KR20060134002A - 전기화학 반응을 수행하는 방법 - Google Patents
전기화학 반응을 수행하는 방법 Download PDFInfo
- Publication number
- KR20060134002A KR20060134002A KR1020067011740A KR20067011740A KR20060134002A KR 20060134002 A KR20060134002 A KR 20060134002A KR 1020067011740 A KR1020067011740 A KR 1020067011740A KR 20067011740 A KR20067011740 A KR 20067011740A KR 20060134002 A KR20060134002 A KR 20060134002A
- Authority
- KR
- South Korea
- Prior art keywords
- membrane
- water
- cell
- controlled
- electrolyte
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B15/00—Operating or servicing cells
- C25B15/02—Process control or regulation
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/02—Hydrogen or oxygen
- C25B1/04—Hydrogen or oxygen by electrolysis of water
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B9/00—Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
- C25B9/70—Assemblies comprising two or more cells
- C25B9/73—Assemblies comprising two or more cells of the filter-press type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04082—Arrangements for control of reactant parameters, e.g. pressure or concentration
- H01M8/04089—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
- H01M8/04119—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04276—Arrangements for managing the electrolyte stream, e.g. heat exchange
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/06—Combination of fuel cells with means for production of reactants or for treatment of residues
- H01M8/0693—Treatment of the electrolyte residue, e.g. reconcentrating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/102—Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
- H01M8/1023—Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon, e.g. polyarylenes, polystyrenes or polybutadiene-styrenes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/1041—Polymer electrolyte composites, mixtures or blends
- H01M8/1046—Mixtures of at least one polymer and at least one additive
- H01M8/1048—Ion-conducting additives, e.g. ion-conducting particles, heteropolyacids, metal phosphate or polybenzimidazole with phosphoric acid
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Automation & Control Theory (AREA)
- Crystallography & Structural Chemistry (AREA)
- Composite Materials (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Fuel Cell (AREA)
- Hybrid Cells (AREA)
Abstract
친수성 이온-교환 멤브레인에 의해 분리된 전극을 포함하는 전기화학 전지에서 전기화학 반응을 수행하는 방법으로, 농도가 조절되는 전해질 수용액의 존재 하에 반응을 행하는 것을 포함한다.
멤브레인, 전해질
Description
본 발명은 전기화학 반응을 수행하는 방법에 관한 것이다.
전극이 이온-교환 멤브레인, 예를 들면 고체 폴리머 전해질에 의해 분리되는 전기화학 전지가 존재한다.
WO-A-03/23890은 이온-교환 물질이, 친수성 폴리머, 즉, 본래 그들의 분자 구조를 통해 물을 흡수하고 전달할 수 있는 폴리머를 기초로 생성될 수 있다는 것을 가르친다. 생성물 물(product water)은 재분배될 수 있으므로, 상기 물질은 특히 수소-산소 연료 전지와 관련이 있고, 그것에 의해서 멤브레인이 국부적으로 범람하거나 마르는 것을 피할 수 있다. 친수성 물질이 이온적으로 행동할 수 있게 하는 세 가지 방법이 필수적으로 있다.
첫 번째 방법은 공-중합에 의해 이온적으로 활성인 모노머 용액으로부터 공중합에 의해 이온적으로 활성 부위를 형성하는 것이다; 이 방법론은 WO-A-03/23890에 기술되어 있다. 강하게 음이온적 또는 양이온적인 모이어티는 그 결과의 폴리머에서 형성되고, 그것이 음이온-교환(AE) 또는 양이온-교환(CE) 물질로서 각각 작용하도록 한다.
두 번째 방법은 이온적으로 활성인 모노머를 접목(grafting)함으로서 그 물질에 이온적으로 활성 부위를 편입하는 것이다. 그러한 물질의 예로는 이온 부위가 광물제거수에서 수화에 의해 활성화될 때 이온적으로 행동하게 되는 Nafion이다.
세 번째 방법은 산 또는 알칼리액에서 친수성 물질의 수화에 의한 것이다. HEMA (2-하이드록시에틸 메트아크릴레이트) 및 MMA-VP(메틸 메트아크릴레이트-비닐피롤리돈)와 같은 친수성 물질은 고유의 전기적 특성을 소유하지 않고, 탈이온화된 증류(DD)수에서 수화되면, 우수한 전기 저항체이다. 하지만, 이러한 물질들이 산 또는 알칼리 용액에서 수화되면, 그것들은 우수한 전도체가 된다. 이러한 접근의 한계는 전해질 용액을 씻어냄에 따라(washes out) 전도성이 감소하고, 그 물질은 결국 전기적으로 불활성이 된다는 것이다. 그러한 씻어냄(washing out)은 반응물 물(reactant water)이 보통 다량으로 존재하는 전해조 및 물이 생성되는 수소-산소 연료 전지에서 특히 문제가 된다.
발명의 요약
본 발명은 세 번째 접근의 한계를 해결하고, 멤브레인에서 전해질의 농도가 유지될 수 있다면, 전해질에 의해 수화된 전기적으로 불활성인 멤브레인은 다른 친수성계에 실현가능한 대안이라는 깨달음에 근거를 두고 있다. 유사하게, 약 이온 친수성 멤브레인의 전도성은 산성 또는 알카리성 용액에서 멤브레인을 수화시킴으로서 증가될 수 있다. 전해질의 농도는 예를 들면, 멤브레인의 수화도를 조절함으로써 유지될 수 있다.
본 발명에 따라, 친수성 이온-교환 멤브레인에 의해 분리된 전극을 포함하는 전기화학 전지에서 전기화학 반응을 수행하는 방법은 농도가 조절되는 전해질의 수용액의 존재하에 반응을 행하는 것을 포함한다.
상세한
구현예의
설명
전지는 연료 전지 또는 전해조의 형태일 수 있다. 수소 및 산소 상에 작동하는 연료 전지의 경우에, 물은 전지 반응에서 생성된다. 전해질의 농도를 유지하기 위해 충분한 양의 물이 멤브레인으로부터 제거되야 한다는 것을 따른다. 이와 같은 경우, 즉, 물이 시스템으로부터 제거될 필요가 있는 경우에, 제거는 바람직하게는 증발에 의해 이루어진다. 증발은 멤브레인으로부터 떨어져 위치된 펠티에 냉각된 "콜드 스팟(cold spot)"을 사용함으로서 달성될 수 있고, 그곳에서 따뜻한 전지(warm cell)로부터 수분이 응축되고 제거된다. 물이 소비되는 전지, 예를 들면 전해조에 대해, 수화도는 전지로 편입된 물의 양을 제한함으로써 조절될 수 있다. 수화도는 예를 들면, 사용중에 멤브레인의 pH를 모니터함으로써 평가될 수 있다.
친수성 물질은 이온적으로 불활성일 수 있다. 즉, 그것은 고유의 전기적 특성을 소유하고 있지 않다. 이 경우, 이온 활성은 전해질 용액에 의해 물질에 부여된다. 대안으로, 친수성 물질은 그것의 구조 내에 음이온 또는 양이온 부위를 포함하여, 이온적으로 활성일 수 있다. 여기서, 수성 전해질은 친수성 물질의 이온 활성을 증가시킨다. 본 발명은 약 활성인 물질에 특별한 적용가능성을 갖는다. 약 활성 물질은 DD 수(water)에서 수화되면, Nafion 117과 같은 산업 표준 물질의 이온 전도성의 60% 미만, 전형적으로는 50%인 이온 전도성을 나타내는 것들이다.
친수성 물질은 당업계에 알려진 적절한 방법을 사용하여 얻어질 수 있다. 예를 들면, 이온 활성 물질은 WO-A-03/23890에 기술된 기술에 따라, 참조로서 편입된 내용에 의해 형성될 수 있다. 상기 물질은 메틸 메트아크릴레이트, N-비닐-2-피롤리돈 또는 아크릴로니트릴과 같은 모노머의 (공)중합에 의해 얻어질 수 있는, 바람직하게는 친수성 폴리머이고 바람직하게는 교차-연결된다.
전해질 용액은 산성 또는 알칼리성일 수 있다. 적절한 전해질의 예로는 톨루엔술폰산(TSA), 비닐술폰산, 아크릴아미도-(2-메틸)프로판술폰산(AMPSA), 수산화나트륨 또는 수산화칼륨을 포함한다.
전기화학 전지는 바람직하게는 멤브레인-전극 어셈블리(MEA) 또는 MEAs의 더미(stack)의 형태이다. MEAs 및 제조 방법은 당업계에 잘 알려져 있다. 특히, WO-A-03/23890은 MEAs의 생성을 위한 "원-스톱" 방법을 기술하고, 그것은 중합 그 자체에 의해 멤브레인을 형성하는 것을 포함한다.
하기 실시예들은 본 발명에서와 같이, 친수성 이온-교환 멤브레인의 전도성이 어떻게 조절될 수 있는지를 설명한다.
실시예
1
교차연결된 친수성 폴리머는 35% 아크릴로니트릴, 35% N-비닐-2-피롤리돈, 5% 아릴 메트아크릴레이트 및 25% 탈이온화된 증류수를 함유하는 혼합물을 코발트 60 소스에서 2 메가래드의 선량으로 조사함으로써 형성되었다. 그 결과의 고체 폴리머는 두 샘플로 나누어졌다. 첫 번째 샘플은 물에서 수화되었고 그것의 전기 전 도성은 AC 브릿지 방법을 사용하여 측정되었다. 두 번째 샘플은 물에서 중량 TSA에 의해 10% 용액에서 수화되었고, 그 후에 첫 번째 샘플에 대해 사용된 것과 동일한 시험 전지에서 그것의 전기 전도성이 측정되었다.
두 번째 샘플의 전도성은 5.7:0.07, 즉, 81.4의 비율로 첫 번째 샘플의 것보다 더 크다는 것이 보여졌다. 두 번째 샘플의 전도성은 Nafion 117 멤브레인의 것보다 36% 더 크다는 것이 또한 밝혀졌다.
두 번째 샘플은 그 후에 14일의 기간 동안 과잉의 DD 수에 침지되었고, 그 후에 그것의 전기적 전도성이 측정되었다. "잔여" 전도성은 그것의 최초 전도성의 단지 15%라는 것이 밝혀졌고, TSA의 실질적 손실이 일어났다는 것을 나타냈다. 연이은 측정은 DD 수에서 씻어내는 동안 전도성의 계속적인 감소를 나타냈다. 전도성은 원래 pH가 복구되도록 멤브레인에 추가로 TSA를 첨가함으로써 회복되었다.
실시예
2
교차연결된 친수성 폴리머는 24% 메틸 메트아크릴레이트, 72% N-비닐-2-피롤리돈 및 4% 아릴메트아크릴레이트를 함유하는 혼합물을 코발트 60 소스에서 2 메가래드의 선량으로 조사함으로써 형성되었다. 그 결과의 고체 폴리머는 두 샘플로 나누어졌다. 첫 번째 샘플은 물에서 수화되었고 그것의 전기 전도성은 AC 브릿지 방법을 사용하여 측정되었다. 두 번째 샘플은 물에서 중량 TSA에 의해 10% 용액에서 수화되었고, 그 후에 첫 번째 샘플에 대해 사용된 것과 동일한 시험 전지에서 그것의 전기 전도성이 측정되었다.
두 번째 샘플의 전도성은 47.6:0.05, 즉, 952의 비율로 첫 번째 샘플의 것보 다 더 크다는 것이 보여졌다. 두 번째 샘플의 전도성은 Nafion 117 멤브레인의 것보다 13% 더 크다는 것이 또한 밝혀졌다.
두 번째 샘플은 14일의 기간 동안 과잉의 DD 수에 침지되었고, 그 후에 그것의 전기적 전도성이 측정되었다. "잔여" 전도성은 그것의 최초 전도성의 단지 12%라는 것이 밝혀졌고, TSA의 실질적 손실이 일어났다는 것을 나타냈다. 연이은 측정은 DD 수에서 씻어내는 동안 전도성의 계속적인 감소를 나타냈다. 전도성은 원래 pH가 복구되도록 멤브레인에 추가로 TSA를 첨가함으로써 회복되었다.
Claims (14)
- 친수성 이온-교환 멤브레인에 의해 분리된 전극을 포함하는 전기화학 전지에서 전기화학 반응을 수행하는 방법으로, 여기서 상기 반응은 농도가 조절되는 전해질의 수용액의 존재하에 행해지는 것인 방법.
- 제 1항에 있어서, 멤브레인의 수화도가 조절되는 것인 방법.
- 제 2항에 있어서, 수화도는 멤브레인으로부터 물을 제거함으로서 조절되는 것인 방법.
- 제 3항에 있어서, 수화도는 멤브레인으로부터 물을 증발시킴으로서 조절되는 것인 방법.
- 제 2항 내지 제 4항 중 어느 한 항에 있어서, 물은 반응물이고 물의 전지로의 투입은 조절되는 것인 방법.
- 제 1항 내지 제 5항 중 어느 한 항에 있어서, 전해질은 톨루엔술폰산, 비닐술폰산, 아크릴아미도-(2-메틸)프로판술폰산, 수산화나트륨 또는 수산화칼륨인 것인 방법.
- 제 1항 내지 제 6항 중 어느 한 항에 있어서, 친수성 물질은 이온적으로 불활성인 것인 방법.
- 제 1항 내지 제 6항 중 어느 한 항에 있어서, 친수성 물질은 이온적으로 활성인 것인 방법.
- 제 1항 내지 제 8항 중 어느 한 항에 있어서, 친수성 물질은 폴리머 물질인 것인 방법.
- 제 9항에 있어서, 친수성 물질은 메틸 메트아크릴레이트, N-비닐-2-피롤리돈 또는 아크릴로니트릴을 포함하는 모노머의 중합에 의해 얻어질 수 있는 것인 방법.
- 제 9항 또는 제 10항에 있어서, 친수성 물질은 교차-연결된 것인 방법.
- 제 1항 내지 제 11항 중 어느 한 항에 있어서, 전지는 연료 전지 또는 전해조인 것인 방법.
- 제 1항 내지 제 12항 중 어느 한 항에 있어서, 전지는 멤브레인-전극 어셈블리(MEA), 또는 MEAs의 더미의 형태인 것인 방법.
- 제 1항 내지 제 13항 중 어느 한 항에 있어서, 농도는 추가적인 전해질의 첨가에 의해 조절되는 것인 방법.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB0329459.2 | 2003-12-19 | ||
GBGB0329459.2A GB0329459D0 (en) | 2003-12-19 | 2003-12-19 | Hydrophilic materials used as ionically active membranes |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20060134002A true KR20060134002A (ko) | 2006-12-27 |
Family
ID=30776114
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020067011740A KR20060134002A (ko) | 2003-12-19 | 2004-12-20 | 전기화학 반응을 수행하는 방법 |
Country Status (12)
Country | Link |
---|---|
US (2) | US20070207350A1 (ko) |
EP (1) | EP1695400A2 (ko) |
JP (1) | JP2007516357A (ko) |
KR (1) | KR20060134002A (ko) |
CN (1) | CN1894817A (ko) |
AU (1) | AU2004300328B2 (ko) |
CA (1) | CA2547797C (ko) |
EA (1) | EA010580B1 (ko) |
GB (1) | GB0329459D0 (ko) |
NZ (1) | NZ547328A (ko) |
WO (1) | WO2005060018A2 (ko) |
ZA (1) | ZA200604357B (ko) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2464014B (en) * | 2007-07-07 | 2012-07-04 | Itm Power Research Ltd | Electrolysis of salt water |
GB0801268D0 (en) * | 2008-01-24 | 2008-02-27 | Itm Power Research Ltd | Improvements to electrolysis |
IT1398498B1 (it) * | 2009-07-10 | 2013-03-01 | Acta Spa | Dispositivo per la produzione on demand di idrogeno mediante elettrolisi di soluzioni acquose. |
MY158578A (en) * | 2010-05-06 | 2016-10-14 | Mimos Berhad | Metal-air cell and method of fabricating thereof |
WO2012122001A2 (en) | 2011-03-04 | 2012-09-13 | Tennant Company | Cleaning solution generator |
US9556526B2 (en) | 2012-06-29 | 2017-01-31 | Tennant Company | Generator and method for forming hypochlorous acid |
JP6381552B2 (ja) * | 2013-01-31 | 2018-08-29 | ザ キュレイターズ オブ ザ ユニバーシティ オブ ミズーリ | 放射線分解電気化学的発電機 |
GB201309805D0 (en) | 2013-05-31 | 2013-07-17 | Itm Power Research Ltd | New polymer |
GB201523102D0 (en) * | 2015-12-30 | 2016-02-10 | Augmented Optics Ltd | Electrically active hydrophilic bio-polymers |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3370984A (en) * | 1963-08-09 | 1968-02-27 | Allis Chalmers Mfg Co | Static vapor control for fuel cells |
US3492163A (en) * | 1966-05-23 | 1970-01-27 | Allis Chalmers Mfg Co | Combined product removal and temperature control system for fuel cells |
US3992223A (en) * | 1967-01-04 | 1976-11-16 | Siemens Aktiengesellschaft | Method and apparatus for removing reaction water from fuel cells |
US3748179A (en) * | 1971-03-16 | 1973-07-24 | United Aircraft Corp | Matrix type fuel cell with circulated electrolyte |
US3925332A (en) * | 1974-06-18 | 1975-12-09 | Asahi Dow Ltd | Hydrophilic membrane and process for the preparation thereof |
JPH01251560A (ja) * | 1987-11-10 | 1989-10-06 | Fuji Electric Co Ltd | アルカリ型燃料電池発電装置 |
JP3192763B2 (ja) * | 1992-06-30 | 2001-07-30 | 旭硝子株式会社 | 電解槽を再起用する方法 |
US5643689A (en) * | 1996-08-28 | 1997-07-01 | E.C.R.-Electro-Chemical Research Ltd. | Non-liquid proton conductors for use in electrochemical systems under ambient conditions |
CA2333859A1 (en) * | 2001-02-01 | 2002-08-01 | Donald W. Kirk | Electrochemical cell stacks |
US7318972B2 (en) * | 2001-09-07 | 2008-01-15 | Itm Power Ltd. | Hydrophilic polymers and their use in electrochemical cells |
-
2003
- 2003-12-19 GB GBGB0329459.2A patent/GB0329459D0/en not_active Ceased
-
2004
- 2004-12-20 NZ NZ547328A patent/NZ547328A/en not_active IP Right Cessation
- 2004-12-20 US US10/579,658 patent/US20070207350A1/en not_active Abandoned
- 2004-12-20 CN CNA200480037791XA patent/CN1894817A/zh active Pending
- 2004-12-20 WO PCT/GB2004/005347 patent/WO2005060018A2/en active Application Filing
- 2004-12-20 EP EP04806148A patent/EP1695400A2/en not_active Withdrawn
- 2004-12-20 JP JP2006543632A patent/JP2007516357A/ja active Pending
- 2004-12-20 AU AU2004300328A patent/AU2004300328B2/en not_active Ceased
- 2004-12-20 CA CA2547797A patent/CA2547797C/en not_active Expired - Fee Related
- 2004-12-20 EA EA200601188A patent/EA010580B1/ru not_active IP Right Cessation
- 2004-12-20 KR KR1020067011740A patent/KR20060134002A/ko not_active Application Discontinuation
-
2006
- 2006-05-29 ZA ZA2006/04357A patent/ZA200604357B/en unknown
-
2010
- 2010-09-24 US US12/890,204 patent/US8460832B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
NZ547328A (en) | 2010-02-26 |
US20070207350A1 (en) | 2007-09-06 |
JP2007516357A (ja) | 2007-06-21 |
US8460832B2 (en) | 2013-06-11 |
WO2005060018A3 (en) | 2006-04-27 |
EA010580B1 (ru) | 2008-10-30 |
AU2004300328A1 (en) | 2005-06-30 |
AU2004300328B2 (en) | 2008-07-31 |
WO2005060018A2 (en) | 2005-06-30 |
GB0329459D0 (en) | 2004-01-28 |
CN1894817A (zh) | 2007-01-10 |
EP1695400A2 (en) | 2006-08-30 |
EA200601188A1 (ru) | 2006-10-27 |
ZA200604357B (en) | 2007-10-31 |
US20110011748A1 (en) | 2011-01-20 |
CA2547797A1 (en) | 2005-06-30 |
CA2547797C (en) | 2013-11-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kang et al. | Water-swollen cation-exchange membranes prepared using poly (vinyl alcohol)(PVA)/poly (styrene sulfonic acid-co-maleic acid)(PSSA-MA) | |
Golubenko et al. | Permselectivity and ion-conductivity of grafted cation-exchange membranes based on UV-oxidized polymethylpenten and sulfonated polystyrene | |
US8460832B2 (en) | Method of performing electrochemical reaction | |
Kuwertz et al. | Influence of acid pretreatment on ionic conductivity of Nafion® membranes | |
Chen et al. | Preparation and properties of sulfonated poly (fluorenyl ether ketone) membrane for vanadium redox flow battery application | |
Tricoli | Proton and methanol transport in poly (perfluorosulfonate) membranes containing Cs+ and H+ cations | |
Ikhsan et al. | Polybenzimidazole membranes for vanadium redox flow batteries: Effect of sulfuric acid doping conditions | |
EP2110875B1 (en) | Polymer electrolyte membrane, method for producing the same, membrane-electrode assembly and solid polymer fuel cell | |
Simari et al. | Sulfonated polyethersulfone/polyetheretherketone blend as high performing and cost-effective electrolyte membrane for direct methanol fuel cells | |
KR101389325B1 (ko) | 연료전지용 음이온 교환 고분자 전해질 복합막 및 그의 제조방법 | |
Zhang et al. | Influence of solvent on polymer prequaternization toward anion-conductive membrane fabrication for all-vanadium flow battery | |
KR101549525B1 (ko) | 레독스 흐름전지용 바나듐 이온 저투과성 양쪽성 이온 교환막 및 이를 포함하는 레독스 흐름전지 | |
Kim et al. | Pore-filled anion-exchange membranes for electrochemical energy conversion applications | |
Choi et al. | Preparation and electrochemical characterizations of anion-permselective membranes with structurally stable ion-exchange sites | |
WO2022077064A1 (en) | Membrane for hydrogen generation and method of forming same | |
Sproll et al. | Membrane architecture with ion-conducting channels through swift heavy ion induced graft copolymerization | |
KR20070083631A (ko) | 연료 전지 같은 전기화학 전지의 용도 | |
JP2004335231A (ja) | 固体高分子電解質その製造方法及びそれを用いた固体高分子形燃料電池 | |
KR20190079168A (ko) | 효율적인 수소수 생성을 위한 세공충진 양이온교환막 기반의 막-전극접합체 및 막-전극 접합체 제조방법 | |
KR101417748B1 (ko) | 알칼리 연료전지용 고전도성 음이온교환 고분자 전해질 복합막 및 그의 제조방법 | |
Elangovan et al. | Comparative study of microbial fuel cell performance using poly ether ether ketone-based anion and cation exchange membranes | |
Kim et al. | Preparation of a Proton-Exchange Membrane with–SO3H Group Based on Polyethylene and Poly (vinylidene fluoride) Film by Radiation-Induced Graft Polymerization for Proton-Exchange Fuel Cell | |
CN114206481B (zh) | 拉链式离子交换膜 | |
Caracino et al. | Polymeric fluorine-free electrolyte for application in DMFC | |
Santiago et al. | Smart electrolytes: materials, durability, and degradation issues |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WITN | Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid |