JPH06248367A - Method for recovering valuable metal from waste catalyst - Google Patents

Method for recovering valuable metal from waste catalyst

Info

Publication number
JPH06248367A
JPH06248367A JP6139793A JP6139793A JPH06248367A JP H06248367 A JPH06248367 A JP H06248367A JP 6139793 A JP6139793 A JP 6139793A JP 6139793 A JP6139793 A JP 6139793A JP H06248367 A JPH06248367 A JP H06248367A
Authority
JP
Japan
Prior art keywords
solution
extraction
extracted
molybdenum
extractant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6139793A
Other languages
Japanese (ja)
Other versions
JP3232753B2 (en
Inventor
Hisaaki Shimauchi
内 久 明 嶋
Ichiro Matsunaga
永 一 郎 松
Kenji Kirishima
嶋 健 二 桐
Haruo Shibayama
山 治 雄 柴
Masaaki Shimizu
水 昌 明 清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP6139793A priority Critical patent/JP3232753B2/en
Publication of JPH06248367A publication Critical patent/JPH06248367A/en
Application granted granted Critical
Publication of JP3232753B2 publication Critical patent/JP3232753B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To easily separate and recover valuable metals in a waste catalyst using alumina as the carrier, such as No, Ni, Co, V, Al, etc., in high yields by calcining the waste catalyst, dissolving it into sulfuric acid together with the catalytic metals to be dissolved and subjecting the resulting solution to extraction sulfiding and adsorption successively. CONSTITUTION:The waste catalyst using the carrier consisting essentially of alumina is defatted and calcined at 400 to 1000 deg.c. The resulting calcined material is dissolved into sulfuric acid together with the catalytic metals to be dissolved to obtain the original solution to be extracted. This original solution is extracted with an organic Mo extractant and Mo is recovered from the Mo contg. organic phase of the Mo extractant. Then the residual solution resulting from the Mo extraction is extracted with an organic V extractant and V is recovered from the V contg. organic phase of the V extractant by stripping it out. Further the residual solution resulting from the V extraction is brought into contact with gaseous H2S and the Ni and Co in the solution are recovered as their sulfides. The minute amounts of Ni and Co in the finally recovered solution are adsorbed and recovered with a chelate resin to obtain a high purity aluminum sulfate solution. Then the Ni and Co adsorbed on the chelate resin are liberated from it with sulfuric acid and the liberated solution is repeatedly returned to the above reduction and dissolution processes.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、アルミナを主体とする
担体を用いた廃触媒から有価金属を回収する方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for recovering valuable metals from a spent catalyst using a carrier mainly composed of alumina.

【0002】[0002]

【従来の技術】アルミナ、若しくはアルミナに少量のシ
リカなどを添加したものから成る担体にモリブデン、ニ
ッケル、コバルトなどを活性金属として担持させた触媒
に有機化学工業界において汎用されている水素化脱硫触
媒がある。この水素化脱硫触媒は使用中に処理油から搬
入されるバナジウム、ニッケルなどの重金属類に被毒さ
れ、次第に触媒活性が低下する。そして、所定時間使用
された後、所謂廃触媒として廃棄されている。
2. Description of the Related Art Hydrodesulfurization catalyst widely used in the organic chemical industry as a catalyst in which molybdenum, nickel, cobalt, etc. are supported as an active metal on a carrier made of alumina or a material obtained by adding a small amount of silica to alumina. There is. The hydrodesulfurization catalyst is poisoned by heavy metals such as vanadium and nickel carried in from the treated oil during use, and the catalytic activity gradually decreases. Then, after being used for a predetermined time, it is discarded as a so-called waste catalyst.

【0003】しかし、これら廃触媒を無秩序に廃棄する
ことは環境汚染の面のみならず、省資源及び資源再利用
の面からも問題が多く、このような問題を回避するため
に上記廃触媒から有価金属を回収することは必須の課題
されており、以前よりこの課題を解決すべく、廃触媒か
ら有価金属を回収する種々の方法が検討され、提案さ
れ、一部実施されている。
However, randomly discarding these spent catalysts has many problems not only in terms of environmental pollution but also in terms of resource saving and resource reuse. The recovery of valuable metals has been an essential issue, and various methods for recovering valuable metals from waste catalysts have been studied, proposed, and partially implemented in order to solve this problem.

【0004】これら従来提案されている方法は大別し、
バナジウムとモリブデンのみを回収する方法と、バナジ
ウム、モリブデン、ニッケル及びコバルトを回収対象と
する方法とがある。前者に属するものとして米国特許第
4,087,510号及び特開昭47-31892号記載の方法がある。
例えば、米国特許第4,087,510号公報記載の方法は、廃
触媒に苛性ソーダあるいは炭酸ソーダを添加し、焙焼し
てバナジウムとモリブデンを水可溶性のソーダ塩とし、
これらを水で浸出し、得た浸出液よりバナジウムとモリ
ブデンとを分別回収するものであり、特開昭47-31892号
公報記載の方法は、廃触媒を酸化焙焼した後、得た焙焼
物に苛性ソーダや炭酸ソーダを添加し、ソーダ焙焼し、
バナジウムとモリブデンを水可溶性ソーダ塩とし、水で
浸出し、得た浸出液よりバナジウムとモリブデンを分離
回収するものである。
These conventionally proposed methods are roughly classified,
There are a method of recovering only vanadium and molybdenum, and a method of recovering vanadium, molybdenum, nickel and cobalt. U.S. Patent No. as belonging to the former
There are methods described in 4,087,510 and JP-A-47-31892.
For example, the method described in U.S. Pat.No. 4,087,510 discloses the addition of caustic soda or sodium carbonate to a waste catalyst, and roasting vanadium and molybdenum into a water-soluble soda salt,
These are leached with water, and vanadium and molybdenum are separated and recovered from the obtained leachate.The method described in JP-A-47-31892 discloses a roasted product obtained by oxidizing and roasting a waste catalyst. Add caustic soda or sodium carbonate, roast soda,
Vanadium and molybdenum are made into a water-soluble soda salt, leached with water, and vanadium and molybdenum are separated and recovered from the obtained leachate.

【0005】これらの2つの方法は高温で加熱焙焼する
ことにより廃触媒中のニッケルやコバルトがアルミナと
複合酸化物を形成し、あるいはアルミナ自体がγ-Al2O3
からα-Al2O3(別名:corundum)に結晶構造が変換し、酸
やアルカリに対して極めて安定化するため、浸出液中に
選択的にバナジウムとモリブデンとが浸出されることに
なる。このため、バナジウムとモリブデンのみを回収す
るという視点からは、上記2つの方法は極めて理想的な
ものといえるが、近時のすべての有価金属の回収という
視点からは全く役にたたないものといえる。
In these two methods, nickel and cobalt in the spent catalyst form a complex oxide with alumina by heating and roasting at high temperature, or alumina itself produces γ-Al 2 O 3
The crystal structure of α-Al 2 O 3 (also known as corundum) is converted to extremely stable against acid and alkali, so that vanadium and molybdenum are selectively leached into the leachate. Therefore, from the viewpoint of recovering only vanadium and molybdenum, the above two methods can be said to be extremely ideal, but from the viewpoint of recovering all the valuable metals in recent years, they are completely useless. I can say.

【0006】後者のバナジウム、モリブデン、ニッケル
及びコバルトを回収対象とする方法は近時の視点にかな
うものであり、この課題を解決すべき方法として提案さ
れているものが特開昭47-21387号公報、特開昭54-10780
1号公報、特開昭51-73998号公報記載の方法である。
The latter method of recovering vanadium, molybdenum, nickel and cobalt is suitable from the viewpoint of recent times, and a method proposed to solve this problem is disclosed in JP-A-47-21387. Publication, JP-A-54-10780
The method is described in Japanese Patent Application Laid-Open No. 1-73998.

【0007】例えば、特開昭47-21387号公報記載の方法
は、廃触媒を酸化焙焼して、それに含有している有機物
及び硫黄などを除去した後、アンモニア水を用いて常圧
〜加圧下で浸出することによって、該廃触媒に含有され
ているV、Mo、Ni、Coなどを浸出し、回収するも
のであり、特開昭54-107801号公報記載の方法は、廃触
媒を300〜1000℃程度で酸化焙焼したのち、さらに塩素
ガスを添加し、廃触媒に含有されているV、Mo、N
i、Coなどを塩素化して水可溶性塩化物とし、この塩
化物を浸出するものであり、特開昭51-73998号公報記載
の方法は、廃触媒を水蒸気雰囲気下で焙焼し、廃触媒に
付着している有機物などを除去した後、高濃度の酸を用
いて廃触媒に含有されているV、Mo、Ni、Coなど
を浸出するものである。しかしながら、これらの方法で
は何れもニッケルやコバルトの浸出率が十分ではなく、
加えて、中途半端にアルミナが溶解される結果、V、M
o、Ni、Coを含むアルミニウム溶液が浸出液として
得られることとなる。
For example, in the method described in JP-A-47-21387, a waste catalyst is oxidized and roasted to remove organic substances and sulfur contained therein, and then ammonia water is used to apply atmospheric pressure to a pressure. By leaching under pressure, V, Mo, Ni, Co, etc. contained in the waste catalyst are leached and recovered. The method described in Japanese Patent Laid-Open No. 54-107801 discloses a method of removing waste catalyst from 300 After oxidizing and roasting at about 1000 ° C, chlorine gas is further added, and V, Mo, N contained in the waste catalyst is added.
I, Co, etc. are chlorinated to form a water-soluble chloride, and this chloride is leached out. The method described in JP-A-51-73998 discloses a method in which a waste catalyst is roasted in a steam atmosphere to produce a waste catalyst. After removing organic substances and the like adhering to the catalyst, V, Mo, Ni, Co, etc. contained in the waste catalyst are leached using a high-concentration acid. However, the leaching rate of nickel and cobalt is not sufficient in any of these methods,
In addition, as a result of the alumina being dissolved halfway, V, M
An aluminum solution containing o, Ni, and Co will be obtained as a leachate.

【0008】このようなアルミニウム溶液よりV、M
o、Ni、Coを分別回収しようとすると、アルミニウ
ムが抽出操作時に妨害元素として作用する等の弊害があ
り、また各金属の中途半端な分配も手伝い有効に分別回
収できない。このような状況下、未だ廃触媒よりのV、
Mo、Ni、Coを工業的に分別回収し得る方法は提案
されていないと言える。
From such an aluminum solution, V, M
When attempting to separate and collect o, Ni, and Co, there is a problem that aluminum acts as an interfering element during the extraction operation, and half-finished distribution of each metal cannot be effectively separated and collected. Under such circumstances, V, which is still greater than the waste catalyst,
It can be said that a method capable of industrially separately collecting and recovering Mo, Ni, and Co has not been proposed.

【0009】[0009]

【発明が解決しようとする課題】本発明は、かかる実情
に鑑みなされたものであり、新規で工業的に実施可能な
廃触媒からのV、Mo、Ni、Co、Alの分離回収方
法の提供を目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and provides a method for separating and recovering V, Mo, Ni, Co, and Al from a waste catalyst which is new and industrially practicable. With the goal.

【0010】[0010]

【課題を解決するための手段】上記課題を解決する本発
明の方法は、アルミナを主成分とする担体を用いた廃触
媒を、要すれば脱油し、次いで400〜1000℃で焙焼し、
得た焼成物を溶解触媒用金属と共に硫酸で溶解し、得た
溶解液を抽出原液とし、該抽出原液と所定量のMo抽出
用抽出剤を含むMo抽出有機とを接触させてモリブデン
を含む有機相とMo抽出残液とを得、該有機相よりモリ
ブデンをアルカリ溶液を用いて逆抽出し、モリブデン酸
塩溶液と再生Mo抽出有機とを得、再生Mo抽出有機を
前記モリブデン抽出工程に繰り返し、モリブデン酸塩溶
液よりモリブデンを回収し、前記Mo抽出残液と所定量
のV抽出用抽出剤を含むV抽出有機とを接触させてバナ
ジウムを含む有機相とV抽出残液とを得、該有機相より
バナジウムを鉱酸溶液を用いて逆抽出し、含バナジウム
溶液と再生V抽出有機とを得、再生V抽出有機を前記バ
ナジウム抽出工程に繰り返し、前記V抽出残液と硫化水
素ガスと接触させて、V抽出残液中のニッケル、コバル
トを硫化物として回収し、回収終液をキレート樹脂と接
触させて分離液中の微量のニッケルとコバルトとを該キ
レート樹脂に吸着させ、高純度の硫酸アルミニウム溶液
を得、一方キレート樹脂に吸着せしめた微量のニッケル
とコバルトとを硫酸を用いて遊離し、得た遊離液を前記
還元溶解工程に繰り返すものであり、さらに具体的に
は、(1)還元溶解時に、非酸化性雰囲気下で、反応温度
を70〜100℃、好ましくは80〜90℃とし、溶解用触媒金
属として金属アルミニウム、金属ニッケル、金属コバル
トの中の少なくとも1つ、好ましくは金属アルミニウム
を用い、(2)モリブデンの抽出に際しては、抽出原液の
pHを0〜4とし、抽出剤として一般式R1−NH−R
2で示され、R1とR2とがそれぞれ炭素数12〜13のア
ルキル基である第2級アミンの少なくとも1種以上、好
ましくはN-Dodecenyl(trialkylmethyl)amine及び/また
はN-Lauryl(trialkylmethyl)amineとし、希釈剤を芳香
族炭化水素及びパラフィン系炭化水素の内の少なくとも
1種とし、重量比で5:95〜20:80の割合で抽出剤と希
釈剤とを混合して得たMo抽出有機を用い、(3)モリブ
デンの逆抽出に際しては、逆抽出液として0.5〜5モル
/lの可性アルカリ溶液の内の少なくとも1種か、0.5
モル/l以上のアンモニア水を用いるものであり、(4)
Mo抽出残液よりバナジウム抽出するに際して、Mo抽
出残液のpHを1〜4とし、抽出剤として2−エチルヘ
キシルホスホン酸モノ−2−エチルヘキシルを用い、希
釈剤として芳香族炭化水素及びパラフィン系炭化水素の
内の少なくとも1種を用い、抽出剤と希釈液とを重量比
で20:80〜60:40の割合で混合してえたV抽出有機を用
い、(5)バナジウムの逆抽出に際しては、逆抽出液とし
て0.05〜2モル/lの鉱酸溶液を用い、(6)ニッケルと
コバルトとを樹脂吸着させるに際して、キレート樹脂と
してイミノジ酢酸交換基タイプとアミノカルボン酸タイ
プのものを併用し、SVを10〜20とし、一方、キレート
樹脂に吸着せしめたニッケルとコバルトとを5〜20重量
%の硫酸溶液を用いて同様のSVで溶離するものであ
る。
The method of the present invention for solving the above-mentioned problems comprises the following steps: a waste catalyst using a carrier containing alumina as a main component is deoiled if necessary, and then baked at 400 to 1000 ° C. ,
The obtained calcined product is dissolved in sulfuric acid together with a metal for a dissolution catalyst, the obtained solution is used as an extraction stock solution, and the extraction stock solution is brought into contact with an Mo extraction organic solution containing a predetermined amount of Mo extracting agent to extract molybdenum-containing organic solution. Phase and Mo extraction residual liquid, molybdenum is back-extracted from the organic phase using an alkaline solution to obtain a molybdate solution and regenerated Mo extracted organic, and regenerated Mo extracted organic is repeated in the molybdenum extraction step, Molybdenum is recovered from the molybdate solution, and the Mo extraction residual liquid is contacted with a V extraction organic liquid containing a predetermined amount of V extraction extractant to obtain an organic phase containing vanadium and a V extraction residual liquid. Vanadium is back-extracted from the phase using a mineral acid solution to obtain a vanadium-containing solution and a regenerated V-extracted organic substance, and the regenerated V-extracted organic substance is repeatedly subjected to the vanadium extraction step to bring the V-extraction residual liquid into contact with hydrogen sulfide gas. , V, the nickel and cobalt in the extraction residual liquid are recovered as sulfides, and the final recovered liquid is brought into contact with a chelate resin to adsorb a trace amount of nickel and cobalt in the separated liquid to the chelate resin to obtain high-purity aluminum sulfate. A solution is obtained, on the other hand, a small amount of nickel and cobalt adsorbed on the chelate resin is liberated using sulfuric acid, and the obtained liberated solution is repeated in the reducing and dissolving step, and more specifically, (1) reduction At the time of dissolution, the reaction temperature is set to 70 to 100 ° C., preferably 80 to 90 ° C. in a non-oxidizing atmosphere, and at least one of metal aluminum, metal nickel, and metal cobalt as a catalyst metal for dissolution, preferably metal aluminum. (2) when extracting molybdenum, the pH of the stock solution for extraction is set to 0 to 4, and the general formula R1-NH-R is used as an extracting agent.
2, at least one or more secondary amines in which R1 and R2 are each an alkyl group having 12 to 13 carbon atoms, preferably N-Dodecenyl (trialkylmethyl) amine and / or N-Lauryl (trialkylmethyl) amine And the diluent is at least one of aromatic hydrocarbons and paraffinic hydrocarbons, and a Mo-extracted organic compound obtained by mixing the extractant and the diluent in a weight ratio of 5:95 to 20:80. (3) When back-extracting molybdenum, at least one of 0.5 to 5 mol / l of caustic alkali solution or 0.5
Ammonia water of mol / l or more is used, (4)
When vanadium is extracted from the Mo extraction residual liquid, the pH of the Mo extraction residual liquid is set to 1 to 4, 2-ethylhexyl mono-2-ethylhexylphosphonate is used as an extracting agent, and aromatic hydrocarbons and paraffin hydrocarbons are used as diluents. Using V-extracted organic compound obtained by mixing the extractant and the diluent at a weight ratio of 20:80 to 60:40, using (5) reverse extraction of vanadium, A 0.05 to 2 mol / l mineral acid solution is used as the extract, and (6) when adsorbing nickel and cobalt on the resin, a chelating resin of iminodiacetic acid exchange group type and aminocarboxylic acid type is used in combination to obtain SV. 10 to 20, while nickel and cobalt adsorbed on the chelate resin are eluted with a similar SV using a 5 to 20 wt% sulfuric acid solution.

【0011】[0011]

【作用】本発明の適用対象となる触媒は担体としてアル
ミナを主成分とするものであり、使用された条件によ
り、あるいは反応装置より系外に排出されるときの条件
により多量の油を含む場合がある。このような場合に、
油分を除去することなく使用済み触媒を焙焼すると焙焼
温度の制御が困難となるため、予め油分を実質上問題の
ない程度まで除去しておくことが必要になる。この油分
の除去方法として、揮発しやすい低分子の有機溶媒を用
いて洗浄する方法を採用しても良く、中性雰囲気、ある
いは非酸化性雰囲気で加熱して蒸発除去しても良い。
When the catalyst to which the present invention is applied contains alumina as a main component as a carrier, and contains a large amount of oil depending on the conditions used or when discharged from the reaction system to the outside of the system. There is. In such cases,
If the used catalyst is roasted without removing the oil component, it becomes difficult to control the roasting temperature. Therefore, it is necessary to remove the oil component in advance to a level where there is practically no problem. As a method for removing this oil component, a method of washing with a low-molecular organic solvent that easily volatilizes may be adopted, or the oil may be removed by evaporation by heating in a neutral atmosphere or a non-oxidizing atmosphere.

【0012】本発明の方法では、400℃以上、1000℃未
満で焙焼することにしている。この焙焼の主目的は、一
つに炭素分の除去、一つに回収対象とする有価金属を主
として酸化物の形態とする事を目的とするものである
が、当然含まれる小量の油分や硫黄等の除去、あるいは
硫黄分の硫酸化をも目的とされる。
[0012] In the method of the present invention, the roasting is performed at 400 ° C or higher and lower than 1000 ° C. The main purpose of this roasting is to remove one of the carbon content and one to make the valuable metal to be recovered mainly in the form of oxide, but of course a small amount of oil content It is also intended to remove sulfur, sulfur, etc., or to sulphate sulfur content.

【0013】焙焼温度の下限を400℃以上とするのは、
あまりに低温で焙焼すると有価金属及び硫黄等の酸化反
応速度が遅くなり、酸化を確実にするための時間が長く
なり経済性の点で不利となりやすいからであり、上限を
1000℃とするのは、焙焼温度が1000℃を越えると廃触媒
中の炭素分や有価金属や硫黄等の酸化反応速度は早くな
り、かつ酸化が確実になるものの、例えばモリブデンの
ように生成した酸化物が揮発し飛散する割合が高くなる
からである。加えて、有価金属とアルミナ担体との複合
酸化物の生成が助長されるからである。有価金属とアル
ミナとの複合酸化物が形成されると、次工程の還元溶解
時の溶解速度が小さくなり効率的でなくなるからであ
る。以下、各工程毎に説明をする。
The lower limit of the roasting temperature is 400 ° C. or higher,
This is because if the temperature is roasted at an excessively low temperature, the oxidation reaction rate of valuable metals and sulfur will be slowed down, the time for ensuring the oxidation will be long, and it will be disadvantageous in terms of economic efficiency.
1000 ° C means that when the roasting temperature exceeds 1000 ° C, the oxidation reaction rate of carbon, valuable metals, sulfur, etc. in the waste catalyst becomes fast and the oxidation becomes reliable, but it is generated like molybdenum. This is because the ratio of the generated oxide volatilized and scattered increases. In addition, formation of a complex oxide of a valuable metal and an alumina carrier is promoted. This is because if a complex oxide of a valuable metal and alumina is formed, the dissolution rate at the time of reduction dissolution in the next step becomes small and it becomes inefficient. Hereinafter, each step will be described.

【0014】(1)還元溶解工程 本発明では、上記のようにして得られた焼成物を溶解触
媒用金属と共に硫酸溶解する。このとき水酸化物の生成
を防止するためには液のpHを4以下とすることが好ま
しい。これはpHが高いとアルミニウム等が加水分解
し、水酸化物として沈澱するからである。とはいえ、p
Hをあまり低くすると酸を大量に使用することになり、
経済性を損なうばかりでなく、次工程のモリブデンの抽
出時にアルカリを加えpHを0以上としなければならな
くなり、好ましくない。
(1) Reducing and Dissolving Step In the present invention, the calcined product obtained as described above is dissolved with sulfuric acid together with the metal for the dissolving catalyst. At this time, the pH of the liquid is preferably 4 or less in order to prevent the formation of hydroxide. This is because when the pH is high, aluminum or the like is hydrolyzed and precipitates as a hydroxide. However, p
If H is set too low, a large amount of acid will be used,
Not only is the economy impaired, but an alkali must be added to bring the pH to 0 or higher during the extraction of molybdenum in the next step, which is not preferable.

【0015】本発明に溶解用触媒金属として用い得る金
属はアルミニウム、スズ、銅、亜鉛、鉄、ニッケル、コ
バルト、マグネシウム等があるが、本発明の回収対称を
考慮すれば、アルミニウム、ニッケル、コバルトの中の
すくなくとも1種とすることが必要であり、経済性、入
手の容易性よりアルミニウムを用いることが最も好まし
い。
Metals that can be used as the catalyst metal for dissolution in the present invention include aluminum, tin, copper, zinc, iron, nickel, cobalt, magnesium, etc. However, considering the recovery symmetry of the present invention, aluminum, nickel, cobalt. It is necessary to use at least one of the above, and it is most preferable to use aluminum in terms of economical efficiency and availability.

【0016】溶解温度については、厳密には用いる酸の
濃度とも関係するが、概して70℃未満では溶解速度が低
下し、使用済み触媒の溶解が不十分となり、一方、高い
温度例えば100℃を越える温度では溶解速度は極めて早
くなり、使用済み触媒の溶解の完全化は図れる。しか
し、同時に溶解触媒用として加える金属の酸による溶解
量も多くなり、結果的に必要とされる溶解触媒用金属量
と硫酸量とが増加し、経済性を損なうばかりでなく、作
業環境も極めて悪化し、使用し得る装置材質も限定され
ることとなる。そのため、溶解時の温度は70〜100度と
する。
Strictly speaking, the dissolution temperature is also related to the concentration of the acid used, but generally, if the temperature is less than 70 ° C., the dissolution rate will be low and the used catalyst will not be sufficiently dissolved, while at a high temperature, for example, above 100 ° C. At the temperature, the dissolution rate becomes extremely fast and the used catalyst can be completely dissolved. However, at the same time, the amount of the metal added for the dissolution catalyst to be dissolved by the acid also increases, resulting in an increase in the required amount of the dissolution catalyst metal and the amount of sulfuric acid, which not only impairs the economical efficiency but also greatly reduces the working environment. It deteriorates, and the equipment materials that can be used are also limited. Therefore, the melting temperature is 70 to 100 degrees.

【0017】溶解方法は特に制限されるものではない
が、効率良く廃触媒中の有価金属及びアルミナ担体の溶
液化を行う為には、例えば並流式又は向流式で溶解さ
せ、得られた均一溶液を順次又は連続的に取得する方
法、又は攪拌機付の反応槽を用いて溶解する方法などが
採用しうる。
The dissolution method is not particularly limited, but in order to efficiently solubilize the valuable metal and the alumina carrier in the waste catalyst, for example, the solution was obtained by dissolving in a cocurrent method or a countercurrent method. A method of obtaining a uniform solution sequentially or continuously, a method of dissolving using a reaction vessel equipped with a stirrer, or the like can be adopted.

【0018】(2)モリブデン抽出工程 上記の様にして得た溶解液は、通常そのままMo抽出原
液とすることができる。該抽出原液中のモリブデンは通
常6価のモリブデン酸として存在し、バナジウムは4価
の硫酸バナジルとして存在している。なお、必要があれ
ば浸出液のpHを0〜4に調整する。これは、pHが低
すぎると抽出効率が悪化し、pHが高すぎると原液中の
アルミニウムやバナジウムが加水分解し、水酸化物の沈
澱が生成するからである。抽出原液のpHをこの範囲に
維持する限り、第3相発生、クラッド発生等の液−液相
分離に支障となる現象は起こらない。
(2) Molybdenum Extracting Step The solution obtained as described above can usually be directly used as the Mo extracting stock solution. Molybdenum in the stock solution for extraction usually exists as hexavalent molybdic acid, and vanadium exists as tetravalent vanadyl sulfate. The pH of the leachate is adjusted to 0 to 4 if necessary. This is because if the pH is too low, the extraction efficiency will be deteriorated, and if the pH is too high, aluminum or vanadium in the stock solution will be hydrolyzed and hydroxide precipitates. As long as the pH of the undiluted solution is maintained within this range, there will be no phenomena that hinder the liquid-liquid phase separation such as the third phase generation and the clad generation.

