KR20070097936A - Anti-bacterial nanofiber filter media and manufacturing method therof containing silver nano particles - Google Patents

Anti-bacterial nanofiber filter media and manufacturing method therof containing silver nano particles Download PDF

Info

Publication number
KR20070097936A
KR20070097936A KR1020060028900A KR20060028900A KR20070097936A KR 20070097936 A KR20070097936 A KR 20070097936A KR 1020060028900 A KR1020060028900 A KR 1020060028900A KR 20060028900 A KR20060028900 A KR 20060028900A KR 20070097936 A KR20070097936 A KR 20070097936A
Authority
KR
South Korea
Prior art keywords
nanofiber
silver
filter media
manufacturing
filter
Prior art date
Application number
KR1020060028900A
Other languages
Korean (ko)
Other versions
KR100843191B1 (en
Inventor
김찬
Original Assignee
주식회사 아모메디
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 아모메디 filed Critical 주식회사 아모메디
Priority to KR1020060028900A priority Critical patent/KR100843191B1/en
Publication of KR20070097936A publication Critical patent/KR20070097936A/en
Application granted granted Critical
Publication of KR100843191B1 publication Critical patent/KR100843191B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • B01D39/1607Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous
    • B01D39/1623Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous of synthetic origin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/02Types of fibres, filaments or particles, self-supporting or supported materials
    • B01D2239/025Types of fibres, filaments or particles, self-supporting or supported materials comprising nanofibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/04Additives and treatments of the filtering material
    • B01D2239/0442Antimicrobial, antibacterial, antifungal additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/04Additives and treatments of the filtering material
    • B01D2239/0471Surface coating material
    • B01D2239/0492Surface coating material on fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/06Filter cloth, e.g. knitted, woven non-woven; self-supported material
    • B01D2239/0604Arrangement of the fibres in the filtering material
    • B01D2239/0618Non-woven
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/06Filter cloth, e.g. knitted, woven non-woven; self-supported material
    • B01D2239/0604Arrangement of the fibres in the filtering material
    • B01D2239/0631Electro-spun
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/10Filtering material manufacturing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nonwoven Fabrics (AREA)
  • Filtering Materials (AREA)

Abstract

A nanofiber filter medium and a method for manufacturing the same are provided to prevent the separation of silver nanoparticles, by highly dispersing silver nanoparticles on a surface of a nanofiber layer through electro-spinning and electro-spraying. A nanofiber layer(80) is formed on a nonwoven fabric medium(10) for a filter by electro-spinning a nanofiber forming polymer solution. Silver nanoparticles are dispersed on a surface of the nanofiber layer by electro-spraying a silver nanoparticle containing solution. The forming of the nanofiber layer and the dispersing of the silver nanoparticles are continuously performed on a roll process. Another nonwoven fabric medium is additively attached to the surface of the nanofiber layer.

Description

은 나노입자 함유 나노섬유 필터여재 및 그 제조방법{Anti-bacterial Nanofiber Filter Media and Manufacturing Method Therof Containing Silver Nano Particles}Anti-bacterial Nanofiber Filter Media and Manufacturing Method Therof Containing Silver Nano Particles}

도 1은 본 발명에 따른 전기방사 및 전기분사 장치의 개략도,1 is a schematic view of the electrospinning and electrospray apparatus according to the present invention,

도 2는 본 발명에 따른 필터용 부직포 여재와 전기방사된 은 나노입자 함유 나노섬유로 이루어진 필터여재 단면의 사시도,2 is a perspective view of a cross section of a filter medium made of a nonwoven filter medium for filters and electrospun silver nanoparticle-containing nanofibers according to the present invention;

도 3은 본 발명에 따른 PVA 나노섬유의 (a) 5,000배, (b) 10,000배, (c) 30,000배 확대한 전자현미경 사진,Figure 3 is a (a) 5,000 times, (b) 10,000 times, (c) 30,000 times magnified electron micrograph of the PVA nanofibers according to the present invention,

도 4는 본 발명에 따른 은 나노입자를 함유한 PAN 나노섬유의 투과전자현미경 사진,4 is a transmission electron micrograph of a PAN nanofiber containing silver nanoparticles according to the present invention,

도 5는 본 발명에 따른 PBT 나노섬유의 (a) 500배, (b) 18,000배 확대한 전자현미경 사진,5 is an electron micrograph of (a) 500 times, (b) 18,000 times magnification of PBT nanofibers according to the present invention;

도 6은 본 발명에 따른 (a) 필터용 부직포 여재 상에 방사된 나노섬유, (b) 필터용 부직포 여재 상에 방사된 나노섬유를 분리하는 모습을 나타낸 사진이다.Figure 6 is a photograph showing the separation of the nanofibers spun on the (a) filter nonwoven media for filter, (b) the nonwoven media for filter according to the present invention.

<도면의 주요부분에 대한 부호의 설명><Description of the symbols for the main parts of the drawings>

10: 필터용 부직포 여재 21: 전기방사 노즐 10: filter non-woven media 21: electrospinning nozzle

22: 주방사용액 탱크 31: 전기분사 노즐22: kitchen liquid tank 31: electrospray nozzle

32: 은나노 용액 탱크 40: 집전체32: silver nano solution tank 40: current collector

50: 전압발생장치 60: 캘린더50: voltage generator 60: calendar

70: 와인더 80: 은 나노입자 함유 나노섬유70: winder 80: nanofiber containing silver nanoparticles

본 발명은 전기방사(electrospinning)방법으로 기재 위에 형성된 나노섬유층의 표면에 전기분사(electrospray)방법으로 은 나노입자를 고분산시켜 항균 및 살균력을 극대화할 수 있도록 한 나노 섬유 필터여재의 제조방법 및 이에 의해 제조된 나노 섬유 필터여재에 관한 것이다.The present invention provides a method for producing a nanofiber filter media to maximize the antibacterial and bactericidal power by highly dispersing silver nanoparticles by an electrospray method on the surface of the nanofiber layer formed on the substrate by an electrospinning method and It relates to a nanofiber filter media produced by.

최근, 웰빙(well-being) 바람과 더불어 공기청정기, 에어컨 필터, 자동차용 에어필터, 각종 정수기용 필터 등에 은 나노의 항균, 살균력을 이용하려는 소재의 사용이 증가하고 있는 실정이다. 필터여재용 은 나노 함유 섬유의 제조방법은 은 나노입자를 섬유에 코팅하거나 원사 내부에 은 나노를 첨가하여 항균섬유를 제조하는 것이 가장 일반적이다. 그러나 코팅방법의 경우 은 나노분말과 섬유와의 결합력이 약해 사용시 은 나노분말의 탈리되는 단점이 있으며, 코팅용액이 은 나노입자를 코팅하여 항균 및 살균력을 감소시키며, 또한 은 나노분말이 균일, 고분산되기 어렵다는 단점이 있다. 또한, 원사내에 함유할 경우 은 나노의 뛰어난 효과를 충분히 활용할 수 없는 단점이 있으며, 필터여재로 사용하기 위해서는 부직포 제조공정인 니들펀칭(needle punching), 스펀레이스(spun-lace), 공기(air-laid) 및 습식 레이 드(wet-laid) 공정, 화학적(chemical), 열적(thermal) 방법 등 다양한 공정이 부가적으로 필요하게 되어 공정비용이 높아지는 단점이 있다.In recent years, the use of materials that use antimicrobial and bactericidal power of silver nano is increasing in addition to well-being winds, air purifiers, air conditioner filters, automotive air filters, and filters for water purifiers. The most common method for producing silver nano-containing fibers for filter media is to produce antimicrobial fibers by coating silver nanoparticles on the fibers or adding silver nanoparticles inside the yarn. However, in the case of the coating method, there is a disadvantage in that the silver nanopowder is desorbed when used due to the weak bonding force between the silver nanopowder and the fiber. It is difficult to be dispersed. In addition, when contained in the yarn there is a disadvantage that can not fully utilize the excellent effect of the silver nano, in order to use as a filter medium, non-woven fabric manufacturing process needle punching, spun-lace, air (air) There are disadvantages in that process costs are increased because additional processes such as -laid and wet-laid processes, chemical and thermal methods are additionally required.

일반적으로 합성섬유의 제조는 용융(melt) 및 용액방사(solution spinning)하거나 용융분사방사(melt-blown spinning), 복합방사하거나 기존의 방사방법을 조합(hybrid)하여 이루어진다. 극세사의 제조방법으로는 고분자 블렌드 방사, 용융분사 방사, 플레쉬 방사(flash spinning), 전기방사(electrospinning) 등 여러 가지 방사방법이 있으나 이 중에서 전기방사방법이 가장 유효한 수단으로 알려져 있다.In general, the production of synthetic fibers is achieved by melting and solution spinning, melt-blown spinning, composite spinning, or by combining conventional spinning methods. There are various spinning methods such as polymer blend spinning, melt spray spinning, flash spinning, electrospinning, etc., but among them, the electrospinning method is known as the most effective means.

항균성 섬유의 제조방법은 섬유원료에 유기 및 무기 항균제를 혼합하여 제조하는 것이 일반적인 방법이나 유기항균제의 경우, 용융 및 용액 방사시 유기항균제의 분해 및 용해에 의해 항균력이 떨어져 사용할 수 없는 문제점이 있었다. 또한, 무기항균제의 경우 다공성 세라믹 분말에 은 화합물을 부착시켜 섬유를 제조하여 왔으나, 은 화합물의 크기가 수십 ㎛이내여서 섬유의 사절 및 극세사의 제조에는 한계가 있는 것으로 알려져 왔다. 이러한 문제점을 해결하기위해 최근 은 나노분말을 방사용액에 분산, 혼합시켜 항균성 섬유를 제조하려는 시도가 있다.The method of preparing the antimicrobial fiber is a general method of manufacturing by mixing organic and inorganic antimicrobial agents to the fiber material, but in the case of organic antimicrobial agents, there is a problem that the antimicrobial power is not available due to the decomposition and dissolution of the organic antimicrobial agent during melting and solution spinning. In addition, the inorganic antimicrobial agent has been produced by attaching a silver compound to the porous ceramic powder, but the size of the silver compound is within several tens of μm has been known to have limitations in the fiber trimming and microfiber production. In order to solve this problem, there is an attempt to manufacture antimicrobial fibers by dispersing and mixing silver nanopowders in a spinning solution.

대한민국 등록특허 10-0484473호에서는 합성수지 97~99.9중량%와 은 나노를 0.1~3중량%를 혼합 교반하여 혼합물을 형성하고, 이를 방사하여 화섬사를 제조하는 것을 특징으로 하고 있다. 그러나 이 발명은 방사시 은 나노입자가 섬유내부에 침투하여 섬유의 강도저하 및 방사시 사절의 원인을 제공하는 단점이 있다. 또한 은 나노의 항균 및 살균력을 고도화하기 위해서는 은 나노가 섬유표면에 노출되어 세균 및 오염물과 접촉하는 계면을 형성해야 하나 방사용액에 혼합한 형태로 제조되 므로, 섬유내부에 은 나노가 분산된 형태로 제조되어 살균력 및 항균력이 극소화되는 단점을 가지고 있다.Republic of Korea Patent No. 10-0484473 is characterized in that to form a mixture by mixing and stirring 97 ~ 99.9% by weight of the synthetic resin and 0.1 to 3% by weight of the nano-silver, it is characterized by producing a fiber. However, the present invention has a disadvantage in that the silver nanoparticles penetrate into the fiber during spinning, thereby providing a cause of decrease in strength of the fiber and trimming during spinning. In addition, in order to enhance the antimicrobial and bactericidal power of silver nano, the silver nano should be exposed to the fiber surface to form an interface contacting with bacteria and contaminants, but it is manufactured in a form mixed with spinning solution. It is manufactured to have the disadvantage of minimizing sterilization and antibacterial activity.

대한민국 등록특허 10-0535916호에서는 은의 전구체(질산은)를 용해하여 미세한 액적으로 만든 후 반응로를 통해 열처리, 냉각하여 은 나노입자를 제조, 이를 마스터 배치 칩으로 만든 후 원사원료와 마스터배치 칩을 혼합하여 섬유사를 제조하는 것을 특징으로 하고 있다. 이 발명은 은 나노입자를 직접제조하는 단계와 방사단계를 포함하고 있어 전체 공정이 복잡하여 제조단가가 상승할 우려가 있고, 제조된 섬유의 직경이 수십 ㎛이내여서 제조된 은 나노 입자가 섬유내부에 포함되어 항균력 및 살균력이 감소되고, 섬유의 강도 및 방사시 사절의 원인이 될 수 있다.In Korean Patent No. 10-0535916, silver precursor (silver nitrate) is dissolved into fine droplets, and then heat treated and cooled through a reactor to prepare silver nanoparticles, which are made into master batch chips, and then mixed with raw materials and master batch chips. To produce a fiber yarn. The present invention includes the steps of directly manufacturing the silver nanoparticles and spinning step, the overall process is complicated, there is a fear that the manufacturing cost increases, and the silver nanoparticles produced by the diameter of the manufactured fibers within several tens of micrometers It is included in the antimicrobial and bactericidal power is reduced, and may cause the trimming during the strength and spinning of the fiber.

요컨대 상기 등록특허 10-0484473 및 10-0535916호 경우 각종 정수 및 정화용 필터여재로 사용될 경우, 직조 및 제직공정, 부직포 제조 등 부가공정이 필요하고, 제조된 섬유의 직경이 수십 ㎛내외여서 은 나노의 항균 및 제균력을 최대한 이용하기에는 문제점이 있다.In other words, in the case of the registered patents 10-0484473 and 10-0535916, when used as a filter medium for various purification and purification, additional processes such as weaving, weaving, and non-woven fabric production are required, and the diameter of the manufactured fiber is about several tens of micrometers. There is a problem to make the best use of antibacterial and antibacterial activity.

따라서, 본 발명의 목적은, 나노섬유층의 표면에 은 나노 입자를 고분산시킬 수 있으면서 안정적으로 고정시켜 은 나노입자가 쉽게 탈리되는 것을 방지할 수 있는 나노 섬유 필터여재의 제조방법 및 이에 의해 제조된 나노 섬유 필터여재를 제공하는 것이다.Accordingly, an object of the present invention is to provide a method for producing a nanofiber filter medium which can stably fix silver nanoparticles on the surface of a nanofiber layer and stably fix the silver nanoparticles, thereby preventing the nanoparticles from being easily detached. It is to provide a nanofiber filter media.

상기 목적을 달성하기 위한, 본 발명의 하나의 실시형태는 a)필터용 부직포 여재 위에 나노섬유 형성 고분자 용액을 전기방사(electrospinning)하여 나노섬유층을 형성하는 단계; b)상기 나노섬유층의 표면에 은 나노입자 함유용액을 전기분사(electrospray)하여 상기 나노섬유층 표면에 은 나노입자를 분산시키는 단계를 포함하는 것을 특징으로 하는 은 나노입자 함유 나노섬유 필터여재의 제조방법을 제공한다.In order to achieve the above object, one embodiment of the present invention comprises the steps of: a) electrospinning the nanofiber forming polymer solution on the filter nonwoven media to form a nanofiber layer; b) a method of manufacturing silver nanoparticle-containing nanofiber filter media comprising electrospraying a silver nanoparticle-containing solution on the surface of the nanofiber layer to disperse the silver nanoparticles on the surface of the nanofiber layer. To provide.

또한, 본 발명의 다른 하나의 실시형태는 상기 제조방법에 의해 제조된 나노섬유 필터여재를 제공한다.In addition, another embodiment of the present invention provides a nanofiber filter medium produced by the above production method.

이하에서는 본 발명의 일 실시 형태로서, 항균성 나노섬유 필터여재의 제조방법에 대해 첨부된 도면을 참조하여 구체적으로 설명하기로 한다.Hereinafter, as an embodiment of the present invention, a method for manufacturing the antimicrobial nanofiber filter media will be described in detail with reference to the accompanying drawings.

본 발명의 필터용 부직포 여재로 사용되는 섬유소재로는 바람직하게는 폴리에스테르계, 폴리비닐계, 폴리비닐알콜계, 폴리아크리로나이트릴계, 폴리올레핀계, 폴리프로필렌계, 탄소/활성탄소 섬유계 등을 사용할 수 있으며, 필터용 부직포 여재의 두께는 수십㎛에서 수㎜까지 일 수 있으며, 최종 필터여재의 사용목적과 압력손실 등을 고려하여 선택할 수 있다.The fiber material used as the filter nonwoven fabric filter of the present invention is preferably polyester, polyvinyl, polyvinyl alcohol, polyacrylonitrile, polyolefin, polypropylene, carbon / active carbon fiber, etc. It can be used, the thickness of the filter medium nonwoven fabric can be from several tens of ㎛ to several mm, can be selected in consideration of the purpose and pressure loss of the final filter media.

여기서, 전압이 걸려있는 전기방사 노즐(21)및 집전체(collector)(40)를 이용하여 상기 필터용 부직포 여재(10) 상에 고분자 방사용액을 전기방사하여 나노섬유를 제조한다. Here, nanofibers are prepared by electrospinning the polymer spinning solution on the filter nonwoven media 10 using the electrospinning nozzle 21 and the collector 40 under voltage.

상기 집전체는 나노섬유를 포집하기위해 에어셕션을 사용하여 나노섬유나 나노입자가 분산되지 않도록 하는 역할을 담당한다.The current collector serves to prevent the nanofibers or nanoparticles from being dispersed by using an air cushion to collect the nanofibers.

전기방사 공정은 도 1의 주방사용액 탱크(22)내 고분자 용액을 정량펌프를 통해 고전압이 걸려있는 전기방사노즐(21)내로 연속적으로 공급하면서 필터용 부직포 여재(10) 위에 전기방사를 실시여 필터용 부직포 여재(10) 위에 나노섬유층을 형성한다. 이때 방사되는 고분자로 폴리비닐알콜, 폴리아크릴로 나이트릴, 폴리부틸렌테레프탈레이트가 바람직하며 용매는 물, 디메틸포름아미드(N,N-dimethylforamide, DMF), 디메틸아세트아미드(dimethylacetamide, DMAc), 테트라플루오로아세트산(tetrafluoroacetic acid, TFA)등을 단독 또는 혼합하여 사용할 수 있고, 고분자에 따라 적당한 용매를 선택하여 사용할 수 있다. 방사용액의 농도는 10~50중량% 정도가 적당하며 방사용액의 점도, 표면장력, 인가전압 등을 고려하여 선택할 수 있다. 이때 사용되는 전압은 전압발생장치(50)에서 20kV~100kV의 전압을 걸어 사용하며, 방사구와 집전체간의 거리는 10㎝ 이상 1m 미만으로 하여 실시한다. 이때 전기방사에 의해 제조된 섬유의 직경은 100~1000㎚ 정도가 바람직하다.In the electrospinning process, the polymer solution in the kitchen solution tank 22 of FIG. 1 is continuously supplied into the electrospinning nozzle 21 subjected to high voltage through a metering pump, and the electrospinning is performed on the filter nonwoven media 10 for the filter. A nanofiber layer is formed on the nonwoven fabric filter 10. At this time, polyvinyl alcohol, polyacrylonitrile, polybutylene terephthalate are preferred as the polymer to be emitted, and the solvent is water, dimethylformamide (NMF), dimethylacetamide (DMAc), tetra Fluoroacetic acid (tetrafluoroacetic acid, TFA) and the like may be used alone or in combination, and a suitable solvent may be selected and used according to the polymer. The concentration of the spinning solution is about 10 to 50% by weight, and can be selected in consideration of the viscosity, surface tension, applied voltage, and the like of the spinning solution. At this time, the voltage used is applied by applying a voltage of 20kV ~ 100kV in the voltage generator 50, the distance between the spinneret and the current collector is carried out to be less than 10cm or less than 1m. At this time, the diameter of the fiber produced by electrospinning is preferably about 100 ~ 1000nm.

상기 제조된 나노섬유층 위에 은 나노입자를 균일 고분산 시키는 단계로서, 상기 제조된 나노섬유층 위에 은 나노입자가 분산된 용액이 걸려있는 전기분사노즐(31)을 통해 전기분사한다. 이때 상기 은 나노입자가 나노섬유 총 중량에 대해 0.005~10 중량% 함유되는 것이 바람직한데 함유되는 은 나노입자의 양이 0.005 중량%보다 작으면 은 나노입자와 균과의 접촉 면적이 현저하게 감소하여 항균력이 떨어지는 단점이 있으며, 은 나노 함량이 증가하면 할수록 균과의 접촉면적은 상대적으로 증가하여 항균력을 극대화할 수 있으나 , 10 중량%를 초과하면 은 나노입자간 합체(aggregation) 현상이 발생하여 표면적이 감소하고, 제조단가가 높아지는 문제점이 있다. As a step of uniformly dispersing the silver nanoparticles on the prepared nanofiber layer, it is electrosprayed through an electrospray nozzle 31 in which a solution in which silver nanoparticles are dispersed on the prepared nanofiber layer. In this case, the silver nanoparticles are preferably contained in 0.005 to 10% by weight relative to the total weight of the nanofibers, but if the amount of silver nanoparticles contained is less than 0.005% by weight, the contact area between silver nanoparticles and bacteria is significantly reduced. The disadvantage is that the antimicrobial activity is lowered, and as the silver nano content increases, the contact area with the fungus increases relatively to maximize the antimicrobial activity, but when it exceeds 10% by weight, aggregation between silver nanoparticles occurs and the surface area is increased. There is a problem that this decreases, the manufacturing cost increases.

전기분사 공정은 도 1의 은 나노입자가 분산된 은나노용액 탱크(32)의 용액을 정량펌프를 통해 고전압이 걸려있는 전기분사노즐(31)내로 연속적으로 공급하면서 전기분사를 실시한다. 이때 분사용액의 제조는 물, 아세톤, DMF, DMAc, TFA에서 선택된 단일 또는 혼합용매에 은 나노 분말을 분산시켜 제조한다. 상기 용매의 표면장력을 낮추고, 휘발성을 유도하기 위해 상기 용매내에 아세톤을 10~80 중량% 첨가하는 것이 바람직하고 은 나노입자를 상기 용매에 분산시켜 마련한 은 나노입자 함유 용액의 농도는 0.001~10중량% 정도가 바람직하며, 방사용액의 점도, 표면장력, 인가전압 등을 고려하고, 최종 섬유 표면에 은 나노입자의 함량을 계산하여 정량토출시켜 전기분사를 실시한다. 이때 사용되는 전압은 전압발생장치를 통하여 상기 전기방사와 동일하거나 1-30kV 정도 낮은 구간의 전압을 걸어 사용하며 전기분사에 의해 제조된 은 입자의 크기는 10~100㎚인 것이 바람직하다. 전기방사와 전기분사간의 거리(L)는 전기적인 결함이 일어나지 않도록 하며 5~100㎝ 이내가 되도록 하여 실시하는 것이 바람직하며 방사구와 집전체간의 거리는 전기방사와 일치시키거나 조절하여 사용할 수 있다.In the electrospray process, electrospray is performed while continuously supplying the solution of the silver nanosolution tank 32 in which silver nanoparticles are dispersed into the electrospray nozzle 31 under high voltage through a metering pump. The injection solution is prepared by dispersing the silver nanopowder in a single or mixed solvent selected from water, acetone, DMF, DMAc, TFA. In order to lower the surface tension of the solvent and induce volatility, it is preferable to add 10 to 80% by weight of acetone in the solvent, and the concentration of the silver nanoparticle-containing solution prepared by dispersing silver nanoparticles in the solvent is 0.001 to 10% by weight. % Is preferred, taking into account the viscosity of the spinning solution, the surface tension, applied voltage, etc., calculate the content of the silver nanoparticles on the surface of the final fiber and quantitatively discharge the electrospray. At this time, the voltage used is the same as the electrospinning through the voltage generator or use a voltage of about 1-30kV or lower intervals and the size of the silver particles produced by electrospray is preferably 10 ~ 100nm. The distance between the electrospinning and the electrospinning (L) is preferably to be within 5 ~ 100㎝ to prevent electrical defects and the distance between the spinneret and the current collector can be used to match or adjust the electrospinning.

본 발명은 이와 같은 전기방사와 전기분사 공정을 포함하는 것을 특징으로 하며, 전기방사와 전기분사방법을 통해 나노입자를 나노섬유 표면에 균일 고분산시키는 것을 특징으로 한다.The present invention is characterized by including such an electrospinning and electrospinning process, characterized in that the nanoparticles are uniformly dispersed on the surface of the nanofibers through the electrospinning and electrospinning method.

또한, 전기분사된 은 나노입자와 나노섬유 표면간 형성된 정전기적 인력(Van der Walls force)에 의해 은 나노입자가 강하게 결합되어 은 나노 입자가 쉽게 탈리되지 않는 것을 특징으로 한다. In addition, the silver nanoparticles are strongly bound by electrostatic attraction (Van der Walls force) formed between the electrosprayed silver nanoparticles and the surface of the nanofibers, so that the silver nanoparticles are not easily detached.

한편, 본 발명은 상기 은 나노입자 함유 나노섬유 필터여재에 추가로 필터용 부직포 여재를 부착할 수도 있다. On the other hand, the present invention may be attached to the filter nonwoven fabric filter in addition to the silver nanoparticle-containing nanofiber filter media.

은 나노입자를 함유한 나노섬유 층(80)이 형성된 필터 부직포 여재의 나노섬유층면 위에 필터용 부직포 여재(10)를 놓아 은 나노 입자가 함유된 나노 섬유층이 두 필터 부직포 여재 사이에 샌드위치형상이 되도록 하며(도 2), 이를 압착, 캘린더 공정(60)에 이송하여 형성하는 것이 바람직하다. 이때 캘린더 공정에서는 사용된 소재에 따라 가열하거나 상온에서 압착하여 사용할 수 있으며, 압착시 온도는 상온~350℃ 정도의 범위가 바람직하다. 나노 섬유층의 위, 아래에 사용되는 필터용 부직포 여재는 동일한 것일 수도 있고, 상이한 것일 수도 있다. The filter nonwoven media filter 10 is placed on the surface of the nanofibrous layer of the filter nonwoven media filter formed with the nanofiber layer 80 containing silver nanoparticles so that the nanofiber layer containing silver nanoparticles is sandwiched between the two filter nonwoven media filters. (FIG. 2), it is preferable to form and transport it to the crimping | compression-bonding process 60. At this time, the calendering process may be used by heating or pressing at room temperature depending on the material used, the temperature during the pressing is preferably in the range of room temperature ~ 350 ℃. The filter nonwoven media used above and below the nanofiber layer may be the same or different.

본 발명은 상기 설명한 바와 같이, 필터용 부직포 여재 위에 전기방사와 전기분사 방법을 동시에 실시하여 나노섬유층 표면에 은 나노입자가 균일 분산되도록하여 간단하면서, 저렴한 공정으로 고성능 필터여재를 제조할 수 있다.As described above, by simultaneously performing the electrospinning and electrospraying method on the filter nonwoven filter media, the nano nanoparticles are uniformly dispersed on the surface of the nanofiber layer, thereby producing a high performance filter media with a simple and inexpensive process.

이하, 실시예 및 비교예를 통하여 본 발명을 보다 구체적으로 살펴본다. 그러나 본 발명이 하기 실시예에만 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples. However, the present invention is not limited only to the following examples.

[실시예 1]Example 1

분자량 1500인 폴리비닐알콜(polyvinylachol, PVA)을 80℃의 증류수에 10중량%의 농도로 용해한 다음 상온으로 냉각하여 방사용액을 제조하였다. 제조된 방사용액에 전압 25kV, 방사구와 집전체와의 거리 15 - 25㎝, 노즐의 직경 0.5㎜를 사용하여 기공율 80%, 두께 150㎛의 폴리프로필렌(polyprppylene, PP) 필터용 부직포 여재 위에 전기방사하였다. 전기방사된 PVA 나노섬유의 전자현미경 사진을 도 3에 나타냈다. PP 필터용 부직포 여재 위에 전기방사된 나노섬유층 위에 증류수와 아세톤을 1:1 혼합한 용액에 은 나노 분말 1중량%를 초음파 처리하여 균일 분산된 용액을 직경 0.5㎜의 노즐을 통해 전기분사하였다. 이때 사용된 전압은 20kV였으며, 집전체와 방사구와의 거리는 15~25㎝로 PVA 전기방사와 일치하도록 고정하였다. 전기방사와 전기분사의 거리는 15㎝로 고정하여 실시하였다. 전기방사와 전기분사 구간이 너무 길어지는 경우 즉, 1m 이상으로 멀어질 경우 전기방사와 전기분사에 의한 전기장이 겹치는 구간이 없어져 전기방사와 전기분사에 사용된 전압의 상승효과를 얻을 수 없어 가능한 한 전기방사와 전기분사의 거리를 5~100㎝ 이내로 실시하는 것이 효과적이다. 이때 집전체의 이송속도는 분당 1~10m 였으며, 캘린더의 온도는 상온에서 실시하였다.Polyvinyl alcohol (polyvinylachol, PVA) having a molecular weight of 1500 was dissolved in distilled water at 80 ° C. at a concentration of 10% by weight, and then cooled to room temperature to prepare a spinning solution. Electrospinning was performed on the nonwoven fabric for polyprppylene (PP) filters with a porosity of 80% and a thickness of 150 µm using a voltage of 25 kV, a distance of 15-25 cm from the spinneret and a current collector, and a 0.5 mm diameter of the nozzle. It was. An electron micrograph of the electrospun PVA nanofibers is shown in FIG. 3. A 1 wt% silver nanopowder was sonicated in a solution of 1: 1 mixed distilled water and acetone on the nanofibrous layer electrospun on the nonwoven fabric filter for PP filter, and the uniformly dispersed solution was electrosprayed through a nozzle having a diameter of 0.5 mm. The voltage used was 20 kV, and the distance between the current collector and the spinneret was 15-25 cm, which was fixed to match the PVA electrospinning. The distance between the electrospinning and the electrospinning was carried out at 15 cm. If the distance between electrospinning and electrospray is too long, that is, more than 1m away, there is no overlapping section of electric field by electrospinning and electrospray, so synergistic effect of voltage used for electrospinning and electrospray cannot be obtained. It is effective to carry out the distance of electrospinning and electrospray within 5-100cm. At this time, the feed rate of the current collector was 1 ~ 10m per minute, the temperature of the calendar was carried out at room temperature.

[실시예 2]Example 2

분자량 180,000 폴리아크릴로 나이트릴(polyacrylonitrile, PAN)을 용매 DMAc 60℃에서 15중량% 용해한 다음 상기 실시예1의 방법과 동일하게 전기방사를 실시하였다. 이때 사용되는 은 나노분말이 분산된 용액의 조성으로는 상기 실시예1과 동일하게 하였다. Molecular weight 180,000 polyacrylonitrile (PAN) was dissolved in a solvent DMAc 60 ℃ 15% by weight and then electrospinning was carried out in the same manner as in Example 1. At this time, the composition of the solution in which the silver nanopowders used were dispersed was the same as in Example 1.

[실시예 3]Example 3

실시예 2와 동일하게 하되 은 나노입자 용액을 DMAc에 아세톤을 1:1 비율로 사용하여 실시하였다. 1 중량%의 은 나노입자가 함유된 PAN 나노섬유의 투과전자 현미경 사진을 도 4에 나타냈다. 사진에서와 같이 은 나노 입자가 표면에 균일하게 분산되어 있는 것을 확인할 수 있었다.In the same manner as in Example 2, the silver nanoparticle solution was carried out using acetone in a 1: 1 ratio in DMAc. A transmission electron micrograph of PAN nanofibers containing 1 wt% silver nanoparticles is shown in FIG. 4. As shown in the photograph, it was confirmed that the silver nanoparticles were uniformly dispersed on the surface.

[실시예 4]Example 4

폴리부틸렌테레프탈레이트(PBT) 수지를 테트라플루오르아세트 산(tetrafluoroacetic acid, TFA)에 10중량%로 용해하여 방사용액을 제조하고, 상기 실시예와 동일하게 전기방사하여 나노섬유층을 제조하였다. 제조된 나노섬유의 전자현미경 사진을 도 5에 나타냈다. 전기분사방법도 상기 실시예와 동일하게 하였으며, 이때 용매로는 아세톤이 50중량% 함유된 TFA 용액을 사용하여 실시하였다.A polybutylene terephthalate (PBT) resin was dissolved in tetrafluoroacetic acid (TFA) at 10% by weight to prepare a spinning solution, and electrospinning in the same manner as in Example to prepare a nanofiber layer. An electron micrograph of the prepared nanofibers is shown in FIG. 5. Electrospray method was also the same as in the above example, wherein the solvent was carried out using a TFA solution containing 50% by weight of acetone.

[시험예 1,2][Test Examples 1,2]

아울러, 상기의 실시예에 따라 제조된 본 발명의 항균섬유의 항균성 및 필터효과를 평가하였다.In addition, the antimicrobial activity and filter effect of the antimicrobial fiber of the present invention prepared according to the embodiment was evaluated.

항균실험은 균주 Staphyllococcus aureus와 Klebsiella pneumoniae를 사용하여 24시간 방치한 후 제균율(%)을 측정하였으며, 실험의 편의를 위해 여재섬유를 제거한 후 나노섬유만 가지고 평가했다(도 6b). 표 1에는 본 발명의 실시예 2에 의해 제조된 항균 나노섬유와 대조균의 항균시험 결과를 나타냈으며, 대조균의 경우 5배 정도 균이 증가함에 비해 은 나노입자가 함유된 항균 나노섬유를 이용함으로써 완전한 제균율을 나타냄을 알 수 있었다.Antimicrobial experiments were measured using the strains Staphyllococcus aureus and Klebsiella pneumoniae and left for 24 hours to determine the bactericidal rate (%), after removing the fibrous fibers for the convenience of the experiment was evaluated only with nanofibers (Fig. 6b). Table 1 shows the antimicrobial test results of the antimicrobial nanofibers and the control bacterium prepared by Example 2 of the present invention, the control bacterium using the antimicrobial nanofibers containing silver nanoparticles compared to about 5 times the bacteria increase It was found that the complete bactericidal rate was obtained.

비 고Remarks 시험 전Before the test 24시간 후24 hours later 제균율 (%)Eradication Rate (%) 대 조 균Coliform 1.5 × 105 1.5 × 10 5 6.5 × 106 6.5 × 10 6 -- 시험예1 (Staphyllococcus aureus)Test Example 1 (Staphyllococcus aureus) 1.5 × 105 1.5 × 10 5 < 10<10 99.999.9 시험예2 (Klebsiella pneumoniae)Test Example 2 (Klebsiella pneumoniae) 1.5 × 105 1.5 × 10 5 < 10<10 99.999.9

항균시험 결과 (균주 : Staphyllococcus aureus ATCC 6538, Klebsiella penumoniae ATCC 4325)이다.Antibacterial test results (strain: Staphyllococcus aureus ATCC 6538, Klebsiella penumoniae ATCC 4325).

[시험예 3][Test Example 3]

실시예 3의 방법에 의해 제조된 은 나노 함유 나노섬유 필터여재를 가지고 필터성능을 측정하였고, 나노섬유층의 두께는 집전체의 이송속도를 조절하여 제조하였다. 필터여재의 성능 측정은 TSI 3160 Fractional Efficiency Filter Tester를 사용하여 다음과 같은 조건에서 실시하였다. 측정 에어로졸 입자 : 0.3㎛의 DOP, 유량 : 32 ℓ/min, 샘플크기 : 100㎠ 였으며, 기공률 측정은 Mercury porosimetry(AutoPore IV9500)를 사용하여 20~61000psi의 압으로 필터여재의 전체 기공률을 평가하였다.The filter performance was measured with the silver nano-containing nanofiber filter medium prepared by the method of Example 3, and the thickness of the nanofiber layer was prepared by controlling the feed rate of the current collector. The performance of filter media was measured using the TSI 3160 Fractional Efficiency Filter Tester under the following conditions. The measured aerosol particles: 0.3 μm DOP, flow rate: 32 L / min, sample size: 100 cm 2, and the porosity measurement was performed using Mercury porosimetry (AutoPore IV9500) to evaluate the total porosity of the filter media at a pressure of 20 ~ 61000psi.

본 실시예에서 사용된 나노섬유 필터 여재의 성능 및 기공률을 평가한 결과를 표2에 나타내었다. Table 2 shows the results of evaluating the performance and porosity of the nanofiber filter media used in this example.

시료sample 여재두께 (㎛) Media thickness (㎛) 나노섬유두께 (㎛)Nano Fiber Thickness (㎛) 전체두께 (㎛)Overall thickness (㎛) 포집효율Collection efficiency 공기저항 (㎜H2O)Air resistance (mmH 2 O) 기공률 (%)Porosity (%) 1One 150150 1010 300300 97.94597.945 66 7878 22 150150 3030 320320 98.59898.598 1010 7171 33 150150 5050 340340 99.73999.739 1717 6565 44 150150 7070 360360 99.94599.945 2828 5151 55 150150 9090 380380 99.99999.999 4242 3535

표 2에서와 같이 필터용 부직포 여재의 두께가 두꺼워질수록 필터 성능면에서는 우수한 특성을 보이나 공기흐름에 대한 저항이 증가하고 기공률은 감소함을 볼 수 있다. 따라서, 상기 필터용 부직포 여재의 기공율은 10~80% 정도가 바람직하다.As shown in Table 2, the thicker the non-woven filter medium is, the better the filter performance is, but the resistance to airflow increases and the porosity decreases. Therefore, the porosity of the filter nonwoven fabric medium is preferably about 10 to 80%.

본 실시예에서와 같이 필터용 부직포 여재 위에 나노섬유를 직접 전기방사하고, 전기분사에 의해 은 나노입자를 균일 분산시킴으로써 항균 특성과 우수한 필터특성을 동시에 지님을 알 수 있었다.As in the present embodiment, it was found that the nanofibers were directly electrospun on the filter nonwoven fabric media and the silver nanoparticles were uniformly dispersed by electrospraying to simultaneously have antimicrobial and excellent filter characteristics.

이상 설명한 바와 같이, 본 발명에 따르면, 전기방사와 전기분사를 함께 행함에 따라, 은 나노입자를 나노섬유층의 표면에 균일하게 고분산시킬 수 있어 우수한 항균력과 살균력을 갖는 나노 섬유 필터여재를 제조할 수 있는 효과가 있다.As described above, according to the present invention, by performing the electrospinning and electrospraying together, it is possible to uniformly disperse the silver nanoparticles on the surface of the nanofiber layer to produce a nanofiber filter media having excellent antibacterial and bactericidal power It can be effective.

또한, 기재 위에 직접 나노섬유 형성 고분자 용액을 전기방사함에 따라, 나노 섬유 필터여재의 절곡 및 절단 효율을 향상시킬 수 있고, 또한 나노섬유층이 두기재의 사이에 적층됨으로서 은나노 입자의 손실이 방지되고 필터 여재의 수명이 연장되어 수질 및 대기정화 효율을 높이는 효과가 있다.In addition, by electrospinning the nanofiber forming polymer solution directly on the substrate, the bending and cutting efficiency of the nanofiber filter media can be improved, and the nanofiber layer is laminated between the two substrates, thereby preventing the loss of silver nanoparticles and The life of the media is extended to increase the water quality and atmospheric purification efficiency.

Claims (10)

a)필터용 부직포 여재 위에 나노섬유 형성 고분자 용액을 전기방사(electrospinning)하여 나노섬유층을 형성하는 단계;a) electrospinning the nanofiber forming polymer solution on the filter nonwoven media to form a nanofiber layer; b)상기 나노섬유층의 표면에 은 나노입자 함유용액을 전기분사(electrospray)하여 상기 나노섬유층 표면에 은 나노입자를 분산시키는 단계를 포함하는 것을 특징으로 하는 은 나노입자 함유 나노섬유 필터여재의 제조방법.b) a method of manufacturing silver nanoparticle-containing nanofiber filter media comprising electrospraying a silver nanoparticle-containing solution on the surface of the nanofiber layer to disperse the silver nanoparticles on the surface of the nanofiber layer. . 청구항 1에 있어서,The method according to claim 1, 상기 a)단계와 상기 b)단계는 롤공정 상에서 연속적으로 수행되는 것을 특징으로 하는 은 나노입자 함유 나노섬유 필터여재의 제조방법.Step a) and step b) is a manufacturing method of the silver nanoparticle-containing nanofiber filter media, characterized in that carried out continuously in a roll process. 청구항 1에 있어서,The method according to claim 1, 상기 은 나노 입자가 분산된 상기 나노섬유층의 표면에 추가로 필터용 부직포 여재를 부착하는 단계를 더 포함하는 것을 특징으로 하는 은 나노입자 함유 나노섬유 필터여재의 제조방법.The method of manufacturing a silver nanoparticle-containing nanofiber filter media, characterized in that further comprising the step of attaching a filter non-woven filter medium on the surface of the nanofiber layer in which the silver nanoparticles are dispersed. 청구항 1에 있어서,The method according to claim 1, 상기 a)단계에서는 고전압이 걸린 방사노즐에 의해 상기 나노섬유 형성 고분자 용액을 전기방사(electrospinning)하고,In step a), the nanofiber forming polymer solution is electrospinned by a spinning nozzle subjected to high voltage, 상기 b)단계에서는 고전압이 걸린 분사노즐에 의해 상기 은 나노입자 함유용액을 전기분사(electrospray)하는 것을 특징으로 하는 은 나노입자 함유 나노섬유 필터여재의 제조방법.In the step b), the silver nanoparticle-containing nanofiber filter media manufacturing method characterized in that the electrospray of the silver nanoparticle-containing solution by a spray nozzle subjected to a high voltage. 청구항 4에 있어서,The method according to claim 4, 상기 나노섬유 형성 고분자 용액의 농도는 10 내지 50중량%인 것을 특징으로 하는 은 나노입자 함유 나노섬유 필터여재의 제조방법.The concentration of the nanofiber forming polymer solution is a method for producing a silver nanoparticle-containing nanofiber filter media, characterized in that 10 to 50% by weight. 청구항 4에 있어서,The method according to claim 4, 상기 은 나노입자 함유용액의 농도는 0.001 내지 10중량%인 것을 특징으로 하는 은 나노 입자함유 나노섬유 필터여재의 제조방법.The concentration of the silver nanoparticle-containing solution is 0.001 to 10% by weight, characterized in that the manufacturing method of the silver nanoparticle-containing nanofiber filter media. 청구항 1에 있어서,The method according to claim 1, 상기 필터용 부직포 여재는 폴리에스테르계, 폴리비닐계, 폴리비닐알콜계, 폴리아크리로나이트릴계, 폴리올레핀계, 폴리프로필렌계, 탄소 및 활성탄소 섬유로 이루어진 군에서 선택되는 1종 이상인 것을 특징으로 하는 은 나노입자 함유 나노섬유 필터여재의 제조방법.The filter nonwoven media is at least one member selected from the group consisting of polyester, polyvinyl, polyvinyl alcohol, polyacrylonitrile, polyolefin, polypropylene, carbon and activated carbon fibers. Process for producing nanofiber filter media containing silver nanoparticles. 청구항 1에 있어서,The method according to claim 1, 상기 나노섬유층의 직경이 100~1000㎚인 것을 특징으로 하는 은 나노입자 함 유 나노섬유 필터여재의 제조방법.The method of manufacturing a nano-fiber filter media containing silver nanoparticles, characterized in that the diameter of the nanofiber layer is 100 ~ 1000nm. 청구항 1에 있어서,The method according to claim 1, 상기 나노섬유층의 표면에 분산된 상기 은 나노 입자는 상기 나노섬유층의 중량에 대해 0.005 내지 10중량%로 함유되어 있는 것을 특징으로 하는 은 나노입자 함유 나노섬유 필터여재의 제조방법.The silver nanoparticles dispersed on the surface of the nanofiber layer is a method for producing a silver nanoparticle-containing nanofiber filter media, characterized in that contained in 0.005 to 10% by weight relative to the weight of the nanofiber layer. 청구항 1 내지 14 중 어느 한 항에 따른 제조방법에 의해 제조되는 것을 특징으로 하는 은 나노입자 함유 나노섬유 필터여재.The silver nanoparticle-containing nanofiber filter media produced by the manufacturing method according to any one of claims 1 to 14.
KR1020060028900A 2006-03-30 2006-03-30 Anti-bacterial Nanofiber Filter Media and Manufacturing Method Therof Containing Silver Nano Particles KR100843191B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060028900A KR100843191B1 (en) 2006-03-30 2006-03-30 Anti-bacterial Nanofiber Filter Media and Manufacturing Method Therof Containing Silver Nano Particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060028900A KR100843191B1 (en) 2006-03-30 2006-03-30 Anti-bacterial Nanofiber Filter Media and Manufacturing Method Therof Containing Silver Nano Particles

Publications (2)

Publication Number Publication Date
KR20070097936A true KR20070097936A (en) 2007-10-05
KR100843191B1 KR100843191B1 (en) 2008-07-02

Family

ID=38804055

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060028900A KR100843191B1 (en) 2006-03-30 2006-03-30 Anti-bacterial Nanofiber Filter Media and Manufacturing Method Therof Containing Silver Nano Particles

Country Status (1)

Country Link
KR (1) KR100843191B1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009064767A2 (en) * 2007-11-12 2009-05-22 Massachusetts Institute Of Technology Bactericidal nanofibers, and methods of use thereof
KR100928232B1 (en) * 2007-05-04 2009-11-24 주식회사 에이엠오 Dust, deodorant and antibacterial filters with nanofiber webs
KR100981733B1 (en) * 2008-02-19 2010-09-14 한국전자통신연구원 Method for Preparing Arranged Nano Structure by Near-field Electro-Spinning Technique
EP2530189A1 (en) * 2011-06-01 2012-12-05 Technicka Univerzita V Liberci Method of production of functional nanofiber layer and device for carrying out the method
KR101252564B1 (en) * 2009-07-07 2013-04-09 한국전자통신연구원 Method for Manufacturing Pattern of Conducting Material and Preparing Vertically Aligned Nano Material by Near-field Electro-Spinning Technique
KR101402963B1 (en) * 2012-12-26 2014-06-03 (주)쓰리이 Manufacturing method of porous form for filtering fluids and porous form for filtering fluids using the same
KR20170106696A (en) 2016-03-14 2017-09-22 경희대학교 산학협력단 Device and method for eletrospinning and its product thereof
KR20180028260A (en) * 2016-09-08 2018-03-16 연세대학교 산학협력단 Filter apparatus and manufacture method thereof
KR20190021061A (en) * 2017-08-22 2019-03-05 주식회사 대창 Fillter including nanofiber, appartus and method manufacturing the same
KR20200060593A (en) * 2018-11-21 2020-06-01 (주)엘지하우시스 fiber composition for window filter, and window filter comprising the same, and manufacturing method of window filter
KR20200074710A (en) * 2018-12-17 2020-06-25 연세대학교 산학협력단 Method for fabricating oil resistive and anti-microbial air filter
WO2021172753A1 (en) * 2020-02-25 2021-09-02 이충원 Nanofilter having improved filter efficiency and lifespan, and method for manufacturing same
CN114904333A (en) * 2022-04-19 2022-08-16 江苏优风环保科技有限公司 Rapid and continuous preparation method of efficient multifunctional air filtering material

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101125170B1 (en) 2009-04-30 2012-03-19 한국과학기술연구원 Gas sensors using metal oxide nanoparticle and fabrication method
KR101450217B1 (en) 2012-11-29 2014-10-14 (주)우리나노필 An apparatus for electrospinning
KR101609221B1 (en) 2014-02-06 2016-04-05 (주)비에스써포트 Antibiotic filter having of copper based compound
US9597625B1 (en) 2014-02-06 2017-03-21 Bs Support Co., Ltd. Method of manufactring an antibacterial filter comprising copper-based compound particles
US20190276961A1 (en) * 2016-11-02 2019-09-12 Universität Bayreuth Electrically Conductive Non-Woven Fabric
WO2022101431A1 (en) * 2020-11-16 2022-05-19 Bio-Gate Ag Filter material for filtering a fluid

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100536459B1 (en) * 2004-01-27 2005-12-14 박원호 Nanofibers web of cellulose acetate containing silver
KR20050091841A (en) * 2004-03-11 2005-09-15 크린에어테크놀로지 주식회사 Method of preparing filtering material including functional particles and filtering material using the same
KR100635136B1 (en) * 2004-12-30 2006-10-17 이재근 The Nano fiber filter using functional Nano fiber and the mathod

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100928232B1 (en) * 2007-05-04 2009-11-24 주식회사 에이엠오 Dust, deodorant and antibacterial filters with nanofiber webs
WO2009064767A2 (en) * 2007-11-12 2009-05-22 Massachusetts Institute Of Technology Bactericidal nanofibers, and methods of use thereof
WO2009064767A3 (en) * 2007-11-12 2010-07-01 Massachusetts Institute Of Technology Bactericidal nanofibers, and methods of use thereof
KR100981733B1 (en) * 2008-02-19 2010-09-14 한국전자통신연구원 Method for Preparing Arranged Nano Structure by Near-field Electro-Spinning Technique
KR101252564B1 (en) * 2009-07-07 2013-04-09 한국전자통신연구원 Method for Manufacturing Pattern of Conducting Material and Preparing Vertically Aligned Nano Material by Near-field Electro-Spinning Technique
EP2530189A1 (en) * 2011-06-01 2012-12-05 Technicka Univerzita V Liberci Method of production of functional nanofiber layer and device for carrying out the method
KR101402963B1 (en) * 2012-12-26 2014-06-03 (주)쓰리이 Manufacturing method of porous form for filtering fluids and porous form for filtering fluids using the same
KR20170106696A (en) 2016-03-14 2017-09-22 경희대학교 산학협력단 Device and method for eletrospinning and its product thereof
KR20180028260A (en) * 2016-09-08 2018-03-16 연세대학교 산학협력단 Filter apparatus and manufacture method thereof
KR20190021061A (en) * 2017-08-22 2019-03-05 주식회사 대창 Fillter including nanofiber, appartus and method manufacturing the same
KR20200060593A (en) * 2018-11-21 2020-06-01 (주)엘지하우시스 fiber composition for window filter, and window filter comprising the same, and manufacturing method of window filter
KR20200074710A (en) * 2018-12-17 2020-06-25 연세대학교 산학협력단 Method for fabricating oil resistive and anti-microbial air filter
WO2021172753A1 (en) * 2020-02-25 2021-09-02 이충원 Nanofilter having improved filter efficiency and lifespan, and method for manufacturing same
CN114904333A (en) * 2022-04-19 2022-08-16 江苏优风环保科技有限公司 Rapid and continuous preparation method of efficient multifunctional air filtering material
CN114904333B (en) * 2022-04-19 2023-10-13 江苏优风环保科技有限公司 Rapid continuous preparation method of efficient multifunctional air filtering material

Also Published As

Publication number Publication date
KR100843191B1 (en) 2008-07-02

Similar Documents

Publication Publication Date Title
KR100843191B1 (en) Anti-bacterial Nanofiber Filter Media and Manufacturing Method Therof Containing Silver Nano Particles
KR100928232B1 (en) Dust, deodorant and antibacterial filters with nanofiber webs
CN109675450B (en) Antibacterial composite nanofiber membrane and preparation method and application thereof
KR100714219B1 (en) Composite fibrous filter using nan0-materials, and manufacturing method and apparatus thereof
KR102058075B1 (en) Filter Using Mn Oxide Catalyst And Mask Including The Same
KR100871440B1 (en) Blended nanofibers of pan/pvdf and preparation method of the same
US20080217807A1 (en) Composite fiber filter comprising nan0-materials, and manufacturing method and apparatus thereof
KR101290715B1 (en) Nanofiber mat with antimicrobial activity and decomposition ability for hazardous compounds and Method of preparing the same and Protective gear containing the same
HUE031927T2 (en) Nonwoven web and fibers with electret properties, manufacturing processes thereof and their use
JP2005330639A (en) Method for producing nano fiber structural material
CN107794588B (en) Nanocomposite fiber material, method for producing nanocomposite fiber material, and mask
CN112921502A (en) Antibacterial and antiviral melt-blown fabric and preparation method thereof
KR100680606B1 (en) Polypropylene spunbond non-woven fabrics having excellent antibiotic and deodorizible effects and manufacturing method thereof
CN110404339A (en) High-efficiency low-resistance PM2.5 antibacterial and mildewproof filtering material and preparation method thereof
KR20110023683A (en) Functional materials-introduced protective fabric for adsorption-removal of chemical warfare agents and method of preparing the same and protective clothes for adsorption-removal of chemical warfare agents using the same
EP2348145B1 (en) Sheet-like assembly of fibers having small diameters, method for producing same, and apparatus for producing same
KR20150097257A (en) Composite nanofibrous membrane for water purification and method of fabricating the same
JP5846621B2 (en) Filter material and method for producing the same
CN110960925A (en) Antistatic melt-blown composite antibacterial nanofiber non-woven fabric and preparation method thereof
KR100643515B1 (en) Polypropylene spunbond non-woven fabrics having excellent antibacterial and deodorizible effects
JP2022085147A (en) Laminated body and method for manufacturing the same
KR20100023155A (en) Filter for removing a white corpuscle and method of manufacturing the same
CN217287610U (en) Air filtering material based on nanofiber
KR20200017051A (en) Antibiotic filter using electrospinning and its method
KR20200107664A (en) Wetlaid electret nonwoven fabric made of electret powders and fibers

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
J201 Request for trial against refusal decision
E801 Decision on dismissal of amendment
B601 Maintenance of original decision after re-examination before a trial
J301 Trial decision

Free format text: TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20070713

Effective date: 20080229

Free format text: TRIAL NUMBER: 2007101007715; TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20070713

Effective date: 20080229

S901 Examination by remand of revocation
GRNO Decision to grant (after opposition)
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130612

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20140602

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20150601

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20160602

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20180514

Year of fee payment: 11