KR20070010261A - Method for producing 400 series stainless steel - Google Patents

Method for producing 400 series stainless steel Download PDF

Info

Publication number
KR20070010261A
KR20070010261A KR20050064707A KR20050064707A KR20070010261A KR 20070010261 A KR20070010261 A KR 20070010261A KR 20050064707 A KR20050064707 A KR 20050064707A KR 20050064707 A KR20050064707 A KR 20050064707A KR 20070010261 A KR20070010261 A KR 20070010261A
Authority
KR
South Korea
Prior art keywords
ladle
refining
molten steel
vod
steel
Prior art date
Application number
KR20050064707A
Other languages
Korean (ko)
Other versions
KR100709008B1 (en
Inventor
이교수
최원탁
조성완
송효석
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR20050064707A priority Critical patent/KR100709008B1/en
Publication of KR20070010261A publication Critical patent/KR20070010261A/en
Application granted granted Critical
Publication of KR100709008B1 publication Critical patent/KR100709008B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/005Manufacture of stainless steel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0075Treating in a ladle furnace, e.g. up-/reheating of molten steel within the ladle
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/08Making cast-iron alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

A method for producing Ti-added stainless steel which can control content of metal oxides contained in molten steel of the VOD(Vacuum Oxygen Decarburization) step by conducting deoxidation and decarburization in the postprocess, and can solve problems such as increases in tapping temperature of AOD(Argon Oxygen Decarburization), thermal-insulating cost of the casting ladle and cost of refractories, and productivity restriction of steel products for VOD through dualization of a casting ladle divided into a casting ladle for ladle treatment and a casting ladle for VOD is provided. A method for producing 400 series stainless steel comprises: a casting completion step of completing casting of molten steel; a ladle preparation step of preparing a ladle for containing the casting completed molten steel; an analysis step of analyzing residual metal of the ladle; a first refining step of performing first refining of the molten steel; and a second refining step of performing second refining of the molten steel after the first refining, and performing deoxidation and decarburization of the molten steel using data of the analysis step. The first refining is an AOD(Argon Oxygen Decarburization) process step, and the second refining is an LT(Ladle Treatment) process step, or an LT process step after VOD(Vacuum Oxygen Decarburization).

Description

400계 스테인레스강의 제조방법{Method for producing 400 series stainless steel}Method for producing 400 series stainless steel

도 1은 본 발명의 실시예에 따른 400계 스테인레스강의 제조방법의 제조공정을 나타낸 개략도,1 is a schematic view showing a manufacturing process of the manufacturing method of the 400-based stainless steel according to an embodiment of the present invention,

도 2는 잔류 지금량과 VD단계 후의 Al 성분량의 관계를 나타낸 그래프도면,2 is a graph showing the relationship between the residual current amount and the Al component amount after the VD step;

도 3은 잔류 지금량과 C 성분량의 관계를 나타낸 그래프도면,3 is a graph showing the relationship between the residual current amount and the amount of C component,

도 4는 본 발명의 실시예에 따른 400계 스테인레스강의 제조방법을 적용하기 전과 후의 Al 성분을 나타낸 그래프도면,4 is a graph showing the Al component before and after applying the manufacturing method of the 400-based stainless steel according to an embodiment of the present invention,

도 5는 본 발명의 실시예에 따른 400계 스테인레스강의 제조방법을 적용하기 전과 후의 C 성분을 나타낸 그래프도면.5 is a graph showing the C component before and after applying the method of manufacturing a 400-based stainless steel according to an embodiment of the present invention.

본 발명은 400계 스테인레스강의 제조방법에 관한 것으로, 보다 구체적으로는 LT용 래들을 VOD 처리에 이용 시 래들 내측벽에 부착된 금속산화물로 이루어진 잔류 지금을 고려하여 후공정에서 탈산 및 탈탄을 실시하는 400계 스테인레스강의 제조방법에 관한 것이다.The present invention relates to a method of manufacturing a 400-based stainless steel, and more specifically, to deoxidation and decarburization in a later step in consideration of the residual current consisting of metal oxide attached to the inner wall of the ladle when the LT ladle is used for VOD treatment. It relates to a method for producing a 400 series stainless steel.