【0019】本発明で用いる抽出剤を一般式R1−NH
−R2で示され、R1とR2とがそれぞれ炭素数12〜13
のアルキル基である第2級アミンとしたのは、この抽出
剤を用いることにより初めて抽出操作時に第3相やクラ
ッド等の発生が防止できるからであり、第2級アミンと
してN-Dodecenyl(trialkylmethyl)amine及び/またはN-
Lauryl(trialkylmethyl)amineを用いればより抽出状態
は良好である。さらに、本発明で用いる希釈剤を芳香族
炭化水素、及びパラフィン系炭化水素の内の少なくとも
1種とするのは、抽出剤をより溶解し易く、かつ還元性
硫酸溶液との相分離性が良好なためである。
The extractant used in the present invention is represented by the general formula R1-NH
-R2, wherein R1 and R2 each have 12 to 13 carbon atoms
The reason why the secondary amine, which is an alkyl group, is used is that the use of this extractant prevents the generation of the third phase, clad, etc. during the extraction operation for the first time, and the secondary amine is N-Dodecenyl (trialkylmethyl). ) amine and / or N-
The extraction state is better with Lauryl (trialkylmethyl) amine. Furthermore, when the diluent used in the present invention is at least one of aromatic hydrocarbons and paraffinic hydrocarbons, the extractant is more easily dissolved and the phase separation from the reducing sulfuric acid solution is good. This is because.

【0020】本発明では上記抽出剤と希釈剤とを重量比
で5:95〜20:80の割合で混合し、抽出有機として用い
るが、該範囲をはずれる場合には、例えば抽出剤が少な
い場合には抽出効率が低下し経済性を損ない、例えば抽
出剤が多い場合には抽出後の有機相の粘度が著しく増加
し、相分離に時間がかかりすぎ経済性を損なうことにな
るからである。
In the present invention, the above-mentioned extractant and diluent are mixed at a weight ratio of 5:95 to 20:80 and used as an organic extract, but when the ratio is out of this range, for example, when the extractant is small. The reason is that the extraction efficiency is lowered and the economic efficiency is impaired. For example, when the amount of the extractant is large, the viscosity of the organic phase after extraction is remarkably increased, and the phase separation takes too much time, which impairs the economical efficiency.

【0021】(3)モリブデン逆抽出工程 このようにして抽出原液よりモリブデンを抽出した有機
相からのモリブデンの回収はアルカリ水溶液を用いて逆
抽出を行う。用いるアルカリとして苛性アルカリを用い
る場合には、その濃度は0.5〜5モル/lとするのは、
上記と同様に逆抽出効率と粘度による相分離の関係から
である。アルカリとしてアンモニア水を用いる場合に
は、その濃度は0.5モル/l以上とすることができる。
この場合、濃度が高いと逆抽出液中にモリブデン酸アン
モニウムが生成するが、これはモリブデン酸アンモニウ
ムが有機相を巻き込むことなく極めて良好に反応容器中
に沈降し、逆中操作に支障を与えないからである。逆抽
出に用いるアルカリの種類は、最終的に得るモリブデン
酸塩の形態により選択すれば良く、例えば、モリブデン
酸アンモンを得るのであればアンモニア水を用い、モリ
ブデン酸ナトリウムを得るのであれば水酸化ナトリウム
溶液を用いる。
(3) Molybdenum Back Extraction Step In order to recover molybdenum from the organic phase in which molybdenum has been extracted from the extraction stock solution as described above, back extraction is performed using an alkaline aqueous solution. When caustic is used as the alkali to be used, its concentration should be 0.5 to 5 mol / l.
This is because the relationship between the back extraction efficiency and the phase separation due to the viscosity is similar to the above. When ammonia water is used as the alkali, its concentration can be 0.5 mol / l or more.
In this case, when the concentration is high, ammonium molybdate is produced in the back extraction liquid, but this does not hinder the operation in the reverse medium because ammonium molybdate precipitates very well in the reaction vessel without involving the organic phase. Because. The type of alkali used for back extraction may be selected depending on the form of the molybdate finally obtained. For example, ammonia water is used to obtain ammonium molybdate, and sodium hydroxide is used to obtain sodium molybdate. Use a solution.

【0022】(4)バナジウム抽出工程 この様にしてモリブデンを抽出分離して得たMo抽出残
液中には4価のバナジウムが硫酸バナジルとして存在し
ている。
(4) Vanadium Extraction Step In the Mo extraction residual liquid obtained by extracting and separating molybdenum in this manner, tetravalent vanadium exists as vanadyl sulfate.

【0023】本工程において必要であれば抽出原液のp
Hを1〜4に調整する。これは、pHが低すぎると抽出
効率が悪化し、pHが高すぎると抽出原液中のアルミニ
ウムが加水分解し、水酸化物として析出沈澱してくるか
らである。抽出原液のpHをこの範囲に維持する限り、
第3相発生、クラッド発生等の液−液相分離に支障とな
る現象は起こらない。なお、通常還元抽出時の酸量を調
整することによりMo抽出残液のpH調整操作を省略す
ることは可能である。
If necessary in this step, p
Adjust H to 1-4. This is because if the pH is too low, the extraction efficiency will deteriorate, and if the pH is too high, the aluminum in the undiluted solution will be hydrolyzed and precipitate as hydroxide. As long as the pH of the stock solution is kept in this range,
Phenomena that hinder the liquid-liquid phase separation such as the third phase generation and the clad generation do not occur. Note that it is possible to omit the pH adjustment operation of the Mo extraction residual liquid by adjusting the amount of acid during the normal reduction extraction.

【0024】本発明で用いる抽出剤を2−エチルヘキシ
ルホスホン酸モノ−2−エチルヘキシルとしたのは、該
抽出剤を用いればより低い酸濃度でバナジウムを逆抽出
でき、もって抽出操作時に第3相やクラッド等の発生が
防止できるからである。さらに、本発明で用いる希釈剤
を芳香族炭化水素、及びパラフィン系炭化水素の内の少
なくとも1種とするのは、抽出剤をより溶解し易く、か
つ還元性硫酸溶液との相分離性が良好なためである。
The extraction agent used in the present invention is 2-ethylhexyl mono-2-ethylhexyl phosphonate because vanadium can be back-extracted at a lower acid concentration by using the extraction agent, so that the third phase or This is because it is possible to prevent generation of clad and the like. Furthermore, when the diluent used in the present invention is at least one of aromatic hydrocarbons and paraffinic hydrocarbons, the extractant is more easily dissolved and the phase separation from the reducing sulfuric acid solution is good. This is because.

【0025】本発明では上記抽出剤と希釈剤とを重量比
で20:80〜70:30の割合で混合し、抽出有機として用い
るが、該範囲をはずれる場合には、例えば抽出剤が少な
い場合には抽出効率が低下し経済性を損ない、例えば高
い場合には抽出後の有機相の粘度が著しく増加し、相分
離に時間がかかりすぎ経済性を損なうばかりでなく、不
純物の随伴も生じることになるからである。
In the present invention, the above-mentioned extractant and diluent are mixed in a weight ratio of 20:80 to 70:30 and used as an extraction organic substance. The extraction efficiency is lowered and the economy is impaired.For example, when the extraction efficiency is high, the viscosity of the organic phase after extraction is remarkably increased, the phase separation takes too much time to impair the economy, and impurities are also entrained. Because.

【0026】(5)バナジウム逆抽出工程 このようにして抽出原液よりバナジウムを抽出した抽出
有機からのバナジウムの回収は硫酸や塩酸といった鉱酸
の溶液を用いた逆抽出により行う。用いる鉱酸の濃度を
0.05〜2モル/lとするのは、上記と同様に逆抽出効率
と粘度による相分離の関係からである。
(5) Vanadium back-extraction step In this way, vanadium is recovered from the extracted organic matter in which vanadium has been extracted from the stock solution for extraction by back-extraction using a solution of a mineral acid such as sulfuric acid or hydrochloric acid. The concentration of the mineral acid used
The amount of 0.05 to 2 mol / l is based on the relationship between the back extraction efficiency and the phase separation due to the viscosity, as in the above.

【0027】なお、液−液接触の方法は特に特定するも
のではないが、パルスカラム、ミキサーセトラ、遠心抽
出式の液−液接触装置を用いて行うことにより、バナジ
ウムの溶媒抽出が連続的に可能となり、工業的に利用で
きるものとなる。
The liquid-liquid contact method is not particularly limited, but vanadium can be continuously extracted with a solvent by using a pulse column, a mixer-settler, or a centrifugal extraction type liquid-liquid contact device. It will be possible and industrially applicable.

【0028】(6)硫化工程 硫化水素によりニッケルとコバルトとを硫化物とする方
法は既に長い歴史を持つ既知の方法であり、条件等の説
明は省略する。
(6) Sulfidation Step The method of converting nickel and cobalt into sulfides with hydrogen sulfide is a known method having a long history, and the description of conditions and the like will be omitted.

【0029】本発明に於いて、V抽出残液に硫化水素ガ
スを用いてニッケルとコバルトとを硫化物とするのは、
V抽出残液中に共存する微量の銅、ヒ素及び鉄を硫化物
として沈殿除去するためであり、これにより高純度の硫
酸アルミニウム溶液を得ようとするものであり、かつ次
工程でのイオン樹脂にニッケル、コバルトを吸着させる
際の負荷を軽減するためである。
In the present invention, hydrogen sulfide gas is used as the V extraction residual liquid to convert nickel and cobalt into sulfides.
V It is for precipitating and removing a trace amount of copper, arsenic and iron coexisting in the extraction residual liquid as a sulfide, thereby obtaining a high-purity aluminum sulfate solution, and an ionic resin in the next step. This is to reduce the load when adsorbing nickel and cobalt on.

【0030】(7)ニッケル、コバルトのイオン交換樹脂
への吸着工程 本発明では、ニッケルとコバルトとを硫化物として回収
した後の回収終液中の微量のニッケルとコバルトとをイ
ミノジ酢酸交換基を持つ樹脂とアミノカルボン酸交換基
を持つ樹脂とを用いて吸着除去する。これらの樹脂はそ
れぞれ別個に回収終液と接触させても良く、これらの樹
脂を混合した上で回収終液と接触させても良い。
(7) Adsorption Step of Nickel and Cobalt on Ion Exchange Resin In the present invention, a trace amount of nickel and cobalt in the final solution after recovery of nickel and cobalt as sulfides are treated with iminodiacetic acid exchange groups. It is adsorbed and removed by using the resin having it and the resin having the aminocarboxylic acid exchange group. These resins may be separately brought into contact with the final recovery solution, or these resins may be mixed and then brought into contact with the final recovery solution.

【0031】本発明に於いて用いるイミノジ酢酸交換基
を持つ樹脂は、2価の原子価状態の有価金属元素(Ni
2+,Co2+,Fe2+,Cu2+及びVO2+)を
選択的に吸着し、アミノカルボン酸交換基を持つ樹脂
は、有価金属元素(Mo6+,V5+,Fe3+)を選
択的に吸着する能力の上から好適であるばかりでなく、
このキレート樹脂から上記有価金属を溶離し、キレート
樹脂を再生するために用いられる酸が廃触媒の溶解工程
へ、リサイクルが可能であり、運転コストの軽減とな
る。
The resin having an iminodiacetic acid exchange group used in the present invention is a valuable metal element (Ni) in a divalent valence state.
2+, Co2 +, Fe2 +, Cu2 +, and VO2 +) are selectively adsorbed, and a resin having an aminocarboxylic acid exchange group is preferable because of its ability to selectively adsorb valuable metal elements (Mo6 +, V5 +, Fe3 +). Not only
The acid used to elute the valuable metal from the chelate resin and regenerate the chelate resin can be recycled to the step of dissolving the waste catalyst, and the operating cost can be reduced.

【0032】上記樹脂への吸着、脱着条件はSVを10〜
20とし、脱着に用いる硫酸溶液の硫酸濃度を5〜20重量
%とすることが吸脱着効率上最も良い。
The adsorption and desorption conditions on the resin are SV of 10 to
It is best for the adsorption and desorption efficiency to be 20 and the sulfuric acid concentration of the sulfuric acid solution used for desorption be 5 to 20% by weight.

【0033】上記条件以外はそれぞれの単位操作で常識
的とされている範囲で任意に選択できる。以上述べたよ
うな方法に従えば、モリブデン、バナジウムはそれぞれ
塩として回収可能であり、ニッケル、コバルトは硫化物
として回収でき、ニッケル製錬の良好な原料となり、ア
ルミニウムは高純度の硫酸アルミニウム溶液として回収
でき、良好なアルミナ原料としうる。なお、本発明の目
的を達成するためには、pH調整を行うとすれば、pH
調整剤として炭酸カルシウム及び/または水酸化カルシ
ウムを用いることが推奨される。というのは、例えば、
水酸化ナトリウムや炭酸ナトリウムを用いると硫酸酸性
の還元性抽出残液にナトリウムが混入し、回収される有
価金属製品の純度低下をもたらす結果となるから好まし
くないからである。又、炭酸カルシウムを用いる場合
は、硫酸カルシウムを沈殿生成し、簡単な固液分離で除
去が可能であり、回収される有価金属製品の純度に悪影
響を与えないといった利点があるからである。
Other than the above conditions, each unit operation can be arbitrarily selected within a range that is common sense. According to the method as described above, molybdenum and vanadium can be respectively recovered as salts, nickel and cobalt can be recovered as sulfides, and are good raw materials for nickel smelting, and aluminum is a high-purity aluminum sulfate solution. It can be recovered and used as a good alumina raw material. In order to achieve the object of the present invention, if pH adjustment is performed,
It is recommended to use calcium carbonate and / or calcium hydroxide as modifier. For example,
If sodium hydroxide or sodium carbonate is used, sodium is mixed in the sulfuric acid-reducing reductive extraction residual liquid, resulting in a decrease in the purity of the recovered valuable metal product, which is not preferable. Further, when calcium carbonate is used, calcium sulfate can be precipitated and removed by simple solid-liquid separation, and there is an advantage that the purity of the valuable metal product to be recovered is not adversely affected.

【0034】[0034]

【実施例】以下に、実施例を用いて本発明の方法を更に
詳しく説明する。尚、特にことわらない限り%は重量基
準による。 (実施例1)あらかじめ脱油したアルミナを主体とした
ものを担体とした金属含有の脱硫廃触媒2種類と銅触媒
を混合し、外熱式ロータリーキルンに挿入し、焙焼温度
550℃で2時間加熱して焼成物を得た。その分析値は
次の通りであった。 Ni 3.15% Co 1.22% Mo 5.81% V 7.80% S 1.06% Cu 2.89% Fe 0.55% Al 30.8% C 0.11%
EXAMPLES The method of the present invention will be described in more detail below with reference to examples. Unless otherwise stated,% is based on weight. (Example 1) Two kinds of metal-containing desulfurization waste catalysts having a carrier mainly composed of deoiled alumina as a carrier and a copper catalyst were mixed and inserted into an external heating type rotary kiln, and roasting temperature was 550 ° C for 2 hours. It heated and the baked product was obtained. The analytical values were as follows. Ni 3.15% Co 1.22% Mo 5.81% V 7.80% S 1.06% Cu 2.89% Fe 0.55% Al 30.8% C 0.11%

【0035】A)完全溶解する工程 上記焼成物の140gと金属アルミニウム(廃アルミニウム
缶)を短冊状に切断した片1gとを10%硫酸溶液560ml
に炭酸ガスを通気しながら温度90℃で加熱溶解した。更
に、水を加えて全量を1000mlとした。又、溶解槽に於け
る撹拌速度は300rpmであった。尚、得られた溶解液の分
析値は次の通りである。 (単位は g/l) Ni 4.4 Co 1.7 Mo 8.1 V 11.1
Cu 4.0 Fe 0.7 Al 43.6 pH 1.5 標準酸化還元電位 157mV
A) Complete dissolution step 140 g of the burned material and 1 g of a strip of metal aluminum (waste aluminum can) cut into strips were 560 ml of 10% sulfuric acid solution.
The mixture was heated and dissolved at a temperature of 90 ° C. while aerated with carbon dioxide gas. Further, water was added to make the total amount 1000 ml. The stirring speed in the dissolution tank was 300 rpm. The analytical values of the obtained solution are as follows. (Unit: g / l) Ni 4.4 Co 1.7 Mo 8.1 V 11.1
Cu 4.0 Fe 0.7 Al 43.6 pH 1.5 Standard oxidation-reduction potential 157mV

【0036】B)モリブデンを抽出する工程 上記溶解液をMo抽出原液とし、抽出剤としてN-Lauryl
(trialkylmethyl)amineを5%の割合で含むキシレン溶
液をMo抽出有機とし、Mo抽出原液とMo抽出有機と
を1対1の割合で混合し、5分間振とうし、モリブデン
を有機相へ抽出した。得られたMo抽出残液中のモリブ
デン濃度は、以下の通りであった。 Moイオン濃度 0.01g/l未満 なお、抽出剤としてN-Dodecenyl(trialkylmethyl)amine
を用いて同様の操作を試み、Mo抽出残液を得、そのモ
リブデン濃度を測定したところ同様に0.01g/l未満であ
った。
B) Step of extracting molybdenum The above-mentioned solution is used as a Mo extraction stock solution and N-Lauryl is used as an extractant.
A xylene solution containing 5% of (trialkylmethyl) amine was used as Mo-extracted organic, and the Mo-extracted stock solution and Mo-extracted organic were mixed at a ratio of 1: 1 and shaken for 5 minutes to extract molybdenum into an organic phase. . The molybdenum concentration in the obtained Mo extraction residual liquid was as follows. Mo ion concentration less than 0.01g / l As an extractant, N-Dodecenyl (trialkylmethyl) amine
The same operation was attempted by using to obtain a Mo extraction residual liquid, and the molybdenum concentration thereof was measured, and was similarly less than 0.01 g / l.

