JP3835148B2 - Mo and V separation and recovery method - Google Patents

Mo and V separation and recovery method Download PDF

Info

Publication number
JP3835148B2
JP3835148B2 JP2000290160A JP2000290160A JP3835148B2 JP 3835148 B2 JP3835148 B2 JP 3835148B2 JP 2000290160 A JP2000290160 A JP 2000290160A JP 2000290160 A JP2000290160 A JP 2000290160A JP 3835148 B2 JP3835148 B2 JP 3835148B2
Authority
JP
Japan
Prior art keywords
extraction
solution
extracted
concentration
tomac
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000290160A
Other languages
Japanese (ja)
Other versions
JP2002097526A (en
Inventor
篤 福井
正樹 今村
敬司 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2000290160A priority Critical patent/JP3835148B2/en
Publication of JP2002097526A publication Critical patent/JP2002097526A/en
Application granted granted Critical
Publication of JP3835148B2 publication Critical patent/JP3835148B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

【0001】
【発明の属する技術分野】
本発明は、石油の脱硫に用いた廃触媒からMoやVの有価金属を回収する場合のように、塩溶液中に共存するMoとVとを効率よく分離回収する方法に関する。
【0002】
【従来の技術】
モリブデン(Mo)やバナジウム(V)はレアメタルの1つであり、鉄鋼用の合金添加剤、高級ステンレスや高級構造鋼などの特殊鋼用の添加剤、及び切削工具などの耐熱耐摩耗部品への添加物などとして使用されている。例えば、モリブデン・バナジウム鋼、クロム・バナジウム鋼などの高力鋼が著名である。
【0003】
また、Moは金属や超合金として、原子炉材、潤滑材、触媒など各分野に幅広く使用されている。このようなMoの用途の一つに石油の脱硫用触媒があるが、この触媒は処理油に含まれるV、Niなどの重金属によって被毒され、これらの金属もMoと共に触媒中に含有されるようになる。従って、このような廃触媒をそのまま廃棄することは、環境汚染の原因となる。
【0004】
そこで従来から、MoやVを多く含む脱硫用触媒の廃触媒から、有価金属を回収することが試みられている。これらの有価金属の回収方法として、廃触媒を酸化又はアルカリ焙焼した後、焙焼物を硫酸や水で溶解し、その溶解液から塩析や溶媒抽出によりMoを回収する方法が知られている。
【0005】
一般的には、廃触媒をNaCOやNaOHでアルカリ焙焼した焙焼物を水で溶解することにより、NiやCoを残渣中に残し、且つMoやVのソーダ塩を主成分とする塩溶液を得る。この塩溶液に塩化アンモニウムを添加してVを塩析させ、メタバナジン酸アンモニウムの沈殿としてVを回収する。その後、その母液を硫酸や塩酸で中和して、MoをMoOとして沈殿除去する。
【0006】
しかしながら、Vの塩析による回収工程では、塩析pHの調整により純度は向上できるがMoとの分離は充分でなく、純度を上げるためにはメタバナジン酸アンモニウムを再度溶解し、塩析を繰り返す必要があった。また、Moの回収時にも残留V濃度が高いため、V除去用のイオン交換樹脂への負荷が高まり、コスト高となっていた。
【0007】
一方、溶媒抽出を利用したMoの方法も開発されている。例えば、廃触媒を酸化焙焼した後、焙焼物を硫酸で溶解した塩溶液からMoを回収する方法として、アンバーライトLA−2(オルガノ製)などの第2級アミンを用いて抽出する方法がある。
【0008】
しかし、MoとVを抽出分離するためには、Moをモリブデン酸及びVを4価の陰イオンとして存在させる必要があるため、抽出pHと酸化還元電位(ORP)を同時に適正値に制御保持しなければならず、厳密な管理が必要である。また、酸性のpH領域ではMoはコロイドを形成しやすく、相分離が困難になる問題がある。Moのコロイドを形成しないpH領域は狭く、この領域での溶媒抽出を工業的に実施するのは困難である。
【0009】
このような状況から、Moの抽出時にVの共抽出を抑えると抽残液中のMoが高くなり、また抽残液のMo濃度を目標値にするとVの共抽出が多くなるため、両方の目標値を満足する結果は得られていないのが現状である。
【0010】
【発明が解決しようとする課題】
本発明は、このような従来の事情に鑑み、塩溶液中に共存するMoとVとを溶媒抽出によって分離回収する際に、MoとVとを高純度に分離でき、且つ製品製造のための精製工程の負担を軽減することができる、MoとVの分離回収方法を提供することを目的とする。
【0011】
【課題を解決するための手段】
上記目的を達成するため、本発明が提供する塩溶液中に共存するMoとVとを分離回収する方法は、該塩溶液から第4級アンモニウム塩抽出剤を用いてVを選択的に抽出し、該第4級アンモニウム塩に抽出された少量のMoを5g/l以上のVが含まれる溶液で洗浄することにより、第4級アンモニウム塩からMoを除去することを特徴とする。
【0012】
上記本発明のMoとVの分離回収方法においては、第4級アンモニウム塩抽出剤として、トリオクチルメチルアンモニウムクロライドを用いて溶媒抽出することが好ましい。また、抽出時における水相のpHが6〜10の範囲になるように調整して抽出することが好ましい。
【0013】
また、上記本発明のMoとVとを分離回収する方法においては、前記洗浄した後の第4級アンモニウム塩を10g/l以上のNaOH水溶液と接触させることにより、Vを水溶液中に逆抽出することができる。
【0014】
【発明の実施の形態】
Mo及びVは溶液中において陰イオンで存在するのが安定であり、従ってVO とMoO 2−の共存した塩溶液が原液となる。例えば、石油の脱硫用触媒の廃触媒をNaCOやNaOHでアルカリ焙焼した後、その焙焼物を水で溶解して得られるNaVO及びNaMoOの塩溶液が抽出原液とする。
【0015】
このようなMoとVの共存する塩溶液から、溶媒抽出によって両者を分離するための抽出剤としては、第4級アンモニウム塩抽出剤を使用する。第4級アンモニウム塩の中でもトリオクチルメチルアンモニウムクロライド(TOMAC)が好ましい。
【0016】
本発明による分離回収方法を、好ましい工程を示す図1に従って説明する。まず、抽出工程においては、NaVOとNaMoOを含む塩溶液を抽出原液とし、第4級アンモニウム塩抽出剤としてTOMACを用いてVを抽出し、抽残液(水相)をMo製品化始液とする。TOMACによるVの抽出反応は、下記化学式1に示す反応と考えられる。尚、下記する各化学式において、RはC17を意味する。
【0017】
【化1】
[RNCH Cl]org+[VO ]aq=[RNCH VO ]org+[Cl]aq
【0018】
この抽出工程では、TOMACが陰イオン抽出剤であるため、MoもTOMAC(有機相)中に一部抽出される。水相のpHが高いほどVとMoとの分離性が向上するが、選択的にVを抽出するためには、硫酸などでpHを6〜10の範囲に調整することが好ましい。水相のpHが10を超えとVの抽出率が低下し、結果としてVとMoとの分離性が低下する。また、pH6未満ではMoのイオン形態が変化し、Moが多量に抽出されるためVとMoとの分離性を悪化させる。
【0019】
低pHでTOMAC(有機相)に多量に抽出されたMoは、次工程のスクラビングの効率を低下させるので望ましくない。また、Moが抽出されたままのTOMACでは、後の逆抽出工程における逆抽液のMo濃度が高くなり、V製品化始液としての許容濃度を超えてしまう。
【0020】
そこで、次のスクラビング工程において、TOMACに一部抽出されたMoを、V含有溶液で洗浄することにより除去することができる。このスクラビングによるMoの除去は、下記化学式2によるものと考えられる。
【0021】
【化2】
[(RNCH )]MoO 2−]org+[2VO ]aq=2[RNCH VO ]org+[MoO 2−]aq
【0022】
上記化学式2から分るように、V濃度の高い溶液ほどMoをTOMACから容易に除去することができるが、一般的にはV濃度が5g/l以上の溶液が好ましい。このようなV含有溶液として、後述する逆抽出工程でVをNaOHで逆抽出した逆抽液をpH6〜10程度に調整したものが使用できる。
【0023】
逆抽出工程においては、TOMACに抽出されたVをNaOH溶液で逆抽出し、逆抽液(水相)をV製品化始液とする。逆抽出に使用するNaOH溶液の濃度は、10g/l以上であることが好ましい。この逆抽出時の反応は以下に示す化学式3と考えられ、逆抽出後のTOMACはOH型となる。
【0024】
【化3】
[(RNCH)VO ]org+NaOH=[(RNCH)OH]org+[VO ]aq
【0025】
逆抽出後のTOMACは、そのまま抽出工程へ戻し、pHを硫酸やNaOHなどで調整して再度Vの抽出に用いる。また、逆抽液は、上述したように、V濃度を5g/l以上及びpHを6〜10程度に調整することにより、スクラビング始液として使用できる。
【0026】
必要に応じて、逆抽出後のTOMACを硫酸と接触させ、以下の化学式4に示す酸付加により、−SO型に変換することも可能である。酸付加に使用する硫酸濃度はTOMAC濃度によって変化するが、TOMAC見合いで良く、例えば20Vol%のTOMACでO/A=1の場合は0.5N程度が好ましい。
【0027】
【化4】
[2(RNCH)OH]org+HSO=[(RNCH)SO 2−]org+2H
【0028】
尚、TOMAC中に懸濁した酸類のため、抽出時における水相のpHが低下してVの選択抽出が難しくなることがある。そのため、TOMACをSO型にした後、必要に応じてコンディショニング工程として、水や硫酸ナトリウム溶液などで有機相を洗浄しても良い。ただし、酸付加後に抽出した際のpHによっては、この工程は不要となる。
【0029】
以上が、本発明方法における1サイクルである。本発明方法では、TOMACを使用して、適切なpHで抽出することにより、NaVOとNaMoOの共存する塩溶液からVを選択的に抽出できる。また、Vの逆抽出やpH調整などにより、TOMACを繰り返し使用して、連続的にMoとVを分離回収することができる。
【0030】
【実施例】
実施例1
TOMAC(トリオクチルメチルアンモニウムクロライド)を、希釈剤(ソルベッソ200;エクソン化学(製)の芳香族炭化水素)で20%の濃度になるように調整し、これを抽出剤として使用した。抽出原液はVO とMoO 2−の共存した塩溶液を調整し、pH7.39、Mo濃度17.1g/l、V濃度14.6g/lとした。
【0031】
水相のpHによる抽出特性を確認するため、抽残液のpHが6、7、7.5、8、8.5、9、10になるように、抽出原液のpHをHSO又はNaOH溶液で調整した。この抽出原液に上記TOMAC抽出剤をO/A=1で混合し、常温で10分間攪拌して、抽出率を比較した結果を表1及び図2に示す。
【0032】
【表1】

