JP2019039021A - Ni-Cr-Mo-Nb ALLOY AND METHOD FOR MANUFACTURING THE SAME - Google Patents

Ni-Cr-Mo-Nb ALLOY AND METHOD FOR MANUFACTURING THE SAME Download PDF

Info

Publication number
JP2019039021A
JP2019039021A JP2017159449A JP2017159449A JP2019039021A JP 2019039021 A JP2019039021 A JP 2019039021A JP 2017159449 A JP2017159449 A JP 2017159449A JP 2017159449 A JP2017159449 A JP 2017159449A JP 2019039021 A JP2019039021 A JP 2019039021A
Authority
JP
Japan
Prior art keywords
mgo
alloy
cao
concentration
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017159449A
Other languages
Japanese (ja)
Other versions
JP6937190B2 (en
Inventor
小林 祐介
Yusuke Kobayashi
祐介 小林
轟 秀和
Hidekazu Todoroki
秀和 轟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Yakin Kogyo Co Ltd
Original Assignee
Nippon Yakin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Yakin Kogyo Co Ltd filed Critical Nippon Yakin Kogyo Co Ltd
Priority to JP2017159449A priority Critical patent/JP6937190B2/en
Publication of JP2019039021A publication Critical patent/JP2019039021A/en
Application granted granted Critical
Publication of JP6937190B2 publication Critical patent/JP6937190B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/143Reduction of greenhouse gas [GHG] emissions of methane [CH4]

Abstract

To provide an Ni-Cr-Mo-Nb alloy suppressed in defects due to non-metallic inclusions of the alloy surface and to provide a method for manufacturing the alloy.SOLUTION: The Ni-Cr-Mo-Nb alloy contains, by mass%, C:0.1% or less, Si:0.02 to 1%, Mn:0.02 to 1%, P≤0.03%, S≤0.001%, Cr:20 to 23%, Mo:8 to 10%, Al:0.05 to 0.4%, Ti:0.15 to 0.4%, Nb:2.5 to 5%, Fe:1 to 5%, N≤0.02% and additionally Mg:0.001 to 0.01%, Ca≤0.005%, O:0.0001 to 0.005% and the balance Ni with inevitable impurities and includes as a non-metallic inclusion simple substance MgO and a composite oxynitride of MgO and (Ti, Nb)N. The method for manufacturing the Ni-Cr-Mo-Nb alloy comprises melting a raw material, performing decarburization in AOD and VOD to form a CaO-SiO-MgO-AlO-F-based slag to thereby perform Cr reduction, deacidification and desulfurization, then adding Nb and Ti and performing continuous casting to manufacture a slab.SELECTED DRAWING: Figure 1

Description

本発明は、化学プラント、天然ガス配管及び容器に代表される、耐食性が要求される各種用途に使用されるNi−Cr−Mo−Nb合金およびその製造方法に関するものである。   The present invention relates to a Ni—Cr—Mo—Nb alloy used for various applications that require corrosion resistance, such as chemical plants, natural gas piping and containers, and a method for producing the same.

Ni−Cr−Mo−Nb合金は、優れた耐食性を有するため腐食性の強い過酷な環境で使用される。このように、Ni−Cr−Mo−Nb合金は、Fe基合金では腐食する危険のある過酷な環境で使用される合金である。そのため、表面の耐食性はとりわけ重要視される。Ni−Cr−Mo−Nb合金の耐食性を充分に活かすため、緻密な不動態皮膜の形成に関する技術が示されている(例えば、特許文献1参照)。   Ni—Cr—Mo—Nb alloys have excellent corrosion resistance and are therefore used in harsh environments with strong corrosivity. Thus, the Ni—Cr—Mo—Nb alloy is an alloy used in a harsh environment where there is a risk of corrosion with an Fe-based alloy. Therefore, the corrosion resistance of the surface is particularly important. In order to fully utilize the corrosion resistance of the Ni—Cr—Mo—Nb alloy, a technique relating to the formation of a dense passive film has been shown (for example, see Patent Document 1).

このような緻密な不動態皮膜を充分に活かすために、合金板表面の疵を可能な限り抑える必要がある。実際、Ni−Cr−Mo−Nb合金には、Nbなどの窒化物を形成しやすい元素が含まれている。そのために、非金属介在物の形態、組成によっては、大型のクラスターを形成してしまい、それが合金板表面にスリバー欠陥をもたらすことがある。このように、緻密な不動態皮膜を活かせない問題を抱えていた。一方、Fe基合金では表面欠陥を防止する技術の提案がなされている(例えば、特許文献2および3参照)。   In order to make full use of such a dense passive film, it is necessary to suppress wrinkles on the surface of the alloy plate as much as possible. In fact, the Ni—Cr—Mo—Nb alloy contains an element that easily forms a nitride such as Nb. Therefore, depending on the form and composition of the nonmetallic inclusion, a large cluster may be formed, which may cause sliver defects on the surface of the alloy plate. As described above, there is a problem that a dense passive film cannot be used. On the other hand, techniques for preventing surface defects have been proposed for Fe-based alloys (see, for example, Patent Documents 2 and 3).

しかしながら、Ni−Cr−Mo−Nb合金ではクラスター形成防止の技術は提案されていないのが、実態であった。   However, in reality, a technique for preventing cluster formation has not been proposed for Ni—Cr—Mo—Nb alloys.

特開2015−183290号公報Japanese Patent Laying-Open No. 2015-183290 特開2014−189826号公報JP 2014-189826 A 特開2003−147492号公報JP 2003-147492 A

上記の問題に鑑み、本発明は、非金属介在物を大型のクラスターが形成しない形態とすることによって、合金表面の欠陥が抑制されたNi−Cr−Mo−Nb合金を提供することを目的とする。さらに、それを実現するNi−Cr−Mo−Nb合金の製造方法も提供する。   In view of the above problems, an object of the present invention is to provide a Ni—Cr—Mo—Nb alloy in which defects on the surface of the alloy are suppressed by forming non-metallic inclusions into a form in which large clusters are not formed. To do. Furthermore, the manufacturing method of the Ni-Cr-Mo-Nb alloy which implement | achieves it is also provided.

発明者らは、上記課題を解決するために鋭意研究を重ねた。まず、実機にて製造したNi−Cr−Mo−Nb合金冷延板の表面に観察された表面欠陥を採取して、実際に欠陥をもたらす原因を研究した。その結果、欠陥内からは、CaO介在物、(Ti,Nb)N介在物が多数検出された。さらに、表面欠陥中の介在物の形態を詳細に調べたところ、(Ti,Nb)N介在物はMgO介在物に付随して存在していることを見出した。また、MgO単体であれば欠陥は発生しないことも明らかとなった。   Inventors repeated earnest research in order to solve the said subject. First, surface defects observed on the surface of a Ni-Cr-Mo-Nb alloy cold-rolled sheet manufactured with an actual machine were collected, and the cause of the actual defects was studied. As a result, many CaO inclusions and (Ti, Nb) N inclusions were detected from within the defects. Furthermore, when the form of the inclusion in the surface defect was examined in detail, it was found that (Ti, Nb) N inclusion was present accompanying the MgO inclusion. It has also been clarified that defects do not occur with MgO alone.

これらのNi−Cr−Mo−Nb合金は、連続鋳造機で製造したものであり、表面欠陥が存在する場合は、溶融合金をタンディッシュから鋳型に注ぐ浸漬ノズル内壁に、欠陥をもたらすCaO介在物、(Ti,Nb)N介在物が付着していることも明らかとなった。したがって、ノズル内壁に付着した介在物が脱落して、鋳型内に運ばれた結果、凝固シェルに捕捉され、それが後の圧延工程においてスラブの表面疵を発生させたことも示せた。   These Ni—Cr—Mo—Nb alloys are manufactured by a continuous casting machine, and when surface defects exist, CaO inclusions that cause defects on the inner wall of the immersion nozzle that pours the molten alloy from the tundish to the mold. It was also revealed that (Ti, Nb) N inclusions adhered. Therefore, it was also shown that inclusions adhering to the inner wall of the nozzle dropped off and were carried into the mold, and as a result, were trapped by the solidified shell, which generated slab surface defects in the subsequent rolling process.

本発明は、上記の通り研究を重ねて完成したものであり、以下に示すとおりである。つまり、以下質量%にて、C:0.1%以下、Si:0.02〜1%、Mn:0.02〜1%、P≦0.03%、S≦0.001%、Cr:20〜23%、Mo:8〜10%、Al:0.05〜0.4%、Ti:0.15〜0.4%、Nb:2.5〜5%、Fe:1〜5%、N≦0.02%、さらに、Mg:0.001〜0.01%、Ca≦0.005%、O:0.0001〜0.005%、残部はNiおよび不可避的不純物からなり、非金属介在物としてMgO単体およびMgOと(Ti,Nb)Nの複合酸窒化物を含むことを特徴とする表面性状に優れるNi−Cr−Mo−Nb合金である。   The present invention has been completed through research as described above, and is as follows. That is, in the following mass%, C: 0.1% or less, Si: 0.02-1%, Mn: 0.02-1%, P ≦ 0.03%, S ≦ 0.001%, Cr: 20-23%, Mo: 8-10%, Al: 0.05-0.4%, Ti: 0.15-0.4%, Nb: 2.5-5%, Fe: 1-5%, N ≦ 0.02%, Mg: 0.001 to 0.01%, Ca ≦ 0.005%, O: 0.0001 to 0.005%, the balance being made of Ni and inevitable impurities, non-metal It is a Ni—Cr—Mo—Nb alloy having excellent surface properties characterized by containing MgO alone and a composite oxynitride of MgO and (Ti, Nb) N as inclusions.

上記のNi−Cr−Mo−Nb合金は、非金属介在物であるMgO単体およびMgOと(Ti,Nb)Nの複合酸窒化物のうち、MgO単体の個数割合が50%以上であることを特徴とする表面性状に優れるNi−Cr−Mo−Nb合金がより好ましい。   In the Ni—Cr—Mo—Nb alloy, the MgO simple substance and MgO and (Ti, Nb) N complex oxynitride, which are non-metallic inclusions, have a MgO simple substance number ratio of 50% or more. A Ni—Cr—Mo—Nb alloy having excellent surface properties is more preferred.

さらに、本合金の製造方法も提供する。すなわち、Ni−Cr−Mo−Nb合金の製造にあたり、電気炉で原料を溶解し、次いで、AOD(Argon Oxygen Decarburization)および/またはVOD(Vacuum Oxygen Decarburization)において脱炭した後に、SiおよびAlを投入し、石灰、蛍石を投入して、CaO−SiO−MgO−Al−F系スラグを形成することによって、Cr還元、脱酸、脱硫し、その後、Nb、Tiを添加して、連続鋳造機にてスラブを製造することを特徴とする表面性状に優れるNi−Cr−Mo−Nb合金の製造方法である。 Furthermore, the manufacturing method of this alloy is also provided. That is, in the production of Ni-Cr-Mo-Nb alloy, raw materials are melted in an electric furnace, and then decarburized in AOD (Argon Oxygen Decarburization) and / or VOD (Vacuum Oxygen Decarburization), and then Si and Al are added. Then, lime and fluorite are added to form a CaO—SiO 2 —MgO—Al 2 O 3 —F-based slag, thereby reducing Cr, deoxidizing, desulfurizing, and then adding Nb and Ti. The method for producing a Ni—Cr—Mo—Nb alloy having excellent surface properties, characterized in that a slab is produced by a continuous casting machine.

また、上記に記載のCaO−SiO−MgO−Al−F系スラグの組成は、CaO:50〜70%、SiO:10%以下、MgO:7〜15%、Al:10〜20%、F:4〜15%であることがより良い。 Further, the composition of CaO-SiO 2 -MgO-Al 2 O 3 -F -based slag according to above, CaO: 50~70%, SiO 2 : 10% or less, MgO: 7~15%, Al 2 O 3 : 10 to 20%, F: 4 to 15% is better.

本発明によれば、Ni−Cr−Mo−Nb合金成分を適正化することで、クラスターの形成を抑制することが可能である。その結果、薄板の製品において、表面欠陥の無い良好な品質を得ることが出来る。   According to the present invention, it is possible to suppress the formation of clusters by optimizing the Ni—Cr—Mo—Nb alloy component. As a result, it is possible to obtain a good quality free from surface defects in a thin product.

本発明のNi−Cr−Mo−Nb合金におけるMgOと(Ti,Nb)Nの複合酸窒化物の析出状態の模式図である。It is a schematic diagram of the precipitation state of the composite oxynitride of MgO and (Ti, Nb) N in the Ni—Cr—Mo—Nb alloy of the present invention.

まず、本発明のNi−Cr−Mo−Nb合金の化学成分限定理由を示す。なお、以下の説明においては、「%」は「mass%」(「質量%」)を意味する。   First, the reasons for limiting the chemical components of the Ni—Cr—Mo—Nb alloy of the present invention will be described. In the following description, “%” means “mass%” (“mass%”).

C:0.1%以下
固溶強化によって合金強度を高める効果を有するので、常温および高温での強度を確保するため必要な元素である。一方、Cは、耐食性を改善する効果の大きいCrと炭化物を形成し、その近傍にCr欠乏層を生じさせることによって、耐食性の低下等を引き起こす元素でもあるので、添加量の上限は0.1%とする必要がある。このように、0.1%以下と規定した。好ましくは0.08%以下である。
C: 0.1% or less Since it has an effect of increasing the alloy strength by solid solution strengthening, it is an element necessary for ensuring the strength at normal temperature and high temperature. On the other hand, C is an element that causes a reduction in corrosion resistance by forming Cr and a carbide having a large effect of improving corrosion resistance and forming a Cr-deficient layer in the vicinity thereof. % Is required. Thus, it was defined as 0.1% or less. Preferably it is 0.08% or less.

Si:0.02〜1%
Siは本発明で重要な元素である。脱酸に寄与して、酸素濃度を0.0001〜0.005%に調整する役割を持つ。また、合金中のMg濃度を0.001〜0.01%、Ca濃度を0.005%以下に調節する役割も持つ。これは、下記の反応による。
2(MgO)+Si=2Mg+(SiO) …(1)
2(CaO)+Si=2Ca+(SiO) …(2)
ここで、括弧はスラグ中の成分であり、下線は溶融合金中の成分であることを示している。Si濃度が0.02%未満だと酸素濃度が0.005%を超えて高くなる。またSiが1%を超えて高いと、酸素濃度が0.0001%未満と低くなり、上記の(1)、(2)の反応がより進行してしまう。それによって、Mg濃度が0.01%よりも高くなってしまうと同時に、Ca濃度も0.005%を超えて高くなる。したがって、Siは0.02〜1%と定めた。
Si: 0.02 to 1%
Si is an important element in the present invention. It contributes to deoxidation and has a role of adjusting the oxygen concentration to 0.0001 to 0.005%. Also, it has a role of adjusting the Mg concentration in the alloy to 0.001 to 0.01% and the Ca concentration to 0.005% or less. This is due to the following reaction.
2 (MgO) + Si = 2 Mg + (SiO 2) ... (1)
2 (CaO) + Si = 2 Ca + (SiO 2) ... (2)
Here, the parenthesis indicates a component in the slag, and the underline indicates a component in the molten alloy. If the Si concentration is less than 0.02%, the oxygen concentration exceeds 0.005% and increases. On the other hand, if Si is higher than 1%, the oxygen concentration is lowered to less than 0.0001%, and the above reactions (1) and (2) further proceed. Thereby, the Mg concentration becomes higher than 0.01%, and at the same time, the Ca concentration becomes higher than 0.005%. Therefore, Si is determined to be 0.02 to 1%.

Mn:0.02〜1%
MnはNi−Cr−Mo−Nb合金中の不純物元素であるSを固着して無害化するために、必要な元素である。そのため、0.02%の添加は必要である。しかし、多量の添加は、耐酸化性を損なうので1%を上限とした。好ましくは、0.05〜0.6%である。
Mn: 0.02 to 1%
Mn is an element necessary for fixing S, which is an impurity element in the Ni—Cr—Mo—Nb alloy, to be harmless. Therefore, addition of 0.02% is necessary. However, addition of a large amount impairs oxidation resistance, so 1% was made the upper limit. Preferably, it is 0.05 to 0.6%.

P≦0.03%
Pは、粒界に偏析し、熱間加工時に割れを発生させる有害元素であるため、極力低減するのが好ましく、0.03%以下に制限する。
P ≦ 0.03%
P is a harmful element that segregates at the grain boundaries and generates cracks during hot working, so it is preferably reduced as much as possible, and is limited to 0.03% or less.

S≦0.001%
Sは、粒界に偏析して低融点化合物を形成し、製造時に熱間割れ等を引き起こす有害元素であるため、極力低減するのが好ましく0.001%以下に制限する。好ましくは0.0008%以下である。
S ≦ 0.001%
S is a harmful element that segregates at grain boundaries to form a low-melting compound and causes hot cracking during production. Therefore, it is preferably reduced to 0.001% or less as much as possible. Preferably it is 0.0008% or less.

Cr:20〜23%
Crは、耐食性を確保するのに必要な不動態皮膜を合金板表面に形成させる元素であり、耐酸性、耐孔食性、耐隙間腐食性ならびに耐応力腐食割れ性を改善するための母材の構成成分として不可欠の元素でもある。斯かる効果を得るためには、20%以上の添加が必要である。しかし、23%を超える過剰の添加は脆化を招く。よって、Crの含有量は20〜23%の範囲とする。
Cr: 20-23%
Cr is an element that forms a passive film necessary to ensure corrosion resistance on the surface of the alloy plate, and is a base material for improving acid resistance, pitting corrosion resistance, crevice corrosion resistance, and stress corrosion cracking resistance. It is also an essential element as a component. In order to obtain such an effect, addition of 20% or more is necessary. However, excessive addition exceeding 23% causes embrittlement. Therefore, the Cr content is in the range of 20 to 23%.

Mo:8〜10%
Moは、耐酸性や、耐孔食性、耐隙間腐食性、耐応力割れ性といった耐食性を改善するために不可欠な元素であり、8%以上の添加を必要とする。しかし、10%を超える添加は母材を脆化させる。よって、Moの含有量は8〜10%の範囲とする。
Mo: 8-10%
Mo is an indispensable element for improving the corrosion resistance such as acid resistance, pitting corrosion resistance, crevice corrosion resistance, and stress cracking resistance, and requires addition of 8% or more. However, addition exceeding 10% embrittles the base material. Therefore, the Mo content is in the range of 8 to 10%.

Nb:2.5〜5%
Nbは固溶して強度を高めるため、重要な元素である。さらに、Cと結合して鋭敏化を防止するために、耐食性を向上する元素である。そのため、2.5%の添加は必要である。逆に高すぎると、低融点相を形成してしまい熱間加工性を悪化させるので、5%の添加に留める必要がある。さらに、5%を超えて高いとMgOと(Ti,Nb)Nの複合酸窒化物が生成する。よって、Nbの含有量は2.5〜5%の範囲とする。
Nb: 2.5-5%
Nb is an important element because it dissolves and increases strength. Furthermore, it is an element that improves corrosion resistance in order to bond with C and prevent sensitization. Therefore, 2.5% addition is necessary. On the other hand, if it is too high, a low melting point phase is formed and hot workability is deteriorated, so it is necessary to keep the addition at 5%. Further, if the content exceeds 5%, a composite oxynitride of MgO and (Ti, Nb) N is generated. Therefore, the Nb content is in the range of 2.5 to 5%.

Al:0.05〜0.4%
Alは脱酸のために重要な元素であり、酸素濃度を0.0001〜0.005%に調整する役割を持つと共に、酸化物系介在物を無害なMgOに制御する役割もある。また、合金中のMg濃度を0.001〜0.01%、Ca濃度を0.005%以下に調節する役割も持つ。これは、下記の反応による。
3(MgO)+2Al=3Mg+(Al) …(3)
3(CaO)+2Al=3Ca+(Al) …(4)
Al濃度が0.05%未満だと脱酸が進行せず、酸素濃度が0.005%を超えて高くなってしまう。さらに、脱酸が進行しないために、S濃度も0.001%を超えて高くなってしまう。逆に、0.4%を超えて高いと、上記の(3)、(4)の反応により、Mg濃度が0.01%を超えて高くなり、Ca濃度も0.005%を超えて高くなってしまう。したがって、0.05〜0.4%と規定する。
Al: 0.05 to 0.4%
Al is an important element for deoxidation, has a role of adjusting the oxygen concentration to 0.0001 to 0.005%, and also has a role of controlling oxide inclusions to harmless MgO. Also, it has a role of adjusting the Mg concentration in the alloy to 0.001 to 0.01% and the Ca concentration to 0.005% or less. This is due to the following reaction.
3 (MgO) +2 Al = 3 Mg + (Al 2 O 3) ... (3)
3 (CaO) +2 Al = 3 Ca + (Al 2 O 3) ... (4)
If the Al concentration is less than 0.05%, deoxidation does not proceed, and the oxygen concentration exceeds 0.005% and becomes high. Furthermore, since the deoxidation does not proceed, the S concentration becomes higher than 0.001%. On the other hand, if it exceeds 0.4%, the Mg concentration exceeds 0.01% and the Ca concentration exceeds 0.005% due to the reactions (3) and (4) above. turn into. Therefore, it is specified as 0.05 to 0.4%.

Ti:0.15〜0.4%
TiはNb同様、Cと固着して鋭敏化を防止するため、耐食性を維持する重要な元素である。そのため、0.15%の添加は必要であるが、高すぎるとクラスター化する傾向にある(Ti,Nb)Nが形成しやすくなる。そのため、0.4%以下に抑える必要がある。よって、Tiの含有量は0.15〜0.4%と規定する。
Ti: 0.15-0.4%
Ti, like Nb, is an important element for maintaining corrosion resistance because it adheres to C and prevents sensitization. Therefore, the addition of 0.15% is necessary, but if it is too high, (Ti, Nb) N that tends to be clustered tends to be formed. Therefore, it is necessary to suppress it to 0.4% or less. Therefore, the Ti content is defined as 0.15 to 0.4%.

Fe:1〜5%
Feは固溶して強度を高める効果があるため、1%の添加は必要である。高すぎると耐食性を低下させるため、5%以下に抑える必要がある。よって、1〜5%の範囲と定める。
Fe: 1 to 5%
Since Fe has the effect of increasing the strength by solid solution, addition of 1% is necessary. If it is too high, the corrosion resistance is lowered, so it is necessary to keep it at 5% or less. Therefore, it is determined as a range of 1 to 5%.

N≦0.02%
Nはクラスター化する傾向にある(Ti,Nb)Nを形成しやすくするために、有害な元素である。そのため、0.02%以下と規定する。
N ≦ 0.02%
N is a harmful element in order to facilitate the formation of (Ti, Nb) N which tends to cluster. Therefore, it is specified as 0.02% or less.

Mg:0.001〜0.01%
Mgは非金属介在物を無害なMgO単体に制御するために必要な元素である。そのため、0.001%以上は必要である。一方、高すぎるとクラスター化する傾向にある(Ti,Nb)Nが形成する核として作用するようになる。つまり、MgOと(Ti,Nb)Nの複合酸窒化物を形成し易くするので、0.01%以下に抑える。よって、Mg濃度は0.001〜0.01%と規定する。この添加については、上記の(1)〜(4)式の反応により調節するか、あるいはNiMgなどの副原料を添加しても良い。
Mg: 0.001 to 0.01%
Mg is an element necessary for controlling non-metallic inclusions into harmless MgO alone. Therefore, 0.001% or more is necessary. On the other hand, if it is too high, it will act as a nucleus formed by (Ti, Nb) N which tends to cluster. That is, MgO and (Ti, Nb) N complex oxynitride are easily formed, so the content is suppressed to 0.01% or less. Therefore, the Mg concentration is defined as 0.001 to 0.01%. About this addition, you may adjust by reaction of said (1)-(4) type | formula, or you may add auxiliary materials, such as NiMg.

Ca≦0.005%
Caはクラスター化する傾向にあるCaO介在物を形成するために、0.005%以下に抑制しなければならない。この調節は上記の(1)〜(4)式の反応により実現する。
Ca ≦ 0.005%
In order to form CaO inclusions that tend to cluster, Ca must be suppressed to 0.005% or less. This adjustment is realized by the reactions of the above formulas (1) to (4).

O:0.0001〜0.005%
酸素濃度が0.005%を超えて高いと、脱硫が弱くなってS濃度が0.001%を超えて高くなり、熱間加工性が悪化してしまう。一方で0.0001%未満と低すぎると、上記の(1)〜(4)式の反応が進行し過ぎてしまい、Mgが0.01%を超えて高くなるとともに、Caも0.005%を超えてしまう。よって、0.0001〜0.005%の範囲とする。この制御は、上記のSiとAlの含有量により実現する。
O: 0.0001 to 0.005%
If the oxygen concentration is higher than 0.005%, desulfurization is weakened, the S concentration is higher than 0.001%, and hot workability is deteriorated. On the other hand, if it is too low as less than 0.0001%, the reaction of the above formulas (1) to (4) proceeds too much, Mg becomes higher than 0.01%, and Ca is also 0.005%. Will be exceeded. Therefore, it is set as 0.0001 to 0.005% of range. This control is realized by the contents of Si and Al.

Ni:残部
残部はNiであり、凡そ58%以上である。
Ni: balance The balance is Ni, which is about 58% or more.

続けて、非金属介在物について説明する。本発明でいうところの非金属介在物とは、酸化物系、窒化物系のものをいい、炭化物系は含まない。そのような酸化物系、窒化物系の非金属介在物として、主にMgO、CaO、Al、(Ti,Nb)Nが挙げられる。 Next, the nonmetallic inclusion will be described. The non-metallic inclusions referred to in the present invention refer to oxide-based and nitride-based inclusions and do not include carbide-based inclusions. Examples of such oxide-based and nitride-based non-metallic inclusions mainly include MgO, CaO, Al 2 O 3 , and (Ti, Nb) N.

MgO単体の非金属介在物はクラスター化しないので、分散して存在し表面欠陥をもたらさないため無害である。MgOと(Ti,Nb)Nの複合酸窒化物はクラスター化する傾向にあり、有害である。図1に、MgOと(Ti,Nb)Nの複合酸窒化物がクラスター化して析出した状態の模式図を示す。符号1がNi−Cr−Mo−Nb合金、符号2が(Ti,Nb)N、符号3がMgOである。そのため、MgO単体およびMgOと(Ti,Nb)Nの複合酸窒化物のうち、MgO単体の個数割合が50%以上にするのが好適である。MgO・Alスピネル介在物はクラスター化する傾向が強く、避けなければならない。CaO介在物は最もクラスター化する傾向が強く、生成させてはならない。なお、本願での(Ti,Nb)Nとは、TiとNbの窒化物を表す。 Since the non-metallic inclusions of MgO alone are not clustered, they are harmless because they are dispersed and do not cause surface defects. MgO and (Ti, Nb) N complex oxynitrides tend to cluster and are harmful. FIG. 1 shows a schematic diagram of a state in which a composite oxynitride of MgO and (Ti, Nb) N is clustered and precipitated. Reference numeral 1 is a Ni—Cr—Mo—Nb alloy, reference numeral 2 is (Ti, Nb) N, and reference numeral 3 is MgO. Therefore, it is preferable that the number ratio of MgO simple substance is 50% or more in MgO simple substance and MgO and (Ti, Nb) N complex oxynitride. MgO.Al 2 O 3 spinel inclusions tend to cluster and must be avoided. CaO inclusions are most prone to clustering and should not be generated. In the present application, (Ti, Nb) N represents a nitride of Ti and Nb.

次に、本発明のNi−Cr−Mo−Nb合金の製造方法について説明する。次の製造方法によることが好ましい態様である。
Ni−Cr−Mo−Nb合金の製造にあたり、まず電気炉で原料を溶解する。原料は当該合金のスクラップ、Ni、Cr、Moなどである。次いで、AODおよび/またはVODにおいて、酸素を吹精して脱炭精錬する。酸素吹精の際に、COガスが発生して脱炭が進むが、その時に溶融合金中の窒素も低下し、0.02%以下に調整することが出来る。
Next, the manufacturing method of the Ni-Cr-Mo-Nb alloy of this invention is demonstrated. The following production method is a preferred embodiment.
In producing the Ni—Cr—Mo—Nb alloy, the raw materials are first melted in an electric furnace. The raw material is scrap of the alloy, Ni, Cr, Mo and the like. Next, oxygen is blown and decarburized and refined in AOD and / or VOD. During oxygen blowing, CO gas is generated and decarburization proceeds. At that time, nitrogen in the molten alloy also decreases and can be adjusted to 0.02% or less.

その後、SiまたはAlを投入し、石灰、蛍石を投入して、CaO−SiO−MgO−Al−F系スラグを形成する。この操作により、Cr還元、脱酸、脱硫する。ここで、溶融スラグの形成について説明する。SiOはSiの添加や蛍石に含まれるシリカにより形成する。MgOは煉瓦にMgO系煉瓦(ドロマイト、マグクロあるいはMgO−C)を使うために、スラグに溶損して適量添加される。あるいは煉瓦の溶損防止のため、MgO系廃煉瓦を投入して調整できる。AlはAlの投入により形成する。Fは蛍石CaFを添加することで形成する。続けて、NbとTiを添加する。さらに、取鍋精錬にて温度調整ならびに、Nb、Tiの含有量を精密に調整する。最終的に、連続鋳造機にてスラブを製造する。 Thereafter, Si or Al is added, and lime and fluorite are added to form a CaO—SiO 2 —MgO—Al 2 O 3 —F-based slag. By this operation, Cr reduction, deoxidation, and desulfurization are performed. Here, formation of molten slag will be described. SiO 2 is formed by addition of Si or silica contained in fluorite. MgO is added in an appropriate amount by melting into slag because MgO brick (dolomite, magchrom or MgO-C) is used for the brick. Alternatively, MgO waste bricks can be introduced and adjusted to prevent bricks from melting. Al 2 O 3 is formed by introducing Al. F is formed by the addition of fluorite CaF 2. Subsequently, Nb and Ti are added. Furthermore, the temperature is adjusted by ladle refining and the contents of Nb and Ti are precisely adjusted. Finally, a slab is manufactured with a continuous casting machine.

また、上記に記載のCaO−SiO−MgO−Al−F系スラグの組成は、CaO:50〜70%、SiO:10%以下、MgO:7〜15%、Al:10〜20%、F:4〜15%であることがより良い態様である。この理由を説明する。 Further, the composition of CaO-SiO 2 -MgO-Al 2 O 3 -F -based slag according to above, CaO: 50~70%, SiO 2 : 10% or less, MgO: 7~15%, Al 2 O 3 : 10 to 20%, F: 4 to 15% is a better mode. The reason for this will be explained.

CaO:50〜70%
CaOは脱硫に必要であるために不可欠である。生石灰を投入して調節する。50%未満では脱硫が進まなく、合金中のSが0.001%を超えて高くなってしまう。一方、70%を超えると、CaO介在物を形成しクラスターを形成してしまう。そのため、50〜70%と規定する。
CaO: 50-70%
CaO is essential because it is necessary for desulfurization. Adjust by adding quicklime. If it is less than 50%, desulfurization does not proceed, and S in the alloy becomes higher than 0.001%. On the other hand, if it exceeds 70%, CaO inclusions are formed and clusters are formed. Therefore, it is specified as 50 to 70%.

SiO:10%以下
SiOはスラグが溶融状態になるために必要な成分であるが、溶融合金を酸化する成分として作用し、脱酸や脱硫を阻害する他に、溶鋼中Si濃度が1%を超えて上昇してしまう。このように有害な側面もあるため、10%以下に規定する。
SiO 2 : 10% or less SiO 2 is a component necessary for the slag to be in a molten state, but it acts as a component that oxidizes the molten alloy and inhibits deoxidation and desulfurization. It will rise above%. Since there are harmful aspects like this, it is specified to be 10% or less.

MgO:7〜15%
MgOはMgO介在物を形成するために有効な成分であるが、過剰だとMgOと(Ti,Nb)Nの複合酸窒化物の形成を促進してしまう。そのため、7〜15%とした。
MgO: 7-15%
MgO is an effective component for forming MgO inclusions, but excessive amounts promote the formation of composite oxynitrides of MgO and (Ti, Nb) N. Therefore, it was 7 to 15%.

Al:10〜20%
Alは溶融合金中のAl濃度を0.05〜0.4%の範囲に保つために必要である。しかし、過剰に添加するとスラグの粘度が高くなりすぎて、除滓できなくなってしまう。そのため、10〜20%と定めた。
Al 2 O 3: 10~20%
Al 2 O 3 is necessary to keep the Al concentration in the molten alloy in the range of 0.05 to 0.4%. However, if added excessively, the viscosity of the slag becomes too high and cannot be removed. Therefore, it was set as 10 to 20%.

F:4〜15%
Fはスラグ精錬を行う際に、スラグを溶融状態に保つ役割があるため、少なくとも4%の添加は必要である。4%未満と低いと、スラグが溶けない状態となってしまう。逆に、15%を超えて高いと粘度が低下しすぎて、流動性が付きすぎてしまい、煉瓦の溶損が顕著となる。よって、4〜15%と規定した。
F: 4-15%
Since F plays a role of keeping the slag in a molten state during slag refining, addition of at least 4% is necessary. If it is less than 4%, the slag will not melt. On the other hand, if it exceeds 15%, the viscosity will be too low and the fluidity will be too much, so that the bricks will be damaged significantly. Therefore, it was specified as 4 to 15%.

実施例を示して、本発明の効果を明確にする。まず、60トン電気炉にて、Ni−Cr−Mo−Nb合金のスクラップ、Ni、Cr、Moなどの原料を溶解した。その後、AODおよび/またはVODにてCを除去するために酸素吹精(酸化精錬)して脱炭後、石灰、蛍石、軽焼ドロマイト、フェロシリコン合金およびAlを投入し、CaO−SiO−Al−MgO−F系スラグを形成することでCr還元し脱酸した。その後、さらにAr攪拌して脱硫を進めるとともにNbとTiを添加した。なお、AOD、VODではドロマイト煉瓦をライニングした。次いで、取鍋精錬にて、温度と化学成分を精緻に調整して、連続鋳造機にてスラブを製造した。製造したスラブは、表面を研削した後、熱間圧延、冷間圧延を経て、幅1mで板厚2mmの冷延板を製造した。これを表1に示す発明例1〜7、比較例8〜14について行った。 Examples will be shown to clarify the effects of the present invention. First, in a 60-ton electric furnace, Ni—Cr—Mo—Nb alloy scrap, Ni, Cr, Mo and other raw materials were melted. Then, oxygen removal (oxidation refining) to remove C by AOD and / or VOD, decarburization, lime, fluorite, light calcined dolomite, ferrosilicon alloy and Al are added, and CaO-SiO 2 -Al and Cr reduced deoxidation by forming a 2 O 3 -MgO-F slag. Thereafter, desulfurization was further carried out by stirring with Ar, and Nb and Ti were added. In addition, dolomite brick was lined in AOD and VOD. Next, the temperature and chemical components were finely adjusted by ladle refining, and a slab was produced by a continuous casting machine. The manufactured slab was ground and then subjected to hot rolling and cold rolling to manufacture a cold rolled sheet having a width of 1 m and a thickness of 2 mm. This was performed for Invention Examples 1 to 7 and Comparative Examples 8 to 14 shown in Table 1.

表1に示した化学成分、表2に示したスラグ組成、介在物の個数、MgO介在物の個数割合、冷延板の表面欠陥に関する各評価方法は以下の通り行った。
(1)合金の化学成分およびスラグ組成:蛍光X線分析装置を用いて定量分析を行い、合金の酸素濃度、窒素濃度は不活性ガスインパルス融解赤外線吸収法で定量分析を行った。なお、合金に関して、残部はNiである。また、スラグについて、合計が100%以下であるのは、残部にFe、Sなどの不純物を含むためである。
(2)介在物組成:スラブから採取したサンプルを用いて分析した。SEM−EDSを用いて、サイズ5μm以上の非金属介在物を20個の介在物をランダムに測定した。検出された介在物種は、MgO、CaO、MgO・Al(スピネル)、およびMgOと(Ti,Nb)Nの複合酸窒化物であった。MgOと(Ti,Nb)Nの複合酸窒化物は二相に分かれている箇所を両方分析して判断した。
(3)MgOの個数割合:上記の測定結果から、個数比率を求めた。
(4)品質評価:長さ100mの冷延板表面を目視で観察し、クラスター起因の表面欠陥の個数をカウントした。評価は以下の通り行った。ここでの欠陥は、圧延方向に長さ10mm以上の欠陥である。
○:欠陥なし
△:欠陥4個以下
×:欠陥5個以上
Each evaluation method regarding the chemical composition shown in Table 1, the slag composition shown in Table 2, the number of inclusions, the number ratio of MgO inclusions, and the surface defects of the cold-rolled sheet was performed as follows.
(1) Chemical composition and slag composition of alloy: Quantitative analysis was performed using a fluorescent X-ray analyzer, and the oxygen concentration and nitrogen concentration of the alloy were quantitatively analyzed by an inert gas impulse melting infrared absorption method. Regarding the alloy, the balance is Ni. Moreover, the total of the slag is 100% or less because the balance contains impurities such as Fe 2 O 3 and S.
(2) Inclusion composition: Analysis was performed using a sample collected from the slab. Using SEM-EDS, 20 inclusions having a size of 5 μm or more were randomly measured. The detected inclusion species were MgO, CaO, MgO.Al 2 O 3 (spinel), and composite oxynitrides of MgO and (Ti, Nb) N. The composite oxynitride of MgO and (Ti, Nb) N was judged by analyzing both of the two phases.
(3) Number ratio of MgO: The number ratio was determined from the above measurement results.
(4) Quality evaluation: The surface of a cold-rolled sheet having a length of 100 m was visually observed, and the number of surface defects due to clusters was counted. Evaluation was performed as follows. The defect here is a defect having a length of 10 mm or more in the rolling direction.
○: No defect △: Less than 4 defects ×: More than 5 defects

表2に発明例および比較例の結果を示す。表中、[ ]は本発明の範囲外であることを示す。この中で、No.5とNo.12はVODで精錬した。
発明例のNo.1〜5は、本願発明の範囲を全て満たしたので、欠陥がなく良好な表面品質○評価であった。
No.6はN濃度が範囲内であるが0.016%と高めであったために、MgOと(Ti,Nb)Nの複合酸窒化物が多く、MgO介在物の割合が45%と、50%より低く△評価であった。
No.7はMg濃度が範囲内であるが0.0078%と高く、MgOと(Ti,Nb)Nの複合酸窒化物が多く、MgO介在物の割合が40%と、50%より低く△評価であった。
Table 2 shows the results of invention examples and comparative examples. In the table, [] indicates outside the scope of the present invention. Among these, No. 5 and No. 12 were refined by VOD.
Inventive Examples Nos. 1 to 5 satisfied all of the scope of the present invention, and thus had good surface quality ○ evaluation without defects.
In No. 6, the N concentration was within the range but was as high as 0.016%. Therefore, there were many composite oxynitrides of MgO and (Ti, Nb) N, and the ratio of MgO inclusions was 45%, 50%. It was △ evaluation lower than%.
No. 7 has a Mg concentration within the range, but is as high as 0.0078%, and there are many composite oxynitrides of MgO and (Ti, Nb) N, and the ratio of MgO inclusions is 40%, which is lower than 50%. It was evaluation.

比較例について説明する。
No.8はN濃度が0.025%と高く、MgOと(Ti,Nb)Nの複合酸窒化物とMgO・Alとなってしまった。
No.9はNbとTiの含有量が範囲を外れて高いため、全てがMgOと(Ti,Nb)Nの複合酸窒化物となってしまった。
No.10は、Si濃度、Al濃度が低く、かつ、スラグ組成も不適切で、脱酸がうまく進行しなかった。そのため、酸素濃度が0.0061%と高く、脱硫も進行しなくて0.0015%と高くなってしまった。また、Mg濃度も範囲より低くなってしまった。続く熱間圧延では割れも見られ、歩留も低かった。介在物組成もMgO・Alとなってしまった。
No.11はスラグ中のMgO濃度が高く、Al濃度が低かった。さらに、Al濃度が高く、Mg濃度が高くなってしまった。また、N濃度も高く外れてしまった。その結果、全てがMgOと(Ti,Nb)Nの複合酸窒化物となった。
No.12はAlが高かったために、MgとCa濃度が高く外れた。さらに、Ti濃度も高く外れた。MgOと(Ti,Nb)Nの複合酸窒化物と共にCaO介在物も形成した。また、スラグのFが低かったため、流動性が悪くて除滓がうまく出来なかった。
No.13はSi濃度が高くなり、かつスラグ中のCaO濃度が高かったために、Ca濃度が高めに外れた。その結果、全てがCaO介在物となった。
No.14はAl濃度が高かったため、Mg、Ca濃度ともに高くなった。さらにN濃度も高かった。MgOと(Ti,Nb)Nの複合酸窒化物とCaOが主体となってしまった。
このように、比較例では全て許容できない数の欠陥を発生させてしまい、×評価となってしまった。
A comparative example will be described.
No. 8 had a high N concentration of 0.025%, and became a composite oxynitride of MgO and (Ti, Nb) N and MgO.Al 2 O 3 .
In No. 9, since the contents of Nb and Ti were high out of the range, all became complex oxynitrides of MgO and (Ti, Nb) N.
In No. 10, the Si concentration and Al concentration were low, and the slag composition was inappropriate, and deoxidation did not proceed well. For this reason, the oxygen concentration was as high as 0.0061%, and desulfurization did not proceed and became as high as 0.0015%. Also, the Mg concentration has become lower than the range. In the subsequent hot rolling, cracks were observed and the yield was low. The inclusion composition was also MgO.Al 2 O 3 .
No. 11 had a high MgO concentration in the slag and a low Al 2 O 3 concentration. Furthermore, the Al concentration was high and the Mg concentration was high. In addition, the N concentration was too high. As a result, all became complex oxynitrides of MgO and (Ti, Nb) N.
Since No. 12 had high Al, Mg and Ca density | concentrations deviated high. Furthermore, the Ti concentration was also high. CaO inclusions were formed together with the composite oxynitride of MgO and (Ti, Nb) N. Moreover, since F of slag was low, fluidity | liquidity was bad and removal was not successful.
In No. 13, since the Si concentration was high and the CaO concentration in the slag was high, the Ca concentration was not high. As a result, all became CaO inclusions.
Since No. 14 had a high Al concentration, both the Mg and Ca concentrations were high. Furthermore, the N concentration was also high. MgO and (Ti, Nb) N complex oxynitride and CaO have become the main components.
As described above, in the comparative example, an unacceptable number of defects were generated, resulting in x evaluation.

1:Ni−Cr−Mo−Nb合金
2:(Ti,Nb)N
3:MgO
1: Ni—Cr—Mo—Nb alloy 2: (Ti, Nb) N
3: MgO

Claims (4)

以下質量%にて、C:0.1%以下、Si:0.02〜1%、Mn:0.02〜1%、P≦0.03%、S≦0.001%、Cr:20〜23%、Mo:8〜10%、Al:0.05〜0.4%、Ti:0.15〜0.4%、Nb:2.5〜5%、Fe:1〜5%、N≦0.02%、さらに、Mg:0.001〜0.01%、Ca≦0.005%、O:0.0001〜0.005%、残部はNiおよび不可避的不純物からなり、非金属介在物としてMgO単体およびMgOと(Ti,Nb)Nの複合酸窒化物を含むことを特徴とするNi−Cr−Mo−Nb合金。   Below in mass%, C: 0.1% or less, Si: 0.02-1%, Mn: 0.02-1%, P ≦ 0.03%, S ≦ 0.001%, Cr: 20- 23%, Mo: 8 to 10%, Al: 0.05 to 0.4%, Ti: 0.15 to 0.4%, Nb: 2.5 to 5%, Fe: 1 to 5%, N ≦ 0.02%, Mg: 0.001 to 0.01%, Ca ≦ 0.005%, O: 0.0001 to 0.005%, the balance is made of Ni and inevitable impurities, and includes non-metallic inclusions A Ni—Cr—Mo—Nb alloy comprising MgO alone and a composite oxynitride of MgO and (Ti, Nb) N. 前記非金属介在物であるMgO単体およびMgOと(Ti,Nb)Nの複合酸窒化物のうち、MgO単体の個数割合が50%以上であることを特徴とする請求項1に記載のNi−Cr−Mo−Nb合金。   2. The Ni— according to claim 1, wherein the non-metallic inclusions MgO simple substance and MgO and (Ti, Nb) N complex oxynitride have a number ratio of MgO simple substance of 50% or more. Cr—Mo—Nb alloy. 請求項1あるいは2に記載のいずれかのNi−Cr−Mo−Nb合金の製造にあたり、電気炉で原料を溶解し、次いで、AODおよび/またはVODにおいて脱炭した後に、SiおよびAlを投入し、石灰、蛍石を投入して、CaO−SiO−MgO−Al−F系スラグを形成することによって、Cr還元、脱酸、脱硫し、その後、Nb、Tiを添加して、連続鋳造機にてスラブを製造することを特徴とするNi−Cr−Mo−Nb合金の製造方法。 In manufacturing the Ni-Cr-Mo-Nb alloy according to claim 1 or 2, the raw material is melted in an electric furnace, and then decarburized in AOD and / or VOD, and then Si and Al are added. , Lime and fluorite are added to form a CaO—SiO 2 —MgO—Al 2 O 3 —F-based slag, thereby reducing, deoxidizing and desulfurizing Cr, and then adding Nb and Ti. The manufacturing method of the Ni-Cr-Mo-Nb alloy characterized by manufacturing a slab with a continuous casting machine. 前記CaO−SiO−MgO−Al−F系スラグの組成は、CaO:50〜70%、SiO:10%以下、MgO:7〜15%、Al:10〜20%、F:4〜15%であることを特徴とする請求項3に記載のNi−Cr−Mo−Nb合金の製造方法。

The composition of the CaO—SiO 2 —MgO—Al 2 O 3 —F-based slag is as follows: CaO: 50 to 70%, SiO 2 : 10% or less, MgO: 7 to 15%, Al 2 O 3 : 10 to 20% F: 4 to 15%, The method for producing a Ni—Cr—Mo—Nb alloy according to claim 3.

JP2017159449A 2017-08-22 2017-08-22 Ni-Cr-Mo-Nb alloy and its manufacturing method Active JP6937190B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017159449A JP6937190B2 (en) 2017-08-22 2017-08-22 Ni-Cr-Mo-Nb alloy and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017159449A JP6937190B2 (en) 2017-08-22 2017-08-22 Ni-Cr-Mo-Nb alloy and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2019039021A true JP2019039021A (en) 2019-03-14
JP6937190B2 JP6937190B2 (en) 2021-09-22

Family

ID=65727492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017159449A Active JP6937190B2 (en) 2017-08-22 2017-08-22 Ni-Cr-Mo-Nb alloy and its manufacturing method

Country Status (1)

Country Link
JP (1) JP6937190B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111621622A (en) * 2020-06-09 2020-09-04 攀钢集团攀枝花钢铁研究院有限公司 Smelting method of high-cleanliness steel
CN112522541A (en) * 2019-09-17 2021-03-19 东北大学 Nickel-based alloy desulfurizing agent and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3843359A (en) * 1973-03-23 1974-10-22 Int Nickel Co Sand cast nickel-base alloy
JPS6353234A (en) * 1986-08-22 1988-03-07 Toshiba Corp Structural member having heat resistance and high strength
JPS63157829A (en) * 1986-12-19 1988-06-30 Toshiba Corp Pickling vessel
JP2009007638A (en) * 2007-06-28 2009-01-15 Nippon Yakin Kogyo Co Ltd Duplex stainless steel, and method for producing the same
JP2015183290A (en) * 2014-03-26 2015-10-22 日本冶金工業株式会社 Ni BASED ALLOY AND METHOD FOR MANUFACTURING THE SAME

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3843359A (en) * 1973-03-23 1974-10-22 Int Nickel Co Sand cast nickel-base alloy
JPS6353234A (en) * 1986-08-22 1988-03-07 Toshiba Corp Structural member having heat resistance and high strength
JPS63157829A (en) * 1986-12-19 1988-06-30 Toshiba Corp Pickling vessel
JP2009007638A (en) * 2007-06-28 2009-01-15 Nippon Yakin Kogyo Co Ltd Duplex stainless steel, and method for producing the same
JP2015183290A (en) * 2014-03-26 2015-10-22 日本冶金工業株式会社 Ni BASED ALLOY AND METHOD FOR MANUFACTURING THE SAME

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112522541A (en) * 2019-09-17 2021-03-19 东北大学 Nickel-based alloy desulfurizing agent and preparation method thereof
CN112522541B (en) * 2019-09-17 2022-03-18 东北大学 Nickel-based alloy desulfurizing agent and preparation method thereof
CN111621622A (en) * 2020-06-09 2020-09-04 攀钢集团攀枝花钢铁研究院有限公司 Smelting method of high-cleanliness steel

Also Published As

Publication number Publication date
JP6937190B2 (en) 2021-09-22

Similar Documents

Publication Publication Date Title
RU2527569C2 (en) CONTROL OVER ULTRA-LOW TITANIUM CONTENT IN ULTRA-LOW-CARBON Al-Si KILLED STEEL
JP5950306B2 (en) Fe-Ni-Cr alloy superior in sulfuric acid corrosion resistance, intergranular corrosion resistance and surface properties, and method for producing the same
CN109790608B (en) Fe-Cr-Ni alloy and method for producing same
JP6066412B2 (en) Fe-Ni-Cr alloy having excellent surface properties and method for producing the same
JP6869142B2 (en) Stainless steel sheet and its manufacturing method
JP6603033B2 (en) High Mn content Fe-Cr-Ni alloy and method for producing the same
JP4673343B2 (en) Stainless steel sheet excellent in corrosion resistance, weldability and surface properties and method for producing the same
US20040173055A1 (en) Method for refining stainless steel with high purity
JP2011068949A (en) High-toughness steel plate
JP6146908B2 (en) Stainless steel with excellent surface properties and its manufacturing method
JP6937190B2 (en) Ni-Cr-Mo-Nb alloy and its manufacturing method
JP4025171B2 (en) Stainless steel having excellent corrosion resistance, weldability and surface properties and method for producing the same
JP6903182B1 (en) Ni-Cr-Al-Fe alloy with excellent surface properties and its manufacturing method
JPH0790471A (en) High mn and high n austenitic stainless steel cast slab and its production
JP4656007B2 (en) Method of processing molten iron by adding Nd and Ca
JP2005307234A (en) Ferritic stainless steel sheet having excellent ridging resistance and surface characteristic and method for manufacturing the same
KR101786931B1 (en) Method for refining of molten stainless steel
JP2020094251A (en) Ni-Cr-Nb-Fe-BASED ALLOY EXCELLENT IN INTERNAL QUALITY AND HOT WORKABILITY, AND MANUFACTURING METHOD THEREFOR
JP2020033579A (en) Stainless steel sheet excellent in surface quality and manufacturing method therefor
JP6990337B1 (en) Ni-based alloy with excellent surface properties and its manufacturing method
JPH08225820A (en) Production of high carbon silicon killed steel
JP7032600B1 (en) Mold powder for continuous casting and continuous casting method used for Fe—Ni based alloys or Ni-based alloys.
JP3036373B2 (en) Manufacturing method of oxide dispersion steel
JP6762414B1 (en) Stainless steel with excellent surface properties and its manufacturing method
TWI764512B (en) Fertilizer iron series stainless steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210830

R150 Certificate of patent or registration of utility model

Ref document number: 6937190

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150