KR20070083662A - 전기 집진기용 펄스 발생 시스템 - Google Patents

전기 집진기용 펄스 발생 시스템 Download PDF

Info

Publication number
KR20070083662A
KR20070083662A KR1020077008337A KR20077008337A KR20070083662A KR 20070083662 A KR20070083662 A KR 20070083662A KR 1020077008337 A KR1020077008337 A KR 1020077008337A KR 20077008337 A KR20077008337 A KR 20077008337A KR 20070083662 A KR20070083662 A KR 20070083662A
Authority
KR
South Korea
Prior art keywords
transformer
pulse
electrostatic precipitator
power supply
switching device
Prior art date
Application number
KR1020077008337A
Other languages
English (en)
Other versions
KR100938717B1 (ko
Inventor
빅터 레이스
크라우스 타르닝
Original Assignee
에프엘스미스 에어테크 에이/에스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=34931964&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=KR20070083662(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 에프엘스미스 에어테크 에이/에스 filed Critical 에프엘스미스 에어테크 에이/에스
Publication of KR20070083662A publication Critical patent/KR20070083662A/ko
Application granted granted Critical
Publication of KR100938717B1 publication Critical patent/KR100938717B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/66Applications of electricity supply techniques
    • B03C3/68Control systems therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S323/00Electricity: power supply or regulation systems
    • Y10S323/903Precipitators

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Electrostatic Separation (AREA)
  • Generation Of Surge Voltage And Current (AREA)

Abstract

본 발명은 전기 집진기(10)를 기동시키도록 고전압 펄스를 발생시키기 위한 펄스 발생 시스템에 관한 것으로, 상기 시스템이, 제1전원 공급기(1)와 DC 전압으로 상기 전기 집진기(10)를 프리-차지하도록 배열된 제2전원 공급기와; 저장 캐패시터(7) 및 직렬 인덕턴스 및; 역병렬 정류기 장치(6)와 병렬로 결합된 스위칭 장치(5)를 갖추어 이루어지고, 상기 시스템이 상기 전기 집진기에 결합되어지도록 배열된다. 본 발명은 현존하는 펄스 발생 시스템에 비해 증강된 효율을 갖음과 더불어 전기 집진기(10)에서 스파크가 일어나는 경우에 시스템 구성요소의 증강된 보호를 갖는 펄스 발생 시스템을 제공하는 것에 관한 것이다. 이는 시스템의 스위칭 장치(5)가 턴 오프 능력을 갖을 때 및 시스템이 크램핑 회로(11∼13; 60∼67)를 구비하여 구성될 때 달성된다.

Description

전기 집진기용 펄스 발생 시스템{PULSE GENERATING SYSTEM FOR ELECTROSTATIC PRECIPITATOR}
본 발명은 전기 집진기(ESP; electrostatic precipitator)를 기동시키도록 고전압 펄스를 발생시키기 위한 펄스 발생 시스템에 관한 것으로, 상기 시스템이, 제1전원 공급기 및, DC 전압으로 상기 전기 집진기를 프리-차지(pre-charge) 하도록 배열된 제2전원 공급기와; 저장 캐패시터와 직렬 인덕턴스 및; 역병렬(anti-parallel) 정류기 장치와 병렬로 결합된 스위칭 장치를 갖추어 이루어지고, 상기 시스템이 상기 전기 집진기에 결합되어져 배열된다.
전기 집진기는 수집을 위해 이용될 수 있어서, 산업 공정에서의 가스 흐름으로부터 미립자를 제거한다. 가스 흐름에서의 입자의 밀도는, 전기 집진기의 방전 전극을 매개로 가스 흐름에서의 입자에 부착되도록 전하 운반자(charge carrier)를 발생시키고, 고전압계(high voltage field)를 인가하여 대전 입자(charged particles)가 전기 집진기의 포지티브 애노드를 향해 힘이 가해지도록 하는 것에 의해, 입자를 대전(charging)시킴으로써 상당히 감소시킬 수 있고, 따라서 가스 흐 름으로부터 대전 입자를 제거하게 된다. 수집된 입자(collected particles)는 전기 집진기의 애노드에서 먼지층을 형성하고, 이는 기계적 래핑(rapping) 장치에 의해 주기적으로 제거된다.
작동된 전기 집진기의 성능은 높은 저항성 먼지 입자를 처리할 때 손상될 수 있게 된다. 높은 저항성 먼지는 전기 집진기의 수집된 입자의 먼지층 상에서 고전계를 야기시키고, 이는 "백-코로나(back-corona)" 또는 "백-이온화(back-ionization)"로 알려진 현상인, 먼지층의 전기적 브레이크-다운을 번갈아 야기시킬 수 있게 된다.
백-코로나는 포지티브 이온이 먼지층의 브레이크다운에 의해 발생되는 것을 의미하고, 이는 네가티브적으로 먼지 입자를 대전시키기 위해 이용되는 방전 전극에 의해 발생된 유익한 네가티브 이온을 중화(neutralize)시킨다. 결과적으로 전기 집진기에 인가되는 전압을 감소시켜, 먼지층 상의 작은 분화(eruption)에 기인해서 먼지의 재승차가 가스 흐름으로 되돌아가게 된다.
펄스가 활성화된 현존하는 전기 집진기에 있어서, 전형적으로 단기간의 중첩된 고전압 펄스를 갖는 스므스한 DC 전압이 전기 집진기에 인가된다. 전형적으로 펄스폭은 1∼400 pulses/s 범위의 소정 주파수에서 반복된 100㎲ 이상의 차수에 놓인다. 평균 전류는 시스템의 스위칭 장치의 펄스 반복 주파수를 변화시킴으로써 제어될 수 있고, 한편 전기 집진기에 인가된 전압 레벨을 유지한다. 이러한 방법에서, 백 코로나의 발생을 제한 또는 제거하는 것이 가능하고 이는 상당히 부정적인 영향을 미친다. 저장 캐패시터, 스위칭 장치, 인덕턴스는 일련의 공진회로를 구성함을 주지해야 한다.
집진기를 위한 펄스 시스템의 2가지 주요한 구성으로서, 하나는 저전위에서의 스위칭을 기초로 하고 하나는 고전위에서의 스위칭을 기초로 한다. 제1형태는 통상적으로 펄스 변환기를 구비하여 이루어지고 스위칭이 US4,052,177, US4,600,411, EP 0 108 963에서 설명된 바와 같은 제1측 상에서 일어난다. EP 1 293 253 A2는 제2형태의 예로서, 스위칭이 고전위에서 일어난다.
US4,600,411은 1차 및 2차 권선과 사이리스터 스위치를 갖춘 변압기(transformer)를 구비한 펄스 시스템을 개시하고 있다. 전원공급기가 변압기의 1차 권선에 연결된 충전 캐패시터 및, 서지 인덕터와 직렬로 충전 인덕터에 연결된다. 크램핑 다이오드와, 저항과 캐패시터의 병렬 조합을 구비하여 이루어진 크램핑 네트워크가, 서지 인덕터와 변압기의 1차 권선을 가로지르는 전압을 제한하기 위해 서지 인덕터와 충전 캐패시터의 교차점 사이에 연결된다.
US4,854,948은 1차 및 2차 권선을 갖는 변압기와, 저장 캐패시터에 연결된 전원공급기 및, 변압기의 1차 권선에 연결된 사이리스터 회로를 구비한 다른 펄스 시스템을 개시하고 있다. 다이오드가 사이리스터 회로의 보호용 회로를 구성하는 캐패시터와 저항의 병렬 연결에 연결된다. 전압원은 변압기의 2차 권선에 결합된 정전 먼지 분리기에, 예컨대 3.5kV의 베이스 전압을 공급한다. 검출기가, 먼지 분리기에서 스파크가 일어나는 경우에 야기되는 빠른 전압 변동을 검출하고, 사이리스터 회로가 도전상태로 될 수 있도록 하기 위해, 먼지 분리기에 결합됨으로써, 사이리스터 회로를 보호한다. 그러나, 이러한 검출기는 펄스 시스템의 비용을 증 가시킨다.
US4,600,411 및 US4,854,948에 개시된 시스템의 효율을 증가시키는 것이 바람직하다. 더욱이, US4,600,411 뿐만 아니라 US4,854,948은 변압기의 코어가 전기 집진기 내부 스파크에 따라 포화되는 문제에 대해 접근하고 있지 않고, 이는 실질적으로 전기 집진기의 동작을 악화시키게 된다. 마지막으로, 알려진 시스템의 스위칭 장치는 전기 집진기에서 일어나는 스파크의 경우의 di/dt의 높은 비율의 전위적인 대미지를 받게 되어, 그 수명이 짧아지게 된다.
본 발명의 목적은 증가된 효율을 갖는 펄스 발생 시스템을 제공하는 것이다. 또한, 본 발명의 목적은 변압기를 갖는 펄스 발생 시스템을 제공하는 것으로, 여기서 변압기 코어의 포화(saturation)가 해결된다. 더욱이, 본 발명의 목적은 스위칭 장치의 증가된 보호를 갖는 시스템을 제공하는 것이다.
이러한 목적은 상기 언급된 펄스 발생 시스템이, 스위칭 장치가 제어가능한 턴-오프 능력을 갖는다는 점에 특징이 있을 때 달성된다. 이에 의해, 본 펄스 발생 시스템에 비해 전기 집진기에 감소된 폭을 갖는 펄스를 인가하는 것이 가능하게 되고; 백-코로나의 더 나은 감소와 더 나은 입자 대전을 부여하는 더 높은 피크 전압에 기인하여, 파이로트(pilot) ESP 상에서 실현된 실험에 따라, 이는 실질적으로 시스템의 증강된 효율을 제공한다. 스위칭 장치는, 턴 오프가 가능한 소정의 적절한 스위칭 장치, 예컨대 IGBT, IGCT, GTO와 같은 반도체 스위치일 수 있다.
상기 실시예에 있어서, 시스템은 1차 및 2차 권선을 갖춘 변압기를 더 구비하여 이루어지고, 여기서 제1전원공급기, 저장 캐패시터, 스위칭 장치 및 병렬 결합 역병렬 정류기 장치가 변압기의 1차 권선에 결합되며; 제2전원 공급기 및 결합 캐패시터가 변압기의 2차 권선에 결합되고; 시스템이 결합 캐패시터를 매개로 전기 집진기에 결합되도록 배열된다. 이에 의해, 변압기를 구비하여 이루어진 형태의 펄스 발생 시스템에 채택된 유용한 시스템의 예가 제공된다. 저장 캐패시터는 적절한 전압 레벨로 제1전원공급기에 의해 차지되고 제2전원공급기는 베이스 DC 고전압을 발생시킨다. 결합 캐패시터는 제2권선에 의한 제2전원공급기의 단락회로를 방지한다.
시스템의 다른 실시예에 있어서, 제1전원공급기가 저장 캐패시터의 한쪽 터미널에 연결되고, 저장 캐패시터의 다른쪽 터미널이 변압기의 1차 권선의 한쪽 터미널에 연결되며, 변압기의 1차 권선의 다른쪽 터미널이 공통 터미널에 연결된다. 더욱이, 스위칭 장치와 역병렬 정류기 장치가 병렬로 연결되고, 스위칭 장치의 한쪽 터미널이 제1전원공급기와 저장 캐패시터 사이에 연결되고 스위칭 장치의 다른쪽 터미널이 공통 터미널에 연결되고; 변압기의 2차 권선의 한쪽 터미널이 공통 터미널에 연결되고 변압기의 2차 권선의 다른쪽 터미널이 결합 캐패시터를 매개로 전기 집진기에 연결되고; 제2전원공급기가 결합 캐패시터와 전기 집진기 사이의 교차점에 연결된다. 이에 의해, 변압기를 구비하여 이루어진 형태의 펄스 발생 시스템에 채택된 다른 유용한 시스템의 예가 제공된다. 공통 터미널은 접지되거나 전원공급기의 요구에 의존하지 않음을 주지해야 한다.
통상 동작 동안, 전기 집진기 내부에서 야기되는 스파크는 이상한 것이 아니다. EP 0 054 378에서 설명한 바와 같이, 스파크는 고전압 펄스의 인가(스파크가 "펄스 스파크"로 불리워지는 경우) 동안 또는 2개의 연속적인 펄스 사이의 시간 간격(펄스가 "DC-스파크"로 불리워지는 경우)에서 일어날 수 있다. 펄스 변압기를 구비하여 이루어진 펄스 발생 시스템의 형태에서, 양쪽 형태의 스파크 동안 결합 캐패시터를 가로지르는 전압이 펄스 변압기의 포화를 야기시키는 2차 권선에 직접 연결되어 스위칭 장치에 대미지를 줄 수 있게 된다.
또 다른 실시예에 있어서, 스위칭 장치가 전기 집진기에 인가된 펄스 전류의 자연적 제로-크로싱(natural zero-crossing)의 직전에 턴 오프되도록 배열된다. 스위칭 장치는 전기 집진기에 인가된 펄스 전류의 자연적 제로-크로싱의 바로 직전에 유용하게 턴 오프될 수 있다. 그러나, 턴 오프 능력을 갖는 스위칭 장치의 이용은 또한 필요하다면 그 자연적 제로-크로싱 바로 전에 전기 집진기에서의 펄스 전류를 턴 오프하게 한다. 전기 집진기의 대부분의 스파크는 전기 집진기에서의 펄스 전류의 제로-크로싱 바로 직전에 임박하여 야기되기 때문에, 전압 펄스의 피크와 일치하여 스위칭 장치는 제로-크로싱에서 턴 오프 된다. 따라서, 스파크가 전기 집진기에서 전류의 제로-크로싱 후에 일어나면, 이 때 스위치는 이미 턴 오프되어 있게 된다. 스파크가 이 지점 전에 일어나면, 펄스 전류가 증가하게 되어 스위치는 전류가 너무 높아지기 전에 턴 오프된다. 양 경우에서 주전류를 위한 택일적 경로를 포함하는 것이 필요하고, 이는 전형적으로 병렬로 적절한 다이오드 네트워크를 이용함으로써 달성된다.
현재, 상업적 펄스 발생 시스템에서 이용되는 스위칭 장치는 사이리스터(SCR; thyristors)이다. 그들의 고유한 자연적 정류는 필연적으로 EP 0 145 221과 EP 0212 854에서 설명된 것과 마찬가지로 복잡한 보호 방법을 이용하게 된다. 전압 서지나 과전압에서 초래되는 몇몇 스파크가 스위칭 장치에 인가된다. US4,600,411에서와 같이 1차 권선을 갖는 병렬로 삽입된 자유-회전 다이오드(free-wheeling diode)를 구비하는 해법이 설명되어진다.
본 발명의 실시예에 따르면, 시스템은 저장 캐패시터와 전원공급기 사이의 교차점에 연결된 크램핑 회로를 더 구비하여 이루어진다. 따라서, 크램핑 회로가 스위칭 장치에 가능한 한 인접되게 연결된다. 이에 의해, 시스템에 저장된 에너지에 의해 야기된 전류를 위한 경로(즉, 펄스 변압기의 누설 인덕턴스에서)는 스위칭 장치가 턴 오프될 때 생성되고, 따라서 크램핑 네트워크의 캐패시터가 고전압을 갖으면, 그를 가로지르는 전압을 제한함으로써 스위칭 장치를 보호한다. 더욱이, 크램핑 회로는 시스템으로부터 에너지를 취함에 따라 스파크의 경우에 펄스 변압기의 포화(saturation)를 최소화한다. 바람직하기는, 크램핑 회로는 캐패시터와 직렬인 다이오드와 다이오드와 병렬인 저항을 구비하여 이루어진다. 캐패시터는 턴 오프 동안 스위치를 가로지르는 전압을 제한하도록 기능하고 저항은 스위치가 턴 온일 때 크램핑 캐패시터의 방전 동안 스위치를 가로지르는 전압을 제한하도록 기능한다.
한편, 본 실시예에 있어서, 시스템은 저장 캐패시터와 변압기의 1차 권선 사이의 교차점에 연결된 크램핑 회로를 구비하여 이루어지고, 크램핑 회로는 댐핑(damping) 저항, 크램핑 다이오드, 캐패시터 뱅크(bank)의 직렬 연결을 구비하여 이루어진다. 여기서, 캐패시터 뱅크는 적절한 전압으로 유지되어 통상 동작 동안의 펄스 사이에서 펄스 변압기의 포화를 회피하도록 기능하고 댐핑 저항은 펄스 스파크의 경우에서 상당하게 di/dt를 제한하도록 기능한다.
바람직하기는, 상기 크램핑 회로는 보조 DC 전원공급기, 충전 저항, 트랜지스터, 방전 저항, 기준 다이오드를 더 구비하여 이루어진다. 보조 DC 전원공급기는 전기 집진기에서 스파크의 경우에 제한된 캐패시터 뱅크를 넘는 전압을 유지하도록 기능한다. 이에 의해, ESP에서의 스파크에 의해 야기된 전류 서지에 기인하는 캐패시터 뱅크의 전압의 증가가 방전 저항과 트랜지스터를 통한 방전에 의해 보상된다는 점에서, 변압기의 코어의 포화의 문제가 감소된다.
본 발명에 따른 시스템은 스위칭 장치와 역병렬 정류장치에 병렬로 연결된 완충 회로(snubber circuit)를 구비하여 이루어지는 것이 바람직하다. 이유는 스위치와 크램핑 네트워크 사이의 케이블 연결의 표유 인덕턴스(stray inductance)이다. 완충 회로는 턴 오프될 때 스위칭 장치를 가로지르는 전압의 상승 비율(dv/dt)을 제한하고; 그에 의해 스위칭 장치의 보호가 제공된다.
마지막으로, 본 발명에 따른 시스템은 변압기의 1차 권선에 연결된 바이어스 네트워크를 더 구비하여 이루어지는 것이 바람직하고, 여기서 바이어스 네트워크는 전압원, 제한 저항, 바이어스 쵸크를 구비하여 이루어진다. 바이어스 네트워크는 2가지 극성으로 자기화 할 수 있다는 점에서 변압기 코어의 효율을 증강시키고; 이에 의해 더 작고 그리고 더 저렴한 변압기 코어가 이용되어질 수 있다.
도 1은 본 발명에 따른 펄스 시스템의 블록도,
도 2는 통상 동작 동안, 스위칭 장치에 인가되는 게이트 전압, 전기 집진기를 가로지르는 전압 및 전기 집진기를 통한 전류(ipulse)를 나타낸 도면,
도 3은 스파크가 스위칭 장치를 통한 전류의 제로-크로싱 바로 직전에 일어나는 경우, 전기 집진기를 가로지르는 전압의 파형(uESP)과, 스위칭 장치를 통한 전류, 도 1의 크램핑 다이오드를 통한 전류 및, 스위칭 장치를 가로지르는 전압을 나타낸 도면,
도 4는 크램핑 네트워크를 이용하지 않고서 DC 스파크 전과, 동안 및, 후의 결합 캐패시터 전압 및 전류의 파형을 나타낸 도면,
도 5는 크램핑 네트워크의 이용에 따른 DC 스파크 동안의 도 4와 유사한 파형을 나타낸 도면,
도 6은 1차 권선과 병렬로 연결된 다른 크램핑 네트워크를 갖는 시스템을 나타낸 도면,
도 7은 도 6에 도시된 다른 크램핑 네트워크에서의 캐패시터 뱅크의 이용 및 불이용에 따라 각각 펄스 변압기의 1차 권선을 가로지르는 전압의 파형을 나타낸 도면이다.
이하, 예시도면을 참조하면서 본 발명에 따른 실시예를 상세히 설명한다. 도면 중 동일한 구성요소에는 동일한 참조부호를 붙인다.
도 1은 본 발명에 따른 펄스 시스템의 블록도이다. 이후에 펄스 전원공급기(1)로서 언급되는 제1전원공급기(1)와, 이후에 DC 전원공급기(2)로서 언급되는 제2전원공급기(2)가 전기 집진기(10)를 기동시키기 위해 배열된 것이 도시되어 있다. DC 전원공급기(2)는 전형적으로 25-50킬로볼트의 범위의 DC 전압으로 전기 집진기(10)를 프리-차지(pre-charge)하도록 배열된다. 양 전원공급기(1,2)는 3상 전원선(19; three-phase power line)으로부터 공급된다.
참조부호 18은 본 발명에 따른 시스템의 주회로를 나타낸다. 더욱이, 도 1은 펄스 전원공급기(1)가 필터링 쵸크(3)를 통해 저장 캐패시터(7)의 한쪽 터미널에 연결되는 한편, 저장 캐패시터(7)의 다른쪽 터미널이 변압기(9)의 1차 권선의 한쪽 터미널에 연결되는 것을 나타낸다. 변압기(9)의 1차 권선의 다른쪽 터미널이 공통 터미널에 연결된다. 공통 터미널은 전원공급기의 요구에 따라 접지되거나 되지 않는다.
더욱이, 주회로(18)는 스위칭 장치(5)와, 병렬로 연결된 역병렬 정류기 장치(6)를 구비하여 이루어지고, 여기서 스위칭 장치(5)의 한쪽 터미널이 제1전원공급기(1)와 저장 캐패시터(7) 사이에 연결되고, 스위칭 장치(5)의 다른쪽 터미널이 공통 터미널에 연결된다. 스위칭 장치(5)는, 예컨대 IGBT, IGCT 또는 GTO의 턴 오프 능력을 구비하는 반도체 스위치이다. 완충회로(14)는 스위칭 장치(5)와 역 병렬 정류기 장치(6)에 병렬로 연결되고 완충 캐패시터와 완충 저항으로 구성된다. 완충 캐패시터의 캐패시턴스의 적절한 값은 nF의 몇 10분의 1이고, 완충 저항의 레지스턴스의 적절한 값은 수 백 Ω이다.
더욱이, 주회로(18)는 변압기(9)의 1차 권선과 직렬로 직렬 인덕턴스(도시되지 않았음)를 구비하여 이루어진다. 이러한 인덕턴스는 변압기(9)의 누설 인덕턴스로서 고려될 수 있어 도 1에서는 도시되어 있지 않고 있다.
변압기(9)의 2차 권선의 한쪽 터미널이 공통 터미널에 연결되고 변압기(9)의 2차 권선의 다른쪽 터미널이 결합 캐패시터(8)를 매개로 전기 집진기(10)의 방전 전극(캐소드)에 연결된다. 전기 집진기(10)의 수집 전극(collection electrode) 또는 애노드가 공통 터미널에 연결된다. DC 전원공급기(2)가 필터링 쵸크(4)를 통해 결합 캐패시터(8)와 전기 집진기(10) 사이의 교차점에 연결된다.
더욱이, 주회로(18)는 캐패시터(12)와 직렬인 다이오드(11)와 다이오드(11)와 병렬인 저항(13)을 포함한다. 도 1에 도시된 크램핑 네트워크는, 예컨대 스위칭 장치(5)와, 역병렬 정류기 장치(6)와 완충회로(14)로 구성된 병렬 연결에 병렬로, 저장 캐패시터(7)와 필터링 쵸크(3) 사이의 교차점에 연결된다. 크램핑 네트워크(11∼13)의 다른쪽 터미널이 공통 터미널에 연결된다.
마지막으로, 도 1에 도시된 시스템은 변압기(9)의 1차 권선에 연결된 바이어스 네트워크를 포함하고, 여기서 바이어스 네트워크는 전압원(15)과, 제한 저항(16) 및, 바이어스 쵸크(17)를 구비하여 이루어진다.
펄스 전원공급기(1)는 필터링 쵸크(3)를 통해 저장 캐패시터(7)와 변압기(9) 의 1차 권선을 충전하기 위해 전압(UPS)을 발생시킨다. 펄스 변압기(9)는 전형적으로 15∼30의 범위의 변환 비율을 갖는다. 전기 집진기(10)에서의 고전압 DC 레벨이 필터링 쵸크(4)를 통해 전압(-UDC)으로 전기 집진기(10)를 충전하기 위해 DC 전원공급기(2)에 의해 생성된다. 바람직하기는, 필터링 쵸크(3)의 인덕턴스는 약 50mH 와 약 100mH 사이에 놓이고, 필터링 쵸크(4)의 인덕턴스는 약 300mH 와 약 800mH 사이에 놓인다.
펄스 변압기(9)의 2차 권선과 직렬로 연결된 결합 캐패시터(8)가 펄스 변압기(9)에 의한 DC 전원공급기(2)의 단락회로를 회피하기 위해 이용된다. 결합 캐패시터(8)는 펄스 변압기(9)의 2차 권선을 통해 전압(-UDC)으로 차지된다.
고전압 펄스는 반도체 스위치(5)가 기동될 때 발생되고, 그에 의해 직렬 발진회로가 형성된다. 직렬 발진회로는 저장 캐패시터(7)와, 간단화를 위해 도시하지 않는 펄스 변압기(9)의 누설 인덕턴스 및, 전기 집진기(10)의 캐패시턴스(전형적으로, 수집 영역의 30∼40pF/㎡)로 구성된다.
직렬 발진회로를 통한 전류는 정현파를 갖는다(도 2 참조). 포지티브 하프 사이클에 있어서, 전류는 반도체 스위치(5)를 통해 순환되고 네가티브 하프 사이클에서는 역병렬 다이오드(6)를 통해 순환한다. 이러한 방법에서, 에너지는 코로나 발생에서 소모되지 않고 손실은 저장 캐패시터(7)로 되돌아가므로 에너지의 상당한 절감을 제공한다.
펄스 변압기(9)의 코어를 더욱 효과적으로 이용하기 위해, 펄스 변압기가 각 펄스의 발생에 대해 미리 반대 방향으로 자기화된다. 이는 전압원(15)과, 제한 저항(16) 및, 블록킹 쵸크(17)로 구성된 네트워크에 의해 수행되고, 결과적으로 바이어스 전류가 펄스 변압기(9)의 1차 권선을 통해 순환된다. 전압원(15)의 전형적인 값은 10과 20VDC 사이에 놓이는 한편, 제한 저항(16)의 값은 바람직하기는 수 Ω이다. 더욱이, 블록킹 쵸크(17)의 인덕턴스는 0에서 약 200mH가 유용하다.
반도체 스위치(5)와 병렬로 연결된 크램핑 네트워크는 상기한 바와 같이 크램핑 다이오드(11)와, 크램핑 캐패시터(12) 및, 제한 저항(13)으로 구성된다. 크램핑 캐패시터(12)의 값은, 전류 펄스가 DC 스파크의 경우에 그를 통해 순환할 때 또는 스위치(5)가 전류 제로-크로싱 전 또는 전류 제로-크로싱에서 턴 오프될 때, 수백 볼트로 전압의 증가를 제한하기 위해 비교적 높다(전형적으로 0.5mF 이상). 크램핑 저항(13)의 값은 바람직하기는 수 백Ω이다.
스위치(5)와 크램핑 네트워크 사이의 케이블 연결의 기생 인덕턴스 때문에, 스위치가 턴 오프될 때 스위치(5)를 가로지르는 전압의 상승 비율을 제한하기 위해 완충회로(14)가 제공된다.
도 2는 통상 동작 동안, 스위칭 장치에 인가되는 게이트 전압과, 전기 집진기를 가로지르는 전압과 전기 집진기를 통한 전류(ipulse)를 나타낸 도면이다. 2차 펄스 전류(ipulse), 예컨대 통상의 펄스 동작 동안 변압기(9)의 2차 권선과, 결합 캐패시터(8) 및, 전기 집진기(10)를 포함하는 회로를 통한 전류의 파형(20)이 도시되어 있고, 여기서 스위치가 펄스 전류(20)의 제로 크로싱(25)에서 턴 오프된다. 더욱이, 전기 집진기(10)에 인가된 전압(22)이 통상 펄스 동작 동안 도시된다. 스위치(5)의 턴 오프는 게이트 신호(ugate)(24)에 의해 지시받게 된다. 펄스 전류(20)의 제로-크로싱(25)은 제로로 가는 게이트 신호(24)와 맞추어져 일치되고, 이는 도 2에서 참조부호 25로 나타낸다. 2차 전류 펄스(21)의 진폭은 수 백 암페어이고 구간은 100㎲ 훨씬 이하이다. 전기 집진기(10)에 인가된 전압(23)의 진폭(예컨대, 중첩된 펄스를 갖는 스므스한 DC 전압의 진폭)은 100kV를 넘을 수 있다.
도 3은 스파크가 스위치(5)를 통한 전류(iswitch)의 제로-크로싱 바로 직전에 일어나는 경우, 전기 집진기에 인가된 전압(uESP)의 파형과, 스위치(5)를 통한 전류(iswitch), 도 1의 크램핑 다이오드(11)를 통한 전류(idiode) 및, 스위치(5)를 가로지르는 전압(uswitch)을 나타낸 도면이다. 도 3에서 참조부호 31은 전기 집진기(10)에 인가된 전압(uESP)의 파형을 나타내고, 스파크에 의해 야기된 전압 강하는 수직 상승(32)에 의해 지시된다. 참조부호 33은 스위치(5)를 통한 전류(iswitch)의 파형을 나타내고(도 1 참조), 참조부호 36은 크램핑 다이오드(11)를 통한 전류(idiode)를 나타내며(도 1 참조), 참조부호 37,38,39는 스위치(5)를 가로지르는 전압(uswitch)을 나타낸다(도 1 참조). 참조부호 30은 스위치를 통한 전류의 제로-크로싱을 나타낸다. 스위치(5)의 턴 오프를 명령하는 게이트 신호(24)(도 2 참조)는 도 2와 동 일하다.
제로-크로싱(30) 전에 야기되는 스파크 때문에, 스위치를 통한 전류는 스파크의 순간에 증가하기 시작하고 이어 스위치가 턴 오프될 때, 예컨대 스위치(5)를 통한 전류의 예상된 제로-크로싱에 맞추어지는 즉시 제로로 가게 된다. 이는 스위치(5)를 통한 전류(iswitch)의 파형(33)의 수직 강하(34)로서 도시된다. 곧 바로 전류는 크램핑 다이오드(11)로 전환하고, 이는 크램핑 다이오드(11)를 통한 전류(idiode)의 파형(36)의 수직 상승(35)으로서 도시된다. 이는 도 3으로부터 알 수 있는 바, 크램핑 다이오드(11)는 전체 서지 전류를 따라 잡게 된다. 이러한 전류는 수 kA의 진폭을 갖고, 스위치(5)를 가로지르는 과전압을 회피하기 위한 것이며, 크램핑 캐패시터(12)는 큰 값을 가져야 하는 바, 전형적으로 0.5mF 이상의 범위이다.
상기한 바와 같이, 스위치(5)를 거치는 전압(uswitch)의 파형(37)이 도 3에 또한 도시된다. 스위치 전압(37)에서의 전압 증가는 오직 수 백 볼트(38)이다. 크램핑 다이오드(11)를 통한 전류(idiode)(36)가 제로로 되는 순간 바로 후에, 스위치(5)를 가로지르는 전압은 저장 캐패시터(7)와 결합 캐패시터(8)의 나머지 전압에 의해 결정된 더 낮은 값(38)으로 떨어진다.
도 4는 도 1에 도시된 시스템이 도 1에 도시된 [크램핑 회로 다이오드(11)와, 크램핑 캐패시터(12) 및 제한 저항(13)으로 구성된]크램핑 네트워크를 포함하지 않는 경우의 DC 스파크 전과, 동안 및, 후의 결합 캐패시터 전압(u) 및 전류(i) 의 파형을 나타낸 도면이다.
도 4는 펄스 변압기(9)의 포화를 야기시키는 DC 스파크가 발생된 경우의 관련 파형(40,45)을 나타낸다(도 1 참조). 도 1을 참조하면, 포화는 DC 스파크가 전기 집진기(10)에서 일어날 때 펄스 변압기(9)의 2차 권선에 직접 인가되는 UDC와 동일한 전압으로 충전되는 결합 캐패시터(8)에 의해 야기된다. 결합 캐패시터(8)를 통한 전류(i)의 파형(40)과 크램핑 네트워크(11∼13)의 이용 없이 결합 캐패시터(8)를 가로지르는 전압의 파형(45)은 펄스 변압기의 포화를 나타낸다. DC 스파크가 42에 의해 지시된 순간에 야기되고, 이는 통상 전류 펄스(41) 후의 수 밀리세컨드이다. 결합 캐패시터(8)는 UDC 바로 아래의 전압(46)으로 충전되고, 전압-시간 적분(voltage-time integral)이 최대 플럭스 밀도를 넘는 코어에 인가될 때, 코어는 포화되고 고전류 펄스(43)가 결합 캐패시터(8)를 통해 순환되게 된다. 이러한 전류 펄스(43)의 마지막에서, 전압의 극성은 반전되고, 이는 47로 도시되어 있다. 얼마 후, 코어가 다시 포화되고 새로운 전류 펄스(44)가 반대 방향으로 회로에서 순환된다. 도 4에 도시된 바와 같이, 전류 펄스의 진폭과 DC 스파크 후의 결합 캐패시터(8)를 가로지르는 전압은 곧 더 작아지게 되고; 이는 회로에서의 손실에 기인한다. 상기한 변압기의 포화 프로세스는 에너지가 회로의 손실에 기인하여 상당히 감소될 때까지 계속된다.
변압기의 포화 동안, 시스템은 그 목적에 따라 기능하지 않게 된다. 더욱이, 변압기(9)의 2차 권선의 포화 전류(43,44)가 1kA 이상의 진폭을 갖을 수 있게 되고, 따라서 시스템의 주요 구성요소의 수명에 대해 이롭지 못하다. 크램핑 다이오드 네트워크를 이용함으로써, 상황이 명확히 개선되고, 이는 도 5에 도시된다.
도 5는 예컨대 도 1에 도시된 시스템에서 언급된 크램핑 네트워크(11∼13)의 이용에 따른, DC 스파크 동안, 도 4와 유사한 파형을 나타낸다. 도 5에 있어서, 참조부호 50은 결합 캐패시터 전류를 나타내고, 참조부호 55는 결합 캐패시터 전압을 나타낸다. 도 5에서, DC 스파크가 53에 의해 지시된 순간, 예컨대 하나의 통상 펄스(51) 후에 일어난다. 이러한 경우, 크램핑 다이오드(11)가 순방향 바이어스되고, 전류 펄스(52)가 크램핑 다이오드(11)와, 크램핑 캐패시터(12), 펄스 변압기(9) 및, 결합 캐패시터(8)를 통해 순환된다. 이러한 전류 펄스(52)의 진폭은 크램핑 회로(11∼13)의 포함에 기인하는 다른 회로 임피던스 때문에 도 4에 도시된 경우에서의 전류 펄스(43)의 진폭 보다 더 낮다. 도 5에 도시된 이러한 전류 펄스는 소정 값(57)으로 결합 캐패시터(8)를 가로지르는 전압을 방전(56)한다. 포화는 한번만 일어나고 이는 전류 펄스(54)에 의해 도시되며, 결합 캐패시터(8)를 더욱 방전시킨다. 계속해서, 결합 캐패시터(8)를 가로지르는 전압은 제로로 향하는 경향이 있고[그리고 계속해서 중첩된 펄스를 갖는 전압(-UDC)으로], 포화는 더 이상 일어나지 않게 된다. 따라서, 크램핑 네트워크(11∼13)는 실질적으로 도 1에 도시된 시스템의 효율을 증강시키고 시스템의 주요 구성요소에서의 고전류 펄스의 유해한 효과를 감소시킨다.
도 6은 변압기(9)의 1차 권선과 병렬로 연결된 다른 크램핑 네트워크를 갖는 시스템을 나타낸다. 이러한 다른 크램핑 네트워크는 저장 캐패시터(7)와 변압기(9)의 1차 권선 사이의 교차점(68로 표시됨)에 연결되고, 댐핑 저항(60)과, 크램핑 다이오드(61) 및, 공통 터미널에 연결된 캐패시터 뱅크(62)의 직렬 연결을 포함한다. 더욱이, 크램핑 네트워크는 DC 전원공급기(63)와 캐패시터 뱅크(62)에 병렬로 연결된 충전 저항(64)의 직렬 연결을 포함한다. 더욱이, 저항(66)과 방전 저항(65)의 직렬 연결이 캐패시터 뱅크(62)에 병렬로 연결된다. 마지막으로, 저항과 직렬인 기준 다이오드(67)가 캐패시터 뱅크(62)에 병렬로 결합된다.
캐패시터 뱅크(62)의 전압이 차징 저항(64), 디스차징 저항(65), 트랜지스터(66)와 함께 전압원(63)에 의해 약 10∼50V의 일정 전압으로 유지된다. 반도체 스위치(5)가 전류 제로-크로싱에서 턴 오프된다(도 2 참조). 이 경우, 스파크가 일어나고 스위치가 턴 오프 되며, 수 kA의 높은 펄스 전류가 캐패시터 뱅크(62)를 가로지르는 전압을 상승시키는 크램핑 네트워크(60∼67)를 통해 순환되게 된다. 이러한 전압이 기준 다이오드(67)에 의해 결정된 목표 레벨을 넘을 때, 방전 저항(65)과 트랜지스터(66)가 캐패시터 뱅크(62)를 방전하게 된다.
전압원(63)이 캐패시터 뱅크(62)를 충전하기 위해 필요로 되고 펄스 시스템이 스위치 온될 경우 올바른 레벨에서 그 전압을 유지하며, 따라서 펄스 변압기의 포화를 회피하게 된다.
펄스 변압기(9)의 전류가 통하고 있는 터미널(68)과 크램핑 다이오드(61)의 애노드 사이에 연결된 댐핑 저항(60)이 스파크가 발생될 경우에 시스템으로부터 사라지는 에너지를 취하기 위해 배열되고, 따라서 크램핑 다이오드를 통한 전류의 상 승 비율을 감소시킨다. 이러한 댐핑 저항(60)의 값은 전형적으로 50mΩ 이상인 한편, 충전 저항(64)과 방전 저항(65)의 각각의 값은 각각 약 10Ω 이하 및 약 1Ω 이하이다.
도 7은 도 6에 도시된 다른 크램핑 네트워크에서의 캐패시터 뱅크(62) 및 관련 회로의 이용 및 불이용에 따라 각각 펄스 변압기(9)의 1차 권선을 가로지르는 전압의 파형을 나타낸 도면이다. 따라서, 도 7은 캐패시터 뱅크(62)의 효과를 나타낸다, 도 7에 있어서, 위쪽 도면은 캐패시터 뱅크(62)의 이용 없이 펄스 변압기(9)의 1차 권선을 가로지르는 전압(u)의 파형(72)을 나타내는 한편, 아래쪽 도면은 캐패시터 뱅크(62)의 이용에 따른 펄스 변압기(9)의 1차 권선을 가로지르는 전압(u)의 파형(75)을 나타낸다
크램핑 다이오드가 2개의 펄스 사이의 시간 간격 동안 순방향 바이어스되기 때문에, 변압기(9)의 1차 권선에 인가된 전압의 진폭(74)은 이러한 다이오드에 의해 크램프되고 다이오드 순방향 온-상태 전압(<1V)과 동일한 전압으로 유지된다. 이때, 몇 개의 펄스 후에 펄스 변압기(9)의 코어가 포화된다. 따라서, 전압 파형(75)에 의해 도시된 바와 같이 전압원(63)과 충전 저항(64)에 의해 10∼50V의 레벨로 펄스 변압기(9)의 1차 권선을 가로지르는 이러한 전압(u)을 유지하는 것이 필요로 된다. 10∼50V의 이러한 전압 레벨이 참조부호 76에 의해 지시되고 일정하게 유지되어야 하지만, 스파크 동안 발생된 전류 펄스 때문에, 이러한 전압이 증가하는 경향으로 된다. 방전 저항(65)과 스위치(66)는 방전의 기능을 수행하고자 하므로 전압 레벨(76)이 일정하게 유지될 수 있게 된다.
100㎲ 이상의 전류 펄스 폭이 충분한 본 출원에 있어서, 사이리스터(SCR)가 턴 오프 능력을 갖는 스위칭 장치 대신 스위치로서 이용될 수 있다. 이러한 사이리스터는 전류가 유지값 이하로 떨어질 때 그 자체에 의해 턴 오프 되지만, 예컨대 EP 0 212 854에 개시된 바와 같이 펄스 스파크에 대항해서 보호되어져야만 한다. 사이리스터를 갖는 출원에 있어서, 도 1의 11∼13과 도 6의 60∼67에 의해 도시된 바와 같이 2개의 크램핑 네트워크 해법이 이용되고, 스파크의 경우에 스위칭 장치의 필요한 보호를 부여하며 상기한 바와 같이 펄스 변압기의 포화를 최소화한다.

Claims (10)

  1. 전기 집진기(10)를 기동시키도록 고전압 펄스를 발생시키기 위한 펄스 발생 시스템으로, 상기 시스템이,
    제1전원공급기(1) 및, DC 전압으로 상기 전기 집진기(10)를 프리-차지하도록 배열된 제2전원공급기(2)와;
    저장 캐패시터(7) 및 직렬 인덕턴스 및;
    역병렬 정류기 장치(6)와 병렬로 결합된 스위칭 장치(5)를 구비하여 구성되고,
    상기 시스템이 상기 전기 집진기(10)에 결합되도록 배열되되;
    상기 스위칭 장치(5)가 게이트 전극을 갖춤과 더불어 상기 게이트 전극에 공급된 게이트 신호에 의해 제어가능하게 되는 제어가능 턴 오프 능력을 갖춘 것을 특징으로 하는 펄스 발생 시스템.
  2. 제1항에 있어서, 1차 및 2차 권선을 갖는 변압기(9)를 더 구비하여 구성되되,
    상기 제1전원공급기(1)와, 상기 저장 캐패시터(7), 상기 스위칭 장치(5) 및, 상기 병렬 결합된 역병렬 정류기 장치(6)가 상기 변압기의 1차 권선에 결합되고,
    상기 제2전원공급기(2)와 결합 캐패시터(8)가 상기 변압기(9)의 상기 2차 권 선에 결합되며,
    상기 시스템이 상기 결합 캐패시터(8)를 매개로 상기 전기 집진기(10)에 결합되도록 배열된 것을 특징으로 하는 펄스 발생 시스템.
  3. 제1항 또는 제2항에 있어서, 상기 제1전원공급기(1)가 저장 캐패시터(7)의 한쪽 터미널에 연결되되, 상기 저장 캐패시터(7)의 다른쪽 터미널이 변압기(9)의 1차 권선의 한쪽 터미널에 연결되고, 상기 변압기(9)의 상기 1차 권선의 다른쪽 터미널이 공통 터미널에 연결되며,
    상기 스위칭 장치(5)와 상기 역병렬 정류기 장치(6)가 병렬로 연결되되, 상기 스위칭 장치(5)의 한쪽 터미널이 상기 제1전원공급기(1)와 상기 저장 캐패시터(7) 사이에 연결되고, 상기 스위칭 장치(5)의 다른쪽 터미널이 상기 공통 터미널에 연결되며,
    상기 변압기(9)의 상기 2차 권선의 한쪽 터미널이 공통 터미널에 연결되고 상기 변압기(9)의 2차 권선의 다른쪽 터미널이 상기 결합 캐패시터(8)를 매개로 상기 전기 집진기(10)에 연결되고,
    상기 제2전원공급기(2)가 상기 결합 캐패시터(8)와 상기 전기 집진기(10) 사이의 교차점에 연결된 것을 특징으로 하는 펄스 발생 시스템.
  4. 제1항 내지 제3항 중 어느 한 항에 있어서, 상기 스위칭 장치(5)가 전기 집진기에 인가된 펄스 전류(ipulse)의 자연적 제로-크로싱의 순간 바로 전에 턴 오프되도록 배열된 것을 특징으로 하는 펄스 발생 시스템.
  5. 제1항 내지 제4항 중 어느 한 항에 있어서, 저장 캐패시터(7)와 제1전원공급기(1) 사이의 교차점에 연결된 크램핑 회로(11,12,13)를 더 구비하여 구성된 것을 특징으로 하는 펄스 발생 시스템.
  6. 제5항에 있어서, 상기 크램핑 회로가, 캐패시터(12)와 직렬인 다이오드(11)와 다이오드(11)와 병렬인 저항(13)을 구비하여 구성된 것을 특징으로 하는 펄스 발생 시스템.
  7. 제1항 내지 제4항 중 어느 한 항에 있어서, 저장 캐패시터(7)와 상기 변압기(9)의 상기 1차 권선 사이의 교차점에 연결된 크램핑 회로(60,61,62)를 더 구비하여 구성되고, 상기 크램핑 회로가 댐핑 저항(60)과, 크램핑 다이오드(61) 및, 캐패시터 뱅크(62)의 직렬 연결을 구비하여 구성된 것을 특징으로 하는 펄스 발생 시 스템.
  8. 제7항에 있어서, 상기 크램핑 회로가, DC 전원공급기(63)와, 충전 저항(64), 트랜지스터(66), 방전 저항(65) 및, 기준 다이오드(67)를 더 구비하여 구성된 것을 특징으로 하는 펄스 발생 시스템.
  9. 제1항 내지 제8항 중 어느 한 항에 있어서, 완충회로(14)가, 상기 스위칭 장치(5)와 상기 역병렬 정류기 장치(6)에 병렬로 연결된 것을 특징으로 하는 펄스 발생 시스템.
  10. 제1항 내지 제9항 중 어느 한 항에 있어서, 상기 변압기(9)의 상기 1차 권선에 연결된 바이어스 네트워크를 더 구비하여 구성되고, 상기 바이어스 네트워크가 전압원(15)과, 제한 저항(16) 및, 바이어스 쵸크(17)를 구비하여 이루어진 것을 특징으로 하는 펄스 발생 시스템.
KR1020077008337A 2004-10-26 2005-10-25 전기 집진기용 펄스 발생 시스템 KR100938717B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP04388072.3A EP1652586B2 (en) 2004-10-26 2004-10-26 Pulse generating system for electrostatic precipitator
EP04388072.3 2004-10-26

Publications (2)

Publication Number Publication Date
KR20070083662A true KR20070083662A (ko) 2007-08-24
KR100938717B1 KR100938717B1 (ko) 2010-01-28

Family

ID=34931964

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020077008337A KR100938717B1 (ko) 2004-10-26 2005-10-25 전기 집진기용 펄스 발생 시스템

Country Status (13)

Country Link
US (1) US7547353B2 (ko)
EP (1) EP1652586B2 (ko)
KR (1) KR100938717B1 (ko)
CN (1) CN101052471B (ko)
AT (1) ATE514490T2 (ko)
BR (1) BRPI0517025A (ko)
DK (1) DK1652586T4 (ko)
ES (1) ES2368913T3 (ko)
PL (1) PL1652586T5 (ko)
PT (1) PT1652586E (ko)
RU (1) RU2385189C2 (ko)
SI (1) SI1652586T1 (ko)
WO (1) WO2006045311A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101240003B1 (ko) * 2010-12-09 2013-03-06 주식회사 포스코아이씨티 마이크로 펄스 전원공급 회로 및 이를 구비하는 마이크로 펄스 시스템
KR101240126B1 (ko) * 2010-12-09 2013-03-07 주식회사 포스코아이씨티 전류 차단 회로 및 이를 구비하는 마이크로 펄스 시스템
KR20160026058A (ko) * 2014-08-29 2016-03-09 주식회사 포스코아이씨티 마이크로 펄스 시스템 및 이를 이용한 전기 집진장치
KR20200114513A (ko) * 2019-03-29 2020-10-07 이승철 미세먼지 제거 장치

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007025416B3 (de) * 2007-05-31 2008-10-23 Marcel Op De Laak Verfahren und Vorrichtung zum Abscheiden von Verunreinigungen aus einem Gasstrom
US8457757B2 (en) 2007-11-26 2013-06-04 Micro Transponder, Inc. Implantable transponder systems and methods
DE112008003183T5 (de) * 2007-11-26 2011-01-27 MicroTransponder, Inc., DALLAS Implantierbarer Treiber mit Ladungsausgleich
US9089707B2 (en) 2008-07-02 2015-07-28 The Board Of Regents, The University Of Texas System Systems, methods and devices for paired plasticity
EP2268407B1 (en) * 2008-01-15 2015-09-30 FLSmidth A/S High voltage power supply for electrostatic precipitator
FR2927550B1 (fr) 2008-02-19 2011-04-22 Commissariat Energie Atomique Dispositif de filtration electrostatique au moyen de sites emissifs optimises.
KR100954878B1 (ko) * 2009-03-10 2010-04-28 넥슨 주식회사 실내 공기의 이온 및 오존 최적화 포화방법
US8154833B2 (en) * 2009-08-31 2012-04-10 General Electric Company Line side crowbar for energy converter
US8120885B2 (en) * 2010-02-03 2012-02-21 General Electric Company Circuit for use with energy converter
RU2421899C1 (ru) * 2010-03-09 2011-06-20 Открытое Акционерное Общество "Производственное Объединение "Уральский Оптико-Механический Завод" Имени Э.С. Яламова" (Оао "По "Уомз") Устройство формирования биполярного сигнала
CN101850301A (zh) * 2010-06-18 2010-10-06 北京博电兴源节能科技有限公司 直流叠加脉冲电除尘方法
DE102011076573A1 (de) * 2011-05-27 2012-11-29 Robert Bosch Gmbh Snubberschaltung für Gleichspannungswandler
EP2599556B1 (en) * 2011-11-29 2021-06-30 General Electric Technology GmbH A method for cleaning an electrostatic precipitator
WO2013185568A1 (zh) * 2012-06-11 2013-12-19 Liu Yigang 离子型净化装置及变压器调频方法和系统
CN103219913B (zh) * 2013-03-15 2015-04-01 东南大学 一种用于等离子体污水处理系统的高压脉冲电源
CN103350031A (zh) * 2013-06-09 2013-10-16 浙江菲达环保科技股份有限公司 一种电除尘用脉冲电源
CN103920594A (zh) * 2013-07-31 2014-07-16 金华大维电子科技有限公司 一种电除尘用高压脉冲功率电源
US10245595B2 (en) * 2014-06-13 2019-04-02 Flsmidth A/S Controlling a high voltage power supply for an electrostatic precipitator
CN104190548A (zh) * 2014-09-29 2014-12-10 长沙天瑞能源科技有限公司 静电除尘器高压脉冲供电系统
KR101615449B1 (ko) * 2014-09-30 2016-04-25 주식회사 포스코아이씨티 고전압 펄스 스위칭 시스템 및 이를 포함하는 전기 집진장치
CN115853711A (zh) 2015-10-26 2023-03-28 通用电气公司 对电容器组预充电
CN111565853B (zh) * 2017-10-09 2022-09-27 夸普瑞典公司 高压电源系统
TWI655816B (zh) * 2018-01-12 2019-04-01 Pegatron Corporation 晶片保護電路
CN109351480A (zh) * 2018-09-20 2019-02-19 珠海格力电器股份有限公司 高压供电电路、控制方法、静电除尘装置及空气净化器
CN109806975B (zh) * 2019-01-30 2024-03-01 浙江大学 一种强化均匀放电装置及方法
RU2718567C1 (ru) * 2019-06-14 2020-04-08 Илья Николаевич Джус Устройство системы электропитания электрофильтра газоочистки

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2925142A (en) * 1953-12-07 1960-02-16 Koppers Co Inc Electrical precipitator
US3443358A (en) * 1965-06-11 1969-05-13 Koppers Co Inc Precipitator voltage control
US3745749A (en) * 1971-07-12 1973-07-17 Envirotech Corp Circuits for controlling the power supplied to an electrical precipitator
US3877896A (en) * 1973-08-14 1975-04-15 Vectrol Inc Solid state voltage control system for electrostatic precipitators
US4052177A (en) * 1975-03-03 1977-10-04 Nea-Lindberg A/S Electrostatic precipitator arrangements
DE2713675C2 (de) * 1977-03-28 1984-08-23 Siemens AG, 1000 Berlin und 8000 München Stromversorgung für einen Elektroabscheider
CA1092186A (en) * 1977-12-09 1980-12-23 Andrew C. Stevenson Forced commutation precipitator circuit
GB2068659B (en) * 1980-02-02 1984-09-19 Cottrell Res Inc Control of electrostatic precipitators
DE3169116D1 (en) * 1980-12-17 1985-03-28 Smidth & Co As F L Method of controlling operation of an electrostatic precipitator
IN159046B (ko) * 1982-04-22 1987-03-14 Dresser Uk Ltd
DE3241060A1 (de) 1982-11-06 1984-05-10 Buckau-Walther AG, 4048 Grevenbroich Elektrische schaltung fuer einen elektrostatisch arbeitenden staubabscheider
DE3246057A1 (de) * 1982-12-13 1984-06-14 Metallgesellschaft Ag, 6000 Frankfurt Einrichtung zur spannungsversorgung eines elektrofilters
US4592763A (en) * 1983-04-06 1986-06-03 General Electric Company Method and apparatus for ramped pulsed burst powering of electrostatic precipitators
GB2149594A (en) 1983-11-09 1985-06-12 Smidth & Co As F L Fast-acting spark-over detector
GB2183945B (en) * 1983-12-28 1988-08-24 Senichi Masuda Pulse-charging type electric dust collecting apparatus
DE3409155A1 (de) 1984-03-13 1985-09-19 Siemens AG, 1000 Berlin und 8000 München Einrichtung zur spannungsversorgung eines elektrofilters
US4600411A (en) * 1984-04-06 1986-07-15 Lucidyne, Inc. Pulsed power supply for an electrostatic precipitator
JPS624454A (ja) * 1985-07-01 1987-01-10 Mitsubishi Heavy Ind Ltd 自己放電形パルス荷電方式電気集じん装置
US4680533A (en) * 1985-08-01 1987-07-14 General Electric Company Protection arrangement for switching device of a capacitive load pulser circuit
DK165105C (da) 1985-08-19 1993-02-22 Smidth & Co As F L Fremgangsmaade og kredsloeb til beskyttelsestaending af thyristorer i en impulsgenerator
SU1477477A1 (ru) 1987-03-16 1989-05-07 Предприятие П/Я А-7229 Устройство дл питани электрофильтра
CN1008694B (zh) * 1987-08-10 1990-07-11 天津市静电新技术开发制造厂 火花频率自控高压硅整流设备
CN1019553B (zh) * 1987-09-22 1992-12-23 全苏列宁电力学院 气体净化电滤器的电源装置
JPH03501941A (ja) * 1988-08-19 1991-05-09 ゴスダルストヴェニ ナウチノ イスレドヴァテルスキ エネルゲチチェスキ インスチテュート イメニ ゲー エム クルジザーノフスコゴ 静電集塵器用パルス電圧供給源
US5124905A (en) * 1991-07-22 1992-06-23 Emerson Electric Co. Power supply with feedback circuit for limiting output voltage
SE500810E (sv) * 1993-01-29 2003-01-29 Flaekt Ab Sätt att vid ¦verslag reglera str¦mtillf¦rseln till en elektrostatisk stoftavskiljare
JPH07232102A (ja) * 1993-12-28 1995-09-05 Mitsubishi Heavy Ind Ltd 電気集塵装置
JP2828958B2 (ja) * 1996-02-29 1998-11-25 住友重機械工業株式会社 パルス荷電型電気集塵機用回路及び電気集塵機
US6063168A (en) * 1997-08-11 2000-05-16 Southern Company Services Electrostatic precipitator
WO2000019609A1 (de) 1998-09-29 2000-04-06 Siemens Aktiengesellschaft Pulsgenerator zum erzeugen eines spannungspulses und zugehöriges verfahren
DE19962665B4 (de) * 1999-12-23 2008-08-21 Siemens Ag Stromversorgung für Elektrofilter
DE10145993A1 (de) * 2001-09-18 2003-04-24 Siemens Ag Hochspannungs-Pulsgenerator für ein Elektrofilter
PL214287B1 (pl) * 2001-10-26 2013-07-31 Ammono Spolka Z Ograniczona Odpowiedzialnoscia Struktura urzadzenia emitujacego swiatlo z monokrystaliczna objetosciowa warstwa azotku
US6611440B1 (en) * 2002-03-19 2003-08-26 Bha Group Holdings, Inc. Apparatus and method for filtering voltage for an electrostatic precipitator
AT500959B1 (de) * 2004-11-09 2007-05-15 Carl M Dr Fleck Verfahren und filteranordnung zum abscheiden von russpartikeln

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101240003B1 (ko) * 2010-12-09 2013-03-06 주식회사 포스코아이씨티 마이크로 펄스 전원공급 회로 및 이를 구비하는 마이크로 펄스 시스템
KR101240126B1 (ko) * 2010-12-09 2013-03-07 주식회사 포스코아이씨티 전류 차단 회로 및 이를 구비하는 마이크로 펄스 시스템
KR20160026058A (ko) * 2014-08-29 2016-03-09 주식회사 포스코아이씨티 마이크로 펄스 시스템 및 이를 이용한 전기 집진장치
KR20200114513A (ko) * 2019-03-29 2020-10-07 이승철 미세먼지 제거 장치

Also Published As

Publication number Publication date
KR100938717B1 (ko) 2010-01-28
PT1652586E (pt) 2011-09-12
WO2006045311A1 (en) 2006-05-04
ATE514490T2 (de) 2011-07-15
US7547353B2 (en) 2009-06-16
SI1652586T1 (sl) 2011-11-30
DK1652586T4 (en) 2016-06-06
BRPI0517025A (pt) 2008-09-30
DK1652586T3 (da) 2011-09-26
US20080190295A1 (en) 2008-08-14
CN101052471A (zh) 2007-10-10
PL1652586T5 (pl) 2016-08-31
EP1652586A1 (en) 2006-05-03
PL1652586T3 (pl) 2011-11-30
RU2385189C2 (ru) 2010-03-27
EP1652586B2 (en) 2016-03-16
RU2007115102A (ru) 2008-12-10
EP1652586B1 (en) 2011-06-29
ES2368913T3 (es) 2011-11-23
CN101052471B (zh) 2010-09-15

Similar Documents

Publication Publication Date Title
KR100938717B1 (ko) 전기 집진기용 펄스 발생 시스템
JP3811681B2 (ja) 高電圧パルス発生回路
US4600411A (en) Pulsed power supply for an electrostatic precipitator
US5517378A (en) Direct-current breaker for high power for connection into a direct-current carrying high-voltage line
KR100638940B1 (ko) 전압 펄스를 발생시키기 위한 펄스 발생기 및 관련 방법
JP2561453B2 (ja) 電気集塵機用パルス電源
JP3623181B2 (ja) 高電圧半導体スイッチ装置および高電圧発生装置
KR100433356B1 (ko) 전기집진용펄스전원장치및그보호방법
US4670829A (en) Method and apparatus for supplying an electrostatic precipitator with high voltage pulses
CN111565853B (zh) 高压电源系统
US4485428A (en) High voltage pulse generator
WO1997017138A1 (en) An electronic circuit suited to generating a direct voltage upon which a pulse voltage is superimposed.
JP2002530823A (ja) 接続された負荷を保護するための電力モジュレータにおける保護システム
KR20190129310A (ko) 전력 스위치를 이용한 고전압 펄스 발생 회로 및 이를 포함하는 전기 집진기
EP0210299A2 (en) Protection arrangement for switching device of a capacitive load pulser circuit
JPS6233567A (ja) 電圧パルスを発生する回路
JP2005347212A (ja) 真空装置用異常放電抑制装置
JPH0221298B2 (ko)
JPH0312941B2 (ko)
Isobe et al. Magnetic energy recovery type Marx-generator for high repetition plasma discharge

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121228

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20131227

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20141229

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20151230

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20161226

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20171226

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20181226

Year of fee payment: 10