일반적으로, 400계 스테인레스강 제조공정은 전기로 용해(EAF)를 거쳐 AOD(Argon Oxygen Decarburization; 산소 아르곤 탈탄)를 통한 정련을 거쳐 LT(Laddle Treatment; 래들 처리) 후 연속주조과정을 거치게 된다. 또한, 극저 C, N 요구 강종의 경우에 있어서, 전기로 용해(EAF) 후 AOD 및 VOD(Vacuum Oxygen Decarburization; 진공 탈탄)를 거쳐 LT 후 연속주조과정을 통과하게 된다.Generally, the 400-based stainless steel manufacturing process is subjected to electric furnace melting (EAF), refining through AOD (Argon Oxygen Decarburization) and continuous casting process after LT (Laddle Treatment). In addition, in the case of ultra-low C and N required steel grades, after the melting of the furnace (EAF) through the AOD and VOD (Vacuum Oxygen Decarburization) (vacuum decarburization) to pass through the continuous casting process after LT.

이러한 400계 스테인레스강에서 LT를 거치는 강종은 주로 409L, 430, 410, 420 계열이 주를 이루고, VOD를 거치는 강종은 439, 439Nb, 436JIL, 430Ti, 444, 446M 계열의 강종이 있다. Steel grades that pass LT in these 400 series stainless steels are mainly 409L, 430, 410, and 420 series, and steel grades of 439, 439Nb, 436JIL, 430Ti, 444, and 446M series through VOD.

따라서, 강종별로 VOD 과정을 거치는 것과 거치지 않는 강종이 있으므로, 400계 스테인레스강의 제조공정에는 VOD용 래들 및 LT용 래들이 별도로 존재하며, 생산라인 상에서는 각각 수 대씩 배치되어 있는 실정이다.Therefore, since there are steel grades that go through the VOD process and not for each steel grade, ladles for VOD and ladles for LT exist separately in the manufacturing process of the 400-based stainless steel, and a number of them are arranged on the production line.

그러나, LT용 래들의 내측벽에는 금속산화물로 이루어진 지금이 다량 부착되어 이 LT용 래들이 VOD용으로 사용될 시에는 부착 지금이 VOD O2 블로잉(blowing) 단계에 용융되어 강 중으로 용출되는 문제점이 있다.However, a large amount of metal oxide is attached to the inner wall of the ladle for LT, and when the ladle for LT is used for VOD, the adhesion now melts in the VOD O 2 blowing step and elutes into the steel. .

이러한 용출된 지금에 의하여 지금 중에 포함된 금속산화물의 함량으로써 미세정련을 실시하는 VOD를 통과할 시에 성분제어 및 표면품질 제어에 난점을 보이게 된다.This eluted now shows difficulties in component control and surface quality control when passing through the VOD for fine refining with the content of the metal oxide contained in the present.

또한, LT용 및 VOD용을 구분한 주조래들 이원화에 따른 AOD 출강온도 상향, 주조래들 보온 비용 및 내화물 비용증가, VOD용 강재 생산성 제약 등의 문제가 있 다.In addition, there are problems such as an increase in AOD tapping temperature, increase in ladle insulation cost and refractory cost, and constraints on VOD steel productivity due to dual casting ladles for LT and VOD.