【0037】C)モリブデンの逆抽出 Mo含有抽出有機溶媒からのMoの逆抽出は2mol/lのア
ンモニア水を使用して行い、モリブデン酸アンモニウム
溶液を得ると共に抽出有機溶媒を再生した。
C) Back-extraction of molybdenum Back-extraction of Mo from the Mo-containing extraction organic solvent was carried out using 2 mol / l aqueous ammonia to obtain an ammonium molybdate solution and regenerate the extraction organic solvent.

【0038】D)バナジウムを抽出する工程 ついで、B)で得られたMo抽出残液に炭酸カルシウム
を加え水素イオン濃度を2 〜3 の範囲に調整し、その際
に生成した硫酸カルシウム(石膏)を固液分離した。次
いで、得たろ液をV抽出原液とし、抽出剤として2−エ
チルヘキシルホスホン酸モノ−2−エチルヘキシルを50
%の割合で含むキシレン溶液をV抽出有機とし、V抽出
原液とV抽出有機とを1:1の割合で混合し、5分間振
とうしてVを有機相へ抽出した。得られたV抽出残液中
のVイオン濃度は、0.02g/l 未満であった。
D) Step of extracting vanadium Next, calcium carbonate is added to the Mo extraction residual liquid obtained in B) to adjust the hydrogen ion concentration to a range of 2 to 3, and calcium sulfate (gypsum) produced at that time. Was solid-liquid separated. Then, the obtained filtrate was used as a V extraction stock solution, and 50% of 2-ethylhexylphosphonate mono-2-ethylhexyl was used as an extractant.
The xylene solution contained in a ratio of 1% was used as V-extracted organic, the V-extracted stock solution and the V-extracted organic were mixed at a ratio of 1: 1 and shaken for 5 minutes to extract V into the organic phase. The V ion concentration in the obtained V extraction residual liquid was less than 0.02 g / l.

【0039】E)バナジウムを逆抽出する工程 V含有の抽出有機溶媒からVの逆抽出は5重量%濃度の
硫酸溶液を使用して行い、硫酸バナジル溶液を得ると共
に抽出有機溶媒を再生した。
E) Step of Back-Extracting Vanadium Back-extraction of V from the extracted organic solvent containing V was carried out using a sulfuric acid solution having a concentration of 5% by weight to obtain a vanadyl sulfate solution and to regenerate the extracted organic solvent.

【0040】F)Ni,Co,Cu,及びFeの硫化ス
ライムを得る工程 前記のV抽出残液を40℃に加熱し、液中に硫化水素を
通気した。生成した硫化物を固液分離し、硫化スライム
を得た。固液分離後の回収終液中のニッケル、コバル
ト、銅、鉄の濃度は、次の通りであった。 Ni 0.51g/l Co 0.10g/l Cu 0.01g/l未満 Fe 0.01g/l 未満 なお、得られた硫化物はニッケル製錬原料として十分使
用可能なものであった。
F) Step of Obtaining Ni, Co, Cu, and Fe Sulfide Slime The above V extraction residual liquid was heated to 40 ° C., and hydrogen sulfide was bubbled through the liquid. The generated sulfide was subjected to solid-liquid separation to obtain sulfide slime. The concentrations of nickel, cobalt, copper and iron in the recovered final liquid after solid-liquid separation were as follows. Ni 0.51 g / l Co 0.10 g / l Cu less than 0.01 g / l Fe less than 0.01 g / l The obtained sulfide was sufficiently usable as a nickel smelting raw material.

【0041】G)高純度の硫酸アルミニウム溶液を得る
工程 前記F)の工程で得られた回収終液をイミノジ酢酸交換
基を持つ樹脂とアミノカルボン酸交換基を持つ樹脂との
混床(商品名 スミキレートMC30とスミキレートM
C75の混床 住友化学社製)であるH型タイプのキ
レート樹脂を充填した充填搭にSV=15で通液した。得
られた通過液(硫酸アルミニウム水溶液)の分析値は、
次の通りであった。 Al 43.1g/l Ni <0.001g/l Co <0.001g/l Mo <0.001g/l V <0.001g/l Cu <0.001g/l Fe <0.001g/l
G) Step of Obtaining High-Purity Aluminum Sulfate Solution The mixed final solution obtained in the step F) was mixed with a resin having an iminodiacetic acid exchange group and a resin having an aminocarboxylic acid exchange group (trade name). Sumichelate MC30 and Sumichelate M
C75 mixed bed (Sumitomo Chemical Co., Ltd.) was passed through a packed column filled with an H-type chelate resin at SV = 15. The analytical value of the obtained passing liquid (aluminum sulfate aqueous solution) is
It was as follows. Al 43.1g / l Ni <0.001g / l Co <0.001g / l Mo <0.001g / l V <0.001g / l Cu <0.001g / l Fe <0.001g / l

【0042】H)ニッケルとコバルトの溶離、 一方、キレート交換樹脂に吸着させた微量重金属を溶離
するため、10%硫酸溶液を用いてSV=15で溶離した。
溶離は完全に行うことができた。I)再生Mo抽出有
機、再生V抽出有機を繰り返し使用し、キレート樹脂の
溶離液を還元溶解工程に繰り返して上記試験を繰り返し
行い操業上の問題点の発見を行ったが、何れの抽出工程
も相分離状態は良好であり、第3相やクラッドの生成は
認められなかった。なお、還元溶解工程では焼成物は常
に完全に溶解していた。
H) Elution of nickel and cobalt. On the other hand, in order to elute a trace amount of heavy metal adsorbed on the chelate exchange resin, SV = 15 was eluted using a 10% sulfuric acid solution.
The elution could be done completely. I) Regenerated Mo-extracted organic matter and regenerated V-extracted organic matter were repeatedly used, and the chelating resin eluent was repeatedly subjected to the reducing and dissolving step to repeat the above-mentioned test to find operational problems. The phase separation was good, and the formation of the third phase and the clad was not observed. In the reduction dissolution step, the fired product was always completely dissolved.

【0043】上記実施例に於いて回収された各有価金属
の平均回収率を次に示す。 Mo 98.5% (製品の形;モリブデン酸アンモニウ
ム) V 99.5以上. (製品の形;硫酸バナジル) Al 100 % (製品の形;硫酸バンド(Al23
8.1%)水溶液) Ni 100 % (非鉄精練の原料として;NiSスラ
イムの形) Co 100 % (非鉄精練の原料として;CoSスラ
イムの形) Cu 100 % (非鉄精練の原料として;CuSスラ
イムの形)
The average recovery rate of each valuable metal recovered in the above embodiment is shown below. Mo 98.5% (Product form; ammonium molybdate) V 99.5 or more. (Product form; vanadyl sulfate) Al 100% (Product form; sulfuric acid band (Al 2 O 3 min.
8.1%) Aqueous solution) Ni 100% (as raw material for non-ferrous scouring; NiS slime form) Co 100% (as raw material for non-ferrous scouring; CoS slime form) Cu 100% (as raw material for non-ferrous scouring; CuS slime form)

【0044】[0044]

【発明の効果】本発明の方法に従えば、確実にバナジウ
ムとモリブデンとニッケルとコバルトとアルミニウムと
を容易に、かつ高回収率で分離回収でき、かつ、本発明
方法は基本的にクローズ・システムであり、公害防止上
からも有効であり、工業的に有意義である。
According to the method of the present invention, vanadium, molybdenum, nickel, cobalt and aluminum can be reliably and easily separated and recovered with a high recovery rate, and the method of the present invention is basically a closed system. It is also effective from the standpoint of pollution prevention and is industrially significant.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C01G 39/00 A 51/00 Z C22B 3/26 23/00 34/22 34/34 (72)発明者 清 水 昌 明 茨城県 勝田市 高野 1400−2─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI Technical display location C01G 39/00 A 51/00 Z C22B 3/26 23/00 34/22 34/34 (72) Inventor Masaaki Shimizu 1400-2 Takano, Katsuta City, Ibaraki Prefecture

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 アルミナを主成分とする担体を用いた
廃触媒を、要すれば脱油し、次いで400〜1000℃で焙焼
し、得た焼成物を溶解用触媒金属と共に硫酸溶解し、得
た溶解液を抽出原液とし、該抽出原液と所定量のMo抽
出用抽出剤を含むMo抽出有機とを接触させてモリブデ
ンを含む有機相とMo抽出残液とを得、該有機相よりモ
リブデンをアルカリ溶液を用いて逆抽出し、モリブデン
酸塩溶液と再生Mo抽出有機とを得、再生Mo抽出有機
を前記モリブデン抽出工程に繰り返し、モリブデン酸塩
溶液よりモリブデンを回収し、前記Mo抽出残液と所定
量のV抽出用抽出剤を含むV抽出有機とを接触させてバ
ナジウムを含む有機相とV抽出残液とを得、該有機相よ
りバナジウムを鉱酸溶液を用いて逆抽出し、含バナジウ
ム溶液と再生V抽出有機とを得、再生V抽出有機を前記
バナジウム抽出工程に繰り返し、記V抽出残液と硫化水
素ガスと接触させて、V抽出残液中のニッケル、コバル
トを硫化物として回収し、回収終液をキレート樹脂と接
触させて分離液中の微量のニッケルとコバルトとを該キ
レート樹脂に吸着させ、高純度の硫酸アルミニウム溶液
を得、一方キレート樹脂に吸着せしめた微量のニッケル
とコバルトとを硫酸を用いて遊離し、得た遊離液を前記
還元溶解工程に繰り返すことを特徴とする廃触媒よりの
有価金属の回収方法。
1. A waste catalyst using a carrier containing alumina as a main component is deoiled, if necessary, and then roasted at 400 to 1000 ° C., and the obtained calcined product is dissolved with sulfuric acid together with a catalyst metal for dissolution, The obtained solution is used as an undiluted solution, and the undiluted solution is brought into contact with a Mo-extracting organic compound containing a predetermined amount of Mo-extracting agent to obtain a molybdenum-containing organic phase and a Mo-extraction residual liquid. Is back-extracted with an alkaline solution to obtain a molybdate solution and a regenerated Mo-extracted organic matter, and the regenerated Mo-extracted organic matter is repeated in the molybdenum extraction step to recover molybdenum from the molybdate solution, And a V extraction organic containing a predetermined amount of V extraction extractant are contacted to obtain an organic phase containing vanadium and a V extraction residual liquid, and vanadium is back-extracted from the organic phase using a mineral acid solution, Vanadium solution and regenerated V extraction organic The regenerated V-extracted organic matter is repeated in the vanadium extraction step, and the V-extracted residual liquid and hydrogen sulfide gas are contacted to recover nickel and cobalt in the V-extracted residual liquid as sulfides, and the final recovered liquid is a chelate. By adsorbing a small amount of nickel and cobalt in the separated liquid in contact with the resin to the chelate resin to obtain a high-purity aluminum sulfate solution, a small amount of nickel and cobalt adsorbed to the chelate resin is admixed with sulfuric acid. A method for recovering valuable metal from a waste catalyst, which comprises liberating and repeating the obtained liberating solution in the reducing and dissolving step.
【請求項2】 請求項1記載の方法において各工程が
下記条件で規定されることを特徴とする廃触媒よりの有
価金属の回収方法。(1)還元溶解時に、非酸化性雰囲気
下で、反応温度を70〜100℃とし、溶解用触媒金属とし
て金属アルミニウム、金属ニッケル、金属コバルトの中
の少なくとも1種を用い、(2)モリブデンの抽出に際し
ては、抽出原液のpHを0〜4とし、抽出剤として一般
式R1−NH−R2で示され、R1とR2とがそれぞれ
炭素数12〜13のアルキル基である第2級アミンの少なく
とも1種以上を用い、希釈剤として芳香族炭化水素及び
パラフィン系炭化水素の内の少なくとも1種を用い、抽
出剤と希釈剤とを重量比で5:95〜20:80の割合で混合
して得たMo抽出有機を用い、(3)モリブデンの逆抽出
に際しては、0.5〜5モル/lの可性アルカリ溶液の中
の少なくとも1種を逆抽出液として用い、(4)Mo抽出
残液よりバナジウム抽出するに際して、Mo抽出残液の
pHを1〜4とし、抽出剤として2−エチルヘキシルホ
スホン酸モノ−2−エチルヘキシルを用い、希釈剤とし
て芳香族炭化水素及びパラフィン系炭化水素の内の少な
くとも1種を用い、抽出剤と希釈液とを重量比で20:80
〜60:40の割合で混合して得たV抽出有機を用い、(5)
バナジウムの逆抽出に際しては、逆抽出液として0.05〜
2モル/lの鉱酸溶液を用い、(6)ニッケルとコバルト
とを樹脂吸着させるに際して、キレート交換樹脂として
イミノジ酢酸交換基タイプとアミノカルボン酸タイプの
ものを併用し、SVを10〜20とし、一方、キレート交換
樹脂に吸着せしめたニッケルとコバルトとを5〜20重量
%の硫酸溶液を用いて同様のSVで溶離するものであ
る。
2. A method for recovering valuable metal from a waste catalyst, wherein each step in the method according to claim 1 is defined under the following conditions. (1) At the time of reducing and dissolving, in a non-oxidizing atmosphere, the reaction temperature is set to 70 to 100 ° C., and at least one of metallic aluminum, metallic nickel, and metallic cobalt is used as a catalytic metal for dissolution, and (2) molybdenum is used. At the time of extraction, the pH of the undiluted solution is set to 0 to 4 and at least a secondary amine represented by the general formula R1-NH-R2, in which R1 and R2 are each an alkyl group having 12 to 13 carbon atoms, is used as an extracting agent. At least one of aromatic hydrocarbons and paraffinic hydrocarbons is used as the diluent, and the extractant and the diluent are mixed in a weight ratio of 5:95 to 20:80. Using the obtained Mo-extracted organic matter, (3) at the time of back-extracting molybdenum, at least one of the 0.5 to 5 mol / l caustic alkali solution was used as the back-extracting solution, and (4) Mo-extracting residual solution was used. When extracting vanadium, H is set to 1 to 4, 2-ethylhexyl mono-2-ethylhexylphosphonate is used as an extractant, and at least one kind of aromatic hydrocarbon and paraffin hydrocarbon is used as a diluent, and an extractant and a diluent are used. The weight ratio is 20:80
Using the V-extracted organic compound obtained by mixing at a ratio of -60: 40, (5)
For vanadium back-extraction, 0.05-
(6) When adsorbing nickel and cobalt onto the resin using a 2 mol / l mineral acid solution, a chelate exchange resin of iminodiacetic acid exchange group type and aminocarboxylic acid type is used together, and SV is set to 10 to 20. On the other hand, nickel and cobalt adsorbed on the chelate exchange resin are eluted with the same SV using a 5 to 20 wt% sulfuric acid solution.
【請求項3】 モリブデンの逆抽出に際し、逆抽出液
として0.5モル/l以上のアンモニア水を用いることを
特徴とする請求項1〜2記載のいずれかの廃触媒よりの
有価金属の回収方法。
3. The method for recovering valuable metal from the spent catalyst according to claim 1, wherein 0.5 mol / l or more of ammonia water is used as a back extraction liquid in the back extraction of molybdenum.
【請求項4】 モリブデンの抽出剤としてN-Dodeceny
l(trialkylmethyl)amine及び/またはN-Lauryl(trialky
lmethyl)amineを用いることを特徴とする請求項2〜4
記載のいずれかの廃触媒よりの有価金属の回収方法。
4. N-Dodeceny as a molybdenum extractant
l (trialkylmethyl) amine and / or N-Lauryl (trialky
l-methyl) amine is used, Claims 2-4 characterized by the above-mentioned.
A method for recovering valuable metal from any of the waste catalysts described.
JP6139793A 1993-02-26 1993-02-26 Method for recovering valuable metals from waste hydrodesulfurization catalyst Expired - Fee Related JP3232753B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6139793A JP3232753B2 (en) 1993-02-26 1993-02-26 Method for recovering valuable metals from waste hydrodesulfurization catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6139793A JP3232753B2 (en) 1993-02-26 1993-02-26 Method for recovering valuable metals from waste hydrodesulfurization catalyst

Publications (2)

Publication Number Publication Date
JPH06248367A true JPH06248367A (en) 1994-09-06
JP3232753B2 JP3232753B2 (en) 2001-11-26

Family

ID=13169984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6139793A Expired - Fee Related JP3232753B2 (en) 1993-02-26 1993-02-26 Method for recovering valuable metals from waste hydrodesulfurization catalyst

Country Status (1)

Country Link
JP (1) JP3232753B2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2717188A1 (en) * 1994-03-11 1995-09-15 Sumitomo Metal Mining Co Process for recovering valuable metals from spent catalyst
WO2009151147A1 (en) 2008-06-12 2009-12-17 Jfeミネラル株式会社 Process for recoverying valuable metals from waste catalyst
JP2010024483A (en) * 2008-07-17 2010-02-04 Ihi Corp Method for collecting valuable metal from tar
JP2010503521A (en) * 2006-09-14 2010-02-04 アルベマール・ネーザーランズ・ベーブイ Method for recovering Group VI-B metal from spent catalyst
KR101107010B1 (en) * 2009-08-24 2012-01-25 한국지질자원연구원 Recovery method of valuable metals by pretreatment of spent petroleum catalyst and sulphuric acid
JP2015521984A (en) * 2012-07-10 2015-08-03 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Method for producing cobalt sulfate aqueous solution
JP2016089117A (en) * 2014-11-10 2016-05-23 国立研究開発法人日本原子力研究開発機構 Solid composition and method for producing solid composition
CN105838882A (en) * 2016-06-21 2016-08-10 昆明冶金研究院 Separation and recovery process for molybdenum and nickel in nickel-molybdenum associated ore oxygen pressure acid leaching liquid
CN109487075A (en) * 2018-12-18 2019-03-19 清华大学 The method for realizing valuable element synthetical recovery in aluminium base petroleum refining catalyst using reducibility gas
KR101959981B1 (en) * 2017-11-13 2019-03-19 중원대학교 산학협력단 Recovering method of molybdenum from nickel-based superalloy scrap
KR101963177B1 (en) * 2017-11-13 2019-03-28 중원대학교 산학협력단 Stripping method of molybdenum from organic phase containing molybdenum
CN109593965A (en) * 2018-12-18 2019-04-09 清华大学 A method of recycling valuable element from aluminium base petroleum refining dead catalyst
CN109652652A (en) * 2018-12-18 2019-04-19 清华大学 The method that clean and environmental protection recycles valuable element from aluminium base petroleum refining dead catalyst
CN112342389A (en) * 2020-10-21 2021-02-09 湖南中大联合绿色发展有限公司 Method for recovering valuable metal from waste chemical catalyst
CN112730726A (en) * 2020-12-29 2021-04-30 中冶建筑研究总院有限公司 Method for measuring content of metal loaded in catalyst
CN112939094A (en) * 2021-02-23 2021-06-11 华电光大(宜昌)环保技术有限公司 Method for preparing nano cobalt tungstate and recovering coarse titanium slag
CN113774219A (en) * 2020-06-10 2021-12-10 中国石油化工股份有限公司 Method for recycling waste cobalt-molybdenum hydrogenation catalyst
CN114250372A (en) * 2021-12-24 2022-03-29 辽宁东野环保产业开发有限公司 Method for recovering vanadium in waste catalyst
CN115959721A (en) * 2021-05-28 2023-04-14 厦门欣赛科技有限公司 Nickel-containing waste residue recovery system and process thereof
CN116730401A (en) * 2023-05-23 2023-09-12 杭州普力材料科技有限公司 Method for high-selectivity adsorption recovery of cobalt from DMC catalyst sludge
CN117758068A (en) * 2024-02-22 2024-03-26 中国恩菲工程技术有限公司 method for preparing vanadyl sulfate from stone coal

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL9401187A (en) * 1994-03-11 1995-10-02 Sumitomo Metal Mining Co Method for recovering valuable metal from a waste catalyst.
FR2717188A1 (en) * 1994-03-11 1995-09-15 Sumitomo Metal Mining Co Process for recovering valuable metals from spent catalyst
JP2010503521A (en) * 2006-09-14 2010-02-04 アルベマール・ネーザーランズ・ベーブイ Method for recovering Group VI-B metal from spent catalyst
WO2009151147A1 (en) 2008-06-12 2009-12-17 Jfeミネラル株式会社 Process for recoverying valuable metals from waste catalyst
JP2010024483A (en) * 2008-07-17 2010-02-04 Ihi Corp Method for collecting valuable metal from tar
KR101107010B1 (en) * 2009-08-24 2012-01-25 한국지질자원연구원 Recovery method of valuable metals by pretreatment of spent petroleum catalyst and sulphuric acid
JP2015521984A (en) * 2012-07-10 2015-08-03 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Method for producing cobalt sulfate aqueous solution
JP2016089117A (en) * 2014-11-10 2016-05-23 国立研究開発法人日本原子力研究開発機構 Solid composition and method for producing solid composition
CN105838882A (en) * 2016-06-21 2016-08-10 昆明冶金研究院 Separation and recovery process for molybdenum and nickel in nickel-molybdenum associated ore oxygen pressure acid leaching liquid
KR101963177B1 (en) * 2017-11-13 2019-03-28 중원대학교 산학협력단 Stripping method of molybdenum from organic phase containing molybdenum
KR101959981B1 (en) * 2017-11-13 2019-03-19 중원대학교 산학협력단 Recovering method of molybdenum from nickel-based superalloy scrap
CN109593965B (en) * 2018-12-18 2020-07-07 清华大学 Method for recovering valuable elements from aluminum-based petroleum refining waste catalyst
CN109593965A (en) * 2018-12-18 2019-04-09 清华大学 A method of recycling valuable element from aluminium base petroleum refining dead catalyst
CN109652652A (en) * 2018-12-18 2019-04-19 清华大学 The method that clean and environmental protection recycles valuable element from aluminium base petroleum refining dead catalyst
CN109487075A (en) * 2018-12-18 2019-03-19 清华大学 The method for realizing valuable element synthetical recovery in aluminium base petroleum refining catalyst using reducibility gas
CN109487075B (en) * 2018-12-18 2020-07-07 清华大学 Method for comprehensively recovering valuable elements in aluminum-based petroleum refining catalyst by utilizing reducing gas
CN109652652B (en) * 2018-12-18 2020-07-07 清华大学 Method for recycling valuable elements from aluminum-based petroleum refining waste catalyst in clean and environment-friendly manner
CN113774219A (en) * 2020-06-10 2021-12-10 中国石油化工股份有限公司 Method for recycling waste cobalt-molybdenum hydrogenation catalyst
CN113774219B (en) * 2020-06-10 2024-03-26 中国石油化工股份有限公司 Method for recycling waste cobalt-molybdenum hydrogenation catalyst
CN112342389A (en) * 2020-10-21 2021-02-09 湖南中大联合绿色发展有限公司 Method for recovering valuable metal from waste chemical catalyst
CN112730726A (en) * 2020-12-29 2021-04-30 中冶建筑研究总院有限公司 Method for measuring content of metal loaded in catalyst
CN112730726B (en) * 2020-12-29 2023-10-24 中冶建筑研究总院有限公司 Method for measuring content of metal loaded in catalyst
CN112939094A (en) * 2021-02-23 2021-06-11 华电光大(宜昌)环保技术有限公司 Method for preparing nano cobalt tungstate and recovering coarse titanium slag
CN112939094B (en) * 2021-02-23 2023-05-09 华电光大(宜昌)环保技术有限公司 Method for preparing nano cobalt tungstate and recovering crude titanium slag
CN115959721A (en) * 2021-05-28 2023-04-14 厦门欣赛科技有限公司 Nickel-containing waste residue recovery system and process thereof
CN114250372A (en) * 2021-12-24 2022-03-29 辽宁东野环保产业开发有限公司 Method for recovering vanadium in waste catalyst
CN116730401A (en) * 2023-05-23 2023-09-12 杭州普力材料科技有限公司 Method for high-selectivity adsorption recovery of cobalt from DMC catalyst sludge
CN116730401B (en) * 2023-05-23 2023-12-08 合肥普力先进材料科技有限公司 Method for high-selectivity adsorption recovery of cobalt from DMC catalyst sludge
CN117758068A (en) * 2024-02-22 2024-03-26 中国恩菲工程技术有限公司 method for preparing vanadyl sulfate from stone coal
CN117758068B (en) * 2024-02-22 2024-06-04 中国恩菲工程技术有限公司 Method for preparing vanadyl sulfate from stone coal

Also Published As

Publication number Publication date
JP3232753B2 (en) 2001-11-26

Similar Documents

Publication Publication Date Title
JP2751093B2 (en) Method for recovering valuable metals from spent catalyst
JPH06248367A (en) Method for recovering valuable metal from waste catalyst
EP3093354B1 (en) Scandium recovery method
JP5652503B2 (en) Scandium recovery method
US4861565A (en) Method of separately recovering metal values of petroleum refining catalyst
JP3741117B2 (en) Mutual separation of platinum group elements
CN1187460C (en) Process to recover molybdenum and vanadium metal from spent catalyst by alkaline leaching
US4721606A (en) Recovery of metal values from spent catalysts
JP2006512484A (en) Recovery of metals from sulfide-based materials
WO2014089614A1 (en) A process, method and plant for recovering scandium
IE48424B1 (en) Improved method for the recovery of metallic copper
JP6798078B2 (en) Ion exchange treatment method, scandium recovery method
JP6319362B2 (en) Scandium recovery method
WO2017146034A1 (en) Method for recovering scandium
CN111492073A (en) Selective recovery of rare earth metals from acidic slurries or solutions
JPH0615409B2 (en) Recovery of vanadium valuables from ammonium bicarbonate solution using heat, sulfuric acid and ammonium sulfate
US4474735A (en) Process for the recovery of valuable metals from spent crude-oil sulfur-extraction catalysts
WO2007092994A1 (en) Processing of laterite ore
CA1091038A (en) Cobalt stripping process
CA2790558A1 (en) Processes for recovering rare earth elements and rare metals
US20050211631A1 (en) Method for the separation of zinc and a second metal which does not form an anionic complex in the presence of chloride ions
KR20000001579A (en) Separation and recovery of nickel, vanadium, and molybdenum from waste catalyst of vacuum residue desulfurization
KR20220126466A (en) Method For Recovering Molybdenium And Vanadium From Spent Catalysts by nonaqueous systems
Brooks et al. Processing of superalloy scrap
AU670398B2 (en) Process for the preparation of a high purity cobalt intermediate

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees