KR20070000358A - Fine grained sintered cemented carbides containing a gradient zone - Google Patents

Fine grained sintered cemented carbides containing a gradient zone Download PDF

Info

Publication number
KR20070000358A
KR20070000358A KR1020060057624A KR20060057624A KR20070000358A KR 20070000358 A KR20070000358 A KR 20070000358A KR 1020060057624 A KR1020060057624 A KR 1020060057624A KR 20060057624 A KR20060057624 A KR 20060057624A KR 20070000358 A KR20070000358 A KR 20070000358A
Authority
KR
South Korea
Prior art keywords
cutting tool
coated cutting
binder phase
weight
tool insert
Prior art date
Application number
KR1020060057624A
Other languages
Korean (ko)
Other versions
KR20060136328A (en
Inventor
노봄 그레타 하쉐 은지멜라
요하네스 헤노크 네틀링
수산네 노르그랜
한스-올로프 안드렌
알렉산드라 쿠소프스퀴
보 얀손 하겐
Original Assignee
산드빅 인터렉츄얼 프로퍼티 에이비
쎄코 툴스 에이비
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 산드빅 인터렉츄얼 프로퍼티 에이비, 쎄코 툴스 에이비 filed Critical 산드빅 인터렉츄얼 프로퍼티 에이비
Publication of KR20060136328A publication Critical patent/KR20060136328A/en
Publication of KR20070000358A publication Critical patent/KR20070000358A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/08Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds based on tungsten carbide
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles
    • Y10T428/12028Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles
    • Y10T428/12028Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, etc.]
    • Y10T428/12049Nonmetal component
    • Y10T428/12056Entirely inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/24983Hardness
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/252Glass or ceramic [i.e., fired or glazed clay, cement, etc.] [porcelain, quartz, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • Y10T428/2651 mil or less

Abstract

A cemented carbide insert having high toughness and high deformation resistance at application temperatures is provided. In a coated cutting tool insert consisting a cemented carbide substrate and a coating, wherein the cemented carbide substrate comprises WC, binder phase and cubic carbide phase and has a binder phase enriched surface zone basically free of cubic carbide phase, the coated cutting tool insert is characterized in that the substrate comprises 3 to 20 wt.% of cobalt, 0.1 to 20 wt.% of vanadium and the balance 70 to 95 wt.% of WC, wherein a total content of vanadium and other cubic carbide formers from elements of the groups 4a and 5a of 1 to 20 wt.%, the WC has an average grain size of less than 1.5 mum, and free graphite does not exist in the substrate structure.

Description

구배 영역을 포함하는 미세립 소결 초경합금{FINE GRAINED SINTERED CEMENTED CARBIDES CONTAINING A GRADIENT ZONE}Fine grained sintered cemented carbide including gradient zones {FINE GRAINED SINTERED CEMENTED CARBIDES CONTAINING A GRADIENT ZONE}

본 발명은 바인더상 농후 표면영역, 소위 구배영역이라 불리는 영역을 포함하는 미세립 초경합금에 관한 것이다. 구배영역에는 기본적으로 결정립 성장 억제제의 첨가에 의해 생성될 수 있는 입방 탄화물 또는 탄소질소화물이 존재하지 않는다. 또한, 구배영역은 미세립으로 이루어져 있다.The present invention relates to a fine grained cemented carbide including a binder phase rich surface region, a so-called gradient region. Gradient zones are basically free of cubic carbides or carbon nitrides which can be produced by the addition of grain growth inhibitors. In addition, the gradient region is composed of fine grains.

오늘날 바인더상 농후 표면영역을 갖는 코팅된 초경합금 인서트가 강 및 스테인레스 재료의 기계가공에서 상당히 폭넓게 사용되고 있다. 바인더상 농후 표면영역으로 인해, 절삭공구 재료용 적용범위가 확장되어 왔다.Coated cemented carbide inserts with a binder phase rich surface area are now widely used in the machining of steel and stainless materials. Due to the binder phase rich surface area, the application range for cutting tool materials has been expanded.

WC, 입방상 (cubic phase)(탄소질소화물) 및 바인더상을 함유하며 바인더상 농후 표면영역을 갖는 초경합금을 만들기 위한 방법이나 공정은 구배소결 (gradient sintering) 이라는 기술분야에 속하며, 수많은 특허 및 특허출원을 통해 공지되어 있다. 미국특허 제4,277,283호 및 제4,610,931호에 따르면, 질소함유 첨가물이 사용되며 진공상태에서 소결이 일어나고, 미국특허 제4,548,786호에 따르면 질소는 가스상으로 첨가된다. 이 두 경우 모두에서, 기본적으로 입방상이 고갈된 바인더상 농후 표면영역이 얻어진다. 미국특허 제4,830,930호에는 소결후 탈탄과정을 통해 얻어지는 바인더상 농후영역이 기재되어 있는데, 여기에서 얻어진 바인더상 농후영역에는 입방상도 포함되어 있다.Methods or processes for making cemented carbide containing WC, cubic phase (carbon nitride) and binder phase and having a binder phase rich surface area belong to the technical field of gradient sintering, and many patents and patents It is known throughout the application. According to US Pat. Nos. 4,277,283 and 4,610,931, nitrogenous additives are used and sintering occurs in a vacuum, and according to US Pat. No. 4,548,786, nitrogen is added in the gas phase. In both cases, a binder-rich rich surface area is obtained which is basically depleted of cubic phase. U. S. Patent No. 4,830, 930 describes a binder phase rich region obtained through decarburization after sintering, and the binder phase rich region obtained here also includes a cubic phase.