따라서, 본 발명은 전술한 종래의 문제점들을 해결하기 위해 고안된 발명으로, 본 발명의 목적은 LT용 래들을 VOD 처리에 이용 시 래들 내측벽에 부착된 금속산화물로 이루어진 지금을 고려하여 후공정에서 탈산 및 탈탄을 실시하여 VOD 단계에서의 용강 중 금속산화물의 함량을 제어할 수 있으며, LT용 및 VOD용을 구분한 주조래들 이원화에 따른 AOD 출강온도 상향, 주조래들 보온 비용 및 내화물 비용증가, VOD용 강재 생산성 제약 등의 문제를 해결할 수 있도록 된 티타늄 첨가 스테인레스강의 제조방법을 제공하는데 있다.Accordingly, the present invention is an invention devised to solve the above-mentioned conventional problems, and an object of the present invention is to deoxidize in a post process in consideration of the present time consisting of a metal oxide attached to the inner wall of the ladle when the LT ladle is used for VOD treatment. And decarburization to control the content of metal oxides in the molten steel in the VOD step, raising the AOD tapping temperature according to dual casting ladles for LT and VOD, increasing the ladle insulation cost and refractory cost, The present invention provides a method of manufacturing titanium-added stainless steel that can solve problems such as productivity limitations of steel for VOD.

상술한 목적을 달성하기 위하여, 본 발명에 따른 400계 스테인레스강의 제조방법은 용강의 주조가 완료되는 주조완료단계; 상기 주조완료된 용강이 담겨지는 래들이 준비되는 래들준비단계; 상기 래들의 잔류 지금을 분석하는 분석단계; 상기 용강에 제1차 정련이 이루어지는 제1차 정련단계; 및 상기 제1차 정련 이후 상기 용강의 제2차 정련이 이루어지며, 상기 분석단계의 데이터로서 상기 용강의 탈산 및 탈탄이 이루어지는 제2차 정련단계;를 포함하는 것을 특징으로 한다.In order to achieve the above object, the manufacturing method of the 400-based stainless steel according to the present invention is a casting completion step of completing the casting of molten steel; A ladle preparation step of preparing a ladle in which the cast molten steel is contained; Analyzing the residual current of the ladle; A first refining step of performing a first refining on the molten steel; And a second refining step of the molten steel after the first refining, in which deoxidation and decarburization of the molten steel is performed as data of the analysis step.

여기서, 상기 제1차 정련은 AOD(Argon Oxygen Decarburization; 산소 아르곤 탈탄) 공정단계이며, 상기 제2차 정련은 LT(Laddle Treatment; 래들 처리) 공정단계 또는 VOD(Vacuum Oxygen Decarburization; 진공 탈탄) 후 LT 공정단계이다. Here, the first refining is an AOD (Argon Oxygen Decarburization) process step, the second refining is LT (Laddle Treatment) process step or VOD (Vacuum Oxygen Decarburization) vacuum LT It is a process step.

또한, 상기 탈산을 위한 탈산재는 Al을 포함한다.In addition, the deoxidizer for deoxidation includes Al.

또한, 상기 분석단계는 LT 공정단계 완료 후 빈 래들의 무게와 사용 전의 래들 무게와 비교하여 잔류 지금량을 구하는 단계이다.In addition, the analysis step is to determine the residual current amount by comparing the weight of the empty ladle after the completion of the LT process step and the weight of the ladle before use.

이하 본 발명의 실시예를 설명한다.Hereinafter, embodiments of the present invention will be described.

[실시예]EXAMPLE

본 발명의 실시예에 따른 400계 스테인레스강의 제조방법은 용강의 주조가 완료되는 주조완료단계; 상기 주조완료된 용강이 담겨지는 래들이 준비되는 래들준비단계; 상기 래들의 잔류 지금을 분석하는 분석단계; 상기 용강에 제1차 정련이 이루어지는 제1차 정련단계; 및 상기 제1차 정련 이후 상기 용강의 제2차 정련이 이루어지며, 상기 분석단계의 데이터로서 상기 용강의 탈산 및 탈탄이 이루어지는 제2차 정련단계;를 포함하는 것을 특징으로 한다.Method for producing a 400-based stainless steel according to an embodiment of the present invention comprises the casting completion step of casting of molten steel; A ladle preparation step of preparing a ladle in which the cast molten steel is contained; Analyzing the residual current of the ladle; A first refining step of performing a first refining on the molten steel; And a second refining step of the molten steel after the first refining, in which deoxidation and decarburization of the molten steel is performed as data of the analysis step.

