JP3878232B2 - Coated cemented carbide - Google Patents

Coated cemented carbide Download PDF

Info

Publication number
JP3878232B2
JP3878232B2 JP00202895A JP202895A JP3878232B2 JP 3878232 B2 JP3878232 B2 JP 3878232B2 JP 00202895 A JP00202895 A JP 00202895A JP 202895 A JP202895 A JP 202895A JP 3878232 B2 JP3878232 B2 JP 3878232B2
Authority
JP
Japan
Prior art keywords
type crystal
cemented carbide
layer
coated cemented
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP00202895A
Other languages
Japanese (ja)
Other versions
JPH08188846A (en
Inventor
克哉 内野
明彦 池ケ谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Hardmetal Corp
Original Assignee
Sumitomo Electric Hardmetal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Hardmetal Corp filed Critical Sumitomo Electric Hardmetal Corp
Priority to JP00202895A priority Critical patent/JP3878232B2/en
Publication of JPH08188846A publication Critical patent/JPH08188846A/en
Application granted granted Critical
Publication of JP3878232B2 publication Critical patent/JP3878232B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Description

【0001】
【産業上の利用分野】
この発明は、切削工具に適する、耐摩耗性、耐欠損性に優れる被覆超硬合金、特に、WC基超硬合金を母材とする被覆超硬合金に関するものである。
【0002】
【従来の技術及びその課題】
切削工具に使用される被覆超硬合金は、耐摩耗性と耐欠損性という相反する性質を満足する必要がある。
【0003】
ところで、WC基超硬合金母材の最表面に、WCと結合金属のみからなる層(脱β層)を設け、その内側の領域のB1型結晶を小さくすることにより、耐摩耗性と耐欠損性の向上を図ることが従来から提案されている。
【0004】
ところが、脱β層の内側部分のB1型結晶の粒度を小さくすると、耐摩耗性は向上するが、強度、即ち耐欠損性が低下するという問題がある。これは、亀裂が脱β層を通り抜けた後に、その直下で急激に亀裂進展が促進されるため、脱β層の効果が十分発揮されないことによる。
【0005】
一方、B1型結晶の粒度を大きくすれば、強度は向上するが、耐塑性変形性が低下するという問題がある。
【0006】
そこで、この発明は、脱β層の内側部分のB1型結晶の粒度の分布等を工夫することにより、耐摩耗性と耐欠損性をうまくバランスさせた、切削工具に好適なWC基超硬合金を母材とする被覆超硬合金を得ようとするものである。
【0007】
【課題を解決するための手段とその作用】
この発明におけるWC基超硬合金母材には、B1型結晶が5〜40wt%含まれる。5wt%未満の場合には、脱β層の内側の0〜100μmにおけるB1型結晶が、さらにその内側の十分内部のB1型結晶に比べ、半価幅の比率が90%より大きくなってその差が小さくなり、脱β層をとおり抜けた亀裂の伝播を阻止できず、強度の向上効果がほとんどない。一方、40wt%以上の場合には、合金内部の強度低下が顕著になる。
【0008】
また、この発明におけるWC基超硬合金母材には、結合相として5〜15wt%の鉄族金属が含まれている。5wt%未満の場合には、焼結性が低下して強度が低下し、15wt%以上の場合には、耐塑性変形性が低下する。
【0009】
また、この発明におけるWC基超硬合金母材の表面付近には、5〜50μm、好ましくは10〜30μmの脱β層を有する。5μmよりも薄い場合には、亀裂の導入に対する抵抗が不足するため耐欠損性の向上が十分得られず、50μm以上の場合には、耐塑性変形性が低下する。
【0010】
また、この発明におけるWC基超硬合金母材は、脱β層の内側10〜200μmの領域を、B1型結晶が、この領域のさらに内側部分のB1型結晶と比較し、格子定数の差が0〜0.01、好ましくは0〜0.005であり、かつX線回折の(422)回折面における半価幅の比率が70〜90%となるようにしている。この領域の厚みが10μmよりも薄いと強度向上効果が小さくなり、200μmを超えると耐摩耗性の低下につながる。そして、上記格子定数の差が0〜0.01で半価幅の比率を70〜90%とするのは、次の理由からである。格子定数の差が0.01を超えると、この領域と、この領域の内側部分とで、B1型結晶の組成の差が大きくなりすぎるので、耐摩耗性と強度とのバランスが崩れることになる。また、半価幅の比率が70%より小さいと、この領域と、この領域の内側部分とで粒度の差が大きくなりすぎ、即ち、脱β層の直下の領域においてB1型結晶の粒度が粗すぎたり、あるいは逆に、この領域の内側部分のB1型結晶の粒度が細かくなりすぎるので、強度と耐摩耗性とのバランスが崩れてしまうことになる。逆に、半価幅の比率が90%より大きくなると、脱β層の直下の領域におけるB1型結晶の粗粒化による強度向上効果が十分得られなくなる。
【0011】
次に、脱β層の直下の領域の内側部分における半価幅の絶対値は0.4〜1.0であることが好ましい。0.4より大きいことにより、上記領域の内側部分の耐摩耗性向上と上記領域の強度向上による両性能バランスの向上効果が大きくなる。但し、上記領域の内側部分のB1型結晶の半価幅が1.0を超えると、上記領域のB1型結晶の半価幅もそれにつられて大きくなるので、上記両性能のバランスが崩れる傾向を示す。即ち、耐摩耗性は大きく向上するが、耐欠損性が低下する傾向を示す。
【0012】
また、上記B1型結晶は、IVa族元素とVa族元素を主成分とする金属の炭化物、窒化物、炭窒化物及びこれらの固溶体からなり、IVa族金属成分の量(M1「mol」)とVa族金属成分の量(M2「mol」)をmol比で表した場合に、以下の関係にあるようにすると、耐摩耗性と耐欠損性のバランスがとりやすくなる。
【0013】
0.2≦M1/(M1+M2)≦0.9(好ましくは0.7)
特に、IVa族金属がZr、Va族金属がTaとNbの少なくとも一方を主成分とした場合、より効果的である。
【0014】
ところで、この発明の被覆超硬合金は、次のようにして製造することができる。
【0015】
まず、WC、鉄族金属、B1型結晶炭化物の原料をこの発明の範囲で配合、成形し、1350〜1500℃の範囲で焼結する。但し、合金内部の格子定数は原料の配合により調整する。また、内部の半価幅は配合原料の粒度と、焼結温度、時間により調整する。この際、昇温中の1250℃以上から焼結キープの間で、温度上昇に伴う平衡窒素分圧の上昇にあわせ、窒素量を徐々に変化(上昇)させ、常に一定の弱脱窒雰囲気に保つ。そしてこの雰囲気で焼結キープ中も保ち、毎分5℃以上の速度で冷却する。
【0016】
上記平衡窒素分圧は合金系(B1型結晶の種類)によって異なるがB1型結晶が(TiTaNb)N系の場合、経験的に1500℃で約10torr、1250℃で約1torr程度と考えられる。
【0017】
従って、脱β層の形成は、脱窒による超硬合金表面付近でのB1型結晶の結合層への溶解と脱β層直下付近での再析出による物であるため、これらの溶解析出速度の制御で脱β層自体とのその直下のB1型結晶を制御できる。
【0018】
上記方法で制御した脱β層、脱β層直下のB1型結晶は、冷却速度を遅くすると冷却中に変化してしまい、焼結キープ中までに保たれていたこの発明の構造を保てなくなる。従って、5℃/min以上の冷却速度が必要となる。
【0019】
そして、脱β層の厚みと脱β層直下の半価幅の調整は上記方法で窒素分圧の調整及び焼結キープ時間により行うことができる。
【0020】
【実施例】
(実施例1)
原料粉末として、WC、TiC、TiN、TaC、TaN、NbC、NbN、VC、VN及びCo、Niを用意して、表1に示す組成からなる完粉をCNMG120408の形状でチップにプレス後、1250℃から1450℃まで5℃/minで減圧N2 雰囲気中で、温度上昇とともにN2 分圧を0.05torrから1torrまで連続的に上昇させながら昇温後、1時間2torr窒素雰囲気中で保持後、5℃/minで冷却した。
【0021】
ついで、この合金を基体として、通常のCVDで内層に5μmTiC、TiCN、TiN、中間層にTiBN、TiCNO、外層に酸化アルミニウム、酸化ジルコニウム、酸化ハフニウムの複層を2μm被覆して下記の切削条件で切削テストを行った。
【0022】
また、比較の為に試料No.2、3と同じ組成で、従来の焼結法である真空焼結(昇温、キープ、冷却ともに真空)を行った試料2’、3’も作製し、上記と同じコーティング膜を被覆した。
【0023】
なお、内部については、試料を表面から500μm以上平研を用いて粗研削した後♯1500及び♯3000のダイヤモンドペーストによるバフ研磨により表面を鏡面仕上げ、脱β層直下の領域については♯1500より粗い番手のダイヤモンドペーストによるバフ研磨で表面から順次追い込んでいき、脱β層がなくなるのを光学顕微鏡で確認した後♯3000のダイヤモンドペーストバフ研磨で鏡面仕上げする。この面についてX線回折装置を用いて、(422)面の回折ピークで格子定数及び半価幅を測定する。
【0024】
これらのサンプルを用い、下に示すテスト1及びテスト2の条件で切削し、その時の逃げ面摩耗量(mm)と欠損率(%)を測定した。
【0025】
テスト 1 (耐摩耗性テスト)
切削速度 220m/min 被削材 SCM435
送り 0.45mm/rev 切削時間 20min
切込み 2.0mm
テスト 2 (靱性テスト)
切削速度 100m/min 被削材 SCM435 4溝材
送り 0.45mm/rev 切削時間 30秒
切込み 2.0mm 8回繰り返し
なお、表1中にIVa族金属成分の量をM1mol、Va族金属成分の量をM2molとした時のM1/(M1+M2)の値を同時に示した。
【0026】
テスト結果及びB1型結晶の格子定数、半価幅等を比較品と合わせ表2に示す。
【0027】
なお、表2中のA、B、C、Dは、
|A−B|:脱β層の内側部分(A)と十分内部(B)でのB1型結晶の格子定
数の差
C:脱β層の内側におけるB1型結晶の(422)回折面における半価幅
D:十分内部におけるB1型結晶の(422)回折面における半価幅
100*C/D:脱β層の内側部分と十分内部でのB1型結晶の(422)回折
面における半価幅の比(%)
E:脱β層の内側の領域の厚み(μm)
F:脱β層の厚み(μm)
【0028】
【表1】

Figure 0003878232
【0029】
【表2】
Figure 0003878232
【0030】
(実施例2)
原料粉末として、WC、ZrC、ZrN、TaC、TaN、NbC、NbN、VC、VN及びCO、Niを用意して、表3に示す組成からなる完粉をCNMG120408の形状でチップにプレス後、1250℃から1450℃まで2℃/minでN2+H2の減圧雰囲気中で昇温し、温度上昇とともにN2分圧を0.01torrから2torrまで連続的に上昇させながら昇温(H2分圧は5torrで一定)後、1時間2torrの窒素p雰囲気中で保持し、10℃/minで冷却した。
【0031】
ついで、この合金を基本として、通常のCVDで内層に5μmTiC、TiCN、TiN、中間層にTiBN、TiCNO、外層に酸化アルミニウム、酸化ジルコニウム、酸化ハフニウムの複層を2μm被覆して下記の切削条件で切削テストを行った。また、試料12、13の組成で従来焼結である真空焼結(昇温、キープ、冷却とも)を真空度を変えて行った従来比較品12’、13’及び12″、13″を表4中に併せてのせた。
【0032】
これらの試料を用い、実施例1のテスト1とテスト2と同条件で切削評価を行った。試料No.12及び13はB1型結晶の量、結合層量、M1/(M1+M2)値ともに実施例1のNo.3及び4とほぼ同じであり、B1型結晶組成のみが12及び13ではZrとTaを主成分とする金属の炭窒化合物等としたものであるが、これらの比較により、この発明の効果は一段と顕著になっていることが判る。
【0033】
【表3】
Figure 0003878232
【0034】
【表4】
Figure 0003878232
【0035】
【発明の効果】
以上のように、この発明は、WC基超硬合金母材の脱β層の直下部分に、内部との組成の差が小さく、かつ内部よりも粗い亀裂伝播抵抗に優れるB1型結晶を配置して、強度(耐欠損性)と耐摩耗性を向上させつつ、さらに内部はそれよりも細いB1型結晶を配置することにより、耐摩耗性を向上させたものであるから、耐摩耗性と耐欠損性のバランスを大きく向上させた、切削工具に好適な被覆超硬合金が得られる。
【図面の簡単な説明】
【図1】この発明に係る被覆超硬合金の断面組織を示す模式図[0001]
[Industrial application fields]
The present invention relates to a coated cemented carbide suitable for a cutting tool and excellent in wear resistance and fracture resistance, and more particularly to a coated cemented carbide based on a WC-based cemented carbide.
[0002]
[Prior art and problems]
The coated cemented carbide used for cutting tools must satisfy the conflicting properties of wear resistance and fracture resistance.
[0003]
By the way, on the outermost surface of the WC-base cemented carbide base material, a layer (de-β layer) consisting only of WC and a binding metal is provided, and by reducing the B1 type crystal in the inner region, wear resistance and fracture resistance are reduced. It has been proposed to improve the performance.
[0004]
However, when the grain size of the B1-type crystal in the inner part of the de-β layer is reduced, the wear resistance is improved, but there is a problem that the strength, that is, the fracture resistance is lowered. This is because after the crack has passed through the de-β layer, the crack growth is rapidly promoted immediately below the crack, so that the effect of the de-β layer is not sufficiently exhibited.
[0005]
On the other hand, if the grain size of the B1 type crystal is increased, the strength is improved, but there is a problem that the plastic deformation resistance is lowered.
[0006]
In view of this, the present invention provides a WC-based cemented carbide suitable for a cutting tool, in which wear resistance and fracture resistance are well balanced by devising the distribution of the grain size of the B1 type crystal inside the de-β layer. It is intended to obtain a coated cemented carbide with a base material.
[0007]
[Means for solving the problems and their functions]
The WC-based cemented carbide base material according to the present invention contains 5 to 40 wt% of B1-type crystals. In the case of less than 5 wt%, the B1 type crystal at 0 to 100 μm inside the de-β layer is more than 90% of the ratio of the half-value width compared to the B1 type crystal inside sufficiently further inside. , The propagation of cracks passing through the de-β layer cannot be prevented, and there is almost no effect of improving the strength. On the other hand, in the case of 40 wt% or more, the strength reduction inside the alloy becomes remarkable.
[0008]
Further, the WC-based cemented carbide base material in the present invention contains 5 to 15 wt% of an iron group metal as a binder phase. If it is less than 5 wt%, the sinterability is lowered and the strength is lowered, and if it is 15 wt% or more, the plastic deformation resistance is lowered.
[0009]
Moreover, it has 5-50 micrometers, Preferably it is 10-30 micrometers de-beta layer near the surface of the WC group cemented carbide base material in this invention. When the thickness is less than 5 μm, the resistance to the introduction of cracks is insufficient, so that the fracture resistance cannot be sufficiently improved. When the thickness is 50 μm or more, the plastic deformation resistance is lowered.
[0010]
Further, in the WC-based cemented carbide base material according to the present invention, the area of 10-200 μm inside the deβ layer is compared with the B1 type crystal in the further inner part of this area, and the difference in lattice constant is It is 0 to 0.01, preferably 0 to 0.005 , and the ratio of the half width on the (422) diffraction plane of X-ray diffraction is 70 to 90%. If the thickness of this region is thinner than 10 μm, the effect of improving the strength is reduced, and if it exceeds 200 μm, the wear resistance is reduced. The reason why the difference in lattice constant is 0 to 0.01 and the ratio of the half width is 70 to 90% is as follows. If the difference in lattice constant exceeds 0.01, the difference between the composition of the B1 type crystal between this region and the inner part of this region becomes too large, and the balance between wear resistance and strength is lost. . Also, if the half width ratio is less than 70%, the difference in grain size between this region and the inner part of this region becomes too large, that is, the grain size of the B1 type crystal is coarse in the region directly under the de-β layer. To the contrary, or conversely, since the grain size of the B1 type crystal in the inner portion of this region becomes too fine, the balance between strength and wear resistance is lost. On the other hand, when the ratio of the half width exceeds 90%, the effect of improving the strength due to the coarsening of the B1 type crystal in the region immediately below the deβ layer is not obtained.
[0011]
Next, it is preferable that the absolute value of the half width in the inner portion of the region immediately below the de-β layer is 0.4 to 1.0. When the ratio is larger than 0.4, the effect of improving both the performance balance by improving the wear resistance of the inner portion of the region and improving the strength of the region is increased. However, when the half width of the B1 type crystal in the inner portion of the region exceeds 1.0, the half width of the B1 type crystal in the region also increases accordingly. Show. That is, the wear resistance is greatly improved, but the fracture resistance tends to decrease.
[0012]
The B1 type crystal is composed of a metal carbide, nitride, carbonitride, and solid solution thereof, each of which includes a group IVa element and a group Va element as a main component, and the amount of the group IVa metal component (M1 “mol”) When the amount of the Va group metal component (M2 “mol”) is expressed in terms of a mole ratio, it is easy to balance the wear resistance and the fracture resistance if the following relationship is satisfied.
[0013]
0.2 ≦ M1 / (M1 + M2) ≦ 0.9 (preferably 0.7)
In particular, it is more effective when the IVa group metal is mainly composed of Zr and the Va group metal is composed mainly of at least one of Ta and Nb.
[0014]
By the way, the coated cemented carbide of the present invention can be manufactured as follows.
[0015]
First, raw materials of WC, iron group metal, and B1 type crystal carbide are blended and molded within the scope of the present invention, and sintered at 1350 to 1500 ° C. However, the lattice constant inside the alloy is adjusted by the blending of raw materials. Also, the internal half width is adjusted by the particle size of the blended raw material, the sintering temperature, and the time. At this time, the amount of nitrogen is gradually changed (increased) in accordance with the increase in the equilibrium nitrogen partial pressure accompanying the temperature rise from 1250 ° C. or higher during the temperature increase to the sintering keep, and a constant weak denitrification atmosphere is always obtained. keep. And it keeps also in a sintering keep in this atmosphere, and cools at a speed | rate of 5 degreeC or more per minute.
[0016]
The equilibrium nitrogen partial pressure varies depending on the alloy system (type of B1 type crystal), but when the B1 type crystal is a (TiTaNb) N system, it is empirically considered to be about 10 torr at 1500 ° C. and about 1 torr at 1250 ° C.
[0017]
Therefore, the formation of the de-β layer is due to the dissolution of the B1 type crystal in the bonding layer near the cemented carbide surface by denitrification and the re-precipitation near the de-β layer. Control can control the B1-type crystal directly below the de-beta layer itself.
[0018]
The B1-type crystal directly under the de-β layer and the de-β layer controlled by the above method changes during cooling when the cooling rate is slowed down, and the structure of the present invention maintained until the sintering keep cannot be maintained. . Therefore, a cooling rate of 5 ° C./min or more is required.
[0019]
The thickness of the de-β layer and the half width immediately below the de-β layer can be adjusted by adjusting the nitrogen partial pressure and sintering keep time by the above method.
[0020]
【Example】
Example 1
As raw material powders, WC, TiC, TiN, TaC, TaN, NbC, NbN, VC, VN, Co, and Ni are prepared, and a complete powder having the composition shown in Table 1 is pressed into a chip in the form of CNMG120408, and then 1250 in vacuo N 2 atmosphere ° C. from 5 ° C. / min up to 1450 ° C., while continuously increased from 0.05torr to 1torr the N 2 partial pressure with increasing temperature after heating, after maintained in 1 hour 2torr nitrogen atmosphere Cooled at 5 ° C./min.
[0021]
Then, using this alloy as a base, the inner layer is coated with 5 μm TiC, TiCN, TiN, the intermediate layer is TiBN, TiCNO, the outer layer is coated with 2 μm of aluminum oxide, zirconium oxide, and hafnium oxide by the following cutting conditions. A cutting test was performed.
[0022]
For comparison, Samples 2 ′ and 3 ′ having the same composition as Samples No. 2 and 3 and subjected to vacuum sintering (vacuum for heating, keeping and cooling), which is a conventional sintering method, are also produced. The same coating film as above was coated.
[0023]
As for the inside, the sample was roughly ground from the surface by using a plane polishing of 500 μm or more, and then the surface was mirror-finished by buffing with # 1500 and # 3000 diamond paste, and the region directly under the de-β layer was rougher than # 1500. The surface is sequentially driven from the surface by buffing with a count diamond paste, and it is confirmed with an optical microscope that the β-free layer disappears, and then mirror-finished by # 3000 diamond paste buffing. With respect to this surface, the lattice constant and the half width are measured at the diffraction peak of the (422) surface using an X-ray diffractometer.
[0024]
Using these samples, cutting was performed under the conditions of Test 1 and Test 2 shown below, and the flank wear amount (mm) and the defect rate (%) at that time were measured.
[0025]
Test 1 (Abrasion resistance test)
Cutting speed 220m / min Work material SCM435
Feed 0.45mm / rev Cutting time 20min
Cutting depth 2.0mm
Test 2 (Toughness test)
Cutting speed 100 m / min Work material SCM435 Four-groove material feed 0.45 mm / rev Cutting time 30 seconds infeed 2.0 mm Repeated 8 times In Table 1, the amount of IVa group metal component is M1 mol, the amount of Va group metal component The value of M1 / (M1 + M2) when M was 2 mol was simultaneously shown.
[0026]
Table 2 shows the test results and the lattice constant, half-value width, etc. of the B1-type crystal together with the comparative product.
[0027]
In Table 2, A, B, C and D are
| A−B |: Difference in lattice constant of the B1 type crystal between the inner part (A) and the sufficiently inner part (B) of the deβ layer. C: Half of the (422) diffraction plane of the B1 type crystal inside the deβ layer. Valence width D: Half width at the (422) diffraction plane of the B1 type crystal sufficiently inside 100 * C / D: Half width at the (422) diffraction plane of the B1 type crystal inside the inner part of the de-beta layer and inside sufficiently Ratio (%)
E: Thickness (μm) of the area inside the de-β layer
F: De-β layer thickness (μm)
[0028]
[Table 1]
Figure 0003878232
[0029]
[Table 2]
Figure 0003878232
[0030]
(Example 2)
As raw material powders, WC, ZrC, ZrN, TaC, TaN, NbC, NbN, VC, VN and CO, Ni are prepared. After pressing the finished powder having the composition shown in Table 3 into the shape of CNMG120408, 1250 The temperature is raised in a reduced pressure atmosphere of N2 + H2 at a rate of 2 ° C./min from 1 ° C. to 1450 ° C., and the temperature is raised while the N 2 partial pressure is continuously increased from 0.01 torr to 2 torr as the temperature rises (H 2 partial pressure is constant at 5 torr) Thereafter, it was kept in a nitrogen p atmosphere of 2 torr for 1 hour and cooled at 10 ° C./min.
[0031]
Then, based on this alloy, the inner layer is coated with 5 μm TiC, TiCN, TiN, the intermediate layer is TiBN, TiCNO, the outer layer is coated with 2 μm of aluminum oxide, zirconium oxide, and hafnium oxide by the following cutting conditions. A cutting test was performed. Further, conventional comparative products 12 ′, 13 ′ and 12 ″, 13 ″ obtained by changing the degree of vacuum by vacuum sintering (temperature rising, keeping, cooling), which is the conventional sintering with the composition of Samples 12 and 13, are shown. 4 was put together.
[0032]
Using these samples, cutting evaluation was performed under the same conditions as in Test 1 and Test 2 of Example 1. Samples No. 12 and No. 13 are almost the same as No. 3 and No. 4 in Example 1 in terms of the amount of B1 type crystal, the amount of the bonding layer, and the M1 / (M1 + M2) value. It is understood that the effects of the present invention are more prominent by comparing these with a carbon carbonitride compound of a metal mainly containing Ta and Ta.
[0033]
[Table 3]
Figure 0003878232
[0034]
[Table 4]
Figure 0003878232
[0035]
【The invention's effect】
As described above, according to the present invention, a B1 type crystal having a small composition difference from the inside and having a coarser crack propagation resistance than the inside is disposed in a portion immediately below the de-β layer of the WC-based cemented carbide base material. Thus, while improving the strength (breakage resistance) and wear resistance, the wear resistance is improved by arranging a B1 type crystal that is thinner than that inside. A coated cemented carbide suitable for a cutting tool with a greatly improved balance of chipping properties can be obtained.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a cross-sectional structure of a coated cemented carbide according to the present invention.

Claims (4)

WC基超硬合金母材の表面に、Tiの炭化物、窒化物、炭窒化物、ほう窒化物、炭酸窒化物、炭酸化物、及びAl、Zr、Hfの酸化物及びこれらの酸化物の複合膜から選ばれる1種以上の被覆層を有する被覆超硬合金において、上記WC基超硬母材は、周期律表IVa、Va、VIa族金属の炭化物、窒化物、炭窒化物、及びこれらの固溶体からなるB1型結晶を5〜40wt%、鉄族金属を5〜15wt%含み、かつ表面付近に5〜50μmの脱β層を有し、この脱β層の内側領域10〜200μmにおけるB1型結晶が、さらにその内側のB1型結晶と比較し、格子定数の差が0〜0.01であり、かつX線回折の(422)回折面における半価幅の比率が70〜90%であることを特徴とする被覆超硬合金。  Ti carbide, nitride, carbonitride, boronitride, carbonitride, carbonate, and oxides of Al, Zr, Hf and composite films of these oxides on the surface of the WC-based cemented carbide base material In the coated cemented carbide having one or more coating layers selected from the above, the WC-based cemented carbide is composed of carbides, nitrides, carbonitrides, and solid solutions of periodic table IVa, Va, and VIa group metals. B1 type crystal comprising 5 to 40 wt% of B1 type crystal and 5 to 15 wt% of iron group metal, and having a 5 to 50 μm deβ layer near the surface, and an inner region of 10 to 200 μm of the de β layer However, the difference in lattice constant is 0 to 0.01 and the ratio of the half width on the (422) diffraction plane of X-ray diffraction is 70 to 90%, compared with the B1 type crystal inside. Coated cemented carbide characterized by 上記脱β層の内側領域のさらにその内側部分のB1型結晶の半価幅が0.4〜1.0であることを特徴とする請求項1記載の被覆超硬合金。  2. The coated cemented carbide according to claim 1, wherein the half width of the B1 type crystal in the inner portion of the inner region of the de-β layer is 0.4 to 1.0. 上記B1型結晶がIVa族元素とVa族元素を主成分とする金属の炭化物、窒化物、炭窒化物及びこれら固溶体からなり、IVa族金属成分の量(M1「mol」)とVa族金属成分の量(M2「mol」)をmol比で表した場合、以下の関係にあることを特徴とする請求項1又は2記載の被覆超硬合金。
0.2≦M1/(M1+M2)≦0.9
The B1 type crystal is composed of a metal carbide, nitride, carbonitride, and solid solution of a metal having a group IVa element and a group Va element as main components, and the amount of the group IVa metal component (M1 “mol”) and the group Va metal component The coated cemented carbide according to claim 1, wherein the amount of M2 (M2 “mol”) is expressed in terms of a mole ratio, and has the following relationship.
0.2 ≦ M1 / (M1 + M2) ≦ 0.9
請求項3において、B1型結晶がZrと、Ta又はNbの少なくとも一方とを主成分とする金属の炭化物、窒化物、炭窒化物及びこれらの固溶体からなることを特徴とする被覆超硬合金。  4. The coated cemented carbide according to claim 3, wherein the B1-type crystal is composed of a metal carbide, nitride, carbonitride, and a solid solution thereof mainly composed of Zr and at least one of Ta or Nb.
JP00202895A 1995-01-10 1995-01-10 Coated cemented carbide Expired - Lifetime JP3878232B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00202895A JP3878232B2 (en) 1995-01-10 1995-01-10 Coated cemented carbide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00202895A JP3878232B2 (en) 1995-01-10 1995-01-10 Coated cemented carbide

Publications (2)

Publication Number Publication Date
JPH08188846A JPH08188846A (en) 1996-07-23
JP3878232B2 true JP3878232B2 (en) 2007-02-07

Family

ID=11517888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00202895A Expired - Lifetime JP3878232B2 (en) 1995-01-10 1995-01-10 Coated cemented carbide

Country Status (1)

Country Link
JP (1) JP3878232B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6638474B2 (en) * 2000-03-24 2003-10-28 Kennametal Inc. method of making cemented carbide tool
SE529590C2 (en) * 2005-06-27 2007-09-25 Sandvik Intellectual Property Fine-grained sintered cemented carbides containing a gradient zone
BRPI0618596B1 (en) 2005-11-17 2018-03-06 Boehlerit Gmbh & Co. Kg PROCESS FOR COATING A TOOL OR PART OF A TOOL, APPLIED TO AN OBJECT, WITH AT LEAST ONE LAYER OF TITANIUM CARBONITRET, AND TOOL OR PART OF THE TOOL
AT503050B1 (en) * 2005-11-17 2007-09-15 Boehlerit Gmbh & Co Kg Coating a tool with titanium, zirconium, hafnium, vanadium, niobium, tantalum or chromium carbonitride by chemical vapor deposition comprises increasing the temperature during deposition
JP5460301B2 (en) * 2009-12-24 2014-04-02 京セラ株式会社 Cutting tools
JP7098969B2 (en) * 2018-03-09 2022-07-12 住友電気工業株式会社 Cemented Carbide, Cutting Tools Containing It, Cemented Carbide Manufacturing Method and Cutting Tool Manufacturing Method
CN109097654B (en) * 2018-08-22 2020-07-31 株洲欧科亿数控精密刀具股份有限公司 Numerical control blade for heavy-load machining and preparation method thereof
CN113667874B (en) * 2020-05-15 2022-02-11 四川大学 YA-class gradient hard alloy material and preparation method and application thereof

Also Published As

Publication number Publication date
JPH08188846A (en) 1996-07-23

Similar Documents

Publication Publication Date Title
JP4593852B2 (en) Coated hard alloy
KR960006053B1 (en) Coated cemented carbide member and the method of manufacturing the same
EP2638993A1 (en) Surface-coated cutting tool
EP0685572A2 (en) Coated hard-alloy blade member
EP1103635B1 (en) Coated cutting insert for milling and turning applications
EP0709484A1 (en) Coated tungsten carbide-based cemented carbide blade member
JP2762745B2 (en) Coated cemented carbide and its manufacturing method
JP3878232B2 (en) Coated cemented carbide
JPH0215139A (en) Ticn-base cermet and its manufacture
JPH01246361A (en) Diamond-coated sintered alloy having excellent release resistance and its production
JP2628200B2 (en) TiCN-based cermet and method for producing the same
EP1352697B1 (en) Coated cutting tool insert
JP2005097646A (en) Sintered alloy with gradient structure, and its production method
JPH10237650A (en) Wc base cemented carbide and its production
JP2005153098A (en) Surface coated cutting tool
JPH11172464A (en) Cutting tool made of surface coated sintered hard alloy exhibiting excellent wear resistance in high-speed cutting
JP3235259B2 (en) Coated cemented carbide member and method of manufacturing the same
JP4077739B2 (en) Surface-coated Ti-based cermet cutting tool and method for manufacturing the same
JP2828511B2 (en) Surface coated TiCN based cermet
JP3519127B2 (en) High thermal conductive coated tool
JP2004223666A (en) Cutting tool for rough machining
JPH10310878A (en) Cutting tool made of surface-coated cemented carbide having hard coating layer excellent in wear resistance
JPH0657429A (en) Cutting tool made of surface coated titanium carbon nitride base cermet excellent in chipping resistance
JPH10147831A (en) Cermet tool with hard nitrided layer, and its production
JPH04231469A (en) Coated ticn-base cermet

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051205

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061102

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091110

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101110

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111110

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111110

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121110

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121110

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131110

Year of fee payment: 7

EXPY Cancellation because of completion of term