미국특허 제4,649,084호에서는 소결과 관련하여 질소 가스가 사용되는데, 이는 공정 단계를 제거하고 다음에 증착되는 산화물 코팅의 부착성을 향상시키기 위해서이다. 특허 EP-A-0569696 에서는 Hf 및/또는 Zr의 존재하에 바인더상 농후 영역이 얻어진다. 특허 EP-A-0737756 에서는 초경합금에 Ti의 존재를 통해 동일한 효과를 달성하였다. 이 특허들을 통해서 4A족 (Ti, Zr, Hf) 의 입방 탄화물 형성제 (former) 가 바인더상 농후 표면영역을 얻는데 사용될 수 있음이 밝혀졌다.In US Pat. No. 4,649,084, nitrogen gas is used in connection with sintering in order to eliminate process steps and to improve the adhesion of the oxide coating that is subsequently deposited. In patent EP-A-0569696 a binder phase rich region is obtained in the presence of Hf and / or Zr. Patent EP-A-0737756 achieves the same effect through the presence of Ti in cemented carbide. These patents have shown that cubic carbide formers of Group 4A (Ti, Zr, Hf) can be used to obtain a binder phase rich surface area.

기계적 파단의 관점에서 볼 때, 표면영역에 바인더 금속이 후하다 라는 것은 초경합금이 변형을 흡수하고, 균열 성장의 전파를 멈출 수 있음을 의미한다. 이렇게하여, 더 큰 변형을 허용하거나 균열의 성장을 억제함으로써 조성은 대게 동일하지만 균일한 조직을 갖는 재료에 비해 파단에 대한 저항성이 향상된 재료가 얻어진다. 따라서, 절삭 재료는 향상된 인성 거동을 나타낸다.In terms of mechanical breakage, the presence of a binder metal in the surface area means that the cemented carbide can absorb deformation and stop propagation of crack growth. In this way, by permitting larger deformations or inhibiting the growth of cracks, a material is obtained which is generally identical in composition but with improved resistance to fracture compared to materials having a uniform structure. Thus, the cutting material exhibits improved toughness behavior.

오늘날, 서브마이크론 조직 (submicron structure) 의 초경합금 인서트가 고 인성 및 고 내마모성을 요구하는 분야에서 강, 스테인레스강 및 내열합금의 기계가공용으로 널리 사용된다. 소결과정 동안 입도를 유지하기 위해, 이러한 초경합금에는 일반적으로 결정립 성장 억제제가 포함된다. 일반적인 결정립 성장 억제제로는 바나듐, 크롬, 탄탈륨, 니오븀 및/또는 티타늄 또는 이들의 화합물이 있다. 바나듐 및/또는 크롬을 사용할 때 가장 강한 억제가 일어난다. 일반적으로 탄화물로서 억제제가 첨가되면, 소결과정 동안 결정립의 성장을 제한하지만, 희망하지 않는 부작용도 있다. 원하지 않는 취성조직 성분이 석출되어 바람직하지 못한 방향으로 인성에 영향을 미친다.Today, cemented carbide inserts of submicron structures are widely used for machining steel, stainless steel and heat resistant alloys in applications requiring high toughness and high wear resistance. To maintain particle size during the sintering process, such cemented carbides generally include grain growth inhibitors. Common grain growth inhibitors include vanadium, chromium, tantalum, niobium and / or titanium or compounds thereof. The strongest inhibition occurs when using vanadium and / or chromium. In general, the addition of inhibitors as carbides limits grain growth during the sintering process, but also has undesirable side effects. Undesirable brittle tissue components precipitate and affect toughness in undesirable directions.

본 발명의 목적은 사용 온도에서 고 인성 및 고 내변형성을 갖는 초경합금 인서트를 제공하는 것이다.It is an object of the present invention to provide a cemented carbide insert with high toughness and high deformation resistance at service temperatures.

본 발명자들은 소결 후 표면영역에 결정립 성장 억제제가 석출물로 존재하지 않음에도 불구하고, 입방 탄화물상이 없는 미세립 표면영역을 갖는 미세립 초경합금을 최초로 얻어내는 놀라운 성과를 이루었다. 이는 표면영역에 바인더상을 농후하게 하고, 또한 인서트 전체에 걸쳐 WC 결정립의 입도를 < 1.5㎛ 으로 미세하게 함으로써 달성되었다. 바나듐의 기능은 WC 결정립의 성장을 방지하고 구배 형성자 (gradient former) 의 역할을 하는 것이다.The inventors have achieved remarkable results for the first time to obtain a fine grained cemented carbide having a fine grained surface area without a cubic carbide phase, although no grain growth inhibitor is present as a precipitate in the surface area after sintering. This was achieved by enriching the binder phase in the surface area and making the grain size of the WC grains fine throughout the insert to <1.5 mu m. The function of vanadium is to prevent the growth of WC grains and to act as a gradient former.

본 발명은 평균입도가 1.5 ㎛ 미만, 바람직하게는 1.0 ㎛ 미만, 가장 바람직하게는 0.6 ㎛ 미만인 탄화텅스텐 (WC) 계의 제 1 상, Co 및/또는 Ni 계의 금속 바인더상, 1종 이상의 탄질화물 또는 바나듐이 함유된 혼합 탄질화물을 포함하는 1종 이상의 부가상 (additional phase) 으로 구성된 미세립 초경합금에 관한 것이다. 초경합금은 두께가 < 100 ㎛, 바람직하게는 < 60㎛, 가장 바람직하게는 10 ~ 35 ㎛ 인 기본적으로 입방 탄화물상이 없는 두꺼운 바인더상 농후 표면영역을 갖는다. 바인더상 농후 표면영역의 바인더상 함량은 공칭 바인더상 함량의 최대 1.2 ~ 3 배에 이른다. 초경합금의 중심부에서는 물론 구배영역의 표면 가까이에서도 WC의 평균입도는 1.5 ㎛ 미만이다. 초경합금의 조성은 3 ~ 20 중량%의 Co, 바람직하게는 4 ~ 15 중량%의 Co, 가장 바람직하게는 5 ~ 13 중량%의 Co, 0.1 ~ 20 중량%의 V, 바람직하게는 0.2 ~ 10 중량%의 V, 가장 바람직하게는 1 ~ 10 중량%의 V 및 나머지로서 70 ~ 95 중량%, 바람직하게는 80 ~ 90 중량 %의 WC로 이루어진다. 95 중량%까지, 바람직하게는 80 중량%까지 V의 일부가 Ti만으로 또는 예컨대 Ta, Nb, Zr 및 Hf과 같은 입방상에 용해될 수 있는 타 원소들과의 조합으로 치환될 수 있다. V과 입방상에 용해될 수 있는 타 원소들의 총 합은 1 ~ 20 중량%, 바람직하게는 2 ~ 10 중량%이다. 이 조직에는 유리 흑연 (free graphite) 이 없다. 본 발명에 따른 초경합금 인서트에는 CVD -, MTCVD - 또는 PVD - 기술, 또는 CVD와 MTCVD의 조합을 사용하여 얇은 내마모성 코팅이 형성되는 것이 바람직하다. 바람직하게는 티타늄의 탄화물, 질화물 및/또는 탄질화물로 된 최내측 코팅이 형성되는 것이 바람직하다. 그 다음 층은 바람직하게는 티타늄, 지르코늄 및/또는 하프늄의 탄화물, 질화물 및/또는 탄질화물, 및/또는 알루미늄 및/또는 지르코늄의 산화물로 구성된다.The present invention provides a tungsten carbide (WC) based first phase, a Co and / or Ni based metal binder phase, at least one carbonaceous material having an average particle size of less than 1.5 μm, preferably less than 1.0 μm, most preferably less than 0.6 μm. A fine grained cemented carbide composed of at least one additional phase comprising a mixed carbonitride containing a cargo or vanadium. The cemented carbide has a thick binder phase rich surface area, essentially free of cubic carbide phase, having a thickness of <100 μm, preferably <60 μm, most preferably 10 to 35 μm. The binder phase content of the binder phase rich surface area is up to 1.2 to 3 times the nominal binder phase content. The average particle size of the WC is less than 1.5 µm not only in the center of the cemented carbide but also near the surface of the gradient region. The composition of the cemented carbide is 3 to 20% by weight of Co, preferably 4 to 15% by weight of Co, most preferably 5 to 13% by weight of Co, 0.1 to 20% by weight of V, preferably 0.2 to 10% by weight. % Of V, most preferably 1 to 10% by weight of V and the rest 70 to 95% by weight, preferably 80 to 90% by weight of WC. Up to 95% by weight, preferably up to 80% by weight, part of V can be substituted with Ti alone or in combination with other elements which can be dissolved in cubic phases such as, for example, Ta, Nb, Zr and Hf. The sum of V and other elements that can be dissolved in the cubic phase is 1 to 20% by weight, preferably 2 to 10% by weight. There is no free graphite in this structure. The cemented carbide insert according to the invention is preferably formed with a thin wear resistant coating using CVD-, MTCVD-or PVD-technology, or a combination of CVD and MTCVD. Preferably, the innermost coating of carbide, nitride and / or carbonitride of titanium is formed. The next layer preferably consists of carbides, nitrides and / or carbonitrides of titanium, zirconium and / or hafnium, and / or oxides of aluminum and / or zirconium.

본 발명의 방법에 따르면, 분말 야금법에 의해 초경합금 인서트가 제조되는데, 이 방법은 경질성분과 바인더상을 형성하는 분말 혼합물을 분쇄하고, 건조, 가압 및 소결하는 것을 포함한다. 희망하는 바인더상 농후 (enrichment) 를 얻기위해, 소결은 질소 분위기, 부분적으로 질소 분위기, 또는 진공에서 실시된다. V은 VC로 또는 (V, M)C로 또는 (V, M)(C, N)으로 또는 (V, M, M)(C, N)으로 첨가되며, 여기서 M은 입방 탄화물에 용해가능한 임의의 금속원소이다.According to the method of the present invention, cemented carbide inserts are prepared by powder metallurgy, which comprises grinding, drying, pressing and sintering the powder mixture forming the hard component and the binder phase. In order to obtain the desired binder phase enrichment, the sintering is carried out in a nitrogen atmosphere, partly in a nitrogen atmosphere, or in a vacuum. V is added to VC or to (V, M) C or (V, M) (C, N) or (V, M, M) (C, N), where M is any soluble in cubic carbide Is a metal element.

예 1Example 1

표 1 에 제시된 원료 1, 2 및 4는 12 중량%의 Co, 8.1 중량%의 V, 나머지는 WC인 조성의 분말을 제조하는데 사용되었다. 인서트는 가압 및 소결되었다. 합금을 질화하기 위하여 T=1380℃ 까지는 PN2 = 950 mbar에서 소결이 실시되었다. T=1380℃부터 소결온도인 T=1410℃까지는 진공상태에서 소결이 실시되었다. 소결된 인서트의 질소 함량은 0.35 중량%였다.Raw materials 1, 2 and 4 shown in Table 1 were used to prepare powders of the composition of 12 wt% Co, 8.1 wt% V and the rest WC. Inserts were pressed and sintered. Sintering was carried out at P N2 = 950 mbar up to T = 1380 ° C. to nitride the alloy. Sintering was performed in the vacuum state from T = 1380 degreeC to the sintering temperature of T = 1410 degreeC. The nitrogen content of the sintered inserts was 0.35% by weight.

표 1 : 원료Table 1: Raw Materials

원재료 번호Raw material number 원재료Raw materials 공급원Source 입도 FSSS (㎛)Particle Size FSSS (μm) 1One VCVC H.C.StarckH.C.Starck 1.2 ~ 1.81.2 to 1.8 22 WCWC H.C.Starck (DS150)H.C.Starck (DS150) 1.45 ~ 1.551.45-1.55 33 TiCTiC H.C.StarckH.C.Starck 1.2 ~ 1.81.2 to 1.8 44 CoCo OMG, 극세입상(extra fine granulated)OMG, extra fine granulated 1.3 ~ 1.61.3 to 1.6 55 TiC0 .5N0 .5 TiC 0 .5 N 0 .5 H.C.StarckH.C.Starck 1.3 ~ 1.61.3 to 1.6

절삭 인서트의 표면조직은 여유면과 경사면 아래에서 절삭 인서트의 표면 조직은 기본적으로 입방 탄화물상이 없는 75 ㎛ 두께의 바인더상 농후 표면영역으로 이루어졌으며 (도 1 참조), 표면의 날부 가까이에서는 상당히 감소된 구배 두께가 나타났다. WC의 입도는 약 0.9 ㎛였다.The surface texture of the cutting insert consists of a 75 µm thick binder phase rich surface area, essentially free of cubic carbide phases, on the clearance and below the slope (see Fig. 1), significantly reduced near the edge of the surface. Gradient thickness appeared. The particle size of the WC was about 0.9 μm.

예 2Example 2

예 1 에서와 동일한 분말을 사용하여, 인서트가 가압 및 소결되었다. 모든 소결 과정에서 압력이 PN2 = 950 mbar 인 것을 제외하고는 소결은 동일한 절차로 실행되었다.Using the same powder as in Example 1, the insert was pressed and sintered. Sintering was carried out in the same procedure except that the pressure was P N2 = 950 mbar in all sintering processes.

절삭 인서트의 표면조직은 여유면과 경사면 아래에서 절삭 인서트의 표면 조직은 기본적으로 입방 탄화물상이 없는 50 ㎛ 두께의 바인더상 농후 표면영역으로 이루어졌으며 (도 2 참조), 표면의 날부 가까이에서는 상당히 감소된 구배 두께가 나타났다. 소결된 인서트의 질소 함량은 0.35 중량%였다. 성분분포는 EPMA를 사용하여 결정하였다 (도 3 참조). 표면영역에는 기본적으로 V이 없다는 것을 주의하라. WC의 입도는 약 0.9 ㎛였다.The surface texture of the cutting insert consists of a 50 μm thick binder phase rich surface area, essentially free of cubic carbide phases, on the clearance and below the slope (see Fig. 2), significantly reduced near the edges of the surface. Gradient thickness appeared. The nitrogen content of the sintered inserts was 0.35% by weight. Component distributions were determined using EPMA (see FIG. 3). Note that there is basically no V in the surface area. The particle size of the WC was about 0.9 μm.

예 3Example 3

표 1 에 제시된 원료 1, 2, 3 및 4는 13 중량%의 Co, 3.47 중량%의 V, 3.27 중량%의 Ti, 나머지는 WC인 조성의 분말의 제조에 사용되었다.Raw materials 1, 2, 3 and 4 shown in Table 1 were used for the preparation of powders of the composition: 13 wt% Co, 3.47 wt% V, 3.27 wt% Ti, the balance WC.

예 1 과 같이 소결이 실행되었다. 절삭 인서트의 표면조직은 여유면과 경사면 아래에서 절삭 인서트의 표면 조직은 기본적으로 입방 탄화물상이 없는 55 ㎛ 두께의 바인더상 농후 표면영역으로 이루어졌으며 (도 4 참조), 표면의 날부 가까이에서는 상당히 감소된 구배 두께가 나타났다. 소결된 인서트의 질소 함량은 0.45 중량%였다. WC의 입도는 약 0.9 ㎛였다.Sintering was performed as in Example 1. The surface texture of the cutting insert consists of a 55 μm thick binder phase rich surface area, essentially free of cubic carbide phases, on the clearance and below the slope (see Fig. 4), significantly reduced near the edges of the surface. Gradient thickness appeared. The nitrogen content of the sintered inserts was 0.45% by weight. The particle size of the WC was about 0.9 μm.

예 4Example 4

표 1 에 제시된 원료 1, 2, 3, 4 및 5는 13 중량%의 Co, 3.47 중량%의 V, 3.27 중량%의 Ti, 0.013 중량%의 N, 나머지는 WC인 조성의 분말의 제조에 사용되었다. 매우 미세한 소결 질소 함량과 얇은 구배 영역을 포함하는 인서트를 제조하기 위해, 분말 혼합물에 질소가 표 1 의 5번 원료인 TiC0 .5N0 . 5 으로서 첨가되었다.Raw materials 1, 2, 3, 4 and 5 shown in Table 1 are used for the preparation of powders of the composition: 13 wt% Co, 3.47 wt% V, 3.27 wt% Ti, 0.013 wt% N, the remainder being WC It became. In order to manufacture an insert, containing very fine sintered nitrogen content and thin gradient zone, the nitrogen in the raw material powder mixture 5 of Table 1 TiC 0 .5 N 0. As 5 was added.

T=1410℃의 진공상태에서 1시간 동안 소결을 실시하여, 절삭 인서트의 표면조직은 여유면과 경사면 아래에서 절삭 인서트의 표면 조직은 기본적으로 입방 탄화물상이 없는 75 ㎛ 두께의 바인더상 농후 표면영역으로 이루어졌으며 (도 5 참조), 표면의 날부 가까이에서는 상당히 감소된 구배 두께가 나타났다. WC의 입도는 약 0.9 ㎛였다.By sintering for 1 hour under vacuum at T = 1410 ° C, the surface structure of the cutting insert was reduced to the free surface and the inclined surface. (See FIG. 5), a significantly reduced gradient thickness was observed near the edges of the surface. The particle size of the WC was about 0.9 μm.

본 발명에 따르면, 소결 후 표면영역에 결정립 성장 억제제가 석출물로 존재하지 않음에도 불구하고, 입방 탄화물상이 없는 미세립 표면영역을 갖는 미세립 초경합금이 얻어진다. 따라서, 본 발명에 따르면 사용 온도에서 고 인성 및 고 내변형성을 갖는 초경합금 인서트의 제공이 가능하다.According to the present invention, although the grain growth inhibitor is not present as a precipitate in the surface region after sintering, a fine grained cemented carbide having a fine grained surface region without a cubic carbide phase is obtained. Therefore, according to the present invention, it is possible to provide a cemented carbide insert having high toughness and high deformation resistance at use temperature.

도 1 은 예 1 의 바인더상 농후 표면영역의 조직을 500배 확대한 것이다.1 is a 500 times magnification of the structure of the binder phase rich surface region of Example 1. FIG.

도 2 는 예 2 의 바인더상 농후 표면영역의 조직을 500배 확대한 것이다.2 is a 500 times magnification of the structure of the binder phase rich surface region of Example 2. FIG.

도 3 은 EPMA (Electron Probe Micro Analysis) 를 사용하여 얻어진 예 2 의 표면영역에서의 성분분포를 보여준다.Figure 3 shows the component distribution in the surface area of Example 2 obtained using Electron Probe Micro Analysis (EPMA).

도 4 는 예 3 의 바인더상 농후 표면영역의 조직을 1000배 확대한 것이다.Fig. 4 shows a 1000 times magnification of the texture of the binder-rich rich surface region of Example 3.

도 5 는 예 4 의 바인더상 농후 표면영역의 조직을 1000배 확대한 것이다.Fig. 5 shows a 1000 times magnification of the texture of the binder-rich rich surface region of Example 4.

Claims (10)

초경합금 기재와 코팅으로 이루어진 코팅된 절삭공구 인서트로서, 상기 초경합금 기재는 WC, 바인더상, 및 입방 탄화물상을 포함하고, 또한 기본적으로 입방 탄화물상이 없는 바인더상 농후 표면영역을 갖는 상기 절삭공구 인서트에 있어서, A coated cutting tool insert consisting of a cemented carbide substrate and a coating, the cemented carbide substrate comprising a WC, a binder phase, and a cubic carbide phase, and in the cutting tool insert having a binder phase rich surface area that is essentially free of a cubic carbide phase. , 상기 기재는 3 ~ 20 중량%의 코발트, 0.1 ~ 20 중량%의 바나듐 및 나머지로서 70 ~ 95 중량%의 WC를 포함하고, 상기 바나듐 및 4a족과 5a족 원소인 타 입방 탄화물 형성제(former)의 총 함량은 1 ~ 20 중량% 이고, WC의 평균입도는 < 1.5 ㎛이며, 기재 조직에는 유리 흑연 (free graphite) 이 없는 것을 특징으로 하는 코팅된 절삭공구 인서트.The substrate comprises 3-20% by weight of cobalt, 0.1-20% by weight of vanadium and 70-95% by weight of WC as the remainder, the vanadium and other cubic carbide formers of Groups 4a and 5a elements Coated cutting tool insert, characterized in that the total content of 1 to 20% by weight, the average particle size of the WC is <1.5 ㎛, free graphite in the substrate structure. 제 1 항에 있어서, 상기 기재는 4 ~ 15 중량%의 코발트를 포함하는 것을 특징으로 하는 코팅된 절삭공구 인서트.The coated cutting tool insert of claim 1 wherein the substrate comprises 4 to 15 weight percent cobalt. 제 1 항 또는 제 2 항에 있어서, 상기 기재는 0.2 ~ 10 중량%의 바나듐을 포함하는 것을 특징으로 하는 코팅된 절삭공구 인서트.3. The coated cutting tool insert of claim 1 or 2, wherein the substrate comprises 0.2 to 10 weight percent vanadium. 제 1 항 내지 제 3 항 중 어느 한 항에 있어서, 바나듐 및 4a족과 5a족 원소인 타 입방 탄화물 형성제의 총 함량은 2 ~ 10 중량%인 것을 특징으로 하는 코팅된 절삭공구 인서트.4. The coated cutting tool insert according to any one of claims 1 to 3, wherein the total content of vanadium and other cubic carbide formers of Group 4a and Group 5a elements is from 2 to 10% by weight. 제 1 항 내지 제 4 항 중 어느 한 항에 있어서, 소결된 입도는 < 1.0 ㎛인 것을 특징으로 하는 코팅된 절삭공구 인서트.The coated cutting tool insert according to claim 1, wherein the sintered particle size is <1.0 μm. 제 1 항 내지 제 5 항 중 어느 한 항에 있어서, 상기 기재는 0.2 ~ 6 중량%의 티타늄을 포함하는 것을 특징으로 하는 코팅된 절삭공구 인서트.6. The coated cutting tool insert of claim 1, wherein the substrate comprises 0.2 to 6 weight percent titanium. 7. 제 1 항 내지 제 6 항 중 어느 한 항에 있어서, 바나듐 및 티타늄의 총 함량은 2 ~ 10 중량%인 것을 특징으로 하는 코팅된 절삭공구 인서트.The coated cutting tool insert according to any one of claims 1 to 6, wherein the total content of vanadium and titanium is 2 to 10% by weight. 제 1 항 내지 제 7 항 중 어느 한 항에 있어서, 바인더상 농후 표면영역의 깊이는 100 ㎛ 미만인 것을 특징으로 하는 코팅된 절삭공구.8. The coated cutting tool according to any one of claims 1 to 7, wherein the depth of the binder phase rich surface area is less than 100 mu m. 제 1 항 내지 제 8 항 중 어느 한 항에 있어서, 바인더상 농후 표면영역의 깊이는 60 ㎛ 미만인 것을 특징으로 하는 코팅된 절삭공구.The coated cutting tool according to claim 1, wherein the depth of the binder phase rich surface area is less than 60 μm. 제 1 항 내지 제 9 항 중 어느 한 항에 있어서, 바인더상 농후 표면영역의 바인더상 함유량은 공칭 바인더상 함유량의 최대 1.2 ~ 3 배인 것을 특징으로 하는 코팅된 절삭공구.10. The coated cutting tool according to any one of claims 1 to 9, wherein the binder phase content of the binder phase rich surface area is at most 1.2 to 3 times the nominal binder phase content.
KR1020060057624A 2005-06-27 2006-06-26 Fine grained sintered cemented carbides containing a gradient zone KR20070000358A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SE0501489-9 2005-06-27
SE0501489A SE529590C2 (en) 2005-06-27 2005-06-27 Fine-grained sintered cemented carbides containing a gradient zone

Publications (2)

Publication Number Publication Date
KR20060136328A KR20060136328A (en) 2007-01-02
KR20070000358A true KR20070000358A (en) 2007-01-02

Family

ID=36933488

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020060057624A KR20070000358A (en) 2005-06-27 2006-06-26 Fine grained sintered cemented carbides containing a gradient zone
KR1020077005609A KR101353651B1 (en) 2005-06-27 2006-06-27 Sintered cemented carbides using vanadium as gradient former

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020077005609A KR101353651B1 (en) 2005-06-27 2006-06-27 Sintered cemented carbides using vanadium as gradient former

Country Status (7)

Country Link
US (2) US7588833B2 (en)
EP (2) EP1739198A1 (en)
JP (2) JP2007007850A (en)
KR (2) KR20070000358A (en)
CN (2) CN100575524C (en)
SE (1) SE529590C2 (en)
WO (1) WO2007001226A1 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE532023C2 (en) * 2007-02-01 2009-09-29 Seco Tools Ab Textured hardened alpha-alumina coated cutting for metalworking
SE533070C2 (en) * 2008-11-10 2010-06-22 Seco Tools Ab Ways to make cutting tools
JP5445428B2 (en) * 2010-11-01 2014-03-19 新日鐵住金株式会社 Tube structure for optical element connecting member of difficult-to-work material and method for producing the same
GB201100966D0 (en) * 2011-01-20 2011-03-02 Element Six Holding Gmbh Cemented carbide article
JP5062541B2 (en) * 2011-03-15 2012-10-31 住友電工ハードメタル株式会社 Cutting edge replacement type cutting tool
CN102191421B (en) * 2011-05-26 2012-11-07 株洲钻石切削刀具股份有限公司 Ultrafine hard alloy with gradient structure and preparation process thereof
US9016406B2 (en) * 2011-09-22 2015-04-28 Kennametal Inc. Cutting inserts for earth-boring bits
KR101640690B1 (en) * 2014-12-30 2016-07-18 한국야금 주식회사 Tungsten carbide having enhanced toughness
US10501376B2 (en) * 2015-01-22 2019-12-10 University Of Utah Research Foundation Functionally graded carbides
JP6879935B2 (en) * 2015-04-30 2021-06-02 サンドビック インテレクチュアル プロパティー アクティエボラーグ Cutting tools
WO2017167906A1 (en) * 2016-04-01 2017-10-05 Pramet Tools, S.R.O. Surface hardening of cemented carbide body
DE102016207028A1 (en) * 2016-04-26 2017-10-26 H.C. Starck Gmbh Carbide with toughening structure
CN105803288B (en) * 2016-05-23 2017-11-14 株洲钻石切削刀具股份有限公司 A kind of non-homogeneous gradient hard alloy and preparation method thereof
JP7203019B2 (en) * 2016-09-30 2023-01-12 サンドビック インテレクチュアル プロパティー アクティエボラーグ Machining method for Ti, Ti alloys and Ni-based alloys
CN110284038B (en) * 2019-04-26 2020-07-28 中南大学 PVD coating with strong (111) texture and preparation method thereof
KR20220115089A (en) * 2019-12-20 2022-08-17 에이비 산드빅 코로만트 cutting tool
CN111940742B (en) * 2020-08-08 2022-07-05 邹爱忠 Preparation method of gradient hard alloy
CN113182524B (en) * 2021-04-25 2023-06-02 赣州澳克泰工具技术有限公司 Titanium-based metal ceramic, manufacturing method thereof and cutting tool

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5487719A (en) * 1977-12-23 1979-07-12 Sumitomo Electric Industries Super hard alloy and method of making same
US4443255A (en) * 1980-06-13 1984-04-17 Union Carbide Corporation Hard facing of metal substrates
US4610931A (en) * 1981-03-27 1986-09-09 Kennametal Inc. Preferentially binder enriched cemented carbide bodies and method of manufacture
US4548786A (en) * 1983-04-28 1985-10-22 General Electric Company Coated carbide cutting tool insert
US4649084A (en) * 1985-05-06 1987-03-10 General Electric Company Process for adhering an oxide coating on a cobalt-enriched zone, and articles made from said process
US4708037A (en) * 1985-11-18 1987-11-24 Gte Laboratories Incorporated Coated cemented carbide tool for steel roughing applications and methods for machining
JPH0715135B2 (en) * 1986-07-02 1995-02-22 三菱マテリアル株式会社 Tungsten carbide based cemented carbide drill
JPS63169356A (en) * 1987-01-05 1988-07-13 Toshiba Tungaloy Co Ltd Surface-tempered sintered alloy and its production
JP3010859B2 (en) 1991-10-24 2000-02-21 三菱マテリアル株式会社 Tungsten carbide based cemented carbide
CA2092932C (en) 1992-04-17 1996-12-31 Katsuya Uchino Coated cemented carbide member and method of manufacturing the same
SE501527C2 (en) 1992-12-18 1995-03-06 Sandvik Ab Methods and articles when coating a cutting tool with an alumina layer
SE505425C2 (en) 1992-12-18 1997-08-25 Sandvik Ab Carbide metal with binder phase enriched surface zone
US5368628A (en) * 1992-12-21 1994-11-29 Valenite Inc. Articles of ultra fine grained cemented carbide and process for making same
US5624766A (en) * 1993-08-16 1997-04-29 Sumitomo Electric Industries, Ltd. Cemented carbide and coated cemented carbide for cutting tool
JP3606527B2 (en) * 1993-11-10 2005-01-05 三菱マテリアル神戸ツールズ株式会社 Shaft cutting tool
JP3878232B2 (en) * 1995-01-10 2007-02-07 住友電工ハードメタル株式会社 Coated cemented carbide
SE514283C2 (en) 1995-04-12 2001-02-05 Sandvik Ab Coated carbide inserts with binder facade-enriched surface zone and methods for its manufacture
DE69619275T2 (en) * 1995-11-30 2004-06-24 Sandvik Ab COATED ROTATABLE INSERT AND METHOD FOR THE PRODUCTION THEREOF
SE517474C2 (en) 1996-10-11 2002-06-11 Sandvik Ab Way to manufacture cemented carbide with binder phase enriched surface zone
JPH10138027A (en) * 1996-11-11 1998-05-26 Shinko Kobelco Tool Kk Cemented carbide for drill and drill for printed board drilling using same cemented carbide
JPH10237650A (en) * 1997-02-24 1998-09-08 Sumitomo Electric Ind Ltd Wc base cemented carbide and its production
SE518885C2 (en) 1998-02-20 2002-12-03 Seco Tools Ab Ways to make inserts in submicron cemented carbide
JPH11302767A (en) * 1998-04-21 1999-11-02 Toshiba Tungaloy Co Ltd Cemented carbide excellent in mechanical characteristic and its production
SE9802487D0 (en) * 1998-07-09 1998-07-09 Sandvik Ab Cemented carbide insert with binder phase enriched surface zone
JP4215317B2 (en) * 1998-11-12 2009-01-28 住友電工ハードメタル株式会社 IC lead frame cutting blade and manufacturing method thereof
SE513177C2 (en) * 1999-01-14 2000-07-24 Sandvik Ab Methods of making cemented carbide with a bimodal grain size distribution and containing grain growth inhibitors
SE516017C2 (en) * 1999-02-05 2001-11-12 Sandvik Ab Cemented carbide inserts coated with durable coating
JP3048145B1 (en) * 1999-02-15 2000-06-05 東芝タンガロイ株式会社 Cemented carbide coating tools for coating equipment
SE9901244D0 (en) * 1999-04-08 1999-04-08 Sandvik Ab Cemented carbide insert
JP2000336451A (en) * 1999-05-28 2000-12-05 Toshiba Tungaloy Co Ltd Modified sintered alloy, coated sintered alloy, and their production
JP4165850B2 (en) * 1999-11-26 2008-10-15 株式会社タンガロイ Plate-like tungsten carbide-containing powder and method for producing the same
SE522730C2 (en) * 2000-11-23 2004-03-02 Sandvik Ab Method for manufacturing a coated cemented carbide body intended for cutting machining
EP1390566A2 (en) * 2001-05-16 2004-02-25 Widia GmbH Composite material and method for production thereof
DE10135790B4 (en) * 2001-07-23 2005-07-14 Kennametal Inc. Fine grained cemented carbide and its use
SE523826C2 (en) * 2002-03-20 2004-05-25 Seco Tools Ab Cutter coated with TiAIN for high speed machining of alloy steels, ways of making a cutter and use of the cutter
DE10225521A1 (en) 2002-06-10 2003-12-18 Widia Gmbh Hard tungsten carbide substrate with surface coatings, includes doped metallic binder
JP2004232001A (en) * 2003-01-28 2004-08-19 Kyocera Corp Composite hard sintered compact, and composite member and cutting tool using it
JP4336120B2 (en) * 2003-02-25 2009-09-30 京セラ株式会社 Cutting tool and manufacturing method thereof
SE526599C2 (en) * 2003-06-16 2005-10-18 Seco Tools Ab CVD coated carbide inserts
JP2005052938A (en) 2003-08-05 2005-03-03 Hitachi Tool Engineering Ltd Small drill made of tungsten-carbide-based cemented carbide

Also Published As

Publication number Publication date
CN101018879A (en) 2007-08-15
CN100575524C (en) 2009-12-30
US7794830B2 (en) 2010-09-14
US7588833B2 (en) 2009-09-15
JP2007007850A (en) 2007-01-18
KR101353651B1 (en) 2014-01-20
JP2008522027A (en) 2008-06-26
KR20080019571A (en) 2008-03-04
SE529590C2 (en) 2007-09-25
EP1904660B1 (en) 2014-08-13
EP1739198A1 (en) 2007-01-03
EP1904660A1 (en) 2008-04-02
JP4842962B2 (en) 2011-12-21
EP1904660A4 (en) 2010-10-06
US20070009764A1 (en) 2007-01-11
SE0501489L (en) 2006-12-28
US20090011267A1 (en) 2009-01-08
WO2007001226A1 (en) 2007-01-04
CN1891842A (en) 2007-01-10
CN101018879B (en) 2011-04-06

Similar Documents

Publication Publication Date Title
KR20070000358A (en) Fine grained sintered cemented carbides containing a gradient zone
KR20060136328A (en) Fine grained sintered cemented carbides containing a gradient zone
JP3934160B2 (en) Method for producing cemented carbide with surface area enriched in binder phase
EP0368336B1 (en) Cermet blade member for cutting-tools and process for producing same
JP2007007850A5 (en)
JP3052586B2 (en) Surface-coated tungsten carbide based cemented carbide cutting tool with excellent chipping resistance
EP0819776B1 (en) Cutting blade made of titanium carbonitride-type cermet, and cutting blade made of coated cermet
EP1462534A1 (en) Compositionally graded sintered alloy and method of producing the same
EP0537741A1 (en) Cermet blade member
JP3087504B2 (en) Manufacturing method of surface-coated tungsten carbide based cemented carbide cutting tools with excellent wear and fracture resistance
JP2004223666A (en) Cutting tool for rough machining
JP2932853B2 (en) Surface coated titanium carbonitride based cermet cutting tool with excellent chipping resistance
JP2800571B2 (en) Surface-coated tungsten carbide based cemented carbide cutting tool with excellent chipping resistance
JPH0332502A (en) Cermet tool
JPH0222453A (en) Surface-treated tungsten carbide-base sintered hard alloy for cutting tool
JP2020132972A (en) Cemented carbide and cutting tool
JP2734311B2 (en) Surface coated titanium carbonitride based cermet cutting tool with excellent chipping resistance
JP3368794B2 (en) Surface-coated cermet throw-away type cutting insert with a hard coating layer with excellent fracture resistance
KR102265210B1 (en) Cutting tools having improved toughness
JP3463502B2 (en) Surface-coated cermet throw-away type cutting insert with a hard coating layer with excellent fracture resistance
JPH05261604A (en) Physically deposited hard layer coated throwaway tip and manufacture thereof
JP2508523B2 (en) Surface coated cemented carbide cutting tool
JPH07243024A (en) Cutting tool made of surface treated titanium carbonate type cermet, having hard coating layer excellent in adhesion
WO2022194767A1 (en) Cutting tool
JP3199400B2 (en) Coated cemented carbide for cutting tools

Legal Events

Date Code Title Description
A201 Request for examination
E601 Decision to refuse application