Figure 0003835148
【0033】
上記の結果から分るように、抽残液のpHで約8.5の場合に、Vを最も高い選択性で抽出することができた。また、pHが低くなるとMoが抽出されやすくなるので、pH6〜10の範囲内、好ましくはpH8〜9の範囲で抽出することにより、Moの抽出を抑えて選択的にVを抽出できることが分る。
【0034】
上記実施例1の試料3と同様の条件にてVを抽出したTOMACを、V含有溶液で洗浄した。即ち、用いた各V含有溶液は、試料8〜11ごとにそれぞれV濃度を10、15、20、30g/lと変え、且つNaSO濃度は全ての試料で75g/lとした。洗浄はO/A=4とし、常温にて同じV含有溶液で3回行った。また、比較例として、上記と同じTOMACを、V濃度30g/l及びNaSO濃度75g/lのV含有溶液を用いて、比較例1ではO/A=4で4回、比較例2ではO/A=2で2回洗浄した。
【0035】
上記の試料8〜11について、スクラビング回数とMoのスクラビング率との関係を図3に示した。使用するV含有溶液のV濃度が高いほど1回目のスクラビング率は向上するが、3回繰り返すとV濃度による差は認められなくなり、10g/lのV濃度でも3回目の洗浄でスクラビング率は90%以上となった。
【0036】
また、比較試料1〜2について、スクラビング時のV抽出量とMoのスクラビング量との関係を図4に示した。相比O/Aの違いによって、Moのスクラビング量に対するV量を多くする、即ち液量を多くしてもO/A=2で2回とO/A=4で4回とでMoのスクラビング量は変わらない。また、Moのスクラビングに必要なV量は、Moの4倍モルであった。
【0037】
更に、上記の試料8〜11について、V抽出量とMoスクラビング量の関係を図5に示した。Moのスクラビング量は、V濃度と相比だけではなく、V抽出量にも依存することが分る。スクラビング工程で発生するMoとVが含まれる液は抽出工程に繰り返されるが、スクラビング液は逆抽出液の一部を使用するので、相比が小さくなると液量が多く必要になり、工程に繰り返すV量が増加する。従って、好ましいスクラビング条件は、15g/lのV濃度で、O/A=4にて3回洗浄で良いことが分る。
【0038】
実施例3
上記実施例1及び2のごとく抽出及び洗浄の終了した20Vol%TOMAC(Mo濃度0.75g/l、V濃度18.99g/l)を、試料12〜17ごとに、濃度を10〜300g/lの範囲で変えたNaOH溶液でそれぞれ逆抽出した。逆抽出した結果を下記表2に示す。
【0039】
【表2】
Figure 0003835148
【0040】
表2から分るように、NaOH溶液の濃度が増加するとVの逆抽出率は増加するが、NaOH濃度が100g/l以上では乳化し、分相が悪化した。従って、NaOH濃度は好ましくは10〜100g/lの範囲内、50g/l程度が更に好ましいと云える。
【0041】
実施例4
上記各実施例の結果を元にして、下記表3に示す条件でミキサーセトラーを用いた連続試験を24時間実施し、抽残液並びに逆抽液のMoとVの各濃度を確認した。
【0042】
【表3】
Figure 0003835148
【0043】
上記連続試験の結果を下記表4に示す。この表4の結果から、抽残液は実質的にMoのみ、逆抽液は実質的にVのみの液が得られていることが分る。
【0044】
【表4】
Figure 0003835148
【0045】
【発明の効果】
本発明によれば、MoとVが共存する塩溶液から、第4級アンモニウム塩抽出剤、特にトリオクチルメチルアンモニウムクロライドを用いた溶媒抽出法により、Vを選択的に抽出することができる。また、抽出時のpHを制御し、且つ一部抽出されたMoをV含有溶液で洗浄することにより、V逆抽液へのMoの混入を抑制して、MoとVを効率的に高純度で分離回収することができる。
【0046】
従って、石油の脱硫用触媒の廃触媒をNaCOやNaOHでアルカリ焙焼し、焙焼物を水で溶解して得られるNaVO及びNaMoOを含む塩溶液などから、MoとVを選択的に分離回収して、それぞれの製品製造における精製工程の負担を軽減することができる。
【図面の簡単な説明】
【図1】本発明におけるTOMACを用いた溶媒抽出法によるMoとVの分離回収フローの概略図である。
【図2】抽出時のpHとMo及びVの抽出率を示したグラフである。
【図3】V濃度の異なるV含有溶液でのスクラビング回数とMoのスクラビング率との関係を示すグラフである。
【図4】異なる相比でのスクラビング時のV抽出量とMoのスクラビング量との関係を示すグラフである。
【図5】V濃度の異なるV含有溶液でのV抽出量とMoスクラビング量の関係を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for efficiently separating and recovering Mo and V coexisting in a salt solution as in the case of recovering valuable metals such as Mo and V from a waste catalyst used for petroleum desulfurization.
[0002]
[Prior art]
Molybdenum (Mo) and vanadium (V) are rare metals that can be used for alloy additives for steel, additives for special steels such as high-grade stainless steel and high-grade structural steel, and heat-resistant and wear-resistant parts such as cutting tools. It is used as an additive. For example, high strength steels such as molybdenum / vanadium steel and chromium / vanadium steel are famous.
[0003]
Mo is widely used as a metal or superalloy in various fields such as nuclear reactor materials, lubricants, and catalysts. One of the applications of Mo is a catalyst for petroleum desulfurization, which is poisoned by heavy metals such as V and Ni contained in the processing oil, and these metals are also contained in the catalyst together with Mo. It becomes like this. Therefore, discarding such a waste catalyst as it is causes environmental pollution.
[0004]
Therefore, conventionally, attempts have been made to recover valuable metals from the waste catalyst of a desulfurization catalyst containing a large amount of Mo and V. As a method for recovering these valuable metals, a method is known in which after the waste catalyst is oxidized or alkali roasted, the roast is dissolved in sulfuric acid or water, and Mo is recovered from the solution by salting out or solvent extraction. .
[0005]
Generally, a roasted product obtained by alkali-roasting a spent catalyst with Na 2 CO 3 or NaOH is dissolved in water to leave Ni or Co in the residue, and the main component is a soda salt of Mo or V. A salt solution is obtained. Ammonium chloride is added to this salt solution to salt out V, and V is recovered as a precipitate of ammonium metavanadate. Thereafter, the mother liquor is neutralized with sulfuric acid or hydrochloric acid to precipitate and remove Mo as MoO 3 .
[0006]
However, in the recovery step by salting out V, the purity can be improved by adjusting the salting out pH, but the separation from Mo is not sufficient. In order to increase the purity, it is necessary to dissolve ammonium metavanadate again and repeat the salting out. was there. In addition, since the residual V concentration is high at the time of Mo recovery, the load on the ion exchange resin for V removal is increased and the cost is high.
[0007]
On the other hand, a Mo method using solvent extraction has also been developed. For example, as a method for recovering Mo from a salt solution in which a waste catalyst is oxidized and roasted and then the roasted product is dissolved in sulfuric acid, there is a method of extraction using a secondary amine such as Amberlite LA-2 (manufactured by Organo). is there.
[0008]
However, in order to extract and separate Mo and V, Mo must be present as molybdic acid and V as a tetravalent anion, so that the extraction pH and the oxidation-reduction potential (ORP) are controlled and maintained at appropriate values at the same time. It must be strictly controlled. In addition, in the acidic pH region, Mo tends to form a colloid and phase separation becomes difficult. The pH region where no Mo colloid is formed is narrow, and it is difficult to industrially perform solvent extraction in this region.
[0009]
From this situation, if the co-extraction of V is suppressed during the extraction of Mo, the Mo in the extraction residual liquid becomes high, and if the Mo concentration in the extraction residual liquid is set to the target value, the co-extraction of V increases. The present condition is that the result which satisfies target value is not obtained.
[0010]
[Problems to be solved by the invention]
In view of such a conventional situation, the present invention can separate Mo and V with high purity when separating and recovering Mo and V coexisting in a salt solution by solvent extraction, and for producing a product. An object of the present invention is to provide a method for separating and recovering Mo and V, which can reduce the burden of the purification process.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, the method of separating and recovering Mo and V coexisting in the salt solution provided by the present invention selectively extracts V from the salt solution using a quaternary ammonium salt extractant. The Mo is removed from the quaternary ammonium salt by washing a small amount of Mo extracted into the quaternary ammonium salt with a solution containing 5 g / l or more of V.
[0012]
In the method for separating and recovering Mo and V of the present invention, it is preferable to perform solvent extraction using trioctylmethylammonium chloride as a quaternary ammonium salt extractant. Moreover, it is preferable to adjust and extract so that pH of the water phase at the time of extraction may be in the range of 6-10.
[0013]
In the method of separating and recovering Mo and V of the present invention, V is back-extracted into the aqueous solution by bringing the washed quaternary ammonium salt into contact with a 10 g / l or more NaOH aqueous solution. be able to.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Mo and V are stable in the presence of anions in the solution, and therefore a salt solution in which VO 3 and MoO 4 2− coexist becomes a stock solution. For example, a salt solution of NaVO 3 and Na 2 MoO 4 obtained by subjecting a waste catalyst of a petroleum desulfurization catalyst to alkali roasting with Na 2 CO 3 or NaOH and then dissolving the roasted product with water is used as an extraction stock solution. .
[0015]
A quaternary ammonium salt extractant is used as an extractant for separating both the Mo and V coexisting salt solutions by solvent extraction. Of the quaternary ammonium salts, trioctylmethylammonium chloride (TOMAC) is preferable.
[0016]
The separation and recovery method according to the present invention will be described with reference to FIG. First, in the extraction step, a salt solution containing NaVO 3 and Na 2 MoO 4 is used as an extraction stock solution, V is extracted using TOMAC as a quaternary ammonium salt extractant, and the extraction residual solution (aqueous phase) is used as a Mo product. Use the starting solution. The extraction reaction of V by TOMAC is considered to be a reaction represented by the following chemical formula 1. In the following chemical formulas, R means C 8 H 17 .
[0017]
[Chemical 1]
[R 3 NCH 3 + Cl ] org + [VO 3 ] aq = [R 3 NCH 3 + VO 3 ] org + [Cl ] aq
[0018]
In this extraction step, since TOMAC is an anion extractant, Mo is partially extracted into TOMAC (organic phase). The higher the pH of the aqueous phase, the better the separation between V and Mo, but in order to selectively extract V, it is preferable to adjust the pH to a range of 6 to 10 with sulfuric acid or the like. When the pH of the aqueous phase exceeds 10, the extraction rate of V decreases, and as a result, the separation between V and Mo decreases. Moreover, if it is less than pH 6, the ion form of Mo will change, and since Mo is extracted in large quantities, the separability of V and Mo will be deteriorated.
[0019]
Mo extracted in large amounts to TOMAC (organic phase) at low pH is undesirable because it reduces the efficiency of scrubbing in the next step. In addition, in TOMAC where Mo has been extracted, the Mo concentration of the reverse extraction liquid in the subsequent reverse extraction process becomes high and exceeds the allowable concentration as the V product starting liquid.
[0020]
Therefore, in the next scrubbing step, Mo partially extracted in TOMAC can be removed by washing with a V-containing solution. The removal of Mo by this scrubbing is considered to be according to the following chemical formula 2.
[0021]
[Chemical 2]
[(R 3 NCH 3 + )] 2 MoO 3 2− ] org + [2VO 3 ] aq = 2 [R 3 NCH 3 + VO 3 ] org + [MoO 3 2 − ] aq
[0022]
As can be seen from the above chemical formula 2, Mo can be easily removed from TOMAC as the solution having a higher V concentration. In general, a solution having a V concentration of 5 g / l or more is preferable. As such a V-containing solution, a solution obtained by adjusting a reverse extraction solution obtained by back-extracting V with NaOH in a back-extraction step described later to about pH 6 to 10 can be used.
[0023]
In the back extraction step, V extracted in TOMAC is back extracted with a NaOH solution, and the back extracted solution (water phase) is used as the V product starting solution. The concentration of the NaOH solution used for back extraction is preferably 10 g / l or more. The reaction at the time of back extraction is considered to be chemical formula 3 shown below, and TOMAC after back extraction becomes OH type.
[0024]
[Chemical 3]
[(R 3 NCH 3 ) + VO 3 ] org + NaOH = [(R 3 NCH 3 ) + OH ] org + [VO 3 ] aq
[0025]
The TOMAC after back extraction is returned to the extraction step as it is, and the pH is adjusted with sulfuric acid or NaOH, and used again for V extraction. Further, as described above, the reverse extraction liquid can be used as a scrubbing starting liquid by adjusting the V concentration to 5 g / l or more and the pH to about 6 to 10.
[0026]
If necessary, the TOMAC after back extraction can be contacted with sulfuric acid and converted to —SO 4 type by acid addition represented by the following chemical formula 4. The sulfuric acid concentration used for the acid addition varies depending on the TOMAC concentration, but may be in accordance with the TOMAC. For example, when O / A = 1 at 20 Vol% TOMAC, about 0.5 N is preferable.
[0027]
[Formula 4]
[2 (R 3 NCH 3 ) + OH ] org + H 2 SO 4 = [(R 3 NCH 3 ) + SO 4 2− ] org + 2H 2 O
[0028]
In addition, because of acids suspended in TOMAC, the pH of the aqueous phase at the time of extraction may decrease, making selective extraction of V difficult. Therefore, after converting TOMAC into SO 4 type, the organic phase may be washed with water, sodium sulfate solution, or the like as a conditioning step if necessary. However, depending on the pH when extracted after acid addition, this step becomes unnecessary.
[0029]
The above is one cycle in the method of the present invention. In the method of the present invention, V can be selectively extracted from a salt solution in which NaVO 3 and Na 2 MoO 4 coexist by extracting at an appropriate pH using TOMAC. Further, Mo and V can be continuously separated and recovered by repeatedly using TOMAC by back extraction of V, pH adjustment, and the like.
[0030]
【Example】
Example 1
TOMAC (trioctylmethylammonium chloride) was adjusted to a concentration of 20% with a diluent (Solvesso 200; an aromatic hydrocarbon manufactured by Exxon Chemical Co., Ltd.) and used as an extractant. As the extraction stock solution, a salt solution in which VO 3 and MoO 4 2− coexisted was adjusted to pH 7.39, Mo concentration 17.1 g / l, and V concentration 14.6 g / l.
[0031]
In order to confirm the extraction characteristics depending on the pH of the aqueous phase, the pH of the extraction stock solution is adjusted to H 2 SO 4 or Prepared with NaOH solution. The TOMAC extractant is mixed with this extraction stock solution at O / A = 1 and stirred at room temperature for 10 minutes, and the results of comparing the extraction rates are shown in Table 1 and FIG.
[0032]
[Table 1]
Figure 0003835148
[0033]
As can be seen from the above results, V could be extracted with the highest selectivity when the pH of the extracted residue was about 8.5. In addition, since Mo is easily extracted when the pH is lowered, it can be seen that extraction of Mo can be selectively suppressed while extracting within the range of pH 6 to 10, and preferably in the range of pH 8 to 9. .
[0034]
TOMAC from which V was extracted under the same conditions as in Sample 3 of Example 1 was washed with a V-containing solution. That is, each V-containing solution used was changed in V concentration to 10, 15, 20, and 30 g / l for each of samples 8 to 11, and the Na 2 SO 4 concentration was 75 g / l for all samples. Washing was performed 3 times with the same V-containing solution at room temperature at O / A = 4. Further, as a comparative example, the same TOMAC as described above was used, using a V-containing solution having a V concentration of 30 g / l and a Na 2 SO 4 concentration of 75 g / l. Then, it was washed twice with O / A = 2.
[0035]
FIG. 3 shows the relationship between the number of scrubbing and the Mo scrubbing rate for the above samples 8-11. The higher the V concentration of the V-containing solution to be used, the better the first scrubbing rate, but when it is repeated three times, the difference due to the V concentration is not recognized, and the scrubbing rate is 90 by the third washing even at a V concentration of 10 g / l. It became more than%.
[0036]
For Comparative Samples 1 and 2, the relationship between the V extraction amount during scrubbing and the Mo scrubbing amount is shown in FIG. Increase the amount of V relative to the amount of Mo scrubbing due to the difference in the phase ratio O / A, that is, even if the amount of liquid is increased, scrubbing Mo by O / A = 2 twice and O / A = 4 four times. The amount does not change. Further, the amount of V necessary for scrubbing Mo was 4 times that of Mo.
[0037]
Furthermore, the relationship between the amount of V extraction and the amount of Mo scrubbing for the above samples 8 to 11 is shown in FIG. It can be seen that the Mo scrubbing amount depends not only on the V concentration and phase ratio but also on the V extraction amount. The liquid containing Mo and V generated in the scrubbing process is repeated in the extraction process, but the scrubbing liquid uses a part of the back-extracted liquid. V amount increases. Therefore, it can be seen that the preferred scrubbing conditions are that the V concentration is 15 g / l, and the cleaning is performed three times at O / A = 4.
[0038]
Example 3
20 Vol% TOMAC (Mo concentration: 0.75 g / l, V concentration: 18.99 g / l), which has been extracted and washed as in Examples 1 and 2, was applied to each sample 12-17, with a concentration of 10-300 g / l. Each was back-extracted with a NaOH solution varied in the range. The results of back extraction are shown in Table 2 below.
[0039]
[Table 2]
Figure 0003835148
[0040]
As can be seen from Table 2, as the NaOH solution concentration increased, the back-extraction rate of V increased, but when the NaOH concentration was 100 g / l or more, emulsification occurred and the phase separation deteriorated. Therefore, it can be said that the NaOH concentration is preferably in the range of 10 to 100 g / l, and more preferably about 50 g / l.
[0041]
Example 4
Based on the results of the above examples, a continuous test using a mixer settler was conducted for 24 hours under the conditions shown in Table 3 below, and the concentrations of Mo and V in the extracted residue and the reverse extracted solution were confirmed.
[0042]
[Table 3]
Figure 0003835148
[0043]
The results of the continuous test are shown in Table 4 below. From the results of Table 4, it can be seen that the extraction residual liquid is substantially Mo only, and the reverse extraction liquid is substantially V only.
[0044]
[Table 4]
Figure 0003835148
[0045]
【The invention's effect】
According to the present invention, V can be selectively extracted from a salt solution in which Mo and V coexist by a solvent extraction method using a quaternary ammonium salt extractant, particularly trioctylmethylammonium chloride. Moreover, by controlling the pH during extraction and washing partially extracted Mo with a V-containing solution, mixing of Mo into the V reverse extraction liquid is suppressed, and Mo and V are efficiently highly purified. Can be separated and recovered.
[0046]
Therefore, from a salt solution containing NaVO 3 and Na 2 MoO 4 obtained by alkaline roasting of a catalyst for desulfurization of petroleum with Na 2 CO 3 or NaOH and dissolving the roasted product with water, Mo and V Can be selectively separated and recovered to reduce the burden of the purification process in the production of each product.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a separation and recovery flow of Mo and V by a solvent extraction method using TOMAC in the present invention.
FIG. 2 is a graph showing pH during extraction and extraction rates of Mo and V.
FIG. 3 is a graph showing the relationship between the number of scrubbing with V-containing solutions with different V concentrations and the Mo scrubbing rate.
FIG. 4 is a graph showing the relationship between the amount of V extraction and the amount of Mo scrubbing during scrubbing at different phase ratios.
FIG. 5 is a graph showing the relationship between the V extraction amount and the Mo scrubbing amount in V-containing solutions having different V concentrations.

Claims (3)

塩溶液中に共存するMoとVとを分離回収する方法であって、該塩溶液から第4級アンモニウム塩抽出剤を用いてVを選択的に抽出し、該第4級アンモニウム塩に抽出された少量のMoを5g/l以上のVが含まれる溶液で洗浄することにより、第4級アンモニウム塩からMoを除去することを特徴とするMoとVの分離回収方法。A method for separating and recovering Mo and V coexisting in a salt solution , wherein V is selectively extracted from the salt solution using a quaternary ammonium salt extractant and extracted to the quaternary ammonium salt. A method for separating and recovering Mo and V, wherein Mo is removed from the quaternary ammonium salt by washing a small amount of Mo with a solution containing 5 g / l or more of V. 前記洗浄した後の第4級アンモニウム塩を10g/l以上のNaOH水溶液と接触させることにより、Vを水溶液中に逆抽出することを特徴とする、請求項1に記載のMoとVの分離回収方法。 2. The separation and recovery of Mo and V according to claim 1 , wherein V is back-extracted into an aqueous solution by bringing the washed quaternary ammonium salt into contact with a 10 g / l or more NaOH aqueous solution. Method. 請求項2で得た逆抽出液の一部をpH調整及び濃度調整した後、請求項1における洗浄用のVが含まれる溶液として用いることを特徴とするMoとVの分離回収方法。 A method for separating and recovering Mo and V, wherein a part of the back extract obtained in claim 2 is adjusted for pH and concentration, and then used as a solution containing V for washing in claim 1 .
JP2000290160A 2000-09-25 2000-09-25 Mo and V separation and recovery method Expired - Fee Related JP3835148B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000290160A JP3835148B2 (en) 2000-09-25 2000-09-25 Mo and V separation and recovery method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000290160A JP3835148B2 (en) 2000-09-25 2000-09-25 Mo and V separation and recovery method

Publications (2)

Publication Number Publication Date
JP2002097526A JP2002097526A (en) 2002-04-02
JP3835148B2 true JP3835148B2 (en) 2006-10-18

Family

ID=18773430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000290160A Expired - Fee Related JP3835148B2 (en) 2000-09-25 2000-09-25 Mo and V separation and recovery method

Country Status (1)

Country Link
JP (1) JP3835148B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013159822A (en) * 2012-02-06 2013-08-19 Sumitomo Metal Mining Co Ltd Impurity removal method
CN106631967A (en) * 2016-12-20 2017-05-10 北京化工大学 Method for extraction separation of indole from washing oil by quaternary ammonium salt extraction agent

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070043736A (en) * 2007-03-13 2007-04-25 김만주 A recovering method of 98% of precious metals including vanadium and molybdenum from discarded desulfurization catalyst used in oil via lower temperature roaster
CN112458294B (en) * 2020-11-20 2023-03-14 河南荣佳钪钒科技有限公司 Method for recovering vanadium from titanium white waste acid produced by chlorination process
CN115232989B (en) * 2022-06-17 2023-08-15 中核沽源铀业有限责任公司 Technological method for recovering molybdenum from refractory molybdenum ore
CN117327930B (en) * 2023-12-01 2024-02-27 中国恩菲工程技术有限公司 Method for recovering vanadium from primary shale stone coal

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013159822A (en) * 2012-02-06 2013-08-19 Sumitomo Metal Mining Co Ltd Impurity removal method
CN106631967A (en) * 2016-12-20 2017-05-10 北京化工大学 Method for extraction separation of indole from washing oil by quaternary ammonium salt extraction agent
CN106631967B (en) * 2016-12-20 2019-03-29 北京化工大学 A method of with indoles in Arquad extraction and separation washing oil

Also Published As

Publication number Publication date
JP2002097526A (en) 2002-04-02

Similar Documents

Publication Publication Date Title
JP2751093B2 (en) Method for recovering valuable metals from spent catalyst
Zhang et al. Extraction and selective stripping of molybdenum (VI) and vanadium (IV) from sulfuric acid solution containing aluminum (III), cobalt (II), nickel (II) and iron (III) by LIX 63 in Exxsol D80
JP3232753B2 (en) Method for recovering valuable metals from waste hydrodesulfurization catalyst
EP0332447A1 (en) Selective removal of metal cations from aqueous effluent solutions
JP2020084199A (en) Production method of cobalt chloride aqueous solution
US20170218477A1 (en) Processes for the selective separation of iron and aluminium
JP3835148B2 (en) Mo and V separation and recovery method
EP0202327A4 (en) Recovering vanadium values from ammonium bicarbonate solution using heat, sulfuric acid, and ammonium sulfate.
GB2171686A (en) Purification of molybdenum trioxide
CN113528819A (en) Method for tungsten-vanadium alkaline extraction and realizing alkali liquor recycling
JPH10310437A (en) Method for refining nickel sulfate containing cobalt
US4563213A (en) Extraction and stripping cobalt values
CN113201657B (en) Method for separating vanadium and chromium from vanadium and chromium-containing solution through co-extraction-selective back extraction
US5728639A (en) Recovery of spent catalyst
CA2674490C (en) Method for scrubbing an amine type extractant after stripping
JPS62241824A (en) Method for separating and purifying tantalum and neodymium
JPH10226831A (en) Treatment of waste liquid of molybdenum dissolution
JP7293976B2 (en) Scandium recovery method
CN109097572A (en) A kind of method of impurity antimony removal in tantalum and niobium hydrometallurgy
JP2020084200A (en) Production method of cobalt chloride aqueous solution
JP7425419B1 (en) Removal method for removing organic impurities from organic solvents containing impurities
JP3634747B2 (en) Separation and purification method of tantalum and niobium
CN114763584A (en) Process for treating spent FCC catalyst
JP2020164945A (en) Manufacturing method of cobalt chloride aqueous solution
JPH0340089B2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060717

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3835148

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130804

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees