KR20070108146A - 눈으로부터의 반사를 이용하는 홍채 화상 형성 - Google Patents

눈으로부터의 반사를 이용하는 홍채 화상 형성 Download PDF

Info

Publication number
KR20070108146A
KR20070108146A KR1020077015576A KR20077015576A KR20070108146A KR 20070108146 A KR20070108146 A KR 20070108146A KR 1020077015576 A KR1020077015576 A KR 1020077015576A KR 20077015576 A KR20077015576 A KR 20077015576A KR 20070108146 A KR20070108146 A KR 20070108146A
Authority
KR
South Korea
Prior art keywords
image forming
eye
iris
camera
subsystem
Prior art date
Application number
KR1020077015576A
Other languages
English (en)
Inventor
말콜름 제이. 노스코트
제이. 엘론 그레브스
Original Assignee
에이옵틱스 테크놀로지스, 인크.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에이옵틱스 테크놀로지스, 인크. filed Critical 에이옵틱스 테크놀로지스, 인크.
Publication of KR20070108146A publication Critical patent/KR20070108146A/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/12Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for looking at the eye fundus, e.g. ophthalmoscopes
    • A61B3/1216Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for looking at the eye fundus, e.g. ophthalmoscopes for diagnostics of the iris
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/117Identification of persons
    • A61B5/1171Identification of persons based on the shapes or appearances of their bodies or parts thereof
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/18Eye characteristics, e.g. of the iris
    • G06V40/19Sensors therefor

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Surgery (AREA)
  • Molecular Biology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Ophthalmology & Optometry (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Multimedia (AREA)
  • Data Mining & Analysis (AREA)
  • Artificial Intelligence (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Evolutionary Computation (AREA)
  • Evolutionary Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Image Input (AREA)
  • Studio Devices (AREA)

Abstract

빠른 홍채 취득, 추적 및 화상 형성 시스템은 대상의 활동적인 협동없이 긴 떨어진 상태의 거리 및 긴 캡쳐 용량에 걸쳐 사용될 수 있다. 캡쳐링된 홍채 이미지는 생체 식별을 위해 사용될 수 있다. 광은 대상의 눈을 조명한다. 눈으로부터의 눈 반사는 홍채의 이미지를 캡쳐링하기 위해 눈으로 고해상도 카메라를 조향하는데 사용된다.
홍채 화상 형성 시스템, 화상 형성 서브시스템, 취득 서브시스템, 캡쳐 용량, 비임 스플리터, 변형 가능한 거울

Description

눈으로부터의 반사를 이용하는 홍채 화상 형성{IRIS IMAGING USING REFLECTION FROM THE EYE}
본 출원은 "망막 역반사를 이용하는 생체 식별법 및 홍채 화상 형성법(Biometric Identification and Iris Imaging Using Retinal Retro-Reflection)"을 발명의 명칭으로 하여 2005년 2월 17일자로 출원된 미국 특허 가출원 번호60/654,638호와, "홍채 화상 형성법을 이용하는 생체 식별법에 적용된 적응성 광학계 화상 형성법(Adaptive Optics(AO) Imaging Applied to Biometric Identification Using Iris Imaging)"을 발명의 명칭으로 하여 2004년 12월 7일자로 출원된 미국 특허 가출원 번호60/634,331호에 대해 35 U.S.C. §119(e) 규정에 의거하여 우선권을 청구한다. 전술의 모든 청구 대상은 그 전체 내용이 본 명세서에 참조로 병합된다.
본 발명은 생체 식별용으로 사용될 수도 있는 사람 홍채의 화상 형성에 관한 것이다.
종래 형태의 개인 식별법이 진보 기술에 취약성을 드러냄에 따라, 생체 식별이 개인 식별에 실행 가능한 접근으로서 점점 인식된다. 음성 인식, 지문 및 홍채 화상 형성과 같은 기술은 수정 또는 복제가 어려운 개인의 신체적 특성에 의존한 다.
그러나, 홍채 화상 형성을 통한 생체 식별은 확실한 식별을 만드는데 필요한 미세 사항을 분석하기 위해 고해상도의 홍채 이미지를 통상 필요로 한다. 식별 목적으로 요구될 수도 있는 바와 같이, 사람 홍채의 미세한 근육 구조를 고유하게 구별하기 위해 대략 200미크론 이상의 공간 해상도를 갖는 홍채 이미지가 통상 요구된다. 대상이 활동적으로 협동하는 시스템에서, 조명 형상, 카메라 해상도, 노출 시간 및 빛의 파장과 같은 조건은 홍채의 미세 구조의 높은 콘트라스트(contrast) 이미지를 캡쳐링하도록 최적화될 수 있다. 기존 시스템은, 폐쇄 근접부로부터 거의 정면에서 홍채 화상 형성 카메라를 응시하는 동안, 특정 위치에 대상의 머리를 보유하는 것이 통상 필요하다. 홍채 화상 형성 분야가 최근 진보해 왔지만, 충분하게 고해상도 이미지로 사람 홍채를 캡쳐링하는 일은 일반적으로 대상으로부터 상당한 정도의 활동적인 협동을 여전히 필요로 한다.
예를 들어, (예를 들어, 5 메가 픽셀) 상업적인 컬러 CCD 기술을 사용하는 시스템은 통상 1m 떨어진 상태(standoff) 범위에서 대략 15cm의 시야를 갖고, 1m 떨어진 상태 범위에서 픽셀 당 대략 75 미크론의 공간 해상도를 산출한다. 따라서, 카메라가 홍채의 충분한 해상도 이미지에 초점을 맞추고 캡쳐링하도록, 대상은 카메라의 대략 1m 내에 있어야 하고, 충분히 긴 시간 동안 15cm 시야 내에 홍채를 위치시켜야 한다. 이것은 통상 대상의 활동적인 협동을 필요로 한다. 더 길게 떨어진 상태에서는 상황이 상당히 더 나빠지게 된다. 예를 들어, 동일한 카메라가 10m 떨어진 상태에서 사용되면, 동일한 각도 해상도를 유지하는 것은 픽셀 당 75μ m의 허용되지 않는 공간 해상도를 생성할 것이다. 반면, 픽셀 당 75μm의 공간 해상도를 유지하는 것은 10m에서 15cm 넓은 시야를 생성할 것이다. 또한, 시야 내에 홍채를 유지시키는 것이 매우 어렵다.
홍채 화상 형성 시스템의 "캡쳐 용량"은 홍채 화상 형성 시스템이 충분하게 고해상도의 홍채 이미지를 캡쳐링할 수 있는 용량이다. 상술된 CCD-기반 시스템 및 다른 유사한 종래 시스템은 작은 캡쳐 용량을 갖는데, 너무 작아서 큰 그룹의 사람들, 더 길게 떨어진 거리에 걸쳐 홍채 화상 형성을 하는 것과 같은 비협동적인 상황에 사용하거나 또는 식별 적용분야를 전환하기에는 종래의 홍채 화상 형성 시스템이 적절하지 않다. 예를 들어, 금속 탐지기와 같은 포탈(portal)을 통해 사람들이 걸음에 따라, 공항, 기차역, 국경 건널목, 안전 빌딩 입구와 같은 장소에서 대상의 홍채 이미지를 캡쳐링하는 것이 바람직할 수도 있다. 이들 적용분야에서, 고해상도 및 더 길게 떨어진 상태의 요구조건은, 현재의 설계에 의해 충족될 수 없는 홍채 화상 형성 시스템의 상당한 도전이다. 현재의 홍채 화상 형성 시스템의 캡쳐 용량 및 떨어진 상태의 능력은 이들 형태의 상황을 효과적으로 처리하기에 충분히 크지 않다.
그러므로, 더 큰 캡쳐 용량을 갖고 그리고/또는 더 길게 떨어진 상태의 거리에서 사용될 수 있는 홍채 화상 형성 시스템이 필요하다.
본 발명은 더 길게 떨어진 상태의 거리에서 더 큰 캡쳐 용량으로 대상의 활동적인 협동 없이도 사용될 수 있는 빠른 홍채 화상 형성 시스템을 제공함으로써 종래 기술의 한계를 극복한다. 광은 대상의 눈을 조명한다. 눈으로부터의 반사(예를 들어, 망막으로부터의 역반사 또는 각막으로부터의 미광 반사(glint reflection))는 홍채의 이미지를 캡쳐링하도록 눈으로 고해상도 카메라를 조향(및 양호하게는 또한 초점 맞춤) 하는데 사용된다. 실시간 조향 및 초점 교정은 사용할 수 있는 노출 시간을 연장할 수도 있고, 따라서 이와 달리 가능한 더 낮은 조명 수준 하에서도 좋은 이미지를 허용한다. 조향 및 초점의 실시간 제어를 위해 다른 방법을 생각해볼 수도 있다.
일 실시예에서, 홍채 화상 형성 시스템은 화상 형성 서브시스템을 포함한다. 화상 형성 서브시스템은 카메라와, 광원 및 미세 추적 시스템을 포함한다. 카메라는 생체 식별을 위해 충분한 해상도로 홍채의 이미지를 캡쳐링한다. 광원은 캡쳐 용량 내에서 눈을 조명하는 광을 발생시킨다. 미세 추적 시스템은 눈으로부터의 반사, 양호하게는 역반사 또는 미광 반사를 기초로 하여 눈으로 카메라를 조향시킨다.
일 접근법에서, 미세 추적 시스템은 반사광에 의해 구동되는 적응성 광학계 루프(adaptive optics loop)를 포함한다. 예를 들어, 적응성 광학계 루프는 변형 가능한 거울과, 웨이브프론트(wavefront) 및 제어기를 포함할 수 있다. 웨이브프론트 센서는 반사광의 웨이브프론트를 감지하고, 제어기는 감지된 웨이브프론트를 기초로 하여 변형 가능한 거울을 구동시킨다. 변형 가능한 거울은 진입 웨이브프론트를 교정(즉, 팁 및 경사 웨이브프론트 오류의 교정)하고 따라서, 눈으로 카메라를 조향시킨다. 변형 가능한 거울은 또한 카메라에 초점을 맞출 수도 있다(즉, 초점 오류 교정). 이런 방식으로, 화상 형성 서브시스템은 대상의 활동적인 협동 없이도 홍채 화상 형성을 취득할 수 있다.
홍채 화상 형성 시스템은 캡쳐 용량 내에서 대상의 대략적인 위치를 식별하는 취득 서브시스템을 또한 포함할 수도 있다. 예를 들어, 넓은 시야 취득 서브시스템은 좁은 시야 화상 형성 서브시스템과 결합될 수도 있다. 취득 시스템은 대상의 대략적인 위치를 식별하고, 화상 형성 서브시스템은 하나의 대상으로부터 다음 대상까지 그들의 홍채 이미지를 취득하도록 회전된다. 제어기는 두 개의 시스템을 조화시킨다. 일 접근법에서, 취득 서브시스템은 대상의 눈으로부터의 역반사를 기초로 하여 대상의 대략적인 위치를 식별한다. 원형의 눈동자가 눈으로부터의 역반사를 다른 광원으로부터의 것과 쉽게 구별하게 하므로 이것이 편리하다. 두 개의 서브시스템은 부분적 또는 전체적으로 통합될 수도 있다. 예를 들어, 통상 취득 서브시스템이 화상 형성 서브시스템보다 훨씬 더 큰 시야를 가질 수 있지만, 그들 양자 모두가 동일한 전체 방향으로 탐색하도록 광학적으로 정렬될 수도 있다.
본 발명의 다른 태양은 상술된 장치 및 시스템에 대응하는 방법을 포함한다.
본 발명은 첨부 도면과 관련하여 취해질 때, 본 발명의 다음의 상세한 설명 및 후속된 청구범위로부터 더 쉽게 명백해질 수 있는 다른 장점 및 특징을 갖는다.
도1은 본 발명에 따른 홍채 화상 형성 시스템의 예시도이다.
도2는 눈으로부터의 역반사를 기초로 하는, 본 발명에 따른 다른 홍채 화상 형성 시스템의 예시도이다.
도3은 눈으로부터의 역반사의 예시도이다.
도4는 사람의 눈의 통상의 반사율 스펙트럼의 예시도이다
도5는 눈으로부터의 미광을 기초로 하는, 본 발명에 따른 다른 홍채 화상 형성 시스템의 예시도이다.
도면은 본 발명의 예시만의 목적으로 본 발명의 실시예를 도시한다. 본 기술분야의 당업자들은, 다음의 논의로부터 본 명세서에 도시된 방법 및 구조의 변경예가 본 명세서에 설명된 발명의 주요원리 내에서 채용될 수도 있다는 다음의 논의로부터 쉽게 알 수 있을 것이다.
도1은 본 발명의 따른 홍채 화상 형성 시스템이다. 홍채 화상 형성 시스템은 화상 형성 서브시스템(200) 및 선택적으로는 취득 서브시스템(100)을 포함한다. 시스템은 통상 대상의 활동적인 협동없이 큰 캡쳐 용량(50)에 걸쳐 많은 눈(134)의 홍채 이미지를 캡쳐링하도록 설계된다. 일 적용분야에서, 대상은 포탈(60)(출입구 또는 금속 탐지기와 같음)을 통과하고, 캡쳐 용량(50)은 포탈까지 이어지는 입구통로이고, 홍채 화상 형성 시스템은 대상이 캡쳐 용량을 통과함에 따라 홍채 이미지를 캡쳐링한다. 많은 적용분야에서, 캡쳐 용량은 사람들의 이동을 위한 대문 또는 다른 좁은 통로를 기초로 하여 형성될 수 있다. 예는 복도, 턴스타일(turnstyle), 톨부스(tolbooth), 엘리베이터 문, 에스컬레이터 및 주차장 입구를 포함한다. 다른 예는 계산 라인 또는 다른 대기 열, 횡단보도, 인도 및 차도를 포함한다.
이 상황은 대상이 홍채 화상 형성에 활동적으로 협동하지 않는 것을 의미하 는 통상 "비협동적" 이다. 예를 들어, 그들은 홍채 이미지의 캡쳐링를 허용하도록 그들의 머리를 장치에 배치하지 않는다. 오히려, 그들은 포탈을 통해 단지 걷고, 그들이 그렇게 함에 따라 시스템은 그들의 홍채 이미지를 캡쳐링한다. 그들은 시스템이 그렇게 하는 것을 심지어 인식하지 않을 수도 있다. 은닉성이 중요하다면, 파장은 보이지 않는 것으로 선택되어야 한다.
화상 형성 서브시스템(200)은 각각의 대상에 대해 홍채 이미지를 캡쳐링한다. 그러나, 홍채 이미지의 충분한 해상도를 획득하기 위해, 화상 형성 서브시스템(200)은 매우 좁은 시야(230)를 갖는다. 그러므로, 전체 캡쳐 용량을 커버하기 위해, 화상 형성 서브시스템(200)은 하나의 대상으로부터 다음 대상까지 활동적으로 조향된다. 대상의 넓은 추적은 많은 다른 방식으로 달성될 수 있다. 도1에서, 넓은 시야(130)를 가진 취득 서브시스템(100)은 각각의 대상의 대략적인 위치를 식별하는데 사용된다. 이 정보는 대상의 일반적인 주변으로 화상 형성 서브시스템(200)을 넓게 조향하는데 사용된다. 일반적인 주변에서, 한번의 미세 추적은 대상의 눈에 광학 비임을 조명하고, 대상의 눈으로부터의 반사를 기초로 하여 눈으로 화상 형성 서브시스템(200)을 조향함으로써 달성된다. 눈 반사의 예는 망막으로부터의 역반사 및 각막 표면으로부터의 미광반사를 포함한다. 눈 반사는 고해상도 이미지를 캡쳐링하도록 화상 형성 서브시스템(200)을 홍채 상에 초점 맞추는데 또한 사용될 수 있다. 큰 캡쳐 용량 및 대상의 작업 처리량이 수용된다면, 추적(및 초점 맞춤)은 매우 빠르게 실시간 동안에 발생한다.
취득 서브시스템(100) 및 화상 형성 서브시스템(200)을 위해 다른 장치가 사 용될 수 있다. 취득 서브시스템(100)은 또한 눈으로부터의 반사를 이용하여 대상을 추적하는 것을 기초로 할 수 있다. 이와 달리, 완전히 다른 메커니즘을 기초로 할 수도 있다. 예를 들어, 취득 서브시스템(100)은 캡쳐 용량의 종래 디지털 이미지를 캡쳐링할 수도 있다. 그 후 소프트웨어는 각각의 캡쳐링된 이미지의 어떤 부분이 사람을 나타내는지 식별하고 그리고/또는 각각의 사람의 어떤 부분이 그 얼굴 또는 눈인지 식별하는데 사용된다. 프레임과 프레임의 비교는 대상의 이동을 추적하는데 사용될 수 있다. (눈 반사, 종래의 화상 형성 또는 다른 접근을 기초로 하는) 입체적인 시스템이 캡쳐 용량 내에 대상의 위치를 삼각 측량하는데 사용될 수 있다.
도1에서, 취득 서브시스템(100)은 넓은 시야(130)를 가진 단일 상자로 도시된다. 이것은 단지 예시적인 것이다. 취득 서브시스템(100)은 단일 상자에 제한되지 않는다. 입체적 예에서는, 다른 관찰 지점에서 캡쳐링하도록 설비가 다른 위치에 위치 설정된다. 입체적 접근이 사용되지 않아도, 예를 들어 전체 캡쳐 용량(50)을 더 효과적으로 커버하도록 카메라가 여전히 이롭게 사용될 수 있다.
또한, 넓은 시야(130)는 도1에 도시된 바와 같이, 문자 그대로 실시될 필요는 없다. 도1에 도시된 바와 같이, 각각의 취득 카메라는 전체 캡쳐 용량(50)을 커버하는 넓은 시야를 가질 수도 있다. 이와 달리, 각각의 취득 카메라는 전체 캡쳐 용량(50) 미만을 커버할 수도 있지만, 카메라는 전체 캡쳐 용량(50)을 함께 커버한다. 또한, 카메라는 응시하기 보다는 스캐닝될 수도 있고, 그 순간의 시야는 캡쳐 용량(50)보다 더 작게 될 수도 있다. 임의의 짧은 순간에, 단지 전체 캡쳐 용량의 마찰력이 커버되지만, 시간이 지나면 전체 캡쳐 용량은 커버된다.
마지막 예와 같이, 취득 서브시스템(100)은 카메라를 기반으로 하지 않을 수도 있다. 다른 형태의 위치 센서 또는 침투 센서가 대상의 위치를 판단하는데 사용될 수도 있다. 예를 들어, 캡쳐 용량(50)은 격자 광 비임에 의해 커버될 수도 있다. 대상이 광 비임을 파단함으로써 대상의 위치가 판단된다. 다른 접근에서, 압력 패드 장착된 플로어는 대상 위치를 판단하는데 사용될 수도 있다. 소나(sonar), 레이다(radar), 광선 레이다(lidar) 및 열 탐지 또는 화상 형성은 대상 위치를 판단하는데 사용될 수 있는 다른 기술의 예이다. 특정 형태의 센서에 대해, 취득 서브시스템(100)이 캡쳐 용량(50)을 커버하기에 충분하다면 용어 "시야"는 심지어 적용가능하지 않을 수도 있다.
제어기(190)는 두 개의 서브시스템을 조화시킨다. 취득 서브시스템(100)으로부터의 정보는 대상으로부터 대상에까지 좁은 시야(230)를 넓게 조향하도록 화상 형성 서브시스템(200)(제어기(190)를 통해)에 의해 사용된다. 취득 서브시스템(100)을 구비하는 것과 같이, 화상 형성 서브시스템(200)을 위한 많은 다른 설계가 또한 가능하다. 일 접근에서, 조향 거울 또는 짐벌(gimbal)과 같은 종래 장치가 대상(134)으로의 좁은 시야(230)를 넓게 조향하도록 사용된다. 그 후 적응성 광학계 시스템(도1에 도시 생략)은 빠르고 미세한 대상 추적과, 선택적으로는 이미지 캡쳐링를 위한 초점 조정을 달성하는데 또한 사용된다. 적응성 광학계 시스템은 대상의 눈(134)으로부터의 눈 반사 및/또는 다른 위치 및 거리 측정 기술에 의해 구동된다. 다른 접근이 또한 사용될 수 있다. 리슬레 프리즘(Risley prism), 액정위상 어레이(liquid crystal phased array), 실시간 홀로그램(real time hologram) 및 브라그 격자(Bragg grating)는 다른 조향 장치의 예이다. 다른 신호 소스는 미광(glint), 화상 형성 또는 눈 반사를 이용하는 시차(parallax) 및 비행 레이다의 시간을 포함할 수 있다.
도2는 눈으로부터의 역반사를 기초로 하는, 본 발명에 따른 홍채 화상 형성 시스템의 예시이다. 이 예에서, 취득 서브시스템(100)은 광원(110), 비임 스플리터(115), 작은 "픽오프(pickoff)" 거울(119) 및 카메라(150)를 포함한다. 화상 형성 서브시스템(200)은 광원(210), 비임 스플리터(215), 변형 가능한 거울(220), 비임 스플리터(225), 웨이브프론트 센서(227) 및 제어기(222)를 포함한다. 광원(248) 및 카메라(250)를 또한 포함한다. 서로로부터 서로를 구별하도록 다양한 광원이 편의를 위해, 각각 취득 광원(110), WFS 광원(210) 및 홍채 화상 형성 광원(248)이라 칭할 수도 있다. 홍채 화상 형성 시스템은 취득 서브시스템(100) 및 화상 형성 서브시스템(200) 양자 모두의 부분으로서 사용되는, 제어기(190)에 의해 제어되는 광역 팁-경사 조향 거울(120)을 또한 포함한다. 도2에는, 조향 거울(120)이 광학 비임을 통과하는 선으로 도시되지만, 간략화를 위해, 조향 거울을 떠나는 반사는 도시되지 않는다(즉, 광학 통로는 조향 거울(120)에 대해 접히지 않음). 다양한 렌즈(또는 다른 광학계)가 시스템 전체에 걸쳐 광학 비임을 조준, 초점, 이미지 또는 이와 달리 릴레이 하는데 사용된다.
취득 서브시스템(100)은 다음과 같이 작동한다. 취득 광원(110)은 카메라(150)를 위한 조명이다. 광원(110)에 의해 발생되는 광은 비임 스플리터(115) 및 거울(119)을 반사하여 나간다. 비임 스플리터(115)는 시스템을 나오는 광원(110)에 의해 발생되는 광과, 카메라(150)에 화상 형성되도록 시스템으로 복귀하는 광을 분리한다. 비임 스플리터(115)는 1/4 파장(quarterwave) 플레이트와 함께 후방 반사 및 스펙큘라 반사(specular reflection)를 억제하는데 사용될 수 있는 편광 비임 스플리터일 수 있다. 비임 스플리터(115)는 저렴한 비용과 간편함을 위해 또한 중립 비임 스플리터(즉, 편광 선택 없음)일 수 있다. 거울(119)은 취득 서브시스템(100) 및 화상 형성 서브시스템(200)의 광학 통로를 결합시켜, 공통의 광 축을 따라 전체적으로 정렬된다. 이 예에서, 두 개의 서브시스템이 다른 파장에서 작동하고, 따라서 거울(119)은 취득 서브시스템(100)의 파장을 반사하고 화상 형성 서브시스템(200)의 파장을 통과시키는 이색성 비임 스플리터이다. 그 후 광원(110)으로부터 나가는 조명은 취득 서브시스템(100)의 넓은 시야(135)를 조명하도록 광역 조향 거울(120)을 반사하여 나간다. 시야(135)는 전체 캡쳐 용량(50)을 가로질러 응시할 수도 있고 캡쳐 용량을 가로질러 스캐닝될 수도 있다. 이 예에서, 시야(135)는 응시 모드의 전체 캡쳐 용량을 커버하기에 충분히 넓지 않다. 오히려, 조향 거울(120)에 의해 캡쳐 용량을 따라 스캔된다. 시야(135) 내의 대상은 취득 광원(110)에 의해 조명되는, 눈(134)에 의해 나타난다.
시야(135) 내의 눈(134)은 거울(119) 및 비임 스플리터(115)를 통해 카메라(150)로 광을 유도하는 광역 조향 거울(120)로 광을 역반사한다. 카메라(150)는 눈(134)의 전체적인 위치를 식별하도록 사용된 광각 카메라이다. 일 실시예에서, 카메라(150)는 시야(135)의 개별 이미지를 주기적으로 기록하는 CCD와 같은 전자 이미지 센서이다. 일 접근에서, 시야(135) 내에 물체(134)의 이동을 모니터하도록 카메라(150)는 고감도 연속 이미지를 기록한다. 눈(134)으로부터의 역반사 때문에 밝은 원형 스폿으로서 나타나는, 광각 카메라로부터의 신호는 눈을 식별하도록 소프트웨어(예를 들어, 제어기(190)에 내장됨)에 의해 분석된다. 카메라(150)는 조명원(110)로서 동일한 파장에서 작동한다. 파장 필터는 복귀 광 통로 상에 주변 광을 거부하는데 사용될 수 있고, 조명 파장을 통과한다. 또한, 광원(110)은 스트로브(strobed) 될 수 있다. 카메라(150)의 동기화는 스트로빙(strobing)하는 광원(110)을 노출시키고, 화상 형성과 안내(또는 웨이브프론트 센서) 카메라 사이에 고립을 또한 증가시킬 수 있다. 이러한 동기화는 후방 광 오염의 효과를 또한 감소시킬 수 있다.
일단 눈(134)이 식별되면, 제어기(190)는 홍채를 화상 형성하기 위한 계획을 판단한다. 양호하게는, 두 눈의 홍채 이미지가 식별의 정확성을 증가시키도록 (동시일 필요는 없지만) 캡쳐링된다. 도2에서, 홍채(134A)가 화상 형성된다. 필요하다면, 제어기(190)는 화상 형성 서브시스템(200)을 위한 좁은 시야 내에 눈의 관심사(134A)를 가져오도록 광역 조향 거울(120)을 유도한다. 도2에 도시된 바와 같이, 광역 조향 거울(120)은 필요하지 않다고 해도 취득 서브시스템(100)을 위해 넓은 시야(135)를 또한 조향시킨다. 취득 서브시스템(100) 및 화상 형성 서브시스템(200)을 함께 조향하는 것의 일 장점은 웨이브프론트 센서(227)와 취득 카메라(150) 사이에 고정 관계가 유지되는 것이다.
화상 형성 서브시스템(200)은 다음과 같이 작동한다. WFS 광원(210)은 눈(134A)을 조명한다. 광원(210)에 의해 발생된 광은 비임 스플리터(215)를 반사하여 나가고, 렌즈 시스템(221) 및 거울(119)을 통해 전파하고, 눈(134A)으로 거울(120)을 조향함으로써 유도된다. 광이 화상 형성 서브시스템(200)으로부터 나오기 때문에, 그것은 취득 서브시스템의 시야(135)보다 더 좁은 시야를 갖는다. 동일한 통로(120 내지 221)를 따라서 광을 후방으로 역반사하는 광을 조명하는 부분이 눈(134A)으로 진입한다. 복귀 광은 비임 스플리터(215)를 통해 통과하고, 변형 가능한 거울(220)을 반사해 나가고, 비임 스플리터(225)에 의해 웨이브프론트 센서(227)로 유도된다. 웨이브프론트 센서(227), 제어기(222) 및 변형 가능한 거울(220)은 눈(134A)으로부터의 역반사된 광을 기초로 하여 구동되는 적응성 광학계 루프를 형성한다.
일 변경예에서, 편광은 대상인 눈(134)으로부터 역반사된 광을 미광과 구별하는데 사용된다. WFS 광원(210)으로부터의 조명 광은 편광되고 비임 스플리터(215)는 편광 비임 스플리터이다. 비임 스플리터(215)는 원래 편광된 광을 반사하고 그것을 눈(134)으로 유도한다. 비임 스플리터(215) 뒤에 (예를 들어, 비임 스플리터(215)와 렌즈(221) 사이) 배치된 1/4 파장 플레이트는 더블 패스(double pass)(즉, WFS 광원(210)으로부터 눈(134A)으로 전송하는 것이 제1 패스이고, 눈(134A)으로부터 역반사하는 것이 제2 패스임) 후에 90도만큼 편광을 회전시킨다. 미광, 즉 평탄면으로부터의 반사는 경사광의 편광을 전체적으로 보호하고, 그러므로 복귀 통로 상에 편광 비임 스플리터(215)에 의해 반사될 것이고, 웨이브프론트 센서(227)까지 통과하지 않을 것이다. 이러한 미광은 대물렌즈(221)로부터의 반 사, 눈(134)의 전방 또는 유리 및 다른 것들로부터의 반사를 포함할 수도 있다. 그러나, 대상 눈(134)의 망막으로부터의 역반사는 눈의 구조 때문에 경사 광의 편광을 유지하지 않고, 그러므로 이 광의 부분은 비임 스플리터를 통해 웨이브프론트 센서(227)로 전송된다.
적응성 광학계는 더 높은 등급의 수차를 교정(즉, 웨이브프론트의 팁/경사 교정)하기 위한 많은 적용분야에 사용될 수 있고, 이런 경우 적응성 광학계 루프는 눈(134A)의 빠른 추적을 위해, 양호하게는 또한 초점 교정을 위해 주로 사용된다. 이것은 카메라(250)의 좁은 시야 내에 홍채(134A)를 유지시키고, 또한 (초점 교정이 실시되면) 카메라 포커스를 맞춘다. 이 예에서, 광원(210)은 카메라(250)에 대한 제1 조명을 제공하지 않는다. 오히려, 추가 광원(248)(즉, 홍채 화상 형성 광원)은 카메라(250)에 대한 홍채(134)의 측면(off-axis) 조명을 제공한다. 예를 들어, 적외선 파장 범위 근처의 LED가 사용될 수 있다. 보호 착색 멜라닌은 긴 파장에서 더 투명하다. 따라서, 홍채 구조의 상세 사항은 이 파장의 광원을 이용함으로써 짙게 착색된 눈을 더 쉽게 인식된다. 이와 달리, 임의의 다른 광원은 안전 제한사항에 부합하도록 사용될 수 있다. 측면 조명은 전체적으로 더 높은 콘트라스트 및 더 드문 인공물을 야기한다. 측면 조명각은 식별 정확성에 해로울 수 있는 미광의 위치 설정을 또한 초래한다. 미광은 홍채 카메라(250)에 대해 편광 필터로 편광된 조명을 이용함으로써 또한 감소될 수 있다. 대안적인 접근에서, 카메라(250)에 대한 조명은 주변 광, 가시 또는 적외선 플래쉬 또는 그 조합에 의해 제공될 수 있다.
천문학을 위해 개발된 것과 같이 종래의 적응성 광학 시스템은 홍채 화상 형성과 같은 적용분야에 효과적으로 사용되기에 너무 크고, 복잡하고 및/또는 비용이 많이 들 수도 있다. 그러나, 캘리포니아주 캠프벨 소재의 에이옵틱스에 의한 최근 진보는 신발 상자보다 작은 크기를 달성하는, 전자 제품을 포함한 완전한 적응성 광학계 시스템을 개발했다. 에이옵틱스 적응성 광학계 시스템은 25W 미만의 전력을 필요로 하고, 연장된 시간 동안 안정적으로 무인 작동할 수 있다. 에이 옵틱스 적응성 광학계 시스템의 높은 안정성과 작은 크기, 중량 및 전력은 본 명세서에 설명된 홍채 화상 형성 적용분야와 같은 적용분야에 적용하기에 적절하게 만든다.
이들 소형의 시스템에서, 변형 가능한 거울(220)은 압전 재료의 다른 영역을 가로질러 다른 전압을 인가하여 따라서 변형을 생성하는 것을 기초로 변형 가능한 곡률 거울이다. 이런 형태의 변형 가능한 거울을 위한 또 다른 상세사항은 제이. 엘론 그레이브(J. Elon Graves) 및 제이. 노스코트(J. Northcott)에 의해 2001년 1월 25일자로 출원되고 2002년 10월 15일자로 허여된, 발명의 명칭이 "변형 가능한 곡률 거울(Deformable Curvature Mirror)" 인 미국 특허 제6,464,364호와, 제이. 엘론 그레이브 및 말콤 제이. 노스코트(Malcolm J. Northcott)에 의해 2001년 1월 25일자로 출원되고 2003년 5월 27일자로 허여된, 발명의 명칭이 "변형 가능한 거울을 위한 장착 장치(Mounting Apparatus for Deformable Mirror)" 인 미국 특허 제6,568,647호와, 제이. 엘론 그레이브 및 말콤 제이. 노스코트에 의해 2001년 1월 16일자로 출원된, 발명의 명칭이 "주변 광학 데이타 전송 시스템(Atmospheric Optical Data Transmission System)" 인 미국 특허 제6,721,510호에 설명 및 도시 된다. 또한, 웨이브프론트 센서(227)는 초점 맞춰지지 않은 눈동자 이미지를 기초로 하는 웨이브프론트 곡률 센서이다. 웨이브프론트 곡률 센서의 이런 형태에 대한 또 다른 상세사항은 제이. 엘론 그레이브 및 말콤 제이. 노스코트에 의해 2000년 5월 26일자로 출원되고 2002년 9월 17일자로 허여된, 발명의 명칭이 "웨이브프론트 감지를 위한 방법 및 장치(Method and Apparatus for Wavefront Sensing)" 인 미국 특허 제6,452,145호와, 제이. 엘론 그레이브 및 말콤 제이. 노스코트에 의해 2001년 6월 16일자로 출원된, 발명의 명칭이 "주변 광학 데이타 전송 시스템(Atmospheric Optical Data Transmission System)" 인 미국 특허 제6,721,510호에 설명 및 도시된다. 전술한 모든 사항은 본 명세서에 참조로 병합된다.
일 실시예에서, 도2의 홍채 화상 형성 시스템은 공항 복도, 세관 검문소, 공공 수송역, 안전 빌딩 로비 등에 사용하기 위해 설계된다. 적어도 10미터 떨어진 상태의 거리는 점유자를 식별하도록 큰 방 또는 복도의 스캐닝을 가능하게 한다. 예를 들어, 장치는 공항의 출발 및/또는 도착 스크린의 근처에 배치될 수 있다. 그 후, 시스템은 누군가가 스크린의 내용을 읽기 위한 시도를 식별할 수 있을 것이다.
이 특정 설계는 취득 서브시스템(100)이 (스캐닝없이) 10m 범위에서 대략 2m×2m×2m로 측정하는 캡쳐 용량(50)을 야기하는 대략 12도의 시야(135)를 갖는다. 취득 광원(110)은 750 내지 980nm 범위의 파장을 갖는 발광 다이오드(LED)이다. 더 짧은 파장은 더 나은 센서 양자 효율을 제공하지만, 대략 890nm 보다 긴 파장은 눈에 보이지 않는 작동을 위해 요구된다. 긴 파장이 또한 가능하지만, 더 비싼 (실리콘이 아닌) 탐지기가 요구된다. LED 소스가 일반적으로 바람직하다. 레이저 소스는 눈의 안전을 고려할 때 문제가 있지만, 신중한 엔지니어링을 통해 사용될 수 있다. 가스 방출 램프도 소정의 상황에서 또한 사용될 수 있다. 텅스텐 광 및 아크 램프와 같은 열원이 사용될 수 있지만, 파장 필터링의 요구사항 때문에 비효율적일 수 있다.
이 특정 설계에서, 취득 서브시스템(100)에 의해 사용된 조명 파장은 화상 형성 서브시스템(200)에 의해 사용된 것과 다르고, 따라서 거울(119)은 취득 서브시스템(100)으로부터의 광을 화상 형성 서브시스템(200)으로부터의 광과 분리하도록 파장 선택적일 수 있다. 취득 카메라(150)는 대략 720×500 픽셀의 해상도를 갖는 적외선 향상 단색 TV 카메라이다. 카메라(150)는 30Hz 촬영속도로 작동한다.
화상 형성 서브시스템(200)에 관하여, 해상도 요구사항은 홍채 화상 형성 시스템(200)의 설계를 추진시킨다. 픽셀 당 75 미크론의 해상도 요구사항을 고려한다. 회절 제한된 성능을 고려해보면, 필요 유효 구경 직경(d)은 d=λz/r이고, z는 떨어진 상태 거리, r은 필요 해상도이다. 예를 들어, λ=0.82μm이고, z=10m라면, 필요 유효 구경은 11cm이다. 다른 예에서와 같이, 100μm의 해상도는 회절 제한된 5cm 유효 구경을 갖는 10m 떨어진 상태의 거리에서 0.5μm의 가시 파장에서 달성될 수 있다. 그러나, 적외선 파장은 일반적으로 긴 파장에서 관찰된 향상된 콘트라스트에 기인한 홍채 화상 형성을 위해 바람직하다.
다른 제한된 해상도 요구사항 및 긴 유효 구경은 제한된 피사계 심도(depth of field)로 또한 이어진다. 피사계 심도를 초점 맞추는 것에 기인하여 퍼진 기하 학적 이미지가 회절 제한의 반 미만으로 설정되면, 피사계 심도(l)는 l=r2/λ로 주어진다. 0.82μm예는 대략 7mm의 피사계 심도를 산출한다. 0.5μm 예는 대략 2cm의 피사계 심도를 산출한다. 대략 몇몇 밀리미터 또는 몇몇 센티미터 상의 피사계 심도는 움직이는 물체의 초점 맞추기를 어렵게 만든다. 따라서, 적응성 광학계 루프는 빠른 추적 뿐만 아니라 빠른 초점 교정을 수행하는 것이 이롭다. 적응성 광학계 논의된 홍채 화상 형성 시스템을 통해, 이미지는 대상을 몇몇 밀리세컨드 내에 대상의 식별을 취할 수 있다. 따라서, 적응성 광학계의 사용은 비협동적인 대상을 포함하는 적용분야에 대해 이미지 캡쳐링의 속도 및 정확성을 증가시킬 수 있다.
초점 조정은 다른 변경예 및 접근을 이용하여 또한 달성될 수 있다. 예를 들어, 가변 초점 렌즈 또는 변형 가능한 거울은 초점을 조정하는데 사용될 수 있다. 전기 기계 렌즈 위치 조정, 카메라(250)의 이동 및 가변 굴절률 요소의 사용은 초점을 조정하기 위한 변경 방법이다. 또한, 미세 초점 웨이브프론트 센서의 사용, 광학 또는 음향 펄스(acoustic pulse)의 비행시간을 이용하는 눈으로의 거리를 측정함으로써, 초점 웨이브프론트 감지가 이미지 콘트라스트 측정 및 떨림을 기초로될 수 있다.
상술된 특정 예에 계속하여, 개별 대상이 공정을 인식하지 못하도록 눈에 조명하기 위해 홍채 화상 형성 시스템(200)에 사용된 WFS 광원(210)이 선택될 수 있다. 750 내지 980nm의 범위(그리고 개별 작동을 위해 대략 890nm보다 큰)의 파장 을 갖는 LED가 일반적으로 바람직하지만, 상술된 바와 같이 다른 소스가 사용될 수 있다. 눈 반사에 의해 눈동자가 완전히 조명되는 것을 보장하기 위해, 도2에 도시된 바와 같이, 망원경 유효 구경을 조명 광으로 채우는 것이 이롭다. 홍채 화상 형성 광원(248)은 또한 양호하게는 LED이다. 홍채 화상 형성 표준은 현재 850nm 부근의 파장으로 특정한다.
이 예에서, WFS 조명 파장(웨이브프론트 센서(227)에 의해 사용됨)은 카메라(250)에 의해 홍채를 화상 형성하는데 이용되는 조명과 다르도록 또한 선택된다. 따라서, 비임 스플리터(225)는 효율을 증가시키도록 이색성이다. 그러나, 이들 파장의 분리가 요구되지는 않는다. 다른 비임이 다른 기술을 이용하여 분리될 수 있다. 예를 들어, 홍채 화상 형성 조명 및 WFS 조명은 대신 시간에 의해 구별될 수 있다. WFS LED(210)은 (도2에 도시되지 않은) WFS 초퍼(chopper)와 동시에 플래쉬될 수 있고, 홍채 화상 형성 조명(248)은 웨이브프론트 센서(227)가 통합 신호가 아닐 때 부동 시간(dead time)을 채우도록 플래쉬될 수 있다. 홍채 화상 형성 카메라(250)는 양호하게는 양질의 단색 이미저이다. 높은 속도 추적에 기인하여, 이미저(250)는 상대적으로 작은 갯수의 픽셀, 예를 들어 편리한 표준 640×480 비디오 이미저를 가질 수 있다. 홍채 화상 형성 카메라(250)를 위해, 고품질, 고 양자 효율 및 소음에 대한 낮은 신호가 해상도보다 상대적으로 더 중요하다. 취득 카메라(150)는 전체적으로 분리 조명 시스템(110)을 가질 것이다. 취득 조명(110), 홍채 화상 형성 조명(248) 및/또는 미세 추적 조명(210) 사이에 간섭이 발생하면, 예를 들어 파장, 편광, 일시적인 분리 및/또는 각도 또는 공간 분리를 기초로 하는 기술을 포함하는 고립을 제공하도록 다양한 기술이 이용될 수 있다.
도2의 예는 눈으로부터의 역반사를 기초로 한다. 도3은 사람의 눈으로부터의 역반사의 조명이다. 눈의 본래 형상은 역반사기로서 기능하게 한다. 눈 렌즈(304)로 진입하는 광은 망막(314) 상에 초점 맞춰진다. 렌즈(404)를 향해 후방으로 망막에 의해 분산된 임의의 광은 눈의 외부로 그 통로를 되돌아간다. 망막이 눈 렌즈의 초점면에 있기 때문에, 광은 후방 분산 방향으로 강하게 유도된다. 도3에 도시된 바와 같이, 광은 눈동자를 통해 안구로 진입하고 망막(314)의 후방 곡률 표면으로부터 반사한다. 이것은 화상 형성 서브시스템(예를 들어, 적응성 광학계 루프의 웨이브프론트 센서)의 미세 추적 시스템을 구동하는데 사용될 수 있는, 망막(314)으로부터의 후방 반사이다. 또한, 도3의 조명은 역반사를 생성하도록 얼굴을 향하는 쪽으로부터 올 필요가 없음을 도시한다. 따라서, 대상은 취득 및 화상 형성 시스템이 작동하도록 홍채 화상 형성 카메라를 직접 응시할 필요가 없다.
도4는 사람 눈의 통상의 반사율 스펙트럼의 조명이다. 이 그래프는 위트레흐트(Utrecht) 대학의 니일스 자거스(Niels Zagers)의 논문에 처음 소개되었다. 반사율은 적외선을 향하여 강한 마루부를 도시한다. 750nm의 파장(CD는 레이저 파장을 판독)을 이용하여, 4%의 반사율의 흰색 람베르트(Lambertian) 확산 값이 기대된다. 망막에서 발견되는 멜라닌이 빨간 파장에서는 덜 흡수적이기 때문에, 후방 반사 특성은 빨간색과 IR 파장(약 800nm) 근방에서 더 강하다. 750nm 또는 긴 파장에서, 이것이 공칭 가시 구역 외부에 있기 때문에, 대상은 희미한 조명만을 볼 것이다. 880nm 또는 긴 파장에서, 광원은 본질적으로 비가시적일 것이다.
다음의 예는 눈(234)으로부터의 역반사광이 어떻게 적응성 광학계 시스템의 폐쇄 루프 작동에 사용되는지를 도시한다. 10m 거리에서의 대상은 눈 내부의 안전 제한에 알맞게, 눈으로 0.1mW 전력으로 조명될 수 있다. 이 예에서, 역반사 광은 대략 6.4×10-13W/cm2가 되도록 기대된다. 5cm 화상 형성 렌즈가 100미크론 해상도를 달성하도록 사용되었다고 가정하면, 대략 1.2×10-11W는 웨이브프론트 센서 상에 캡쳐링된다. 이것은 초당 대략 5×107 광자의 광자속(photon flux)에 상응한다. 일 실시예에서, 상대적으로 느린 속도로 구동하는 낮은 오더 적응성 광학계 시스템이 사용된다. 예를 들어, 1Hz에서 업데이트된 19 작동기 적응성 광학계 시스템은 작동기 당, 업데이트 당 대략 2500 광자를 제공한다. 50 전자 판독 노이즈 및 50% 양자 효율보다 더 나은 것을 구비한 CCD 형태 탐지기는 적응성 광학계 시스템의 폐쇄 루프 작동을 위한 충분한 신호를 노이즈 레이션(noise ration)에 제공할 것이다. 비교를 위해, 10 전자 판독 노이즈 및 90% 양자 효율 이상의 것이 과학적 등급 CCD 화상 형성에 대해 일상적으로 달성된다. 따라서, 역반사는 적응성 광학계 보조 미세 추적 및 화상 형성을 지지하기 위해 피드백 신호를 파생하도록 사용될 수 있다.
웨이브프론트 센서를 구동하도록 역반사로서 눈을 이용하는 것의 장점은 낮은 비용과 긴 범위를 포함한다. 낮은 비용은 웨이브프론트 센서로서 저렴한 실리콘 탐지기를 사용하고 광원으로서 저렴한 LED를 사용함으로써 기인된다. 적당한 신호는 역반사의 강한 방향성에 기인하여 심지어 긴 범위에서도 달성된다. 그러 나, 망막 역반사는 포인트 소스(point source)로서 나타내지 않고, 따라서 더 높은 역학적 범위 탐지기가 정확한 웨이브프론트 신호를 생성하도록 사용된다.
도2의 예에서, 눈으로부터의 반사는 망막 역반사이다. 이와 달리, 눈의 전방면은 약4%의 반사력을 갖는 부분 거울로서 기능을 한다. 이 표면으로부터의 반사는 역반사 대신 화상 형성 서브시스템(200)을 조향하는데 사용될 수 있는 미광을 형성한다. 예를 들어, 도2의 시스템은 광원(210)이 눈(134A)을 조명하도록 수정될 수 있지만, 웨이브프론트 센서(227)는 역반사보다는 눈으로부터의 미광 반사에 의해 구동된다. 미광이 측면 조명에 의해 발생될 수 있기 때문에, 광원(210)은 화상 형성 서브시스템(200)을 위해 측면 또는 심지어 망원경(221) 외부로 이동될 수 있다. 도5의 예에서, 광원(210)은 외부 광원(212)에 의해 대체된다. 소스(212)는 조명기 위치에 더 가깝지만, 망원경(221)을 위해 여전히 미광을 발생시킨다. 또한, 미광은 광원의 축소된 이미지처럼 보이고, 따라서 포인트 소스가 되기 더 쉽다. 얻어진 장점은 미광의 크기 및 형상이 대상까지의 거리의 강한 기능이 아니다.
안구의 미광으로부터 웨이브프론트 센서를 구동하는 일 장점은 안구로부터의 미광이 사용될 수 있는 거리 상의 제한이 없다는 것이다. 또한, 소스와 같은 포인트가 높은 역학적 범위를 갖는 웨이브프론트 센서를 필요로 하지 않는다. 그러나, 미광은 눈으로부터의 역반사보다 광이 덜 복귀하고, 따라서 웨이브프론트 센서 민감성 또는 더 높은 조명 유속이 요구될 수도 있다.
상세한 설명이 많은 특정 예를 포함하고 있지만, 이들은 본 발명의 범주를 제한하는 것으로서 구성되지 않아야 하고, 드물게는 다른 본 발명의 다른 예 및 태양을 도시한다. 본 발명의 범주는 상세히 상술되지 않은 다른 실시예를 포함함을 이해해야 한다. 본 기술분야의 당업자들에게 명백할 수 있는 다양한 다른 변형, 수정 및 변경은 첨부된 청구범위에 한정된 바와 같이 본 발명의 사상 및 범주 내에서 본 명세서에 개시된 본 발명의 방법 및 장치의 배열, 작동 및 상세사항에 만들어질 수도 있다. 예를 들어, 화상 형성 서브시스템 내에 미세 추적 시스템은 웨이브프론트 센서와 다른 피드백에 의해 구동될 수도 있다. 예를 들어, LIDAR, 레이다 및 다른 범위 발견 기술, 이미지 시차 또는 이미지 콘트라스트 측정 및 패턴 인식이 변형 가능한 거울을 구동하는데 사용될 수 있다. 그러므로, 본 발명의 범주는 첨부된 청구범위 및 그 법적 균등물에 의해 판단되어야 한다.

Claims (47)

  1. 화상 형성 서브시스템을 포함하는 홍채 화상 형성 시스템이며, 화상 형성 서브시스템은,
    생체 식별을 위해 충분한 해상도로 홍채의 이미지를 캡쳐링하기 위한 카메라와,
    눈을 조명하도록 광을 발생시키기 위한 광원과,
    눈을 조명하는 광의 눈 반사를 기초로 하여, 눈으로 카메라를 조향하기 위한 미세 추적 시스템을 포함하는, 화상 형성 서브시스템을 포함하는 홍채 화상 형성 시스템.
  2. 제1항에 있어서, 눈 반사는 눈으로부터의 역반사를 포함하는, 화상 형성 서브시스템을 포함하는 홍채 화상 형성 시스템.
  3. 제1항에 있어서, 눈 반사는 눈으로부터의 미광 반사를 포함하는, 화상 형성 서브시스템을 포함하는 홍채 화상 형성 시스템.
  4. 제1항에 있어서, 미세 추적 시스템은 눈 반사광을 기초로 하는 적응성 광학계 루프를 포함하는, 화상 형성 서브시스템을 포함하는 홍채 화상 형성 시스템.
  5. 제4항에 있어서, 적응성 광학계 루프는 눈으로 카메라를 조향하고, 눈 반사광의 웨이브프론트를 조정하기 위한 변형 가능한 거울과,
    눈 반사광의 웨이브프론트를 감지하기 위한 웨이브프론트 센서와,
    감지된 웨이브프론트를 기초로 하여 변형 가능한 거울을 조정하기 위해, 변형 가능한 거울과 웨이브프론트 센서 사이에 결합되는 제어기를 포함하는, 화상 형성 서브시스템을 포함하는 홍채 화상 형성 시스템.
  6. 제5항에 있어서, 변형 가능한 거울은 또한 카메라에 초점을 맞추는, 화상 형성 서브시스템을 포함하는 홍채 화상 형성 시스템.
  7. 제5항에 있어서, 화상 형성 서브시스템은 변형 가능한 거울과 웨이브프론트 센서 사이에 위치 설정되는 편광 비임 스플리터를 더 포함하고,
    광원은 편광된 광을 발생시키고, 편광 비임 스플리터는 편광된 광을 변형 가능한 거울을 통해 광학 통로로 결합시키지만, 웨이브프론트 센서로부터 멀리 동일한 편광의 복귀 광을 반사하는, 화상 형성 서브시스템을 포함하는 홍채 화상 형성 시스템.
  8. 제5항에 있어서, 변형 가능한 거울은 압전 재료의 다른 영역을 가로질러 다른 전압을 인가하는 것을 기초로 하는 변형 가능한 곡률 거울인, 화상 형성 서브시스템을 포함하는 홍채 화상 형성 시스템.
  9. 제5항에 있어서, 웨이브프론트 센서는 초점 흐려진 눈동자 이미지를 기초로 하는 웨이브프론트 곡률 센서인, 화상 형성 서브시스템을 포함하는 홍채 화상 형성 시스템.
  10. 제4항에 있어서, 적응성 광학계 루프는 또한 카메라에 초점을 맞추는, 화상 형성 서브시스템을 포함하는 홍채 화상 형성 시스템.
  11. 제1항에 있어서, 미세 추적 시스템은 눈으로 카메라를 조향하기 위해 변형 가능한 거울을 포함하는, 화상 형성 서브시스템을 포함하는 홍채 화상 형성 시스템.
  12. 제1항에 있어서, 미세 추적 시스템은 초당 적어도 10개의 홍채를 취득하고 화상을 형성하는 속도를 갖는, 화상 형성 서브시스템을 포함하는 홍채 화상 형성 시스템.
  13. 제1항에 있어서, 미세 추적 시스템은 0.5cm 이상의 밀도로 홍채를 추적할 수 있는, 화상 형성 서브시스템을 포함하는 홍채 화상 형성 시스템.
  14. 제1항에 있어서, 광원은 비레이저 광을 발생시키는, 화상 형성 서브시스템을 포함하는 홍채 화상 형성 시스템.
  15. 제1항에 있어서, 광원은 LED인, 화상 형성 서브시스템을 포함하는 홍채 화상 형성 시스템.
  16. 제1항에 있어서, 광원은 750nm 보다 큰 파장 범위의 광을 발생시키는, 화상 형성 서브시스템을 포함하는 홍채 화상 형성 시스템.
  17. 제1항에 있어서, 광원은 750nm 내지 980nm의 파장 범위의 광을 발생시키는, 화상 형성 서브시스템을 포함하는 홍채 화상 형성 시스템.
  18. 제1항에 있어서, 광원은 850nm보다 큰 파장 범위의 광을 발생시키는, 화상 형성 서브시스템을 포함하는 홍채 화상 형성 시스템.
  19. 제1항에 있어서, 광원은 사람에게는 보이지 않는 파장 범위의 광을 발생시키는, 화상 형성 서브시스템을 포함하는 홍채 화상 형성 시스템.
  20. 제1항에 있어서, 카메라는 단색 카메라인, 화상 형성 서브시스템을 포함하는 홍채 화상 형성 시스템.
  21. 제1항에 있어서, 카메라는 200미크론 이상의 해상도로 홍채의 이미지를 캡쳐링하는, 화상 형성 서브시스템을 포함하는 홍채 화상 형성 시스템.
  22. 제1항에 있어서, 카메라는 100미크론 이상의 해상도로 홍채의 이미지를 캡쳐링하는, 화상 형성 서브시스템을 포함하는 홍채 화상 형성 시스템.
  23. 제1항에 있어서, 카메라는 75미크론 이상의 해상도로 홍채의 이미지를 캡쳐링하는, 화상 형성 서브시스템을 포함하는 홍채 화상 형성 시스템.
  24. 제1항에 있어서, 카메라에 의한 이미지 캡쳐링을 위해 홍채를 조명하기 위한 측면 광원을 더 포함하는, 화상 형성 서브시스템을 포함하는 홍채 화상 형성 시스템.
  25. 제1항에 있어서, 화상 형성 서브시스템은 적어도 1평방 미터의 캡쳐 용량을 커버할 수 있는, 화상 형성 서브시스템을 포함하는 홍채 화상 형성 시스템.
  26. 제1항에 있어서, 카메라는 적어도 5m 떨어진 상태에서 홍채 이미지를 캡쳐링 할 수 있는, 화상 형성 서브시스템을 포함하는 홍채 화상 형성 시스템.
  27. 제1항에 있어서, 카메라는 적어도 10m 떨어진 상태에서 홍채 이미지를 캡쳐 링 할 수 있는, 화상 형성 서브시스템을 포함하는 홍채 화상 형성 시스템.
  28. 제1항에 있어서, 캡쳐 용량 내에서 대상의 대략적인 위치를 식별하기 위한 취득 서브시스템과,
    두 개의 서브시스템을 조화시키기 위해 취득 서브시스템 및 화상 형성 서브시스템에 결합된 제어기를 더 포함하는, 화상 형성 서브시스템을 포함하는 홍채 화상 형성 시스템.
  29. 제28항에 있어서, 취득 서브시스템은 대상의 눈으로부터 조명광의 눈 반사를 기초로 하여 대상의 대략적인 위치를 식별하는, 화상 형성 서브시스템을 포함하는 홍채 화상 형성 시스템.
  30. 제28항에 있어서, 취득 서브시스템은 전체 캡쳐 용량으로 응시하는, 화상 형성 서브시스템을 포함하는 홍채 화상 형성 시스템.
  31. 제28항에 있어서, 취득 서브시스템은 캡쳐 용량을 가로질러 스캐닝하는, 화상 형성 서브시스템을 포함하는 홍채 화상 형성 시스템.
  32. 제28항에 있어서, 취득 서브시스템 및 화상 형성 서브시스템은 공통의 광학축을 따라서 정렬되는, 화상 형성 서브시스템을 포함하는 홍채 화상 형성 시스템.
  33. 눈의 홍채를 화상 형성하기 위한 방법이며,
    광으로 눈을 조명하는 단계와,
    조명광의 눈으로부터의 눈 반사를 기초로 하여 눈으로 카메라를 조향하는 단계와,
    생체 식별을 위해 충분한 해상도로 홍채의 이미지를 카메라 캡쳐링하는 단계를 포함하는, 눈의 홍채를 화상 형성하기 위한 방법.
  34. 제33항에 있어서, 눈 반사는 눈으로부터의 역반사를 포함하는, 눈의 홍채를 화상 형성하기 위한 방법.
  35. 제33항에 있어서, 눈 반사는 눈으로부터의 미광 반사를 포함하는, 눈의 홍채를 화상 형성하기 위한 방법.
  36. 제33항에 있어서, 눈으로 카메라를 조향하는 단계는 눈으로 카메라를 조향하도록 눈 반사광을 기초로 하는 적응성 광학계 루프를 사용하는 단계를 포함하는, 눈의 홍채를 화상 형성하기 위한 방법.
  37. 제33항에 있어서, 눈 반사광을 기초로 하여 눈에 카메라에 초점을 맞추는 단계를 더 포함하는, 눈의 홍채를 화상 형성하기 위한 방법.
  38. 제33항에 있어서, 눈으로 카메라를 조향하는 단계는 초당 적어도 열 개의 눈으로 카메라를 조향하는 것이 가능한, 눈의 홍채를 화상 형성하기 위한 방법.
  39. 제33항에 있어서, 눈을 조명하는 단계는 750nm 보다 큰 파장 범위의 광으로 눈을 조명하는 단계를 포함하는, 눈의 홍채를 화상 형성하기 위한 방법.
  40. 제33항에 있어서, 눈을 조명하는 단계는 사람에게는 보이지 않는 파장 범위의 광으로 눈을 조명하는 단계를 포함하는, 눈의 홍채를 화상 형성하기 위한 방법.
  41. 제33항에 있어서, 카메라는 200미크론 이상의 해상도로 홍채의 이미지를 캡쳐링하는, 눈의 홍채를 화상 형성하기 위한 방법.
  42. 제33항에 있어서, 카메라는 적어도 1평방 미터의 캡쳐 용량을 커버하도록 조향될 수 있는, 눈의 홍채를 화상 형성하기 위한 방법.
  43. 제33항에 있어서, 카메라는 적어도 10m 떨어진 상태에서 홍채 이미지를 캡쳐링 할 수 있는, 눈의 홍채를 화상 형성하기 위한 방법.
  44. 제33항에 있어서, 캡쳐 용량 내에서 대상의 대략적인 위치를 식별하는 단계 를 더 포함하고, 눈으로 카메라를 조향하는 단계는 식별된 대략적인 위치를 부분적으로 기초로 하는, 눈의 홍채를 화상 형성하기 위한 방법.
  45. 제44항에 있어서, 대상의 대략적인 위치를 식별하는 단계는 대상의 눈으로부터 조명광의 눈 반사를 기초로 하는, 눈의 홍채를 화상 형성하기 위한 방법.
  46. 제44항에 있어서, 대상의 대략적인 위치를 식별하는 단계는 전체 캡쳐 용량으로 응시하는 단계를 포함하는, 눈의 홍채를 화상 형성하기 위한 방법.
  47. 제44항에 있어서, 대상의 대략적인 위치를 식별하는 단계는 캡쳐 용량을 가로질러 스캐닝하는 단계를 포함하는, 눈의 홍채를 화상 형성하기 위한 방법.
KR1020077015576A 2004-12-07 2005-12-07 눈으로부터의 반사를 이용하는 홍채 화상 형성 KR20070108146A (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US63433104P 2004-12-07 2004-12-07
US60/634,331 2004-12-07
US65463805P 2005-02-17 2005-02-17
US60/654,638 2005-02-17

Publications (1)

Publication Number Publication Date
KR20070108146A true KR20070108146A (ko) 2007-11-08

Family

ID=36578534

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020077015576A KR20070108146A (ko) 2004-12-07 2005-12-07 눈으로부터의 반사를 이용하는 홍채 화상 형성

Country Status (5)

Country Link
US (1) US7428320B2 (ko)
EP (1) EP1820142A4 (ko)
JP (1) JP2008523475A (ko)
KR (1) KR20070108146A (ko)
WO (1) WO2006063076A2 (ko)

Families Citing this family (86)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7869627B2 (en) * 2004-12-07 2011-01-11 Aoptix Technologies, Inc. Post processing of iris images to increase image quality
US7634114B2 (en) * 2006-09-01 2009-12-15 Sarnoff Corporation Method and apparatus for iris biometric systems for use in an entryway
US20060274918A1 (en) * 2005-06-03 2006-12-07 Sarnoff Corporation Method and apparatus for designing iris biometric systems for use in minimally constrained settings
US8260008B2 (en) 2005-11-11 2012-09-04 Eyelock, Inc. Methods for performing biometric recognition of a human eye and corroboration of same
US20070146634A1 (en) * 2005-12-22 2007-06-28 Leblanc Richard A Illumination characteristic selection system for imaging during an ophthalmic laser procedure and associated methods
KR100729813B1 (ko) * 2006-01-20 2007-06-18 (주)자이리스 홍채 인증용 촬영장치, 홍채 인증용 촬영모듈 및 홍채인증용 촬영장치를 구비하는 단말기
US8364646B2 (en) 2006-03-03 2013-01-29 Eyelock, Inc. Scalable searching of biometric databases using dynamic selection of data subsets
WO2007101276A1 (en) * 2006-03-03 2007-09-07 Honeywell International, Inc. Single lens splitter camera
JP5044237B2 (ja) * 2006-03-27 2012-10-10 富士フイルム株式会社 画像記録装置、画像記録方法、および画像記録プログラム
WO2008039252A2 (en) * 2006-05-15 2008-04-03 Retica Systems, Inc. Multimodal ocular biometric system
US8604901B2 (en) * 2006-06-27 2013-12-10 Eyelock, Inc. Ensuring the provenance of passengers at a transportation facility
US8121356B2 (en) 2006-09-15 2012-02-21 Identix Incorporated Long distance multimodal biometric system and method
WO2008091401A2 (en) 2006-09-15 2008-07-31 Retica Systems, Inc Multimodal ocular biometric system and methods
US8433103B2 (en) * 2006-09-15 2013-04-30 Identix Incorporated Long distance multimodal biometric system and method
US7574021B2 (en) * 2006-09-18 2009-08-11 Sarnoff Corporation Iris recognition for a secure facility
EP2076871A4 (en) 2006-09-22 2015-09-16 Eyelock Inc COMPACT BIOMETRIC DETECTION SYSTEM AND CORRESPONDING METHOD
WO2008042879A1 (en) * 2006-10-02 2008-04-10 Global Rainmakers, Inc. Fraud resistant biometric financial transaction system and method
RU2326589C1 (ru) * 2007-01-15 2008-06-20 Дмитрий Евгеньевич Антонов Способ идентификации личности по радужной оболочке глаза (его варианты)
US8025399B2 (en) * 2007-01-26 2011-09-27 Aoptix Technologies, Inc. Combined iris imager and wavefront sensor
US8092021B1 (en) 2007-01-26 2012-01-10 Aoptix Technologies, Inc. On-axis illumination for iris imaging
US8111879B2 (en) * 2007-04-05 2012-02-07 Honeywell International Inc. Face and iris imaging system and method
US8953849B2 (en) 2007-04-19 2015-02-10 Eyelock, Inc. Method and system for biometric recognition
WO2008131201A1 (en) 2007-04-19 2008-10-30 Global Rainmakers, Inc. Method and system for biometric recognition
US8192026B2 (en) * 2007-06-20 2012-06-05 Tearscience, Inc. Tear film measurement
US7758190B2 (en) * 2007-06-20 2010-07-20 Tearscience, Inc. Tear film measurement
US8115994B2 (en) * 2007-07-10 2012-02-14 Lockheed Martin Corporation Scanning wide field telescope and method
US9117119B2 (en) 2007-09-01 2015-08-25 Eyelock, Inc. Mobile identity platform
US9036871B2 (en) 2007-09-01 2015-05-19 Eyelock, Inc. Mobility identity platform
US9002073B2 (en) 2007-09-01 2015-04-07 Eyelock, Inc. Mobile identity platform
WO2009029757A1 (en) 2007-09-01 2009-03-05 Global Rainmakers, Inc. System and method for iris data acquisition for biometric identification
US8212870B2 (en) 2007-09-01 2012-07-03 Hanna Keith J Mirror system and method for acquiring biometric data
WO2009158662A2 (en) 2008-06-26 2009-12-30 Global Rainmakers, Inc. Method of reducing visibility of illimination while acquiring high quality imagery
US8243133B1 (en) * 2008-06-28 2012-08-14 Aoptix Technologies, Inc. Scale-invariant, resolution-invariant iris imaging using reflection from the eye
US8132912B1 (en) * 2008-06-29 2012-03-13 Aoptix Technologies, Inc. Iris imaging system using circular deformable mirror mounted by its circumference
US8195044B2 (en) 2009-03-30 2012-06-05 Eyelock Inc. Biometric camera mount system
US9888839B2 (en) 2009-04-01 2018-02-13 Tearscience, Inc. Methods and apparatuses for determining contact lens intolerance in contact lens wearer patients based on dry eye tear film characteristic analysis and dry eye symptoms
US8888286B2 (en) 2009-04-01 2014-11-18 Tearscience, Inc. Full-eye illumination ocular surface imaging of an ocular tear film for determining tear film thickness and/or providing ocular topography
US9642520B2 (en) 2009-04-01 2017-05-09 Tearscience, Inc. Background reduction apparatuses and methods of ocular surface interferometry (OSI) employing polarization for imaging, processing, and/or displaying an ocular tear film
EP2413699B1 (en) 2009-04-01 2019-11-20 Tearscience, Inc. Ocular surface interferometry (osi) apparatus for imaging an ocular tear film
US8915592B2 (en) 2009-04-01 2014-12-23 Tearscience, Inc. Apparatuses and methods of ocular surface interferometry (OSI) employing polarization and subtraction for imaging, processing, and/or displaying an ocular tear film
US10043229B2 (en) 2011-01-26 2018-08-07 Eyelock Llc Method for confirming the identity of an individual while shielding that individual's personal data
BR112013021160B1 (pt) 2011-02-17 2021-06-22 Eyelock Llc Método e aparelho para processar imagens adquiridas usando um único sensor de imagens
EP2700041A4 (en) 2011-04-19 2015-04-08 Eyelock Inc BIOMETRIC ORIGINAL CHAIN
RU2623795C2 (ru) 2011-08-22 2017-06-29 АЙЛОК ЭлЭлСи Системы и способы для захвата безартефактных изображений
US20130088583A1 (en) * 2011-10-07 2013-04-11 Aoptix Technologies, Inc. Handheld Iris Imager
US20130089240A1 (en) * 2011-10-07 2013-04-11 Aoptix Technologies, Inc. Handheld iris imager
WO2013142771A1 (en) * 2012-03-22 2013-09-26 The Curators Of The University Of Missouri Device to measure pupillary light reflex in infants and toddlers
US9339177B2 (en) 2012-12-21 2016-05-17 Tearscience, Inc. Full-eye illumination ocular surface imaging of an ocular tear film for determining tear film thickness and/or providing ocular topography
US9495526B2 (en) 2013-03-15 2016-11-15 Eyelock Llc Efficient prevention of fraud
ES2901406T3 (es) 2013-05-03 2022-03-22 Tearscience Inc Sistemas y métodos de iluminación de párpados para imagenología de las glándulas de Meibomio para análisis de las glándulas de Meibomio
US9795290B2 (en) 2013-11-15 2017-10-24 Tearscience, Inc. Ocular tear film peak detection and stabilization detection systems and methods for determining tear film layer characteristics
CN105934764A (zh) 2013-12-23 2016-09-07 眼锁有限责任公司 用于功率高效的虹膜识别的方法和装置
CN105981047A (zh) 2014-01-06 2016-09-28 眼锁有限责任公司 用于重复虹膜识别的方法和设备
US9330302B2 (en) 2014-02-26 2016-05-03 Microsoft Technology Licensing, Llc Polarized gaze tracking
US10614204B2 (en) 2014-08-28 2020-04-07 Facetec, Inc. Facial recognition authentication system including path parameters
US10698995B2 (en) 2014-08-28 2020-06-30 Facetec, Inc. Method to verify identity using a previously collected biometric image/data
CA2902093C (en) 2014-08-28 2023-03-07 Kevin Alan Tussy Facial recognition authentication system including path parameters
US10915618B2 (en) 2014-08-28 2021-02-09 Facetec, Inc. Method to add remotely collected biometric images / templates to a database record of personal information
US11256792B2 (en) 2014-08-28 2022-02-22 Facetec, Inc. Method and apparatus for creation and use of digital identification
US10803160B2 (en) 2014-08-28 2020-10-13 Facetec, Inc. Method to verify and identify blockchain with user question data
CN106796655A (zh) 2014-09-12 2017-05-31 眼锁有限责任公司 用于引导用户在虹膜识别系统中的视线的方法和设备
EP3198913A4 (en) 2014-09-24 2018-05-23 Princeton Identity, Inc. Control of wireless communication device capability in a mobile device with a biometric key
EP3221835A4 (en) 2014-11-19 2018-04-18 Eyelock Llc Model-based prediction of an optimal convenience metric for authorizing transactions
JP2018506872A (ja) 2014-12-03 2018-03-08 プリンストン・アイデンティティー・インコーポレーテッド モバイルデバイス生体アドオンのためのシステムおよび方法
BR112017015375A2 (pt) 2015-01-20 2018-01-16 Eyelock Llc sistema de lentes para aquisição de imagem visível e aquisição de imagem de íris infravermelha de alta qualidade
BR112017019362A2 (pt) 2015-03-12 2018-06-05 Eyelock Llc métodos e sistemas para gestão de atividade de rede usando biometria
US20160275348A1 (en) * 2015-03-17 2016-09-22 Motorola Mobility Llc Low-power iris authentication alignment
IL303125B1 (en) * 2015-05-20 2024-03-01 Magic Leap Inc Tilt-shift iris imaging
US10049272B2 (en) 2015-09-24 2018-08-14 Microsoft Technology Licensing, Llc User authentication using multiple capture techniques
US10311299B2 (en) 2015-12-21 2019-06-04 Eyelock Llc Reflected optic camera module for iris recognition in a computing device
KR20180102637A (ko) 2016-01-12 2018-09-17 프린스톤 아이덴티티, 인크. 바이오메트릭 분석의 시스템 및 방법
EP3525186B1 (en) * 2016-01-18 2020-10-28 Veoneer Sweden AB Driver monitoring system and driver monitoring method for a motor vehicle
US10373008B2 (en) 2016-03-31 2019-08-06 Princeton Identity, Inc. Systems and methods of biometric analysis with adaptive trigger
WO2017173228A1 (en) 2016-03-31 2017-10-05 Princeton Identity, Inc. Biometric enrollment systems and methods
USD987653S1 (en) 2016-04-26 2023-05-30 Facetec, Inc. Display screen or portion thereof with graphical user interface
EP3458997A2 (en) 2016-05-18 2019-03-27 Eyelock, LLC Iris recognition methods and systems based on an iris stochastic texture model
US10534969B2 (en) 2017-02-24 2020-01-14 Eyelock Llc Systems and methods for providing illumination for iris biometric acquisition
WO2018187337A1 (en) 2017-04-04 2018-10-11 Princeton Identity, Inc. Z-dimension user feedback biometric system
JP2020529073A (ja) 2017-07-26 2020-10-01 プリンストン・アイデンティティー・インコーポレーテッド 生体セキュリティシステムおよび方法
CA3015802C (en) 2017-08-31 2021-06-22 Eyelock, Llc Systems and methods of biometric acquistion using positive optical distortion
CN108073896B (zh) * 2017-11-24 2018-11-16 仲恺农业工程学院 用户观看内容实时分析系统
US11326763B1 (en) 2019-02-06 2022-05-10 Apple Inc. Light-emitting diodes with optical filters
US11861941B1 (en) * 2019-02-06 2024-01-02 Apple Inc. Eye camera systems with polarized light
US11839427B2 (en) * 2019-04-12 2023-12-12 California Institute Of Technology Systems, methods, and apparatuses for ocular measurements
US11300784B2 (en) 2020-02-21 2022-04-12 Fotonation Limited Multi-perspective eye acquisition
EP4141819A1 (en) * 2021-08-25 2023-03-01 Tools for Humanity Corporation Iris scanning device with a single camera sensor

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6099522A (en) * 1989-02-06 2000-08-08 Visx Inc. Automated laser workstation for high precision surgical and industrial interventions
US5717512A (en) * 1996-05-15 1998-02-10 Chmielewski, Jr.; Thomas A. Compact image steering and focusing device
US6447119B1 (en) * 1996-08-12 2002-09-10 Visionrx, Inc. Apparatus for visualizing the eye's tear film
US5777719A (en) * 1996-12-23 1998-07-07 University Of Rochester Method and apparatus for improving vision and the resolution of retinal images
US6055322A (en) * 1997-12-01 2000-04-25 Sensor, Inc. Method and apparatus for illuminating and imaging eyes through eyeglasses using multiple sources of illumination
US20030226978A1 (en) * 1998-01-30 2003-12-11 Segan Industries Integrating ultraviolet exposure detection devices
US5956122A (en) * 1998-06-26 1999-09-21 Litton Systems, Inc Iris recognition apparatus and method
US6452145B1 (en) 2000-01-27 2002-09-17 Aoptix Technologies, Inc. Method and apparatus for wavefront sensing
US6439720B1 (en) 2000-01-27 2002-08-27 Aoptics, Inc. Method and apparatus for measuring optical aberrations of the human eye
US6464364B2 (en) * 2000-01-27 2002-10-15 Aoptix Technologies, Inc. Deformable curvature mirror
MXPA03005113A (es) * 2000-12-08 2004-01-29 Visx Inc Programa de tratamiento de ablacion cornea basado en frente de ondas directo.
US6561648B2 (en) * 2001-05-23 2003-05-13 David E. Thomas System and method for reconstruction of aberrated wavefronts
US6609794B2 (en) * 2001-06-05 2003-08-26 Adaptive Optics Associates, Inc. Method of treating the human eye with a wavefront sensor-based ophthalmic instrument
US6721510B2 (en) 2001-06-26 2004-04-13 Aoptix Technologies, Inc. Atmospheric optical data transmission system
DE10142001A1 (de) * 2001-08-28 2003-03-20 Zeiss Carl Jena Gmbh Optische Multiplex Kurzkohärenz-Interferometrie am Auge
US7226166B2 (en) * 2001-11-13 2007-06-05 Philadelphia Retina Endowment Fund Optimizing the properties of electromagnetic energy in a medium using stochastic parallel perturbation gradient descent optimization adaptive optics

Also Published As

Publication number Publication date
EP1820142A4 (en) 2010-03-10
WO2006063076A3 (en) 2006-12-14
JP2008523475A (ja) 2008-07-03
US7428320B2 (en) 2008-09-23
EP1820142A2 (en) 2007-08-22
WO2006063076A2 (en) 2006-06-15
US20060140454A1 (en) 2006-06-29

Similar Documents

Publication Publication Date Title
US7428320B2 (en) Iris imaging using reflection from the eye
US7418115B2 (en) Iris imaging using reflection from the eye
US8243133B1 (en) Scale-invariant, resolution-invariant iris imaging using reflection from the eye
US7869627B2 (en) Post processing of iris images to increase image quality
US8092021B1 (en) On-axis illumination for iris imaging
CN108882845B (zh) 基于经由光导光学元件的视网膜成像的眼动追踪器
KR100342159B1 (ko) 홍채영상 포착장치 및 홍채영상 포착방법
JP4682470B2 (ja) スキャン型ディスプレイ装置
JP4202136B2 (ja) 組成分析
US7488070B2 (en) Optical measuring system and optical measuring method
US9606354B2 (en) Heads-up display with integrated display and imaging system
US6394602B1 (en) Eye tracking system
KR20180048868A (ko) 눈 프로젝션 시스템 및 방법
US7298414B2 (en) Digital camera autofocus using eye focus measurement
CN114755824A (zh) 用于结合光扫描投影仪跟踪眼睛运动的方法和系统
CN102551655A (zh) 3d凝视跟踪器
JP2008104628A (ja) 眼球の結膜強膜撮像装置
CN1757374A (zh) 测量波前像差的方法和设备
WO2008039252A9 (en) Multimodal ocular biometric system
EP2062197A2 (en) Long distance multimodal biometric system and method
CN101099164A (zh) 使用来自眼睛反射的虹膜成像
CN113520299B (zh) 一种眼部多模态成像系统
WO2018230203A1 (ja) 撮像装置
US11882354B2 (en) System for acquisiting iris image for enlarging iris acquisition range
JP3194790B2 (ja) 視線方向検出装置

Legal Events

Date Code Title Description
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid