

본 발명은 탈황 폐촉매의 전처리 및 황산을 이용한 유가금속 회수방법에 관한 것으로, 그 목적은 유가금속과 코크스, 타르, 유황 성분을 동시에 함유하고 있는 탈황 폐촉매를 침출반응에 앞서서 유해 성분을 미리 제거하여 환경오염을 예방하면서, 간단한 공정으로 유가금속을 침출하여 회수하는 방법을 제공하는 데 있다.The present invention relates to a pretreatment of a desulfurization waste catalyst and a method for recovering valuable metals using sulfuric acid. The object of the present invention is to remove harmful components in advance before leaching reaction of desulfurization waste catalysts containing valuable metals, coke, tar, and sulfur components. It is to provide a method for leaching and recovering valuable metals in a simple process while preventing environmental pollution.

본 발명의 구성은 (A) 탈황 폐촉매를 아세톤으로 세척후 건조하여 폐촉매 표면의 탄소 및 오일 성분을 제거하는 전처리 단계와; (B) 오일성분이 제거된 탈황 폐촉매를 황산침출법으로 처리하여 유가금속을 침출하는 단계;를 포함하는 탈황 폐촉매의 전처리 및 황산을 이용한 유가금속 회수방법을 특징으로 한다.The composition of the present invention comprises the steps of: (A) a pre-treatment step of washing the desulfurization waste catalyst with acetone and drying to remove carbon and oil components on the surface of the waste catalyst; (B) treating the desulfurized waste catalyst from which the oil component has been removed by leaching sulfuric acid to leach valuable metals; and a method for recovering valuable metals using sulfuric acid.

탈황 폐촉매, 유가금속, 아세톤용매, 황산침출법, 자원재활용 Desulfurization waste catalyst, valuable metals, acetone solvent, sulfuric acid leaching, resource recycling

Description

탈황 폐촉매의 전처리 및 황산을 이용한 유가금속 회수방법{Recovery method of valuable metals by pretreatment of spent petroleum catalyst and sulphuric acid} Recovery method of valuable metals by pretreatment of spent petroleum catalyst and sulphuric acid}

본 발명은 탈황 폐촉매의 전처리 및 황산을 이용한 유가금속 회수방법에 관한 것으로, 자세하게는 아세톤으로 탈황 폐촉매로부터 오일성분을 세척한 후 황산으로 유가금속 성분을 침출하는 공정에 관한 것이다. The present invention relates to a pretreatment of a desulfurization waste catalyst and a method for recovering valuable metals using sulfuric acid, and more particularly, to a process of leaching valuable metal components with sulfuric acid after washing the oil component from the desulfurization waste catalyst with acetone.

석유화학산업에서 배출되는 고체 폐기물인 탈황 폐촉매는 Al, Ni, Co, V, Mo 등 다양한 금속성분과 유기물을 함유하고 있다. Desulfurization waste catalyst, which is a solid waste discharged from the petrochemical industry, contains various metals and organic substances such as Al, Ni, Co, V, and Mo.

산업 현장에서 촉매를 장시간 사용시 금속황화물, 산화물 기타 금속성분의 화합물이 촉매 표면에 흡착되어 촉매의 활성과 특성을 저해하게 되어 주기적으로 교환처리하고 있다. When the catalyst is used for a long time in the industrial field, metal sulfides, oxides and other metal compounds are adsorbed on the surface of the catalyst, thereby inhibiting the activity and properties of the catalyst.

특히, 몰리브데늄과 바나듐은 석유화학, 화학 그리고 우주 산업에 널리 사용되는 촉매의 주 원료이며 철강 산업에서도 사용되는 중요한 전략금속이다. Molybdenum and vanadium, in particular, are the main raw materials for catalysts widely used in the petrochemical, chemical and aerospace industries and are important strategic metals used in the steel industry.

과거에는 이들 금속을 광석 또는 광물자원으로부터 대부분 추출하여 사용하였으나, 최근에는 자원 고갈 및 공급 부족에 따른 가격 폭등으로 인하여 폐자원, 2차 자원으로부터 이들 금속을 회수하는 기술개발에 관심이 집중되고 있다. In the past, most of these metals were extracted and used from ore or mineral resources, but recently, attention has been focused on the development of technology for recovering these metals from waste resources and secondary resources due to price increases due to resource depletion and shortage of supply.

한편, 탈황 폐촉매는 국내에서 연간 약 20,000 톤이 발생하고 있으며 발생량중 약 70 %는 국내에서 재활용되고, 22 %는 수출되고, 약 8 %는 매립 처리하고 있는 실정이다. Meanwhile, about 20,000 tons of desulfurized waste catalyst is generated annually in Korea, and about 70% of the generated amount is recycled in Korea, 22% is exported, and about 8% is landfilled.

특히, 약 10 %의 바나듐이 함유된 10% 탈황 폐촉매의 경우 경제적 가치가 높아 재활용하는 것이 유망한 것으로 판단되고 있다. In particular, the 10% desulfurized spent catalyst containing about 10% vanadium has high economic value and is considered to be promising to be recycled.

일반적으로 몰리브데늄과 바나듐이 함유된 탈황 폐촉매의 경우 사용한 횟수와 불순물 함유량 등에 따라 다르지만 일반적으로 정유공장에서 2 - 3 년 정도 사용한 후 폐기처리하고 있다. In general, the desulfurized waste catalyst containing molybdenum and vanadium varies depending on the number of times used and the impurity content, but is generally disposed of after two to three years at a refinery.

폐기된 탈황 폐촉매는 유해 폐기물이기 때문에 안전한 처리나 금속 회수를 위한 추가공정이 필요하기 때문에 친환경적인 처리 및 회수 기술의 개발이 절실히 요구되고 있다. Since waste desulfurized waste catalysts are hazardous wastes, additional processes for safe treatment or recovery of metals are required. Therefore, development of environmentally friendly treatment and recovery technologies is urgently required.

미국의 GCMC社, 대만의 Full-Yield Industry社, 일본의 太陽鑛工, NCC 등에서는 소다배소 후 수침출법을 사용하여 석유화학 폐촉매로부터 유가금속을 회수하 는 상업화 공장을 가동 중에 있다. GCMC in the US, Full-Yield Industry in Taiwan, Taeyang Industrial Co. in Japan, and NCC are operating commercialization plants to recover valuable metals from petrochemical waste catalysts using the water leaching method after soda roasting.

이러한 상업화 공장에서의 전체 공정은 유사하나, 회수하고자하는 금속의 형태에 따라 파쇄, 배소, 침출 등 각 단위공정 상에서 차이점이 있다. The overall process in such a commercial plant is similar, but there are differences in each unit process such as crushing, roasting, and leaching depending on the type of metal to be recovered.

그러나 건식법으로 탈황 폐촉매를 처리할 경우 유해 가스인 SO2가 생성되며, 따라서 SO2 가스 처리공정이 추가로 필요한 문제점이 대두되고 있다. However, when the desulfurization waste catalyst is treated by the dry method, SO 2, which is a harmful gas, is generated, and thus, a problem that requires an additional SO 2 gas treatment process is emerging.

또한 탈황 폐촉매에는 추출하고자 하는 유가금속 뿐만 아니라 코크스, 타르, 유황 성분을 동시에 함유하고 있기 때문에 침출반응에 앞서서 유해 성분을 미리 제거할 필요성이 있다. In addition, since the desulfurization waste catalyst contains not only valuable metals to be extracted but also coke, tar and sulfur components at the same time, it is necessary to remove harmful components in advance of the leaching reaction.

상기와 같은 문제점을 해결하기 위한 본 발명의 목적은 유가금속과 코크스, 타르, 유황 성분을 동시에 함유하고 있는 탈황 폐촉매를 침출반응에 앞서서 유해 성분을 미리 제거하여 환경오염을 예방하면서, 간단한 공정으로 유가금속을 침출하여 회수하는 방법을 제공하는 데 있다.An object of the present invention for solving the above problems is a simple process while removing the harmful components in advance of the leaching reaction of the desulfurization waste catalyst containing valuable metals, coke, tar, sulfur components to prevent environmental pollution, It is to provide a method for leaching and recovering valuable metals.

상기한 바와 같은 목적을 달성하고 종래의 결점을 제거하기 위한 과제를 수행하는 본 발명은 (A) 탈황 폐촉매를 아세톤으로 세척후 건조하여 폐촉매 표면의 탄소 및 오일 성분을 제거하는 전처리 단계와;The present invention to achieve the object as described above and to perform the problem for removing the conventional defects (A) a pre-treatment step of removing the carbon and oil components on the surface of the spent catalyst by washing and drying the desulfurized spent catalyst with acetone;

(B) 오일성분이 제거된 탈황 폐촉매를 황산(침출법)으로 처리하여 유가금속을 침출하는 단계;를 포함하는 것을 특징으로 하는 탈황 폐촉매의 전처리 및 황산을 이용한 유가금속 회수방법을 제공함으로써 달성된다.(B) treating the desulfurized waste catalyst from which the oil component has been removed with sulfuric acid (leaching) to leach valuable metals; and providing a pretreatment of the desulfurized waste catalyst and recovering valuable metals using sulfuric acid, the method comprising: Is achieved.

본 발명은 또한 상기 (A) 단계 후, (C) 탈황폐촉매로부터 유가금속의 침출속도를 증가시키기 위한 분쇄단계;를 더 포함하여 구성한 것을 특징으로 한다.The present invention is also characterized in that it further comprises a; after the step (A), (C) a pulverization step for increasing the leaching rate of valuable metals from the desulfurization catalyst.

상기 (C)단계는 세척, 건조된 탈황 폐촉매를 45 - 106 ㎛의 입도로 분쇄하는 것을 특징으로 한다.Step (C) is characterized in that the washed, dried desulfurized waste catalyst is ground to a particle size of 45-106 ㎛.

상기 (B)단계는 탈황 폐촉매와 황산을 고액비 10 - 40 %로 하여, 황산농도 1M인 조건에서 산소를 3.5 - 5.0 cc/min 공급하면서 반응온도 30 - 50 ℃에서 5 - 180 분간 반응시켜 유가금속을 침출시키는 단계인 것을 특징으로 한다.In the step (B), the desulfurization spent catalyst and sulfuric acid were used as a solid-liquid ratio of 10 to 40%, and reacted for 5 to 180 minutes at a reaction temperature of 30 to 50 ° C. while supplying 3.5 to 5.0 cc / min of oxygen under a sulfuric acid concentration of 1 M. It is characterized in that the step of leaching valuable metals.

상기 탈황 폐촉매는 알루미나 기지에 니켈, 몰리브데늄, 바나듐 그리고 황이 주요 성분으로 존재하는 폐촉매인 것을 특징으로 한다.The desulfurization waste catalyst is characterized in that the waste catalyst in which nickel, molybdenum, vanadium and sulfur are present as a main component on the alumina base.

상기 침출되는 유가금속은 니켈, 바나듐, 몰리브데늄 중 어느 하나 이상인 것을 특징으로 한다.The leaching valuable metal is characterized in that any one or more of nickel, vanadium, molybdenum.

상기 (A)단계는 탈황 폐촉매를 3 - 7일간 세척한 후 50 ℃에서 24 - 72시간 건조하여 오일성분을 제거하는 단계인 것을 특징으로 한다.Step (A) is a step of removing the oil component by washing the desulfurization waste catalyst for 3 to 7 days and then dried at 50 ℃ for 24 to 72 hours.

본 발명은 탈황 폐촉매로부터 유가금속 추출시 공정단계가 간단하여 경제적으로 회수할 수 있다는 장점과,The present invention has the advantage that the process step is simple and economically recoverable when extracting valuable metals from the desulfurization waste catalyst,

폐촉매로부터 유가금속 회수시 SO2 가스에 의한 대기 오염을 억제하기 위하여 유황성분을 침출잔사로 분리한 경우, 니켈과 바나듐을 80 % 이상 회수할 수 있다는 환경친화적 장점을 가진 유용한 발명이며, 몰리브데늄을 침출잔사로 분리함으 로써 황산침출시 침출효율이 낮은 몰리브데늄만 추가처리할 수 있는 산업상 그 이용이 크게 기대되는 발명이다.When sulfur is separated into leach residues in order to suppress air pollution by SO 2 gas when recovering valuable metals from spent catalysts, it is a useful invention with an environmentally-friendly advantage of recovering more than 80% of nickel and vanadium. By separating the denium into leach residues, it is an invention that is expected to be used in the industry which can further process only molybdenum having low leaching efficiency when leaching sulfuric acid.

이하 본 발명의 실시 예인 구성과 그 작용을 첨부도면에 연계시켜 상세히 설명하면 다음과 같다. 또한 본 발명을 설명함에 있어서, 관련된 공지기능 혹은 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명은 생략한다.Hereinafter, the configuration and the operation of the embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the following description of the present invention, a detailed description of known functions and configurations incorporated herein will be omitted when it may make the subject matter of the present invention rather unclear.

도 1은 아세톤으로 세척한 탈황 폐촉매의 X-ray 분석 결과그래프이고, 도 2는 반응시간 변화에 따른 유가금속의 침출율 그래프이고, 도 3은 침출잔사의 SEM-EDX 분석결과사진이다. 1 is a graph showing the X-ray analysis of the desulfurized waste catalyst washed with acetone, Figure 2 is a graph of leaching rate of valuable metals with the change of reaction time, Figure 3 is a SEM-EDX analysis photograph of the leaching residue.

본 발명은 (A) 탈황 폐촉매를 아세톤으로 세척후 건조하여 폐촉매 표면의 오일 성분을 제거하는 전처리 단계와; (B) 오일성분이 제거된 탈황 폐촉매를 화학침출법으로 처리하여 유가금속을 침출하는 단계;를 포함하여 구성된다.The present invention comprises (A) a pretreatment step of washing the desulfurized waste catalyst with acetone and drying to remove oil components on the surface of the spent catalyst; (B) a step of leaching valuable metals by treating the desulfurized waste catalyst from which the oil component has been removed by a chemical leaching method.

또한 상기 (A) 단계후, (C)탈황 폐촉매의 침출속도를 증가시키기 위한 분쇄단계를 더 포함하여 구성할 수 있다.In addition, after the step (A), (C) may further comprise a grinding step to increase the leaching rate of the desulfurization waste catalyst.

상기 (A)단계는 침출 전단계로 탈황 폐촉매로부터 오일성분을 제거하기 위하여 soxhlet 장치(oil extractor)와 아세톤을 용매로 사용하여 약 3 - 7일간 세척한 후 50 ℃에서 24 - 72시간 건조하였다. 세척, 건조된 탈황 폐촉매는 막자사발로 분쇄한 후 45 - 106 ㎛ 입도로 체질하여 진공 데시케이터에 보관하였다. Step (A) was a pre-leaching step to remove oil components from the desulfurization waste catalyst, using a soxhlet device (oil extractor) and acetone as a solvent for about 3-7 days and then dried at 50 ℃ for 24-72 hours. The washed and dried desulfurized waste catalyst was pulverized with a mortar and then sieved to 45-106 μm particle size and stored in a vacuum desiccator.

상기에서 세척시간이 짧으면 탄소 및 오일 성분을 완전히 제거할 수 없고, 너무 장시간 세척시 비경제적인 문제점 발생한다. 마찬가지로 건조도 비슷한 이유이다.If the cleaning time is short in the above it is not possible to remove the carbon and oil components completely, it causes an uneconomical problem when washing too long. Similarly, drying is the same reason.

본 발명은 아세톤으로 오일 성분을 세척한 후 SO2 가스에 의한 대기 오염을 억제하기 위하여 유황성분을 침출잔사로 분리하고자 하였다. 또한 황산으로 침출하여 니켈, 바나듐 및 몰리브데늄과 같은 유가금속을 80 % 이상 회수하고자 하였다. In the present invention, after washing the oil component with acetone, the sulfur component is to be separated into a leach residue in order to suppress air pollution by SO 2 gas. In addition, leaching with sulfuric acid to recover more than 80% of valuable metals such as nickel, vanadium and molybdenum.

본 발명은 침출시료로 사용한 촉매는 탈황 폐촉매이며, 여기에는 알루미나 기지에 니켈, 몰리브데늄, 바나듐 그리고 황이 주요 성분으로 존재한다. In the present invention, the catalyst used as the leaching sample is a desulfurization waste catalyst, and nickel, molybdenum, vanadium and sulfur are present as the main components in the alumina base.

본 발명은 탈황 폐촉매에서 탄소 및 오일성분을 제거하기 위하여 아세톤으로 세척하는 전처리 공정을 포함한다. The present invention includes a pretreatment step of washing with acetone to remove carbon and oil components from the desulfurization waste catalyst.

종래에는 일부 특허에서 톨루엔 또는 크실렌을 탈황 폐촉매의 탈오일 용매로 사용하였지만 크실렌 또는 톨루엔 같은 용매는 끓는점이 100℃, 110℃ 이상이기 때문에 폐촉매의 활성도가 변할 수 있고, 반응온도를 100℃ 이상으로 높이게 되면 에너지 사용량에 따른 비용이 증가하기 때문에 용매로서 적당하지 않다.Conventionally, in some patents, toluene or xylene is used as the deoiling solvent of the desulfurization waste catalyst, but solvents such as xylene or toluene may change the activity of the waste catalyst because the boiling point is 100 ° C or 110 ° C or higher, and the reaction temperature is 100 ° C or higher. If it is increased, the cost of energy consumption increases, so it is not suitable as a solvent.

하지만 본 발명에 사용된 용매인 아세톤은 끓는점이 56℃이므로 오일제거에 적합하다. However, acetone, a solvent used in the present invention, is suitable for removing oil because its boiling point is 56 ° C.

또한 본 발명은 상기 (C)단계처럼 아세톤으로 전처리한 폐촉매를 분쇄할 경우 금속의 침출속도를 증가시킬 수 있으므로 볼밀로 분쇄하고 106 ㎛ 이하로 체질하여 침출시료로 사용하였다. In addition, the present invention can increase the leaching rate of the metal when the waste catalyst pretreated with acetone as in step (C) can increase the leaching rate of the metal and pulverized in a ball mill and used as a leaching sample.

본 발명에 따른 시료에 대한 X-ray 회절 분석(표 1 참조)을 통해 금속의 대부분이 산화물과 황화물 상태로 존재한다는 것을 알 수 있다. 바나듐은 산화물 형태인 V4O9로, 니켈은 황화물 형태인 Ni3-xS2로 존재하는 반면, 몰리브데늄은 산화물인 e MoO3와 황화물인 Mo3S4 형태로 존재한다.X-ray diffraction analysis (see Table 1) for the sample according to the present invention shows that most of the metal is present in the oxide and sulfide states. Vanadium is present in oxide form V 4 O 9 and nickel is present in sulfide form Ni 3-x S 2 , while molybdenum is present in oxide form e MoO 3 and sulfide Mo 3 S 4 .

표 1. 반응온도 변화에 따른 유가금속의 침출율 Table 1. Leaching Rate of Valuable Metals by Reaction Temperature

(고액비 : 10 %, 황산농도 : 1M, 산소량 : 3.5 - 5.0 cc/min) (Solid ratio: 10%, Sulfuric acid concentration: 1M, Oxygen amount: 3.5-5.0 cc / min)

  Molybdenum (%)Molybdenum (%) Vanadium (%)Vanadium (%) Nickel (%)Nickel (%) Time
(min.)
Time
(min.)
30 oC30 o C 40 oC40 o C 50 oC50 o C 30 oC30 o C 40 oC40 o C 50 oC50 o C 30 oC30 o C 40 oC40 o C 50 oC50 o C
00 1616 1818 2020 3535 4646 5050 3030 4545 5252 1010 2020 2323 2525 4343 6060 6262 4040 6060 6565 3030 2424 2626 2828 7070 7575 7878 6565 7070 7575 4545 2626 3030 3535 8282 8989 9090 7575 7878 8585 6060 2727 3232 3737 8484 9090 9797 7878 8888 9696 9090 2828 3333 3838 8686 9292 9898 8383 9292 9797

본 발명에서 침출반응은 비교적 낮은 온도인 30 - 50 ℃ 범위에서 실시하였으며, 탈황 폐촉매에 존재하는 니켈과 바나듐은 1M의 정도의 황산 분위기에서 쉽게 침출 할 수 있다.In the present invention, the leaching reaction was carried out in a relatively low temperature range of 30-50 ℃, nickel and vanadium present in the desulfurization waste catalyst can be easily leached in sulfuric acid atmosphere of about 1M.

pH 0.5 - 0.6 사이의 산성분위기에서 폐촉매 시료중 상당한 양의 니켈 황화물과 바나듐 산화물이 용액으로 침출된다. 그러나 몰리브데늄 황화물은 다른 금속에 비하여 일부만 침출된다. At acidic pH levels between 0.5 and 0.6, significant amounts of nickel sulfide and vanadium oxide in the spent catalyst sample are leached into the solution. However, molybdenum sulfide is only partially leached compared to other metals.

단체 황은 몰리브데늄 금속위에 반응층을 형성하여 침출을 방해하기 때문에 몰리브데늄을 침출하기 위해서는 반응층인 단체 황을 제거하는 것이 필요하다. Since the elemental sulfur forms a reaction layer on the molybdenum metal to prevent leaching, it is necessary to remove the elemental sulfur as a reaction layer in order to leach molybdenum.

본 발명의 최종 침출액에는 니켈, 바나듐 및 몰리브데늄이 주요 금속 이온으로 존재하고 있다. In the final leachate of the present invention, nickel, vanadium and molybdenum are present as main metal ions.

또한 고체 침출잔사의 주성분은 알루미나(Al2O3)이며 황산에 침출되지 않은 Mo 황화물이 일부 존재한다. 유가금속이 용해된 침출용액은 용매추출기술을 이용하여 니켈과 바나듐을 분리하게 된다. In addition, the main component of the solid leach residue is alumina (Al 2 O 3 ) and there is some Mo sulfide not leached into sulfuric acid. The leaching solution in which the valuable metal is dissolved separates nickel and vanadium using a solvent extraction technique.

이하 구체적으로 본 발명에 (B)단계에 따른 황산침출법에 의한 침출단계를 설명한다. 본 발명에서는 1M 황산용액 250 cc를 삼각 플라스크에 준비한 후 탈황 폐촉매 시료를 일정량 투입하여 기계교반기로 교반하였으며 실험 조건은 교반속도 500 rpm로 하였고, 가장 바람직한 결과는 반응시간 5 - 180분, 반응온도 30 - 50 ℃, 고액농도 10 - 40 %일때 가장 좋은 결과를 나타내었다.Hereinafter, the leaching step by the sulfuric acid leaching method according to step (B) in the present invention. In the present invention, 250 cc of 1M sulfuric acid solution was prepared in an Erlenmeyer flask, and then, a predetermined amount of desulfurized waste catalyst was added thereto, and stirred with a mechanical stirrer. The experimental conditions were agitation speed of 500 rpm, and the most preferable result was a reaction time of 5 to 180 minutes. The best results were obtained at 30-50 ℃ and solid concentration of 10-40%.

이하 구체적인 본 발명에 대한 변수에 대한 설명이다.Hereinafter, a description will be given of the specific variables for the present invention.

(탈황 폐촉매 특성조사)(Desulfurization catalyst characteristics investigation)

탈황 폐촉매의 물리적 특성을 조사하기 위하여 시료에 대한 X-ray 회절 분석을 실시하였다. 시료에 존재하는 무기물 상의 특성, 즉 산화물 또는 황화물인가에 따라 침출제를 결정할 수 있다. 황화물로 구성된 시료의 경우 침출시 산화제가 필요하기 때문에 먼저 탈황 폐촉매에 존재하는 니켈, 바나듐 및 몰리브데늄의 상 상태를 조사하여 도 1에 자세히 나타내었다. 도시된 바와 같이 황은 단체황으로 존재하며, 바나듐은 산화물 형태인 V4O9로, 니켈은 황화물 형태인 Ni3-xS2로 존재하는 반면, 몰리브데늄은 산화물인 e MoO3와 황화물인 Mo3S4형태로 공존하고 있다. X-ray diffraction analysis was performed on the sample to investigate the physical characteristics of the desulfurized spent catalyst. The leaching agent can be determined according to the properties of the inorganic phase present in the sample, that is, the application of oxides or sulfides. In the case of a sulfide sample, since an oxidant is required during leaching, the phase states of nickel, vanadium and molybdenum present in the desulfurization waste catalyst are first shown in FIG. 1. As shown, sulfur is present as single sulfur, vanadium is present in oxide form V 4 O 9 , nickel is present in sulfide form Ni 3-x S 2 , while molybdenum is an oxide of e MoO 3 and sulfide It coexists in Mo 3 S 4 form.

(침출시간의 영향)(Influence of leaching time)

아세톤으로 세척한 탈황 폐촉매로부터 유가금속 침출 조건을 도출하였다. Leaching conditions of valuable metals were derived from the desulfurized waste catalyst washed with acetone.

고액비 10 %, 황산농도 1M인 조건에서 산소를 3.5 - 5.0 cc/min 공급하면서 반응시간 변화에 따른 유가금속의 침출특성을 조사하였다. (도 2 참조) Leaching characteristics of the valuable metals with varying reaction time were investigated while supplying 3.5-5.0 cc / min of oxygen at 10% solids ratio and 1M sulfuric acid concentration. (See Figure 2)

침출실험 결과 반응초기 30분까지는 유가금속의 침출속도가 빠르나 반응시간 1시간 후부터는 침출속도가 큰 변화가 없었다. 즉 반응시간 30분에서 Ni은 70.9 %, V은 77.7 %, Mo 23.0 %가 침출되었으며 반응시간 60분에서는 Ni은 78.9 %, V은 83.9 %, Mo 26.7 %가 침출되었다. 반응시간 90분에서 Ni은 84.9 %, V은 86.7 %, Mo 28.5 %가 침출되었으며 90∼180분 반응시 유가금속의 침출율은 변화가 없었다. As a result of leaching test, leaching speed of valuable metals was fast up to 30 minutes of initial reaction, but leaching speed was not changed from 1 hour after reaction time. In other words, Ni was 70.9%, V was 77.7%, Mo 23.0% was leached at 30 minutes, and Ni was 78.9%, V was 83.9%, Mo 26.7% at 60 minutes. In 90 minutes of reaction, 84.9% of Ni, 86.7% of V, and 28.5% of Mo were leached. The leaching rate of valuable metals did not change during 90 ~ 180 minutes.

몰리브데늄 표면에 존재하는 유황 생성층이 Mo의 침출을 억제하고 따라서 다른 금속에 비하여 Mo의 침출율이 떨어지는 것으로 사료된다.It is considered that the sulfur generating layer present on the surface of molybdenum inhibits leaching of Mo and thus the leaching rate of Mo is lower than that of other metals.

SEM-EDX 분석결과로 침출잔사중 Mo 황화물의 존재를 확인하였다. (도 3참조)SEM-EDX analysis confirmed the presence of Mo sulfide in the leaching residue. (See Fig. 3)

(반응온도의 영향)(Influence of reaction temperature)

아세톤으로 세척한 탈황 폐촉매로부터 유가금속 침출 조건을 도출하였다. Leaching conditions of valuable metals were derived from the desulfurized waste catalyst washed with acetone.

고액비 10 %, 황산농도 1M인 조건에서 산소를 3.5 - 5.0 cc/min 공급하면서 반응온도 변화에 따른 유가금속의 침출특성을 조사하였다. (표 1 참조)Leaching characteristics of the valuable metals with varying reaction temperatures were investigated with oxygen supply of 3.5-5.0 cc / min under a 10% solids ratio and 1M sulfuric acid concentration. (See Table 1)

침출실험 결과 반응온도를 30 - 50 ℃ 범위에서 10 ℃ 간격으로 변화시킨 결과 모든 실험 조건에서 반응온도가 높아짐에 따라 유가금속의 침출율은 증가하였다. 90분 반응시 몰리브데늄은 30 ℃에서 28 %, 40 ℃에서 33 %, 50 ℃에서 38 %가 침출되었으며 바나듐은 30 ℃에서 86 %, 40 ℃에서 92 %, 50 ℃에서 98 %가 침출되었다. 니켈은 30 ℃에서 83 %, 40 ℃에서 92 %, 50 ℃에서 97 %가 침출되었다. As a result of the leaching experiment, the reaction temperature was changed in the range of 30-50 ℃ at 10 ℃ intervals. As the reaction temperature increased under all experimental conditions, the leaching rate of valuable metals increased. In 90 minutes, molybdenum leached 28% at 30 ° C, 33% at 40 ° C, 38% at 50 ° C, and vanadium leached at 86% at 30 ° C, 92% at 40 ° C and 98% at 50 ° C. . Nickel leached 83% at 30 ° C, 92% at 40 ° C and 97% at 50 ° C.

(고액농도의 영향)(Influence of high liquid concentration)

아세톤으로 세척한 탈황 폐촉매로부터 유가금속 침출 조건을 도출하였다. Leaching conditions of valuable metals were derived from the desulfurized waste catalyst washed with acetone.

반응시간 90분, 황산농도 1M, 반응온도 30 ℃인 조건에서 산소를 3.5 - 5.0 cc/min로 공급하면서 고액농도 변화에 따른 유가금속의 침출특성을 조사하였다. (표 2 참조)The leaching characteristics of valuable metals with varying solid concentrations were investigated while supplying oxygen at 3.5-5.0 cc / min under the reaction time of 90 minutes, sulfuric acid concentration of 1M and reaction temperature of 30 ℃. (See Table 2)

침출실험 결과 고액농도를 10 - 40 % 범위에서 변화시킨 결과 몰리브데늄은 고액농도가 증가함에 따라 침출율이 급격히 떨어졌다. 즉, 고액농도 10 % 인 조건에서 몰리브데늄의 침출율은 28 %이었으나, 20 %에서는 12 %, 그리고 40 %에서는 7 %만 침출되었다. As a result of the leaching experiment, the solid solution concentration was changed in the range of 10-40%. As a result, the leaching rate of the molybdenum decreased rapidly as the solid solution concentration increased. In other words, molybdenum leaching was 28% at a high liquid concentration of 10%, but only 12% at 20% and 7% at 40%.

표 2. 고액농도 변화에 따른 유가금속의 침출율 Table 2. Leaching Rate of Valuable Metals with Changes in Liquid Concentration

(반응시간 : 90분, 황산농도 : 1M, 반응온도 : 30 ℃, (Reaction time: 90 minutes, sulfuric acid concentration: 1M, reaction temperature: 30 ℃,

산소량 : 3.5∼5.0 cc/min)  Oxygen amount: 3.5 to 5.0 cc / min)

금 속
Pulp density
(%)
metal
Pulp density
(%)
Ni (%)Ni (%) V (%)V (%) Mo (%)Mo (%)
1010 8383 8686 2828 2020 8686 8888 1212 3030 8787 8989 99 4040 8585 8888 77

본 발명은 상술한 특정의 바람직한 실시 예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형실시가 가능한 것은 물론이고, 그와 같은 변경은 청구범위 기재의 범위 내에 있게 된다. The present invention is not limited to the above-described specific preferred embodiments, and various modifications can be made by any person having ordinary skill in the art without departing from the gist of the present invention claimed in the claims. Of course, such changes will fall within the scope of the claims.

도 1은 아세톤으로 세척한 탈황 폐촉매의 X-ray 분석 결과그래프이고,1 is a graph showing the results of X-ray analysis of desulfurized spent catalyst washed with acetone,

도 2는 반응시간 변화에 따른 유가금속의 침출율 그래프이고,2 is a graph of leaching rate of valuable metals according to the change of reaction time,

도 3은 침출잔사의 SEM-EDX 분석결과사진이다. 3 is a SEM-EDX analysis photograph of the leaching residue.

Claims (7)

(A) 탈황 폐촉매를 아세톤으로 세척후 건조하여 폐촉매 표면의 탄소 및 오일 성분을 제거하는 전처리 단계와;(A) a pretreatment step of washing the desulfurized waste catalyst with acetone and drying to remove carbon and oil components on the surface of the spent catalyst; (B) 오일성분이 제거된 탈황 폐촉매를 황산침출법으로 처리하여 유가금속을 침출하는 단계;를 포함하되,(B) a step of leaching valuable metals by treating the desulfurized waste catalyst from which the oil component is removed by a sulfuric acid leaching method; 상기 (B)단계는 탈황 폐촉매와 황산을 고액비 10 - 40 %로 하여, 황산농도 1M인 조건에서 산소를 3.5 - 5.0 cc/min 공급하면서 반응온도 30 - 50 ℃에서 5 - 180분간 반응시켜 유가금속을 침출시키는 단계인 것을 특징으로 하는 탈황 폐촉매의 전처리 및 황산을 이용한 유가금속 회수방법.In the step (B), the desulfurization spent catalyst and sulfuric acid are solid solution ratio of 10 to 40%, and reacted for 5 to 180 minutes at a reaction temperature of 30 to 50 ° C. while supplying 3.5 to 5.0 cc / min of oxygen under a sulfuric acid concentration of 1 M. Pretreatment of the desulfurization waste catalyst and sulfuric acid recovery method using sulfuric acid, characterized in that the leaching of valuable metals. 청구항 1에 있어서The method according to claim 1 상기 (A) 단계 후, (C) 탈황 폐촉매로부터 유가금속의 침출속도를 증가시키기 위한 분쇄단계;를 더 포함하여 구성한 것을 특징으로 하는 탈황 폐촉매의 전처리 및 황산을 이용한 유가금속 회수방법.After the step (A), (C) a pulverization step for increasing the leaching rate of the valuable metals from the desulfurization waste catalyst; pre-treatment and recovery of valuable metals using sulfuric acid, characterized in that it further comprises. 청구항 2에 있어서The method according to claim 2 상기 (C)단계는 세척, 건조된 탈황 폐촉매를 45 - 106㎛의 입도로 분쇄하는 것을 특징으로 하는 탈황 폐촉매의 전처리 및 황산을 이용한 유가금속 회수방법.The step (C) is a pre-treatment of the desulfurized waste catalyst and recovery of valuable metals using sulfuric acid, characterized in that the washed, dried desulfurized waste catalyst is pulverized to a particle size of 45-106㎛. 삭제delete 청구항 1에 있어서,The method according to claim 1, 상기 탈황 폐촉매는 알루미나 기지에 니켈, 몰리브데늄, 바나듐 그리고 황이 주요 성분으로 존재하는 폐촉매인 것을 특징으로 하는 탈황 폐촉매의 전처리 및 황산을 이용한 유가금속 회수방법.The desulfurization waste catalyst is a pre-treatment of a desulfurization waste catalyst and a valuable metal recovery method using sulfuric acid, wherein the desulfurization waste catalyst is a waste catalyst in which nickel, molybdenum, vanadium and sulfur are present as a main component in an alumina base. 청구항 1에 있어서,The method according to claim 1, 상기 침출되는 유가금속은 니켈, 바나듐, 몰리브데늄 중 어느 하나 이상인 것을 특징으로 하는 탈황 폐촉매의 전처리 및 황산을 이용한 유가금속 회수방법.The leaching valuable metal is any one or more of nickel, vanadium, molybdenum, pre-treatment of the desulfurization catalyst and recovery of valuable metal using sulfuric acid. 청구항 1에 있어서,The method according to claim 1, 상기 (A)단계는 탈황 폐촉매를 3 - 7일간 세척한 후 50 ℃에서 24 - 72시간 건조하여 오일성분을 제거하는 단계인 것을 특징으로 하는 탈황 폐촉매의 전처리 및 황산을 이용한 유가금속 회수방법.Step (A) is a pre-treatment of the desulfurized waste catalyst and a valuable metal recovery method using sulfuric acid, characterized in that the desulfurized waste catalyst is washed for 3 to 7 days and then dried at 50 ° C. for 24 to 72 hours to remove oil components. .
KR20090078158A 2009-08-24 2009-08-24 Recovery method of valuable metals by pretreatment of spent petroleum catalyst and sulphuric acid KR101107010B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR20090078158A KR101107010B1 (en) 2009-08-24 2009-08-24 Recovery method of valuable metals by pretreatment of spent petroleum catalyst and sulphuric acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20090078158A KR101107010B1 (en) 2009-08-24 2009-08-24 Recovery method of valuable metals by pretreatment of spent petroleum catalyst and sulphuric acid

Publications (2)

Publication Number Publication Date
KR20110020509A KR20110020509A (en) 2011-03-03
KR101107010B1 true KR101107010B1 (en) 2012-01-25

Family

ID=43929737

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20090078158A KR101107010B1 (en) 2009-08-24 2009-08-24 Recovery method of valuable metals by pretreatment of spent petroleum catalyst and sulphuric acid

Country Status (1)

Country Link
KR (1) KR101107010B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11186492B2 (en) 2019-03-05 2021-11-30 Korea Resources Corporation Method for recovering valuable metal sulfides
KR102503805B1 (en) 2021-10-18 2023-02-24 도담케미칼 주식회사 METHOD OF EXTRACTING AND COLLECTING Ni, Al AND NaOH FROM PETROLEUM DESULFURIZATION WASTE CATALYST

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101683168B1 (en) * 2015-03-13 2016-12-07 한국생산기술연구원 Recovery method of Sn from Sn based anode slime

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06248367A (en) * 1993-02-26 1994-09-06 Sumitomo Metal Mining Co Ltd Method for recovering valuable metal from waste catalyst

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06248367A (en) * 1993-02-26 1994-09-06 Sumitomo Metal Mining Co Ltd Method for recovering valuable metal from waste catalyst

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11186492B2 (en) 2019-03-05 2021-11-30 Korea Resources Corporation Method for recovering valuable metal sulfides
KR102503805B1 (en) 2021-10-18 2023-02-24 도담케미칼 주식회사 METHOD OF EXTRACTING AND COLLECTING Ni, Al AND NaOH FROM PETROLEUM DESULFURIZATION WASTE CATALYST

Also Published As

Publication number Publication date
KR20110020509A (en) 2011-03-03

Similar Documents

Publication Publication Date Title
Akcil et al. A review of metal recovery from spent petroleum catalysts and ash
Wang et al. Recovering valuable metals from spent hydrodesulfurization catalyst via blank roasting and alkaline leaching
Vuyyuru et al. Recovery of nickel from spent industrial catalysts using chelating agents
Yang et al. Oil removal of spent hydrotreating catalyst CoMo/Al2O3 via a facile method with enhanced metal recovery
CN111574859B (en) Treatment system and treatment method for waste tire cracking carbon black
Rojas-Rodríguez et al. Chemical treatment to recover molybdenum and vanadium from spent heavy gasoil hydrodesulfurization catalyst
KR101107010B1 (en) Recovery method of valuable metals by pretreatment of spent petroleum catalyst and sulphuric acid
Marafi et al. Refinery waste: the spent hydroprocessing catalyst and its recycling options
Wang et al. Recent advances in the recovery of transition metals from spent hydrodesulfurization catalysts
Zhang et al. Extraction of gold from typical Carlin gold concentrate by pressure oxidation pretreatment-Sodium jarosite decomposition and polysulfide leaching
CN109908881B (en) Waste clay recycling treatment method
KR101041378B1 (en) Recovery method of valuable metals and sulfur from spent petroleum catalyst
Li et al. Innovative closed-loop copper recovery strategy from waste printed circuit boards through efficient ionic liquid leaching
KR100686247B1 (en) Method for pretreating spent catalyst in recovering process of valued metal from spent catalyst
Gao et al. A fast and efficient method for the efficient recovery of crude oil from spent hydrodesulphurization catalyst
Rehman et al. Parametric optimization of coal desulfurization through Alkaline leaching
US7160526B2 (en) Process for detoxification of CCA-treated wood
CN112746172B (en) Treatment method of deactivated hydrogenation catalyst
Marafi et al. Utilization of waste spent hydroprocessing catalyst: development of a process for full recovery of deposited metals and alumina support
Mohammed et al. Extraction of valuable metals from spent hydrodesulfurization catalyst by two stage leaching method
KR102366743B1 (en) Recovery Method of Valuable Metal from Wasted Desulfurization Catalyst
CA2389354A1 (en) A process for recovering hydrocarbons from a carbon containing material
CN111424171A (en) Method for removing surfactant in metal raw material, purification device and application
Le et al. Dissolution behavior of sulfur and some metals from spent petroleum catalysts by alkaline solutions
CN111014239B (en) Recovery method of aluminum-shell capacitor

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20141226

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20151230

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20171219

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20181226

Year of fee payment: 18