도 1은 본 발명의 실시예에 따른 400계 스테인레스강의 제조방법의 제조공정을 나타낸 개략도이다.1 is a schematic view showing a manufacturing process of the manufacturing method of 400-based stainless steel according to an embodiment of the present invention.

통상적인 400계 스테인레스 제강공정은 전기로 용해(scrap 용해)-AOD(제1차 정련)-VOD(제2차정련)/LT(미세성분조정)-연속주조 공정을 거치게 된다. 이러한 공정 중에서 고 Cr 함유강이며 극저 C,N 함량을 요구하는 강종의 경우 AOD 정련만으로는 목표로 하는 성분에 도달하기 어렵다. 따라서, 이러한 강종의 경우에는 VOD 공정을 필수적으로 실시하게 된다. 이때, 종래의 방법과 같이 주조래들을 LT용 강재인 409L, 430, 410, 420 등의 강종에 투입 후 VOD 재에 투입 시 잔류하는 금속산화물에 의해 VOD 공정의 탈탄 및 탈탄 시에 큰 편차를 가지게 된다.Conventional 400-based stainless steelmaking process is a furnace melting (Scrap melting)-AOD (primary refining)-VOD (second refining) / LT (fine component adjustment)-continuous casting process. In this process, steel grades containing high Cr and requiring extremely low C and N contents cannot reach the target components by AOD refining alone. Therefore, in the case of such steel grades, the VOD process is essential. At this time, the casting ladle is introduced into the steel grades such as 409L, 430, 410, 420, etc., which is a LT steel material, and has a large deviation in the decarburization and decarburization of the VOD process due to the metal oxide remaining when the ladle is introduced into the VOD ash. .

도 1을 참조하면, LT용 강재의 주조 완료 후, 빈 래들에는 잔류 지금만 남게된다. 이때 빈 래들의 무게를 측정하면 사용전의 래들 무게와 비교하여 잔류 지금량을 알 수 있게 된다. 또한, 이러한 잔류 지금 성분을 분석하면, 탈산편차에 가장 큰 영향을 주는 SiO2의 함량 및 탈탄편차를 야기시키는 잔류 C의 함량 등을 알 수 있다. Referring to Figure 1, after completion of the casting of the LT steel, the empty ladle remains only now. At this time, by measuring the weight of the empty ladle, it is possible to know the residual amount compared to the weight of the ladle before use. In addition, by analyzing the residual current component, it is possible to know the content of SiO 2 which has the greatest influence on the deoxidation deviation, the content of the residual C which causes decarburization deviation, and the like.

도 2는 잔류 지금량과 VD단계 후의 Al 성분량의 관계를 나타낸 그래프도면이며, 도 3은 잔류 지금량과 C 성분량의 관계를 나타낸 그래프도면이다.FIG. 2 is a graph showing the relationship between the residual current amount and the Al component amount after the VD step, and FIG. 3 is a graph showing the relationship between the residual current amount and the C component amount.

도 2를 참조하면, 잔류 지금량에 따라 탈산도의 지표인 VD(Vacuum Degassing; 진공 정련) 후의 Al 성분이 반비례 관계를 나타냄을 알 수 있다. 즉, 지금량이 많을수록 VD단계 후의 Al 성분이 낮아진다. 다시 말하자면, 용존 산소가 상대적으로 많으므로 이 산소가 Al과 반응하여 Al산화물을 형성하므로, 상대적으로 원소 Al량이 적어지게 되는 것이다.Referring to FIG. 2, it can be seen that the Al component after VD (vacuum degassing), which is an index of deoxidation, has an inverse relationship depending on the residual current amount. In other words, the higher the current amount, the lower the Al component after the VD step. In other words, since the dissolved oxygen is relatively large, the oxygen reacts with Al to form an Al oxide, so that the amount of elemental Al is relatively small.

하기 표 1에 전처리 강종에 따른 지금 분석 실시 결과 전처리 강종에 따른 SiO2 함량을 나타내었다. SiO2 함량만을 나타낸 이유는 SiO2가 탈산 편차에 가장 큰 영향을 주기 때문이다.Table 1 below shows the SiO 2 content according to the pretreatment steel grade according to the analysis results of the pretreatment steel grades. The reason for showing only SiO 2 content is because SiO 2 has the greatest influence on the deoxidation deviation.

전처리 강종Pretreatment steel grade SiO2 [중량%]SiO 2 [% by weight] VOD 처리 강종VOD treated steel grade ~5%~ 5% 409L409L ~15%~ 15% 430430 ~25%~ 25%

표 1에 따르면, Al 만을 투입하는 VOD 처리 강종에서는 다른 강종에 비하여 SiO2 함량이 적게 측정되었다. 이와같은 이유는 VOD 처리 강종에서는 탈산을 위해 Al만을 투입하여 상대적으로 산소와 결합되는 Si의 양이 적기 때문이다.According to Table 1, less SiO 2 content was measured in the VOD-treated steel grades in which only Al was added. The reason for this is that in the VOD treated steel, only Al is added for deoxidation, so that the amount of Si bonded to oxygen is relatively small.

도 3은 잔류 지금량과 C 성분량의 관계를 나타낸 그래프도면이다.3 is a graph showing the relationship between the residual current amount and the amount of C component.

도 3을 참조하면, 탈탄 편차는 주로 슬래그에 포함된 C의 영향보다는 래들 재질 및 잔류 지금량에 영향을 받으므로 잔류 지금량을 최소한으로 제어하는 방법이 바람직하다.Referring to FIG. 3, since the decarburization deviation is mainly influenced by the ladle material and the residual current amount rather than the influence of C included in the slag, a method of controlling the residual current amount to a minimum is preferable.

표 2에 탈산재인 Al 투입기준 및 탈산시 강종별 추가 송산량, 지금제거 기준을 나타내었다.Table 2 shows the standard for adding Al as a deoxidizer, the amount of additional acid for each steel species during deoxidation, and the criteria for removing now.

구분division 탈산재 투입 기준Deoxidation Standard 탈산시 강종별 추가 송산량Additional transmission amount by steel type when deoxidation 지금 제거 기준Remove now criteria 신래들Sandals 투입량 보정 없음(초기 계산량)No dose correction (initial calculation amount) 보정 없음No calibration 보정 없음No calibration 사용된 래들Used ladle 초기 계산량(MVO2환원량+성분조정량)+보정량(잔류 SiO2량×SiO2환원용 Al 투입비)The initial complexity (MVO 2 reduction amount + component adjustment amount) + correction amount (the residual amount × SiO 2 SiO 2 Al tuipbi for reduction) 17Cr강 추가 송산량: 50 normal㎥, 19Cr강 추가 송산량: 100 normal㎥Additional amount of 17Cr steel: 50 normal㎥, Additional amount of 19Cr steel: 100 normal㎥ 2 ton 이상 시 제거 필수, VOD 투입 전 제거 필수Must be removed if more than 2 ton, must be removed before VOD input 잔류 지금량Residual amount 잔류 지금량 1ton 이상 시 추가 보정(+30㎏)Additional correction when residual amount is more than 1ton (+ 30㎏) -- --

표 2에 따르면, 신래들에서는 탈산재 투입기준 및 탈산시 강종별 추가 송산량, 지금제거 기준 공히 어떠한 보정값이 없다. 사용된 래들에서는 탈산재 투입기준은 초기 계산량(MVO2환원량+성분조정량)과 보정량(잔류 SiO2량×SiO2환원용 Al 투입비)의 합으로 산출한다. 여기서, MVO2는 Metallic Volume Oxide로서 금속의 산화에 참여하는 산소의 체적을 나타낸다.According to Table 2, in new generations, there are no correction values for deoxidant input criteria, additional transmission amount by steel type during deoxidation, and now removal criteria. In the ladle used, the deoxidizer input criterion is calculated by the sum of the initial calculation amount (MVO 2 reduction amount + component adjustment amount) and the correction amount (residual SiO 2 amount × Al input ratio for SiO 2 reduction). Here, MVO 2 represents the volume of oxygen participating in the oxidation of the metal as the metallic volume oxide.

또한, 사용된 래들에서는 17Cr강의 추가 송산량은 50 normal㎥으로, 19Cr강의 추가 송산량은 100 normal㎥으로 산출되며, 2 ton 이상 시, VOD 투입 전에 지금 제거를 필수로 요한다.In addition, in the used ladle, the additional transport amount of 17Cr steel is calculated as 50 normalm 3, and the additional transport amount of 19Cr steel is calculated as 100 normalm 3.

그리고, 잔류 지금량이 1 ton 이상 시에는 +30 ㎏의 추가적인 보정이 필요하다.In addition, when the residual current amount is 1 ton or more, an additional correction of +30 kg is required.

도 4는 본 발명의 실시예에 따른 400계 스테인레스강의 제조방법을 적용하기 전과 후의 Al 성분을 나타낸 그래프도면이며, 도 5는 본 발명의 실시예에 따른 400계 스테인레스강의 제조방법을 적용하기 전과 후의 C 성분을 나타낸 그래프도면이다.4 is a graph showing the Al component before and after applying the manufacturing method of the 400-based stainless steel according to an embodiment of the present invention, Figure 5 is before and after applying the manufacturing method of the 400-based stainless steel according to an embodiment of the present invention. A graph showing the C component.

도 4 및 도 5에 따르면, 상술된 방법에 따른 400계 스테인레스강의 제조방법에 따라 이의 적용 전과 적용 후의 Al 성분 및 C 성분이 도시되어 있다.4 and 5, the Al component and the C component are shown before and after their application according to the manufacturing method of the 400-based stainless steel according to the method described above.

탈산재로 투입되는 Al이 과량투입될 시에, 등축정 불량, Al2O3계 스피넬(spinel) 정출에 의한 노즐 막힘 및 표면 품질 불량 등을 야기하며, 미달량투입될 시에는, 탈산불량에 의한 TiO2성 개재물 정출에 불리하다. 따라서, 적정한 수준에서 안정적인 제어를 하는 것이 중요하며, C 성분 역시 400계 강종에서는 강의 재질을 저하시키는 주요 성분이므로 최대한 하향하여 안정적인 제어가 필요하다.Excessive injection of Al into the deoxidizer may cause isotropic crystal defects, nozzle clogging and surface quality defects due to Al 2 O 3 -based spinel crystallization. It is disadvantageous for crystallization of TiO 2 inclusions. Therefore, it is important to perform stable control at an appropriate level, and since the C component is also a main component that degrades the material of steel in the 400-based steel grade, it is necessary to control it downward as far as possible.

본 발명의 기술 사상은 상기 바람직한 실시예에 따라 구체적으로 기술되었으나, 상기한 실시예는 그 설명을 위한 것이며, 그 제한을 위한 것이 아님을 주지해야 한다. 또한, 본 발명의 기술분야에서 당업자는 본 발명의 기술 사상의 범위 내에서 다양한 실시예가 가능함을 이해할 수 있을 것이다.Although the technical spirit of the present invention has been described in detail according to the above-described preferred embodiment, it should be noted that the above-described embodiment is for the purpose of description and not of limitation. In addition, those skilled in the art will understand that various embodiments are possible within the scope of the technical idea of the present invention.

이상에서 설명한 바와 같이, 본 발명에 따른 티타늄 첨가 스테인레스강 제조방법에 의하여, VOD 단계에서의 용강 중 금속산화물의 함량을 효과적으로 제어하며, LT용 및 VOD용을 구분한 주조래들 이원화에 따른 AOD 출강온도 상향, 주조래들 보온 비용 및 내화물 비용증가, VOD용 강재 생산성 제약 등의 문제를 해결할 수 있다.As described above, by the method of manufacturing titanium-added stainless steel according to the present invention, effectively controlling the content of the metal oxide in the molten steel in the VOD step, AOD tapping according to the dualization of the cast ladle for LT and VOD It can solve problems such as temperature increase, casting ladle insulation cost and refractory cost increase, and steel productivity for VOD.

Claims (4)

용강의 주조가 완료되는 주조완료단계;Casting completion step of completing the casting of molten steel; 상기 주조완료된 용강이 담겨지는 래들이 준비되는 래들준비단계;A ladle preparation step of preparing a ladle in which the cast molten steel is contained; 상기 래들의 잔류 지금을 분석하는 분석단계;Analyzing the residual current of the ladle; 상기 용강에 제1차 정련이 이루어지는 제1차 정련단계; 및A first refining step of performing a first refining on the molten steel; And 상기 제1차 정련 이후 상기 용강의 제2차 정련이 이루어지며, 상기 분석단계의 데이터로서 상기 용강의 탈산 및 탈탄이 이루어지는 제2차 정련단계;A second refining step of performing the second refining of the molten steel after the first refining, and performing deoxidation and decarburization of the molten steel as data of the analysis step; 를 포함하는 것을 특징으로 하는 400계 스테인레스강의 제조방법.Method of producing a 400-based stainless steel comprising a. 제1항에 있어서,The method of claim 1, 상기 제1차 정련은 AOD(Argon Oxygen Decarburization; 산소 아르곤 탈탄) 공정단계이며, 상기 제2차 정련은 LT(Laddle Treatment; 래들 처리) 공정단계 또는 VOD(Vacuum Oxygen Decarburization; 진공 탈탄) 후 LT 공정단계인 400계 스테인레스강의 제조방법.The first refining is an AOD (Argon Oxygen Decarburization) process step, the second refining is a LT (Laddle Treatment) process step or VOD (Vacuum Oxygen Decarburization) vacuum LT process step Method for producing phosphorus 400 stainless steel. 제1항에 있어서,The method of claim 1, 상기 탈산을 위한 탈산재는 Al을 포함하는 400계 스테인레스강의 제조방법.The deoxidizer for deoxidation is a manufacturing method of 400-based stainless steel containing Al. 제1항에 있어서,The method of claim 1, 상기 분석단계는 LT 공정단계 완료 후 빈 래들의 무게와 사용 전의 래들 무게와 비교하여 잔류 지금량을 구하는 단계인 400계 스테인레스강의 제조방법.Wherein the analysis step is a step of obtaining a residual current amount compared to the weight of the ladle after the completion of the LT process step and the weight of the ladle before use method of manufacturing a 400-based stainless steel.
KR20050064707A 2005-07-18 2005-07-18 Method for producing 400 series stainless steel KR100709008B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR20050064707A KR100709008B1 (en) 2005-07-18 2005-07-18 Method for producing 400 series stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20050064707A KR100709008B1 (en) 2005-07-18 2005-07-18 Method for producing 400 series stainless steel

Publications (2)

Publication Number Publication Date
KR20070010261A true KR20070010261A (en) 2007-01-24
KR100709008B1 KR100709008B1 (en) 2007-04-18

Family

ID=38011505

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20050064707A KR100709008B1 (en) 2005-07-18 2005-07-18 Method for producing 400 series stainless steel

Country Status (1)

Country Link
KR (1) KR100709008B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160054697A (en) 2014-11-06 2016-05-17 주식회사 포스코 Method for refining ferritic stainless steel
KR20160072897A (en) 2014-12-15 2016-06-24 주식회사 포스코 Method for vod refining ferritic stainless steel
KR20180094398A (en) * 2017-02-15 2018-08-23 주식회사 세아창원특수강 Method for manufacturing stainless steel for cold heading quality wire rod
KR20220033821A (en) * 2020-09-10 2022-03-17 주식회사 포스코 Apparatus and method for processing molten material

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100406403B1 (en) * 1999-07-13 2003-11-19 주식회사 포스코 Method of throwing Al into molten stainless steel at VOD refining process
KR100428570B1 (en) * 1999-11-29 2004-04-28 주식회사 포스코 Method for deoxidizing stainless steel containing Ti by Al
KR100485095B1 (en) * 2003-04-16 2005-04-22 주식회사 포스코 Refining method of molten steel

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160054697A (en) 2014-11-06 2016-05-17 주식회사 포스코 Method for refining ferritic stainless steel
KR20160072897A (en) 2014-12-15 2016-06-24 주식회사 포스코 Method for vod refining ferritic stainless steel
KR20180094398A (en) * 2017-02-15 2018-08-23 주식회사 세아창원특수강 Method for manufacturing stainless steel for cold heading quality wire rod
KR20220033821A (en) * 2020-09-10 2022-03-17 주식회사 포스코 Apparatus and method for processing molten material

Also Published As

Publication number Publication date
KR100709008B1 (en) 2007-04-18

Similar Documents

Publication Publication Date Title
KR100729934B1 (en) Method for manufacturing ferritic stainless steel slabs with equiaxed grain structures and the ferritic stainless steel manufactured by it
CN104946974B (en) The control method of ultra-low carbon baking hardening steel plate base dissolved carbon content
CN104004881A (en) Method for controlling nitrogen content in process of producing aluminium deoxidation high-carbon steel
KR100709008B1 (en) Method for producing 400 series stainless steel
JP2019039021A (en) Ni-Cr-Mo-Nb ALLOY AND METHOD FOR MANUFACTURING THE SAME
KR20090065994A (en) A method of manufacturing austenite stainless steel
KR100889685B1 (en) A method for refining with high purity of stainless steel
KR101239459B1 (en) Method for Producing Niobium-added Stainless Steel
KR100921499B1 (en) Method for manufacturing ultra low-carbon steel
KR101735001B1 (en) Method of desulfurizing ultra low sulfur steel
KR100729124B1 (en) Method for manufacturing ferritic stainless steel slabs with equiaxed grain structures
KR101611671B1 (en) Method for manufacturing ferritic stainless steel
KR101786931B1 (en) Method for refining of molten stainless steel
KR101834957B1 (en) Method of deoxidation
KR100922060B1 (en) Method for manufacturing ferritc stainless steel
KR102581777B1 (en) method of manufacturing austenite stainless steel
KR950012409B1 (en) Making method of ladie slag
KR101647126B1 (en) Method of controlling total oxygen for eaf operation
KR100890807B1 (en) A Method of Decreasing Oxygen Dencity in Converter
KR100999197B1 (en) Method for refining steel
KR100350066B1 (en) High efficiency slag deoxidizing agent with less molten steel deoxidation
KR100948921B1 (en) Refining method of ferrite stainless steel
CN105177219B (en) Low-phosphorous 4Cr5MoSiV1 steel manufactured through electric converter and manufacturing method
KR101188326B1 (en) Method of molten metal refining
Aydemir Use of aluminium dross for slag treatment in secondary steelmaking to decrease amount of reducible oxides in ladle furnace

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120404

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20130405

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20160405

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20170412

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20180412

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20190412

Year of fee payment: 13