KR20070011254A - 싱글 뷰포인트 굴절반사렌즈 - Google Patents

싱글 뷰포인트 굴절반사렌즈 Download PDF

Info

Publication number
KR20070011254A
KR20070011254A KR1020067012301A KR20067012301A KR20070011254A KR 20070011254 A KR20070011254 A KR 20070011254A KR 1020067012301 A KR1020067012301 A KR 1020067012301A KR 20067012301 A KR20067012301 A KR 20067012301A KR 20070011254 A KR20070011254 A KR 20070011254A
Authority
KR
South Korea
Prior art keywords
lens
refractive
elliptical
single viewpoint
light
Prior art date
Application number
KR1020067012301A
Other languages
English (en)
Other versions
KR101076986B1 (ko
Inventor
마이클 제이. 만델라
Original Assignee
일렉트로닉 스크립팅 프러덕츠 인코포레이션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 일렉트로닉 스크립팅 프러덕츠 인코포레이션 filed Critical 일렉트로닉 스크립팅 프러덕츠 인코포레이션
Publication of KR20070011254A publication Critical patent/KR20070011254A/ko
Application granted granted Critical
Publication of KR101076986B1 publication Critical patent/KR101076986B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/08Catadioptric systems
    • G02B17/0856Catadioptric systems comprising a refractive element with a reflective surface, the reflection taking place inside the element, e.g. Mangin mirrors
    • G02B17/086Catadioptric systems comprising a refractive element with a reflective surface, the reflection taking place inside the element, e.g. Mangin mirrors wherein the system is made of a single block of optical material, e.g. solid catadioptric systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/22Telecentric objectives or lens systems

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)
  • Eyeglasses (AREA)
  • Prostheses (AREA)

Abstract

싱글 뷰포인트를 갖는 중실 굴절반사렌즈(100)의 구형 굴절면(102)은 중심(C)이 렌즈의 광축에 있다. 이 렌즈의 타원형 반사면(104)은 굴절면을 마주보고 있으며, 반사면의 제1 초점(F1)은 굴절면의 중심(C)과 일치한다. 또, 렌즈의 조정면(106)은 타원형 반사면을 마주보면서 빛이 싱글 뷰포인트를 통과하도록 한다. 조정면은 굴절면, 반사면 또는 반투명일 수 있으며, 그 형상은 타원형이며, 타원의 제1 초점(F1')이반사면의 제2 초점(F2)과 일치한다. 렌즈의 싱글 뷰포인트는 구형 반사면의 중심(C)에 있으며, 선택한 표면 형상에 따라 렌즈의 표면, 내부, 외부의 다양한 지점에 위치할 수 있는 조리개(112)에 의해 만들어진다.

Description

싱글 뷰포인트 굴절반사렌즈{Solid Catadioptric Lens with a Single Viewpoint}
본 발명은 싱글 뷰포인트를 필요로 하는 경우에 사용하는 렌즈에 관한 것으로, 구체적으로는 싱글 뷰포인트를 갖는 굴절반사렌즈에 관한 것이다.
에고모션(ego-motion)이나 트래킹과 같은 컴퓨터 비전이 필요한 경우 큰 시야범위로 투사할 필요가 있다. 영상시스템에서 얻은 파노라마 영상에서 기하학적으로 올바른 입체영상을 만들려면 싱글 뷰포인트를 갖는 영상시스템이 바람직하다. 뷰포인트가 싱글이고 고정되려면, 영상시스템이 3차원 공간내의 한 지점을 통과하는 빛만을 캡처하여 이 지점에서 5차원 plenoptic 기능을 샘플해야만 하는데, 이때의 지점을 유효 뷰포인트라 한다. 이런 영상시스템은 곡면거울과 렌즈를 조립하여 실현된다. 이런 굴절반사 시스템은 큰 시야각을 갖기는 하지만, 싱글 뷰포인트 조건을 희생하므로, 고가이고 대형이며 다루기 어려울 수 있다.
시야각이 넓은 수많은 광학장치들은 서로 마주보는 거울을 이용해 고품질 영상을 만들기는 하지만 대신에 시야범위를 가린다. 종래의 이런 종류의 광학시스템(10)이 도 1에 도시되었다. 이 시스템(10)에는 2개의 거울(12,14)이 광축(16)에 배열되어 서로 마주보고 있다. 거울(14)은 배경(20)에서 빛을 받아 거울(12)로 반 사한다. 거울(12)은 거울(14)을 향해 빛을 되반사하되, 거울(14)의 중앙 조리개(18)에 빛을 통과시켜 배경(20)의 영상(22)을 스크린(24)에 투사한다.
거울(12)은 거울(14)에서 보이는 시야범위의 원추형 중심부(26)를 가린다. 이 때문에 영상(12)에 그늘(28)이 생긴다. 영상을 투사하려면, 배경(20)에서 오는 빛을 원추각(26)보다 큰 각도로, 예컨대 광축(16)에 대해 입사각 θi로 입사해야 한다.
종래에는 이상 설명한 원리를 채택하는 망원경 등의 시스템이 있다. 예를 들어, Sigler의 미국특허 5,089,910은 첫 번째 주거울이 비구면인 2개의 거울을 갖춘 굴절반사 줌 릴레이 망원경에 대해 소개하고 있다. Sinclair의 미국특허 5,940,222는 동일한 원리를 채택하는 굴절반사 줌렌즈 조립체를 소개한다.
로봇 비전/파노라마 영상시스템에서는 싱글 뷰포인트를 갖는 광학시스템이 필요하다. 이 상태에서 광학시스템은 시야범위내에 물체의 입체도를 만들 수 있다. 경우에 따라서는, 싱글 뷰포인트에서 투사되는 시야범위의 크기를 최대화하는 것이 바람직할 수도 있다.
싱글 시스템으로 위의 모든 조건을 만족하기는 어렵다. 굴절반사 줌릴레이 망원경이나 렌즈조립체는 대개 시야범위가 좁고 싱글 뷰포인트를 가질 필요가 없다. 실제, 많은 고급 시스템들은 뛰어난 광축성능을 보이지만(Hicks의 미국특허 6,412,961 참조) 기본적으로 싱글 뷰포인트가 아니다. Powell의 미국특허 5,473,474는 시야범위는 넓지만 싱글 뷰포인트가 없는 파노라마 렌즈를 소개한다. 거울을 서로 마주보게 하는 또다른 방법이 Kuroda의 미국특허 5,854,713에 소개되어 있다. 이 특허에서는 싱글 뷰포인트는 없되 속이 빈(중공형) 반사형 광학장치를 소개한다. Charles의 미국특허 6,449,103은 굴절반사 시스템의 다른 예를 소개한다. 미국특허 4,566,763은 포물선형 반사경을, 미국특허출원 2003/0142203은 쌍곡선형 반사경을 소개하고 있다.
종래의 기술에서는 싱글 뷰포인트를 갖는 몇가지 시스템이 있다. 예를 들어, Rees의 미국특허 3,505,465는 비디오카메라로 만든 비디오나 TV와 같은 영상을 보는 사람을 위해 싱글 뷰포인트 시스템을 만드는데 쌍곡선형 거울을 이용하는 방법을 소개한다. 최근의 Nayar의 미국특허 5,760,826과 6,118,474는 싱글 뷰포인트에 초점이 놓이는 포물선형 반사경으로 영상을 보여주는 영상장치를 소개한다. 이 영상장치는 포물선형 반사경에서 직각으로 반사되지 않은 전자기선을 걸러내기 위해 반사경에 광학적으로 결합된 광로직진(telecentric) 수단을 갖는다.
불행히도, 종래의 어떤 기술도 파노라마 프로젝션이나 큰 시야범위에 거쳐 분산된 물체의 입체도를 필요로 하는 비전시스템에 사용할 수 있는 소형이고 효과적이면서도 제작이 쉬운 싱글 뷰포인트 렌즈에 대해서는 소개하지 않았다.
발명의 목적
이상을 감안하여, 본 발명의 목적은 싱글 뷰포인트와 큰 시야범위를 갖는 소형이고 효과적이며 튼튼하면서도 제작이 쉬운 굴절반사렌즈를 제공하는데 있다. 특히, 파노라마 프로젝션을 필요로 하는 비전시스템에 사용할 수 있는 싱글 뷰포인트 굴절반사렌즈를 제공하는 것을 목적으로 한다.
본 발명의 이런 목적과 장점들은 실시예를 보면 쉽게 알 수 있을 것이다.
발명의 목적
본 발명의 목적과 장점들을 싱글 뷰포인트를 갖는 중실(中實; solid) 굴절반사렌즈에 대해 중점적으로 설명한다. 이 렌즈는 광축과 구형 굴절면을 갖는데, 굴절면의 중심(C)은 광축에 있다. 렌즈는 굴절면을 마주보고 제1 초점(F1)이 상기 중심(C)에 있어서 중심(C)이 싱글 뷰포인트인 타원형 반사면을 갖는다. 렌즈의 싱글 뷰포인트는 굴절면의 중심(C)에 있다. 또, 렌즈는, 반사면을 마주보고 빛이 싱글 뷰포인트를 지나가도록 하는 조정면을 갖는다.
조정면은 굴절조정면이고, 렌즈는 싱글 뷰포인트를 중심(C)에 만들기 위한 조리개를 갖는다. 조리개는 타원형 굴절면의 제2 초점(F2)에 위치한다. 제2 초점(F2)이 광축과 굴절조정면에 동시에 있도록 렌즈가 구성된다.
또, 조정면이 굴절조정면이고, 제2 초점(F2)은 굴절조정면 부근이나 표면에 위치한다. 다른 경우, 제2 초점(F2)이 렌즈 내부에 있기도 하다. 굴절조정면은 다양한 형상을 취할 수 있지만, 타원형이 바람직하다. 빛을 조정하기 위해, 타원형 굴절조정면의 제1 초점(F1')이 제2 초점(F2)과 일치하는 것이 바람직하다. 또, 굴절조정면의 원추율 K2가 타원형 반사면의 원추율 K1과 동일한 것이 바람직하다.
다른 경우로, 조정면이 반사조정면이고, 싱글 뷰포인트를 만들기 위한 조리개를 이용한다. 경우에 따라, 조리개는 타원형 반사면에 위치하거나, 타원형 반사면 너머에 위치한다. 마찬가지로, 빛을 조정하기 위해, 반사조정면이 제2의 타원형 반사조정면인 것이 바람직하다. 또, 경우에 따라, 제2의 타원형 반사조정면의 제1 초점(F1')이 타원형 반사면의 제2 초점(F2)과 일치한다. 또는, 제2의 타원형 반사조정면의 원추율 K2가 상기 타원형 반사면의 원추율 K1과 동일하기도 하다.
조정면이 굴절면이든 반사면이든 원추구간을 포함한 다양한 형상을 취할 수 있지만, 평면형일 수도 있다. 또, 조정면이 오로지 굴절면이거나 반사면일 필요는 없고, 반투명일 수도 있다.
중실 굴절반사렌즈는 굴절율 n의 광학재료로 이루어진 것이 바람직하다. 이 재료로는 유리, 플라스틱, 기타 공지된 광학재료가 있다.
본 발명은 또한 싱글 뷰포인트 비전시스템을 제공한다. 이 비전시스템은 빛을 싱글 뷰포인트에 통과시키는 중실 굴절반사렌즈를 이용한다. 이 비전시스템은 스캔이나 투사 등의 기능을 위해 빛을 모으거나 투사하는데 사용될 수 있다. 영상을 비추는데 렌즈를 사용할 경우, 영상면의 스크린이나 영상부에 빛을 비추는데 영상요소를 이용한다. 스캔을 위해서는 스캐너를 제공한다.
경우에 따라서는 렌즈로부터 나오는 빛을 보내는데 광학릴레이를 이용하기도 한다. 광학릴레이는 영상 비전시스템에서 렌즈가 전개되었을 때 빛을 영상면에 비추는데 이용된다. 스캐닝 비전시스템에서는 스캔거울 등의 스키너에서 렌즈로 빛을 전달하는데 광학릴레이를 이용한다.
이하, 첨부 도면들을 참조하여 본 발명에 대해 자세히 설명한다.
도 1은 엇축 광학시스템을 보여주는 종래의 장치의 사시도;
도 2는 본 발명에 따른 렌즈의 단면도;
도 3은 도 2의 렌즈를 투사에 사용할 때의 단면도;
도 4는 본 발명에 따른 다른 렌즈의 단면도;
도 5는 본 발명에 따른 렌즈의 단면도;
도 6은 절곡형의 또다른 렌즈의 단면도;
도 7은 투사에 사용되는 절곡렌즈의 단면도;
도 8은 도 7의 렌즈를 이용하고 영상요소를 갖춘 비전시스템의 사시도;
도 9는 도 7의 렌즈를 이용하고 스캐너를 갖춘 다른 비전시스템의 단면도;
도 10은 본 발명에 따른 또다른 렌즈의 단면도;
도 11은 도 2와 비슷하지만 광학릴레이를 갖춘 렌즈의 단면도.
싱글 뷰포인트 고체 굴절반사렌즈(30)의 단면도를 참조하여 본 발명에 대해 설명한다(도 2 참조). 렌즈(30)는 광축(32)을 갖고 굴절율 n의 광학재료로 이루어진다. 광학재료로는 굴절율(n) 편차가 거의 또는 전혀 없는 것이 바람직하다. 적당한 재료로는 성형가능한 플라스틱과 유리 등의 광학재료가 포함된다.
렌즈(30)는 구형 굴절면(34)을 갖고 그 중심(C)은 광축(32)상에 있다. 중심(C)으로 들어가는 빛(36)과 나오는 빛(36')은 굴절면(34)을 90도로 통과한다. 구형 굴절면(34)의 입체각은 Θ로서, 이 각도로 렌즈(30)가 빛(36)을 집광하고 빛(36')을 투사한다.
렌즈(30)의 타원형 반사면(38)은 굴절면(34) 반대쪽에 위치한다. 타원형 반사면(38)은 반사막(40)을 코팅해서 반사를 할 수 있다. 파단선으로 표시한 타원(38')을 그려 반사면(38)을 만든다. 특히, 광축(32)을 중심으로 타원(38')을 그려 반사면(38)을 만든다. 제1 초점(F1)이 광축 (32)상의 굴절면(34) 중심(C)과 일치되게 반사면(38)을 배치한다. 반사면(38)에 의한 제2 초점(F2) 역시 렌즈(30) 내부의 광축(32)상에 있다.
빛(36,36')이 중심(C)을 지나도록 렌즈(30)의 타원형 반사면(38) 반대쪽에 굴절조정면(42)을 둔다. 중심(C)은 실제로는 렌즈(30)의 뷰포인트이다. 다시 말해, 조리개(44)에 의해 렌즈(30)의 싱글 뷰포인트가 중심(C)에 있게 된다. 조리개(44)는 렌즈(30)의 광학재료 안에 심어진 물질로서, 제2 초점(F2)에 핀홀이나 박막을 갖는 것이 바람직하다. 또는, 렌즈(30)의 광학재료중에 불투명 구간에 조리개(44)를 형성하기도 한다. 당업자라면 조리개(44)를 만드는 방법을 잘 알 것이다.
굴절조정면(42)은 어떤 형상도 취할 수 있고 조리개(44)를 지나 빛(36,36')을 통과시키기만 하면 어느 위치에도 있을 수 있다. 본 실시예에서 굴절조정면(42)은 렌즈(30)를 출입하는 빛(36,36')를 통과시키는 굴절면이다. 실제, 굴절조정면(42)은 광축(32)을 중심으로 파단선으로 표시한 타원(42')이 그리는 타원형 굴절조정면이다. 타원형 굴절조정면(42)의 제1 초점(F1')은 반사면(38)의 제2 초점(F2)과 일치하고 제2 초점(F2')은 렌즈(30) 내부의 광축(32)상에 있는 것이 바람직하지만, 굴절조정면(42)의 원추율 K2는 아래와 같은 것이 더 바람직하다:
K 2 = -1/n2
여기서 n은 광학재료의 굴절율이다. 이런 조건에서, 렌즈(30)에 대해 입체각(Θ)으로 입사하는 빛(36)은 광축(32)에 평행하게 굴절조정면(42)에서 렌즈(30)를 나간다. 이 경우, 반사면(38)의 원추율 K1을 K2와 같게 하는 것도 가능하다.
렌즈(30) 앞에 영상면(46)을 설치한다. 렌즈(30)가 광축(32)에 대해 입사각 θi로 들어가는 빛(36)을 수집할 때, 영상면(46)은 빛(36)을 투사하는 스크린일 수 있다. 한편, 광축(32)에 평행하게 영상면(46)에서 렌즈(30)로 빛(36')을 방출할 수도 있다. 이 모드에서, 렌즈(30)는 입체각 Θ로 빛(36')을 투사하므로 상을 투사하는데 사용될 수 있다.
넓은 시야각으로 상을 투사하는 렌즈(30)의 동작을 도 3의 단면도를 참조해 설명한다. 렌즈(30)가 빛(36)을 모으는 입체각 Θ에 의해 시야가 정해진다. 입체각 Θ는 광축(32)에 대해 대칭이다.
렌즈(30)의 중심(C)에서의 싱글 뷰포인트가 대물평면(48) 위로 높이 h에 있도록 렌즈를 배치한다. 대물평면(48)에 여러 개의 포인트(P1~P4)가 위치한다(P3, P4는 광축(32)에서 멀리 떨어져 있다). 평면(48)에서 나온 빛(36)은 광선다발(50,52,54,56)로 렌즈(30)로 입사한다. P1은 시야의 가장자리에 위치하므로, 이곳에서 나온 광선다발(50)은 최소의 입사각(θmin)으로 렌즈(30)에 들어간다. P4는 시야의 다른쪽 가장자리에 있으므로 이곳에서 나온 광선다발(56)도 최소의 입사각 (θmin)으로 렌즈(30)에 들어간다. 렌즈(30)의 설계상 최대 입사각(θmax)은 거의 90도이다. 광선다발(50,56)은 파단선을 따라가면서 렌즈(30)의 시야 경계상에 있다.
광선다발(50,...56)은 구형 굴절면(34)을 통해 렌즈(30)로 들어간다. 광선다발은 중심(C)의 싱글 뷰포인트를 통해 타원형 반사면(38)으로 들어간다. 반사면(38)에서 광선다발(50,...56)은 타원형 굴절조정면(42)으로 반사된다. 조리개(44) 때문에 광선다발(50,...56)은 굴절조정면(42)에 도달하지만, 굴절면(34)은 통과하되 중심(C)의 싱글 뷰포인트는 통과하지 않는 빛은 걸러진다.
표면(38,42)의 원추율(K1,K2)이 같고 K1=K2=-1/n2이고 F2와 F1'이 일치하므로, 광선다발(50,...56)의 빛(36)은 렌즈(30)를 나갈 때 광축(32)에 거의 평행하다. 이런 형태가 바람직한데, 이 경우 광선다발(50,...56)이 더 이상의 광학성형 없이도 영상면(46)에 투사되기 때문이다. 평면(48)상의 P1~P4는 따라서 영상면(46)에 대응하는 P1' ~ P4'에 투사된다.
렌즈(30)의 특징은, 등간격이나 동일한 시야각으로 굴절면(34)에 입사되는 광선다발(50,...56)이 타원형 굴절조정면(42)을 나갈 때는 광축(32)에 평행하다는 것이다. 즉, 동일한 시야각으로 있는 P1~P4가 동일한 간격으로 영상면(46)에 P1'~P4'로 비치는 것이다. 영상면(46)에서 광축에서부터의 거리와 시야각 사이에 선형사상(linear map) 관계가 있으면 많은 영상장치에 유용하고 이를 f-θ 영상이라고도 한다.
도 4는 또다른 싱글 뷰포인트 굴절반사렌즈(60)의 단면도이다. 렌즈(60)는 굴절율 n의 성형 플라스틱으로 만들어지고 구형 굴절면(62)의 중심(C)은 광축(64)상에 있다. 굴절면(62)은 타원형 반사면(66) 반대쪽에 있다. 이들 2개의 표면은 반사면(66)의 제1 초점(F1)이 중심(C)에 놓이도록 배열된다. 조정면(68)은 반사면(66)을 마주본다. 이 경우, 조정면(68)은 반사면이고 포물선 형상으로서, 포물선형 반사조정면을 이룬다. 조정면(68)은 광축(64)상의 하나의 초점(F1')에 의해 형성된다. 또, 초점(F1')은 반사면(66)의 제2 초점(F2)과 일치한다. 이들 표면(66,68)의 원추율 K1, K2는 서로 동일하지 않다.
렌즈(60)의 조리개(70)는 싱글 뷰포인트를 중심(C)에 두기 위한 것이다. 빛이 포물선 반사조정면(68)을 통과하지 못하므로, 조리개는 맞은편 반사면(66)에 위치한다. 조리개(70)는 타원형 반사면(66)에 형성된다. 예컨대, 반사면(66)을 덮는 반사막의 핀홀이 조리개(70)이다. 또는 조리개(70)를 반사면(66) 앞이나 뒤에 둘 수도 있다.
빛(36')을 내는 투사기(72)는 반사면(66) 뒤 광축(64)에 둔다. 투사기(72)는 반사경 어레이로서 각도 Θ로 표시된 시야범위에 빛(36')을 투사하기 위해 렌즈(60)에 빛을 비추는데 사용된다. 시야범위는 최소 방출각 σmin과 최대 방출각 σmax로 정의된다. 투사기(72)는 광축(64)에서 충분히 먼 화소(74)와 같은 발광점에서 빛(36')을 방출하여 σmin<σ<σmax과 같은 방출각(σ)으로 매핑한다. 예를 들어, 광축(64)에서 d만큼 떨어진 화소(74)에서 나온 빛(36')은 조리개(70)를 통해 렌즈(60)로 들어가고 방출각(σ)으로 렌즈를 나간다. 당업자라면 알 수 있듯이, 렌즈 나 거울 같은 추가 광학부품들은 반사면(66)과 투사기(72) 사이에 배치하여, 여러 가지 빛을 조정하고 필요한 기능을 발휘하도록 한다.
일례로, 렌즈(60)를 시야범위내로 빛(36')을 투사하는데 이용한다. 투사기(72)는 광축(64)에 대해 방출각(σ)으로 빛(36')을 방출하도록 화소(74)를 자극한다. 빛(36')은 광축(64)에 d만큼 떨어져 평행하게 진행하다 조리개(70)를 통해 렌즈(60)로 들어간다. 렌즈(60)의 도광성 때문에 구형 굴절면(62)을 통해 각도 σ로 빛(36')이 렌즈(60)를 나간다.
렌즈(60)를 사용해 입사각 θi=σ으로 시야범위로부터 들어오는 빛(36)을 수집하기도 하는데, 여기서 입사각 θi는 최소입사각 θminmin보다 크고 최대입사각 θminmax보다 작다.
본 발명의 렌즈의 형상은 여러 가지로 바꿀 수 있다. 예를 들어, 렌즈의 타원형 표면을 바꿀 수 있다. 도 5의 경우 외부 프로파일(82,84)가 달린 싱글 뷰포인트 굴절반사렌즈(80)를 보여준다. 이 렌즈(80)의 굴절면(86)는 구면이고 그 중심(C)은 싱글 뷰포인트와 일치한다. 제1, 제2 초점(F1,F2)을 갖는 타원형 반사면(88)은 굴절면(86)을 마주보고 제1 초점(F1)은 중심(C)에 있다. 조정면(90)은 2개의 초점(F1,F2)을 갖는 타원형의 제2의 반사조정면 형태로서 굴절면(86)을 마주본다. 모든 초점은 광축(87)에 있다.
반사면(88,90)을 이루는 타원(92,94)은 편의상 파단선으로 표시한다. 앞의 경우와는 대조적으로, 타원(94)의 두번째 초점(F2')은 뷰포인트인 중심(C)의 다른 쪽으로 반사면(88) 너머에 있다. 타원(92,94)과 반사면(88,90)이 겹치는 부분이 절곡된 형상이다.
제2 타원형 반사조정면(90)은 반사막(도시 안됨)의 도움으로 외부 프로파일(82)에 형성된다. 렌즈(80)의 시야범위 확대를 위해 반사조정면(90)의 크기를 줄일 수 있다. 외부 프로파일(84)은 반사면(88)부터 평탄면(96)까지 돌출한다. 평탄면(96)은 투명하고, 반사조정면(90)의 제2 초점(F2')이 평탄면에 위치하도록 배치된다. 실제, 평탄면(96)의 크기는 중심(C)에 싱글 뷰포인트를 만드는 렌즈(80)의 조리개를 결정한다. 작은 조리개를 원하면, 평탄면(96)에 마스크를 배치하되 마스크 중앙에 구멍을 뚫는다.
렌즈(80)로 들어가는 빛(36)의 입사광 다발(98)을 위주로 렌즈의 동작에 대해 설명하겠지만, 렌즈(80)는 빛(36')을 투사하는 것도 물론 가능하다. 빛(36)은 굴절면(86)을 통해 렌즈(80)로 들어간 다음, 중심(C)의 싱글 뷰포인트를 지나 반사면(88)에서 반사된다. 이어서 빛(36)은 타원의 표면에서 반사되어 타원의 수학적 규칙에 따라 타원의 한쪽 초점인 제2 초점(F2)을 지난다. 설계상 제2 초점(F2)은 반사면(90)의 제1 초점(F1')과 일치하고 반사면도 역시 타원의 일부분으로서 빛(36)에도 동일한 수학적 규칙을 적용한다. 구체적으로, 빛(36)은 반사면(90)에서 반사되고 평탄면(96)에 있는 제2 초점(F2')을 통과한다.
빛(36)은 평탄면(96)을 나가면서 더 조정되어, 렌즈(80)의 전개상태에 따라 필요한대로 방향조정된다. 예를 들어, 영상요소들이 평탄면(96) 뒤에 위치하여 빛(36)을 영상면으로 안내할 수 있다. 또는 광학 릴레이를 평탄면에 설치하여 빛(36)을 안내하기도 한다.
다른 굴절반사렌즈(100)가 도 6에 도시되었다. 이 렌즈(100)의 기본형상은 9개의 기하학적 설계요소인 R, R1, K1, R2, K2, L1, L2, L3, L4로 설명된다. 앞의 5개 요서는 구형 굴절면(102)의 반경, 타원형 반사면(104)의 곡률반경, 표면(104)의 원추율, 제2 타원형 반사조정면(106)의 곡률반경, 표면(106)의 원추율이다. L1~L4는 도면에 표시된 것과 같이 길이를 나타낸다. 또, 108은 표면(106)의 꼭지점, 110은 표면(104)의 꼭지점, 112는 렌즈(100)의 싱글 뷰포인트를 이루는 조리개이다. 표면(106)의 제2 초점(F2')은 조리개(112) 내부의 표면(104)상에 있고, 표면(106)은 외부 프로파일(118)에 있다.
렌즈(100)는 완전히 밀폐형이다. 따라서, 이 렌즈(100)를 사용하는 모든 비전시스템의 광학성능은 대부분 광학적 릴레이 디자인에 의존한다. 본 실시예에서, 싱글 릴레이렌즈(114)는 싱글파장의 빛(36)으로 영상면(116)에 영상을 만드는 광학 릴레이를 대표한다. 시야범위가 더 평평하고 좀더 무색성의 광학 릴레이를 컬러 영상에 사용할 수 있는데, 당업자라면 이에 대해 잘 알 것이다.
렌즈(100)는 R, R1, R2의 값을 바꿔 크기를 다르게 할 수 있다. 일반적인 렌즈(100) 형상과 각도 확대율은 K1, K2의 비로 조정된다. 이들 요소를 조정했으면, 다음 방정식을 이용해 L1~L4를 구한다:
Figure 112006043648623-PCT00001
이것에 의하면, 두번째 타원형 반사조정면(106)의 기하학적 제1 초점(F1')이 타원형 반사면(104)의 기하학적 제2 초점(F2)과 일치한다. 본 실시예는 특별한 경우로서, L4=L1+L2이고, 타원형의 제2 반사조정면(106)의 제2 초점(F2')이 타원형 반사면(104)의 꼭지점(110)에 겹쳐진다. 전술한 바와 같이, 이렇게 되면 원하는 조도에 따라 직경 2mm 이하의 조리개(112)가 꼭지점(110)에 위치한다. 조리개(112)는 알루미늄과 같은 반사막으로 전체 반사면(104)을 코팅하기 전에 차폐되는 타원형 반사면(104)의 일부분인 것이 바람직하다.
도 7은 외부 프로파일이 없고 시야범위가 입체각 Θ인 또다른 싱글 뷰포인트 렌즈(120)를 보여준다. 이 렌즈(120)의 구형 굴절면(122)은 타원형 반사면(124)을 마주보고, 굴절면(122)의 중심(C)은 반사면(124)의 제1 초점(F1)과 일치한다. 반사면(124)은 반투명의 타원형 조정면(126)을 마주보되, 반사면(124)의 제2 초점(F2)은 조정면(126)의 제1 초점(F1')과 일치한다. 조정면(126)의 제2 초점(F2')은 조리개(128) 내부에서 반사면(124)에 위치한다. 중심(C)과 모든 초점은 렌즈(120)의 광축(130)에 있다.
디스플레이(134)에서 생긴 빛(36')을 렌즈(120)로 안내하기 위한 광학릴레 이(132)를 반사면(124) 옆에 배치한다. 더 정확하게는, 릴레이(132)는 광축(130)에 평행하게 렌즈(120)로 들어가는 빛(36')을 안내하기 위한 동축 릴레이이다. 릴레이(132)는 광축(130)에서 빛(36')이 떨어진 간격(d)을 렌즈(120)에 대한 허용각도(α)로 변환한다. f는 릴레이(132)의 초점길이이다. 릴레이(132) 설계상, 허용각도(α)는 각도(α)의 값보다 간격(d)의 선형함수이다.
동작중에, 광축(130)에서 d만큼 떨어진 디스플레이(134)의 화소(136)에서 빛(36')이 나온다. 릴레이(132)에 의해 빛(36')이 허용각도(α)로 렌즈(120)로 안내된다. 빛(36')은 반투명 반사면(126)과 반사면(124)에서 차례대로 반사된 다음 굴절면(122)을 통해 방출각(σ)으로 렌즈(120)를 나간다. 이 과정동안 각도 α는 각도 σ로 확대되고, σ/α의 비율로 각도확대가 일어난다. 빛(36')의 일부분(138)은 반투명 반사면(126)을 통해 렌즈(120)를 나간다. 이 부분(138)은 렌즈(120)나 디스플레이(134)를 모니터하는데 이용될 수 있다. 이 부분(138)은 또한 렌즈(120)와 디스플레이(134)의 정렬상태를 확인하는데에도 이용된다. 당업자라면 반투명 반사면(126)의 투명도를 이런 기능에 맞게 조정할 수 있을 것이다. 반투명 반사면(126)의 투명도는 빛(36')의 파장에 따라 변할 수 있다.
한편, 렌즈(120)는 빛(36)을 받아서 화소(136)로 투사하는 반대 기능도 한다. 이 경우, 디스플레이(134)를 영상 어레이와 같은 영상요소 등의 감광요소로 대체한다. 이런 배열에서 화소(136)는 빛을 감지한다. 빛(36)의 일부분은 반투명 반사면(126)을 투과하기도 한다.
이상의 설명으로부터 알 수 있듯이, 본 발명에 따른 굴절반사렌즈는 기능이 다양하고, 간단하며, 울퉁불퉁하면서도 제작이 쉽다. 이들 렌즈는 일부분이나 전체가 몰딩 기법으로 제작된다. 렌즈의 광학적 성능은 대부분 빛을 전달하거나 수집하는 보조 광학릴레이와 표면 정밀도에 크게 좌우된다. 릴레이는 비전시스템이나 애플리케이션을 기초로 설계되어야 하고, 영상요소, 스캐너, 디스플레이를 갖추는가에 따라 특정한 설계사양을 채택할 수 있다.
도 8은 반투명 조정면(126)이 아닌 타원형 반사조정면(126')을 갖는 렌즈(120)를 이용하는 싱글 뷰포인트 비전시스템(140)을 보여준다. 비전시스템(140)의 영상요소(142)는 화소(144)를 갖는 영상어레이 등이다(편의상 일부만 도시됨). 어레이(142)는 반사면(124) 후방의 영상면(146)에 위치한다. 반사면(124)과 영상면(146) 사이의 광학 릴레이는 편의상 도면에 도시하지 않았다. 그러나, 도 7에서 설명한 광로직진 릴레이를 포함한 어떤 종류의 릴레이라도 렌즈(120)와 영상어레이(142) 사이에 사용할 수 있다.
반사조정면(126')은 렌즈(120)의 시야범위를 Θ로 정해진 엇축 범위로 제한한다. 따라서, 비전시스템(140)은 시야범위 중심이 가려지거나 투사를 필요로하지 않을 때 가장 유용하다. 시야범위 중심은 영상면(146)의 그늘(148)에 해당한다. 설명의 편의상, 뷰포인트를 중심(C)에 두도록 하는 조리개(128)는 반사면(124)에 표시하지 않았고 영상면(146)은 확대하여 보여준다.
비전시스템(140)은 투사할 물체(150)를 향한다. 좌표(X',Y',Z')의 X'-Y' 평면에 표면이 놓여있는 기판이 물체(150)이다. 비전시스템(140)은 기판(150) 위에 있고, 기판의 원점과 렌즈(120)의 싱글 뷰포인트(C)는 벡터 Rc로 연결된다. Rc는 광축(130)과 일치하고 Rc의 크기가 원점과 뷰포인트(C) 사이의 간격이다. 비전시스템(140)은 공간에서 움직이고 그 좌표(X,Y,Z)는 물체의 좌표(X',Y',Z')에 대해 회전한다. 물체의 좌표와 비전시스템의 좌표를 정렬시키는 경우는 많다. 예를 들어, 비전시스템의 좌표(X,Y,Z)와 물체의 좌표 사이의 회전을 오일러 각도(φ,θ,ψ)에 의한 연속 3회전으로 표현할 수 있다.
동작중에 비전시스템(140)은 기판(150)의 P점에서 빛(36)을 수집한다. 이 빛(36)은 광선다발(152)을 따라 렌즈(120)에 입사각 θi로 들어간다. 렌즈(120)는 P점을 영상면(146)의 영상어레이(142)에 PI점으로 투사한다. 편의상 영상면(146)은 XI, YI축 평면으로 설명하고, 영상면(146)의 PI점의 위치는 벡터 RP로 설명한다. 싱글 뷰포인트(C) 때문에, 렌즈(120)는 PI점의 파노라마 투사를 한다. 따라서, 렌즈(120)는 영상면(146)에 기판(물체)(150)의 파노라마 영상을 만들 수 있다.
한편, 비전시스템(140)이 렌즈(120)를 이용해 기판(150)의 투사점 PP에 빛(36')을 투사하고 그와 동시에 P점에서 빛(36)을 수집할 수도 있다. 이 경우, 어레이(142)상의 PS점의 화소(154)에서 빛(36')이 나온다. 영상면(146)의 PS점의 위치는 RS 벡터로 설명한다. 렌즈(120)를 통해 방출각(σ)으로 기판(150)의 PP점에 빛(36')의 다발(156)이 투사된다. 본 실시예에서 채택할 수 있는 감광성 발광 화소들을 갖는 하이브리드 어레이는 당 분야에 공지되어 있다. 물론, 기판(150)에 대한 투사가 불필요하면 도 7에서 설명한 디스플레이를 사용해 빛(36')을 투사할 수 있다.
도 9의 비전시스템(160)은 파장-의존성 반투명 타원형 조정면(126")을 갖는 렌즈(120)를 이용해 물체(162)에 빛(36')을 투사한다. 어떤 지점에서 물체(162)는 후방산란광(36")을 만들어 반응하고, 그와 동시에 시스템(160)은 렌즈(120)를 이용해 후방산란광(36")을 수집한다.
시스템(160)의 디스플레이(164)는 스크린이나 디텍터 어레이 등으로서 조정면(126") 앞에 위치한다. 디스플레이(164)는 광축(130)과 동축이다. 또, 시스템(160)은 빛(36')을 내는 광원(168)을 갖는 스캐너(166)를 갖는다. 스캐너(166)는 빛(36')을 편광하거나 조정하는 스캔거울(170)을 갖는다. 거울(170)은 겨울면 MP에대해 스캔각도 γ만큼 기울어진다. 스캔각도 γ를 조절하는 구동기는 당 분야에 잘 알려져 있다.
스캐너(166)의 광학릴레이(172)는 광축(130)을 따라 빛(36')을 형성하고 조리개(128)를 통해 렌즈(120) 안으로 안내하기 위한 것이다. 릴레이(172)는 스캔각도 γ를 렌즈(120)의 대응 허용각도 α로 변환하는 타입이다. 예를 들어, 릴레이(172)는 거울(170)의 중심이 릴레이(172)의 초점과 일치하고 조정면(126")의 제2 초점(F2')이 4-f 시스템의 다른 초점과 일치하도록 광축(130)상의 초점길이가 동일 하거나 서로 다른 2개의 렌즈를 이용하는 4-f 시스템이다. 릴레이(172)는 렌즈(120)에서 스캐너(166)로 되돌아가는 모든 빛을 편향시키는 빔스플리터(176)를 갖기도 한다.
동작중에, 시스템(160)은 거울(170)의 스캔각도 γ를 조정하여 빛(36')을 조준한다. 스캔각도 γ를 바꾸면 빛(36')이 렌즈(120)를나가는 방출각(σ)이 바뀐다. 이 경우, 빛(36')이 처음에는 σ1 각도로, 이어서 σ2 각도로 방출되도록 스캔각도 γ를 바꾼다.
빛(36')의 작은 부분(174)이 투과되어 디스플레이(164)에 투사되도록 반투명면(126")의 통과 파장을 선택한다. 구체적으로, 빛(36')이 σ1 각도로 방출되면, 174 부분이 PI 2로 전달된다. 이어서, σ2 각도로 174 부분이 PI 2로 전달된다. 빛(36')의 이 부분(174)은 참조, 피드백, 트래킹, 기타 다른 보조기능에 사용될 수 있다.
물체(162)는 빛(36')의 경로를 따라 렌즈(120)로 되돌아가는 후방산란광(36")을 σ2 각도로 생성한다. 빛(36")은 θi2의 입사각으로 표면(122)을 통해 렌즈(120)로 들어간다. 빛(36")의 작은 일부분이 표면(126")을 통해 렌즈(120)를 나간다. 빛(36")의 나머지는 표면(126")에서 반사되고 빔스플리터(174)에 의해 분리된다. 물론, 디스플레이(164)에 등록된 빛(36")의 일부분이라도 산란광(36")을 모니터하기에 충분하다면, 빛(36")의 나머지는 버려도 된다. 이 경우, 빔스플리 터(174)는 없어도 된다.
도 10은 또다른 싱글 뷰포인트 렌즈(180)를 보여준다. 이 렌즈(180)의 굴절면(182)은 타원형 반사면(184)을 마주보고, 반사면은 평평한 반사조정면(186)을 마주본다. 반사면(184)의 제1 초점(F1)과 굴절면(182)의 중심(C)은 렌즈(180)의 싱글 뷰포인트에 일치한다. 반사면(184)의 제2 초점(F2)은 싱글 뷰포인트를 만드는 조리개(188) 내의 표면(186)에 있다.
렌즈(180)는 굴절율이 n1, n2로 각각 다른 2가지 재료(183,185)로 이루어진다. 재료(183)로는 유리나 플라스틱이, 재료(185)로는 유리나 플라스틱이 바람직하지만 렌즈(180) 내부공간을 채우는 액체나 광학 겔일 수도 있다. 후자의 경우, 일점쇄선으로 표시된 렌즈(180)의 부분(190)은 유리나 플라스틱으로서 재료(185)를 감싸는 케이스를 형성하기에 적합한 재료로 이루어진다. n1=n2가 바람직하다.
복합렌즈(192) 형태의 광학릴레이를 렌즈(180)에서 빛(36)을 내보내도록 표면(186) 근처에 배치한다. 이 경우, 렌즈(192)는 영상면(194)에 빛(36)을 투사하도록 설계된다. 반대로, 렌즈(192)는 영상면(194)에서 렌즈(180)로 빛(36')을 들여보내는데 사용될 수도 있다.
한편, 내부공간(198)을 이루고 파단선으로 표시된 틀(196)의 도움으로 렌즈(180)를 구성할 수도 있다. 내부공간(198)은 광학 겔이나 기타 광학재료로 채워진다. 실제, 190 부분을 포함한 전체 렌즈(180)는 속이 빈 형태로서 광학 겔이나 액체 등의 광학재료로 채워진다.
도 11은 도 2의 렌즈(30)와 비슷한 렌즈(200)의 단면도로서, 광학릴레 이(210)를 구비한다. 렌즈(200)의 굴절면(202)은 타원형 반사면(204)을 마주보고, 반사면은 타원형 굴절조정면(206)을 마주본다. 반사면(204)의 제1 초점(F1)과 굴절면(202)의 중심(C)은 싱글 뷰포인트에 맞춰진다. 초점(F1',F2) 역시 서로 일치한다. 모든 초점은 광축(208)에 있다.
렌즈(200)는 몸체내에 고정된 조리개가 없다는 점에서 렌즈(30)와 다르다. 오히려, 렌즈(214,216) 사이의 광학릴레이(210)에 조절식 조리개(212)가 배치된다. 렌즈(214,216)는 각각 초점길이 f1, f2를 갖는다. 릴레이(210)의 제1 영상면(218)은 렌즈(214)에서 f1 거리에 떨어져 있다. 렌즈(216)에서 f2 거리에 제2 영상면(220)을 배치한다. 당업자라면 릴레이(210)가 4-f 릴레이 타입임을 알 수 있을 것이다.
동작중에 조리개(212)를 조정하여 렌즈(200)의 F수를 조절하고 광각 상태로 동작시킬 수 있다. 조리개(212)를 열면 F수가 낮아져 렌즈(200)의 싱글 뷰포인트 특성이 점차 약화됨을 알아야 한다.
본 발명에 따른 싱글 뷰포인트 굴절반사렌즈는 수많은 변형이 가능하다. 예를 들어, 중실렌즈가 아닌 중공렌즈도 가능하고, 이 경우 몰딩으로 만들 수 있다. 경우에 따라서는 렌즈의 일부분을 조립법에 의해 중공으로 만들고, 렌즈의 중실 부분의 굴절율과 동일한 굴절율을 갖는 광학 겔로 공간을 채울 수도 있다. EH, 타원형 반사면이나 조정면을 외부로 돌출하지 않고 렌즈 안으로 들어가게 형성할 수도 있다. 여하간에 본 발명의 범위는 첨부된 특허청구범위에 의해서만 제한된다.

Claims (22)

  1. 광축에 싱글 뷰포인트를 갖는 중실 굴절반사렌즈에 있어서:
    a) 중심(C)이 광축에 있는 구형 굴절면;
    b) 상기 굴절면을 마주보고, 제1 초점(F1)이 상기 중심(C)에 있어서, 중심(C)이 싱글 뷰포인트인 타원형 반사면; 및
    c) 상기 반사면을 마주보고, 빛이 싱글 뷰포인트를 지나가도록 하는 조정면;을 갖는 것을 특징으로 하는 중실 굴절반사렌즈.
  2. 제1항에 있어서, 상기 조정면이 굴절조정면이고, 싱글 뷰포인트를 만들기 위한 조리개를 더 포함하는 것을 특징으로 하는 중실 굴절반사렌즈.
  3. 제2항에 있어서, 상기 조리개가 타원형 굴절면의 제2 초점(F2)에 위치하는 것을 특징으로 하는 중실 굴절반사렌즈.
  4. 제3항에 있어서, 상기 제2 초점(F2)이 광축과 굴절조정면에 동시에 있는 것을 특징으로 하는 중실 굴절반사렌즈.
  5. 제3항에 있어서, 상기 제2 초점(F2)이 광축과 굴절반사렌즈 내부에 동시에 있는 것을 특징으로 하는 중실 굴절반사렌즈.
  6. 제2항에 있어서, 상기 굴절조정면이 타원형 굴절조정면인 것을 특징으로 하는 중실 굴절반사렌즈.
  7. 제6항에 있어서, 상기 타원형 굴절조정면의 제1 초점(F1')이 상기 제2 초점(F2)과 일치하는 것을 특징으로 하는 중실 굴절반사렌즈.
  8. 제7항에 있어서, 상기 굴절조정면의 원추율 K2가 상기 타원형 반사면의 원추율 K1과 동일한 것을 특징으로 하는 중실 굴절반사렌즈.
  9. 제1항에 있어서, 상기 조정면이 반사조정면이고, 싱글 뷰포인트를 만들기 위한 조리개를 더 포함하는 것을 특징으로 하는 중실 굴절반사렌즈.
  10. 제9항에 있어서, 상기 조리개가 타원형 반사면에 위치하는 것을 특징으로 하는 중실 굴절반사렌즈.
  11. 제9항에 있어서, 상기 조리개가 타원형 반사면 너머에 위치하는 것을 특징으로 하는 중실 굴절반사렌즈.
  12. 제9항에 있어서, 상기 반사조정면이 제2의 타원형 반사조정면인 것을 특징으 로 하는 중실 굴절반사렌즈.
  13. 제12항에 있어서, 상기 제2의 타원형 반사조정면의 제1 초점(F1')이 상기 제2 초점(F2)과 일치하는 것을 특징으로 하는 중실 굴절반사렌즈.
  14. 제12항에 있어서, 상기 제2의 타원형 반사조정면의 원추율 K2가 상기 타원형 반사면의 원추율 K1과 동일한 것을 특징으로 하는 중실 굴절반사렌즈.
  15. 제1항에 있어서, 굴절율 n의 광학재료로 이루어진 것을 특징으로 하는 중실 굴절반사렌즈.
  16. 제1항에 있어서, 상기 조정면이 반투명 조정면인 것을 특징으로 하는 중실 굴절반사렌즈.
  17. 제1항에 있어서, 상기 조정면이 평평한 조정면, 타원형 조정면 또는 포물선형 조정면인 것을 특징으로 하는 중실 굴절반사렌즈.
  18. a) 광축을 갖는 중실 굴절반사렌즈;
    b) 중심(C)이 광축에 있는 구형 굴절면;
    c) 상기 굴절면을 마주보고, 제1 초점(F1)이 상기 중심(C)에 있어서, 중 심(C)이 싱글 뷰포인트인 타원형 반사면; 및
    d) 상기 반사면을 마주보고, 빛이 싱글 뷰포인트를 지나가도록 하는 조정면;을 갖는 것을 특징으로 하는 싱글 뷰포인트 비전시스템.
  19. 제18항에 있어서, 빛을 통과시키는 광학 릴레이를 더 포함하는 것을 특징으로 하는 싱글 뷰포인트 비전시스템.
  20. 제18항에 있어서, 상기 조정면이 반사조정면, 굴절조정면 또는 반투명 조정면인 것을 특징으로 하는 싱글 뷰포인트 비전시스템.
  21. 제18항에 있어서, 상기 조정면이 평평한 조정면, 타원형 조정면 또는 포물선형 조정면인 것을 특징으로 하는 싱글 뷰포인트 비전시스템.
  22. 제18항에 있어서, 스캐너, 영상요소 또는 디스플레이를 더 포함하는 것을 특징으로 하는 싱글 뷰포인트 비전시스템.
KR1020067012301A 2003-11-24 2006-06-21 싱글 뷰포인트 굴절반사렌즈 KR101076986B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/721,194 US7038846B2 (en) 2003-11-24 2003-11-24 Solid catadioptric lens with a single viewpoint
US10/721,194 2003-11-24
PCT/US2004/039444 WO2005052667A1 (en) 2003-11-24 2004-11-24 Solid catadioptric lens with a single viewpoint

Publications (2)

Publication Number Publication Date
KR20070011254A true KR20070011254A (ko) 2007-01-24
KR101076986B1 KR101076986B1 (ko) 2011-10-26

Family

ID=34591747

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020067012301A KR101076986B1 (ko) 2003-11-24 2006-06-21 싱글 뷰포인트 굴절반사렌즈

Country Status (10)

Country Link
US (1) US7038846B2 (ko)
EP (1) EP1690121B1 (ko)
JP (1) JP4680202B2 (ko)
KR (1) KR101076986B1 (ko)
CN (1) CN100549751C (ko)
AT (1) ATE428127T1 (ko)
CA (1) CA2546594C (ko)
DE (1) DE602004020502D1 (ko)
HK (1) HK1101431A1 (ko)
WO (1) WO2005052667A1 (ko)

Families Citing this family (94)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1405123B1 (de) 2000-10-07 2007-03-21 David Dickerson Informationssystem und Verfahren zur Zurverfügungstellen von Informationen unter Verwendung eines Holographischen Elements
US8442331B2 (en) 2004-02-15 2013-05-14 Google Inc. Capturing text from rendered documents using supplemental information
US10635723B2 (en) 2004-02-15 2020-04-28 Google Llc Search engines and systems with handheld document data capture devices
US8799303B2 (en) 2004-02-15 2014-08-05 Google Inc. Establishing an interactive environment for rendered documents
US20060041484A1 (en) 2004-04-01 2006-02-23 King Martin T Methods and systems for initiating application processes by data capture from rendered documents
US7812860B2 (en) 2004-04-01 2010-10-12 Exbiblio B.V. Handheld device for capturing text from both a document printed on paper and a document displayed on a dynamic display device
US20070300142A1 (en) 2005-04-01 2007-12-27 King Martin T Contextual dynamic advertising based upon captured rendered text
US20080313172A1 (en) 2004-12-03 2008-12-18 King Martin T Determining actions involving captured information and electronic content associated with rendered documents
US8793162B2 (en) 2004-04-01 2014-07-29 Google Inc. Adding information or functionality to a rendered document via association with an electronic counterpart
US8621349B2 (en) 2004-04-01 2013-12-31 Google Inc. Publishing techniques for adding value to a rendered document
US9008447B2 (en) 2004-04-01 2015-04-14 Google Inc. Method and system for character recognition
US9116890B2 (en) 2004-04-01 2015-08-25 Google Inc. Triggering actions in response to optically or acoustically capturing keywords from a rendered document
US7894670B2 (en) 2004-04-01 2011-02-22 Exbiblio B.V. Triggering actions in response to optically or acoustically capturing keywords from a rendered document
US9143638B2 (en) 2004-04-01 2015-09-22 Google Inc. Data capture from rendered documents using handheld device
US8713418B2 (en) 2004-04-12 2014-04-29 Google Inc. Adding value to a rendered document
US8489624B2 (en) 2004-05-17 2013-07-16 Google, Inc. Processing techniques for text capture from a rendered document
US9460346B2 (en) 2004-04-19 2016-10-04 Google Inc. Handheld device for capturing text from both a document printed on paper and a document displayed on a dynamic display device
US8874504B2 (en) 2004-12-03 2014-10-28 Google Inc. Processing techniques for visual capture data from a rendered document
US8346620B2 (en) 2004-07-19 2013-01-01 Google Inc. Automatic modification of web pages
WO2007086220A1 (ja) * 2006-01-30 2007-08-02 Nikon Corporation 反射屈折結像光学系、露光装置、およびデバイスの製造方法
US9405372B2 (en) 2006-07-14 2016-08-02 Ailive, Inc. Self-contained inertial navigation system for interactive control using movable controllers
US9050528B2 (en) * 2006-07-14 2015-06-09 Ailive Inc. Systems and methods for utilizing personalized motion control in virtual environment
US7657183B2 (en) * 2006-11-22 2010-02-02 The Boeing Company Method and apparatus for hemispherical retargeting
NO327279B1 (no) 2007-05-22 2009-06-02 Metaio Gmbh Kamerapositurestimeringsanordning og- fremgangsmate for foroket virkelighetsavbildning
DE102007033486B4 (de) * 2007-07-18 2010-06-17 Metaio Gmbh Verfahren und System zur Vermischung eines virtuellen Datenmodells mit einem von einer Kamera oder einer Darstellungsvorrichtung generierten Abbild
WO2009029048A1 (en) 2007-08-30 2009-03-05 Razer (Asia-Pacific) Pte Ltd Keys deactivation system and method
US20090073254A1 (en) * 2007-09-17 2009-03-19 Hui Li Omnidirectional imaging system with concurrent zoom
WO2009039512A1 (en) * 2007-09-21 2009-03-26 The Trustees Of Columbia University In The City Of New York Systems and methods for panoramic imaging
DE102007045834B4 (de) 2007-09-25 2012-01-26 Metaio Gmbh Verfahren und Vorrichtung zum Darstellen eines virtuellen Objekts in einer realen Umgebung
DE102007045835B4 (de) 2007-09-25 2012-12-20 Metaio Gmbh Verfahren und Vorrichtung zum Darstellen eines virtuellen Objekts in einer realen Umgebung
DE112007003723T5 (de) * 2007-11-30 2011-02-17 Razer (Asia-Pacific) Pte. Ltd. Ergonomische Mauseinrichtung mit mehrfach programmierbaren Tasten
JP2009237878A (ja) * 2008-03-27 2009-10-15 Dainippon Printing Co Ltd 複合映像生成システム、重畳態様決定方法、映像処理装置及び映像処理プログラム
US8655622B2 (en) * 2008-07-05 2014-02-18 Ailive, Inc. Method and apparatus for interpreting orientation invariant motion
ES2482997T3 (es) 2008-11-10 2014-08-05 Metaio Gmbh Método y sistema para analizar una imagen generada mediante al menos una cámara
US8054558B2 (en) * 2009-02-11 2011-11-08 Omniprobe, Inc. Multiple magnification optical system with single objective lens
US8447066B2 (en) 2009-03-12 2013-05-21 Google Inc. Performing actions based on capturing information from rendered documents, such as documents under copyright
CN102349087B (zh) 2009-03-12 2015-05-06 谷歌公司 自动提供与捕获的信息例如实时捕获的信息关联的内容
EP2382599B1 (en) 2009-07-29 2012-12-12 Metaio GmbH Method for determining the pose of a camera with respect to at least one real object
DE102009037835B4 (de) 2009-08-18 2012-12-06 Metaio Gmbh Verfahren zur Darstellung von virtueller Information in einer realen Umgebung
DE102009048830B4 (de) * 2009-10-09 2012-01-12 Osram Gesellschaft mit beschränkter Haftung Lichtleitstruktur
DE102009049073A1 (de) 2009-10-12 2011-04-21 Metaio Gmbh Verfahren zur Darstellung von virtueller Information in einer Ansicht einer realen Umgebung
DE102009049849B4 (de) 2009-10-19 2020-09-24 Apple Inc. Verfahren zur Bestimmung der Pose einer Kamera, Verfahren zur Erkennung eines Objekts einer realen Umgebung und Verfahren zur Erstellung eines Datenmodells
US9081799B2 (en) 2009-12-04 2015-07-14 Google Inc. Using gestalt information to identify locations in printed information
US9323784B2 (en) 2009-12-09 2016-04-26 Google Inc. Image search using text-based elements within the contents of images
EP2339537B1 (en) * 2009-12-23 2016-02-24 Metaio GmbH Method of determining reference features for use in an optical object initialization tracking process and object initialization tracking method
FI20105058A0 (fi) * 2010-01-22 2010-01-22 Valtion Teknillinen Omnidirektionaalinen linssi, linssiä hyödyntävät optiset laitteet sekä menetelmä optiseksi mittaamiseksi
WO2011107423A1 (en) 2010-03-01 2011-09-09 Metaio Gmbh Method of displaying virtual information in a view of a real environment
US9208563B2 (en) 2010-12-21 2015-12-08 Metaio Gmbh Method for determining a parameter set designed for determining the pose of a camera and/or for determining a three-dimensional structure of the at least one real object
EP2668617A1 (en) 2011-01-27 2013-12-04 Metaio GmbH Method for determining correspondences between a first and a second image, and method for determining the pose of a camera
US9213908B2 (en) 2011-03-23 2015-12-15 Metaio Gmbh Method for registering at least one part of a first and second image using a collineation warping function
CN104024936A (zh) 2011-07-29 2014-09-03 惠普发展公司,有限责任合伙企业 投影捕获系统,程序和方法
EP2737693B1 (en) 2011-07-29 2020-01-08 Hewlett-Packard Development Company, L.P. System and method of visual layering
US9521276B2 (en) 2011-08-02 2016-12-13 Hewlett-Packard Development Company, L.P. Portable projection capture device
EP2751777B1 (en) 2011-08-31 2019-08-07 Apple Inc. Method for estimating a camera motion and for determining a three-dimensional model of a real environment
US8896688B2 (en) 2011-11-04 2014-11-25 Hewlett-Packard Development Company, L.P. Determining position in a projection capture system
CN104160317A (zh) * 2012-01-09 2014-11-19 眼见360股份有限公司 全景光学系统
BR112014018565B1 (pt) 2012-04-24 2021-07-27 Hewlett-Packard Development Company, L.P. Sistema, método e mídia de armazenamento para exibir uma imagem
US9652043B2 (en) 2012-05-14 2017-05-16 Hewlett-Packard Development Company, L.P. Recognizing commands with a depth sensor
US8837780B2 (en) 2012-06-22 2014-09-16 Hewlett-Packard Development Company, L.P. Gesture based human interfaces
US8831285B2 (en) 2012-07-26 2014-09-09 Hewlett-Packard Development Company, L.P. Detecting objects with a depth sensor
US9143696B2 (en) 2012-10-13 2015-09-22 Hewlett-Packard Development Company, L.P. Imaging using offsetting accumulations
US8982261B2 (en) 2012-10-13 2015-03-17 Hewlett-Packard Development Company, L.P. Imaging with interleaved detection accumulations
US9297942B2 (en) 2012-10-13 2016-03-29 Hewlett-Packard Development Company, L.P. Imaging with polarization removal
US9274651B2 (en) 2012-11-05 2016-03-01 Hewlett-Packard Development Company, L.P. Apparatus to track a pointing device
US9146668B2 (en) 2013-01-31 2015-09-29 Hewlett-Packard Development Company, L.P. Graphical element placement on a display surface
IL298018B2 (en) 2013-03-11 2024-04-01 Magic Leap Inc System and method for augmentation and virtual reality
EP2973532A4 (en) 2013-03-15 2017-01-18 Magic Leap, Inc. Display system and method
US9148573B2 (en) 2013-03-15 2015-09-29 Hewlett-Packard Development Company, L.P. Non-uniform correction illumination pattern
US9323338B2 (en) 2013-04-12 2016-04-26 Usens, Inc. Interactive input system and method
US9776364B2 (en) 2013-08-09 2017-10-03 Apple Inc. Method for instructing a 3D printing system comprising a 3D printer and 3D printing system
CN105683866B (zh) 2013-08-22 2020-01-10 惠普发展公司,有限责任合伙企业 投影计算系统
CN105492990B (zh) 2013-08-30 2020-03-13 惠普发展公司,有限责任合伙企业 一种实现触摸输入关联的系统、方法以及器件
EP3049895A4 (en) 2013-09-24 2017-06-07 Hewlett-Packard Development Company, L.P. Determining a segmentation boundary based on images representing an object
US10324563B2 (en) 2013-09-24 2019-06-18 Hewlett-Packard Development Company, L.P. Identifying a target touch region of a touch-sensitive surface based on an image
WO2015047401A1 (en) 2013-09-30 2015-04-02 Hewlett-Packard Development Company, L.P. Projection system manager
US10003777B2 (en) 2013-11-21 2018-06-19 Hewlett-Packard Development Company, L.P. Projection screen for specularly reflecting light
US10268318B2 (en) 2014-01-31 2019-04-23 Hewlett-Packard Development Company, L.P. Touch sensitive mat of a system with a projector unit
US10241616B2 (en) 2014-02-28 2019-03-26 Hewlett-Packard Development Company, L.P. Calibration of sensors and projector
CN103941382A (zh) * 2014-04-04 2014-07-23 浙江卷积科技有限公司 三维空间内微弱光收集器
US10417801B2 (en) 2014-11-13 2019-09-17 Hewlett-Packard Development Company, L.P. Image projection
US9922244B2 (en) 2015-09-03 2018-03-20 Gestigon Gmbh Fast and robust identification of extremities of an object within a scene
US9813623B2 (en) 2015-10-30 2017-11-07 Essential Products, Inc. Wide field of view camera for integration with a mobile device
JP2017156713A (ja) * 2016-03-04 2017-09-07 キヤノン株式会社 撮像装置及び投影装置
US10346949B1 (en) 2016-05-27 2019-07-09 Augmented Pixels, Inc. Image registration
US10739142B2 (en) 2016-09-02 2020-08-11 Apple Inc. System for determining position both indoor and outdoor
US10001225B2 (en) 2016-09-13 2018-06-19 Bendix Commercial Vehicle Systems Llc Geared interface having non-linear feedback
US10174861B2 (en) 2016-09-13 2019-01-08 Bendix Commercial Vehicle Systems Llc Geared interface for valve
CN106610520B (zh) * 2017-01-19 2018-11-30 吉林省中业光电技术有限公司 一种内反射式折反射全景成像镜头
US11262570B2 (en) * 2018-03-12 2022-03-01 The University Of North Carolina At Chapel Hill Mirror image microscopy for increased collection
CN112005100A (zh) 2018-03-12 2020-11-27 查珀尔希尔北卡罗来纳大学 用于荧光显微镜的光盘显微术
CN117238224A (zh) 2018-08-31 2023-12-15 奇跃公司 用于增强现实装置的空间分辨的动态调暗
EP3908876A4 (en) 2019-01-11 2022-03-09 Magic Leap, Inc. TIME MULTIPLEXED DISPLAY OF VIRTUAL CONTENT AT VARIOUS DEPTHS
US20230160778A1 (en) * 2021-11-19 2023-05-25 Motional Ad Llc Systems and methods for measurement of optical vignetting
US20240069424A1 (en) * 2022-08-23 2024-02-29 Applied Physics, Inc. Light sphere dome

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2638033A (en) * 1950-12-19 1953-05-12 Buchele Donald Robert Unitary catadioptric objective lens system
US3361512A (en) 1966-04-05 1968-01-02 David L. Fuller Wide angle objective having non-spherical surfaces
US3505465A (en) 1967-04-21 1970-04-07 Us Army Panoramic television viewing system
HU192125B (en) 1983-02-08 1987-05-28 Budapesti Mueszaki Egyetem Block of forming image for centre theory projection adn reproduction of spaces
DE3343868A1 (de) 1983-12-03 1985-06-13 Zeiss Carl Fa Objektiv mit kegelschnittflaechen fuer die mikrozonenabbildung
US5191469A (en) 1988-03-17 1993-03-02 Margolis H Jay Afocal variation focusing system for mirrored optical systems
US5089910A (en) 1990-06-28 1992-02-18 Lookheed Missiles & Space Company, Inc. Infrared catadioptric zoom relay telescope with an asperic primary mirror
JPH05134192A (ja) 1991-05-02 1993-05-28 Hughes Aircraft Co 多数の同時機能を有する光学系
US5471346A (en) 1992-03-13 1995-11-28 Lockheed Missiles & Space Co., Inc. Casegrain telescope with spherical mirror surfaces
IL102222A (en) 1992-06-16 1996-01-31 Mini Defence Bi-spectral single piece scanning telescope system
US5854713A (en) 1992-11-30 1998-12-29 Mitsubishi Denki Kabushiki Kaisha Reflection type angle of view transforming optical apparatus
US5473474A (en) 1993-07-16 1995-12-05 National Research Council Of Canada Panoramic lens
US5631770A (en) 1994-05-26 1997-05-20 Hughes Danbury Optical Systems, Inc. Reflective scanning telescopic system on single optical bench
ES2102309B1 (es) 1994-06-30 1998-01-01 Puerta Antonio Medina Optica compleja ultracompacta.
US5502309A (en) 1994-09-06 1996-03-26 Rockwell International Corporation Staring sensor
US5920337A (en) 1994-12-27 1999-07-06 Siemens Corporate Research, Inc. Omnidirectional visual image detector and processor
US5627675A (en) 1995-05-13 1997-05-06 Boeing North American Inc. Optics assembly for observing a panoramic scene
US5841589A (en) 1995-09-26 1998-11-24 Boeing North American, Inc. Panoramic optics assembly having an initial flat reflective element
US6118474A (en) 1996-05-10 2000-09-12 The Trustees Of Columbia University In The City Of New York Omnidirectional imaging apparatus
US5760826A (en) 1996-05-10 1998-06-02 The Trustees Of Columbia University Omnidirectional imaging apparatus
US6459451B2 (en) 1996-06-24 2002-10-01 Be Here Corporation Method and apparatus for a panoramic camera to capture a 360 degree image
US5710661A (en) 1996-06-27 1998-01-20 Hughes Electronics Integrated panoramic and high resolution sensor optics
US5841574A (en) 1996-06-28 1998-11-24 Recon/Optical, Inc. Multi-special decentered catadioptric optical system
US6449103B1 (en) 1997-04-16 2002-09-10 Jeffrey R. Charles Solid catadioptric omnidirectional optical system having central coverage means which is associated with a camera, projector, medical instrument, or similar article
US6333826B1 (en) 1997-04-16 2001-12-25 Jeffrey R. Charles Omniramic optical system having central coverage means which is associated with a camera, projector, or similar article
US6356296B1 (en) 1997-05-08 2002-03-12 Behere Corporation Method and apparatus for implementing a panoptic camera system
GB9711366D0 (en) 1997-06-02 1997-07-30 Pilkington Perkin Elmer Ltd Optical imaging system
JP3635867B2 (ja) * 1997-06-03 2005-04-06 株式会社日立製作所 投射型液晶表示装置
US5940222A (en) 1997-10-27 1999-08-17 Wescam Inc. Catadioptric zoom lens assemblies
US6456749B1 (en) 1998-02-27 2002-09-24 Carnegie Mellon University Handheld apparatus for recognition of writing, for remote communication, and for user defined input templates
US6226035B1 (en) 1998-03-04 2001-05-01 Cyclo Vision Technologies, Inc. Adjustable imaging system with wide angle capability
JP3523783B2 (ja) 1998-05-14 2004-04-26 康史 八木 全方位視角センサ
US6304285B1 (en) 1998-06-16 2001-10-16 Zheng Jason Geng Method and apparatus for omnidirectional imaging
EP1141760B1 (en) 1999-01-04 2004-09-29 Cyclovision Technologies, Inc. Panoramic imaging apparatus
US6412961B1 (en) 2000-05-30 2002-07-02 Robert Andrew Hicks Rectifying mirror
US6462889B1 (en) * 2000-06-22 2002-10-08 Raytheon Company Conformal-dome optical system with rotationally symmetric stationary optical baffles
JP2003223633A (ja) 2002-01-29 2003-08-08 Sharp Corp 全方位視覚システム
US6789908B2 (en) * 2003-02-07 2004-09-14 The United States Of America As Represented By The Secretary Of The Navy Confocal ellipsoidal mirror system for wide field of view imaging

Also Published As

Publication number Publication date
CN1882864A (zh) 2006-12-20
EP1690121A1 (en) 2006-08-16
US20050111084A1 (en) 2005-05-26
KR101076986B1 (ko) 2011-10-26
US7038846B2 (en) 2006-05-02
CN100549751C (zh) 2009-10-14
JP4680202B2 (ja) 2011-05-11
JP2007512580A (ja) 2007-05-17
DE602004020502D1 (de) 2009-05-20
CA2546594C (en) 2011-05-10
HK1101431A1 (en) 2007-10-18
CA2546594A1 (en) 2005-06-09
ATE428127T1 (de) 2009-04-15
EP1690121B1 (en) 2009-04-08
WO2005052667A1 (en) 2005-06-09

Similar Documents

Publication Publication Date Title
KR101076986B1 (ko) 싱글 뷰포인트 굴절반사렌즈
US6332688B1 (en) Apparatus for uniformly illuminating a light valve
KR102269601B1 (ko) 이중 초점 렌즈 및 이를 포함하는 촬상 장치
CN111699429A (zh) 投影光学系统及图像显示装置
EP1211541A1 (en) Image-forming optical system
US20130057971A1 (en) Panoramic imaging lens and panoramic imaging system using the same
US6181470B1 (en) Optical element having a plurality of decentered reflecting curved surfaces, and optical instrument including the same
US20030043261A1 (en) Magnifying device for a panoramic anamorphic image capture system
KR20050044453A (ko) 광각 촬상 광학 시스템과 이것을 구비한 광각 촬상 장치,감시용 촬상 장치, 차재용 촬상 장치 및 투사 장치
JP7234498B2 (ja) 投射光学系ユニット及び投射光学装置
CN210093323U (zh) 光学变焦成像装置及深度相机
JP7356183B2 (ja) 小型反射部を用いたカメラモジュール及びこれを用いた拡張現実用光学装置
JP2023513107A (ja) 強化された検知のためのパノラマカメラシステム
JPH08278448A (ja) 鏡筒光学系
US20140340472A1 (en) Panoramic bifocal objective lens
US10036939B2 (en) Biaxially-tilted digital micromirror projector
JP2006209041A (ja) パノラマレンズ
CN105954873A (zh) 光学成像装置
US6252565B1 (en) Elliptical cavity optical retinal display
JP2002523790A (ja) 投影システム
US6351338B2 (en) Image pickup optical system
JP2002277741A (ja) 反射屈折型マクロ投影光学系
JPH09509265A (ja) 高シンメトリー光学システム
KR102252287B1 (ko) 소형 반사부를 이용한 카메라 모듈 및 이를 이용한 증강 현실용 광학 장치
US20130063553A1 (en) Panoramic Optic Clear Enclosure

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20141020

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20161013

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20171018

Year of fee payment: 7