KR20060118686A - 무기물질을이용한 전극제조 방법 - Google Patents

무기물질을이용한 전극제조 방법 Download PDF

Info

Publication number
KR20060118686A
KR20060118686A KR1020050040967A KR20050040967A KR20060118686A KR 20060118686 A KR20060118686 A KR 20060118686A KR 1020050040967 A KR1020050040967 A KR 1020050040967A KR 20050040967 A KR20050040967 A KR 20050040967A KR 20060118686 A KR20060118686 A KR 20060118686A
Authority
KR
South Korea
Prior art keywords
electrode plate
fuel cell
carbon
positive electrode
negative electrode
Prior art date
Application number
KR1020050040967A
Other languages
English (en)
Other versions
KR100685907B1 (ko
Inventor
천수길
Original Assignee
천수길
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 천수길 filed Critical 천수길
Priority to KR1020050040967A priority Critical patent/KR100685907B1/ko
Publication of KR20060118686A publication Critical patent/KR20060118686A/ko
Application granted granted Critical
Publication of KR100685907B1 publication Critical patent/KR100685907B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/08Fuel cells with aqueous electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8657Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites layered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Materials Engineering (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Inert Electrodes (AREA)
  • Hybrid Cells (AREA)

Abstract

본 발명은 무기물질을 이용하여 전기 및 수소를 생산해내는 방법에 관한 것으로 더욱 상세하게는 2족,8족,11족,12족 금속의 혼합물로 구성된 양극판과 탄소 섬유 종이와 같은 다공성의 전도성 지지체위에 촉매 작용을하는 백금족 금속의 혼합물인 음극판에 전해질인 Nacl를 이용하여 화학반응을 일으켜 전기 및 수소를 생산하는 방법에 관한 것이다.
Figure 112005506052939-PAT00001
플러스극판, 마이너스극판, 금속공기축전지, 격리판, 극판군, 화학반응, 수소, 소금물.

Description

무기물질을이용한 전극제조 방법{The method of an electrode use the inorganic}
도 1은 전극군(양극판)을 도시하는 단면도
도 2는 전극군(음극판)을 도시하는 단면도
도 3은 전극군을 구성하는 격리판 사시도
도 4는 격리판과 격리판의 번들로 구성된 극판군 사시도
도 5는 도 4에 부착된 전원부 및 수소가스 분출구
본 발명은 Nacl을 포함하는 소금물을 이용한 전기분해와 동시에 수반되는 전기 및 수소발생장치로서 기본적으로 수소발생연료전지기술에 기반한다.
또한, 전기, Solar, 연(납)축전지, 건전지 사용방법에 의하지 않고 2, 8, 11,13족의 금속화합물로 구성된 양극판과 백금족의 화합물로 구성된 음극판에 전해질인 Nacl를 용해, 화학반응을 일으켜 전기 및 수소를 생산하는 방법이다.
종래에는 물론 현재에 이르기까지 이러한 방법을 이용하여 전기를 생산하는 제품이 출시되지 못하였으며, 또한 이 분야에 대한 연구실적도 전무한 상태이다.
본 발명은 대체에너지 및 친 환경제품, 이동용 전원, 비상용전원으로 획기적으로 실용화 시킬 수 있는 방법을 제시하고자 한다..
본 발명의 연료전지 시스템의 구성요소 및 기술특징으로는 다른 형태의 연료전지에 비하여 전류밀도가 크고 상온에서 작동되며, 구조가 간단하여 소규모 발전장치로서의 동력원으로 매우 적합한 시스템이다.
또한 빠른 발전과 응답특성, 우수한 지속성을 가지고 있어서 그 활용가치는 매우 높다.
본 전지에서는 전해액과 전극들은 직접접촉에 의하며, 특히 음극은 탄소 섬유종이와 같은 다공성의 전도성 지지체 위에 백금/탄소, 백금+루테늄/탄소 등의 촉매층을 부착시켜 제조된다.
NaCl 용액은 전기화학적으로 반응하여, 음극에서 수소이온과 전자를 생성한다. 음극에서 생성된 수소이온은 알칼리 용액을 통과하여 양극으로 이동하여 산소와 반응하여 물을 생성하거나, 외부로 배출된다.
음극에서 생성된 전자들은 화학반응의 자유에너지 변화와 함께 외부회로를 통해 발전하게 된다.
실제 시스템에서 이러한 반응은 전극 내에 백금기초 전극촉매 물질의 존재 하에서 일어난다.
이론적으로 수소는 일정한 값의 음극 퍼텐셜 이상에서는 자발적으로 산화반 응이 일어나며, TiO2가 자발적 반응을 가속시키는 역할을 하게 된다.
이하 첨부된 도면에 의해 상세히 설명하면 다음과 같다.
도 1은 전기 및 수소발생장치의 일부분인 양극판의 단면도로서 전해 포텐셜이 높고 기계적 강도를 강화시키는 마그네슘을 주요 성분으로한 복합합금의 형태로서 제조하게 되며, 주조용 마그네슘 합금의 조성비중 Fe, Cu의 조성비를 표준보다 많이 함유하여 전기화학적 반응을 증가시켜 전지의 Start-Up(10분이내)을 빠르게 진행한다.
주요성분으로는 Mg, Al, Cu, C, Zn, Fe의 산화물의 형태로서 구성되며, 구성비에 의하여 발생되는 전압의 크기가 결정된다.
조성비로는 마그네슘 90-93%, 철 0.5-0.8%, 구리 3-4%, 알루미늄 4-5%, 아연 1-1.5%, 카본 1.5-2%로 구성되어진다.
또한, 현재 일반적으로 사용하고있는 다이캐스팅 재료인 AZ60B, AM50합금의 경우 Cu함유비율은 〈0.03이고 Fe합금비율은 〈0.005dls 관계로 본 발명품의 Cu 3-4%, Fe 0.5-0.8의 합금은 합금조성의 문제점 및 제품성형시에 야기될 수 있는 조성물의 침전, 기계마모, 소재관리등의 문제가 발생하기 때문에 보완할 수 있는 주물작업 및 단조프레스로 성형한 것이다.
본 전지는 소금물을 투입함으로써 동작이 개시되는 주액전지로서 전극반응으로, 순수한 금속과 그 금속이온의 수용액에서의 표준전극전위는 그 금속의 특유한 값이며, 표준생성 자유에너지로부터 계산하면 마그네슘의 경우, 표준전극전위값 (Mg2++2e=Mg)이 -2.37V 에 해당된다.
주요 전극반응에 참여하게되는 마그네슘은 타 금속에 비하여 전위차값은 크고, 수용액중에서 불안정하므로 전위발생 속도는 초기에 빠르게 구동될 수 있다. 반면에 부식되기 쉬우므로 부식속도를 억제하기 위하여 적절한 금속물들과의 합금을 시도하여야 한다.
양극판은 엄밀하게 계산된 전극면적과 부식속도등이 고려되어 두께와 소금물과의 접촉면적이 결정되며, 목표 전위차인 1.2V에 적합한 크기의 전극의 제원하에서 단위셀에 해당되는 전극판이 제작된다.
도 2는 도 1과 같이 양극판이 담금의 형태로 전해액과 접촉을 하게 되며, 전해액은 음극판으로 구성되는 단위 전해셀에 전해액이 일정량으로 유지될 수 있도록 금형이 되어 있다.
이때 양극판과 평행하도록 음극판이 구성되며 음극판의 면적은 대면하고 있는 양극판과 면적이 거의 유사하다.
음극판은 전위발생을 자발적으로 진행하기 위한 촉매성분들이 소량 함유되며, 이의 지지판으로 스테인레스망 표면에 탄소성분이 다량 포함된 전극소재로 구성된다.
화학적인 방법에 의해 전극촉매를 제조하게 되며, 접착력을 향상시키고 접촉저항을 감소시키기 위하여 Ⅷ족 금속 Pt, Ir, Ru등 및 이들의 혼합물로 이루어진 군으로부터 형성되며, 바람직하게는 Pt이다.
Ⅷ족 금속 성분은 본 발명에 따른 촉매의 주 활성 성분이다. 상기 촉매에 함유된 백금족 금속은 원소금속상태로 존재하거나, 또는 산화물, 황화물, 할로겐화물, 또는 산화할로겐화물등과 같은 화합물의 상태로 존재하거나, 또는 상기 촉매내의 하나 이상의 다른 성분과의 화학적 결합의 상태로 존재할 수 있다.
또한, Ⅷ족 금속을 탄소 분말을 기본으로 한 복합체를 제조하여 스테인레스망 다공성 지지체 박막의 형태로 지지시키며, 이는 다공성과 반응성이 풍부하여 전해액이 자유로이 확산 및 침투를 유도한다. 오래 사용하는 동안 수축, 경화하여 성능이 떨어지는 경향이 있기 때문에 이것을 방지하기 위한 알칼리 용액에 내구성을 보유할 수 있도록 표면처리를 한다.
전해액은 무색, 투명한 염화나트륨이며, 양극판과 음극판에서의 반응을 일으켜 흘러 들어간 전기를 저장하여 단전지(cell)에서 전기를 전도시키는 역할을 한다. 전해액의 농도는 축전지가 만충전 상태일 때 약 37.5%의 농도가 된다.(wt%) 또한, 촉매금속층을 연료전극, 또는 산소전극으로서 기능하도록 하여, 연료전극이나 산소전극을 개별 취급할 필요가 없고 기계적 강도를 고려할 필요가 없다. 따라서 전극의 두께를 지극히 얇게할 수 있어 그 결과 제작되는 전지에 있어서는 전지반응이 효율적으로 행하여져 전지성능이 향상된다.
또한 에너지밀도도 대폭 향상된다.
도 3, 도4는 셀당 격리판과 격리판의 번들로 구성되는 극판군을 고려할 수 있으며, 격리판은 각 셀을 분리시켜 반응을 최대화 시킨다.
비 전도성이며 다공성이 풍부하고 전기저항이 적고, 내열 내산성이 우수한 것이 요구되므로 재질로는 합성수지, 또는 강화섬유가 많이 쓰여진다.
극판군은 음극판에 양극판을 삽입한 셀들로 이루어져 있으며, 그 사이에 격리판으로 구성되어 있다. 단전지당(한cell)당 기전력은 약 2V의 전압을 발생한다. 이 전압의 크기는 11cm × 11cm의 cell이 직렬로 12개 이상 접속되어 일정한 12V이상의 전압을 발생시킨다.
촉매 금속층은 산소가스를 공급하기 위한 통기구멍을 갖는 것이 바람직하다. 촉매 금속층이 산소가스를 공급하기 위한 통기구멍을 갖는 것으로서 전극반응이 저해되지 않고 전극반응이 더욱 효율적으로 행하여져 전지성능이 더욱 향상된다.
Nacl를 이용한 전기발생장치는 일반적으로 사용되고있는 납(연)축전지, Salor충전에 의한 축전지와는 다르게 전해질인 Nacl를 이용한 화학반응만으로 전력을 얻게됨은 물론, 별도의 충전과 장치가 필요없으며 이와같은 장치만으로 전기를 바로 얻을 수 있으므로 군 작전 훈련용, 레져용, 전기를 필요로하는 노점상, 섬 또는 도서지방, 재해시나 비상시, 소형선박등 우리생활에 다양하게 적용할 수 있다.
또한, 전기를 사용하지 않을시에는 전해질인 Nacl를 비움으로서 장시간 보관이 가능하며, 양극판의 산화된 슬러지는 인체 및 환경에 전혀 문제가 되지 않는 친환경물질이므로 전력이 부족한 현실에서 다양한 분야에 적용이 가능하다.

Claims (6)

  1. 2,8,11,13족 금속들중 마그네슘 90-93%, 철 0.5-0.8%, 구리 3-4%, 알루미늄 4-5%, 아연 1-1.5%, 카본 1.5-2%등으로 구성된 복합합금이 양극판으로서의 기능하는 것을 특징으로하는 연료전지.
  2. 탄소 섬유종이와 같은 다공성의 전도성 지지체 위에 백금/탄소, 백금+루테늄/탄소등의 촉매층을 이용하여 음극판으로서의 기능하는 것을 특징으로하는 연료전지.
  3. 제 2항에 있어 촉매층은 스테인레스망으로 구성된 다공성 지지체를 갖는 것을 특징으로 하는 연료전지.
  4. 제2항에 있어 TiO2가 수소를 자발적으로 산화반응이 일어나도록 반응을 가속시키는 역할을 하는 것을 특징으로 하는 연료전지.
  5. 양극판과 음극판이 화학적인 반응이 발생하도록 하도록 Nacl 및 바닷물을 전해질을 사용하는 특징을 갖는 연료전지.
  6. 양극판과 음극판이 전해질인 Nacl 및 바닷물을 사용하여 화학반응을 일으켜 전기 및 수소가스를 생산해내는 특징을 갖는 연료전지.
KR1020050040967A 2005-05-17 2005-05-17 무기물질을이용한 전극제조 방법 KR100685907B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050040967A KR100685907B1 (ko) 2005-05-17 2005-05-17 무기물질을이용한 전극제조 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050040967A KR100685907B1 (ko) 2005-05-17 2005-05-17 무기물질을이용한 전극제조 방법

Publications (2)

Publication Number Publication Date
KR20060118686A true KR20060118686A (ko) 2006-11-24
KR100685907B1 KR100685907B1 (ko) 2007-02-27

Family

ID=37705645

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050040967A KR100685907B1 (ko) 2005-05-17 2005-05-17 무기물질을이용한 전극제조 방법

Country Status (1)

Country Link
KR (1) KR100685907B1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100147280A1 (en) * 2008-12-16 2010-06-17 Whirlpool Corporation Dual fan convection oven

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3788490B2 (ja) * 1997-06-25 2006-06-21 株式会社ジーエス・ユアサコーポレーション 固体高分子電解質を備えた直接型メタノ−ル燃料電池およびその製造方法
KR100520198B1 (ko) * 2003-09-04 2005-10-12 백동수 휴대용 금속연료전지
KR100552697B1 (ko) * 2003-11-13 2006-02-20 삼성에스디아이 주식회사 금속 산화물-탄소 복합체로 이루어진 촉매 담체 및 이를이용한연료전지

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100147280A1 (en) * 2008-12-16 2010-06-17 Whirlpool Corporation Dual fan convection oven
US8258435B2 (en) * 2008-12-16 2012-09-04 Whirlpool Corporation Dual fan convection oven

Also Published As

Publication number Publication date
KR100685907B1 (ko) 2007-02-27

Similar Documents

Publication Publication Date Title
Wang et al. A high-capacity dual-electrolyte aluminum/air electrochemical cell
US10115975B2 (en) Water-activated permanganate electrochemical cell
CN107017450A (zh) 铝空气电池
US10594010B2 (en) Anaerobic aluminum-water electrochemical cell
WO2015056641A1 (ja) 水電気分解装置およびそれを用いたエネルギー貯蔵・供給システム
JP2006196329A (ja) 空気極および該空気極を用いた空気二次電池
EP3229309B1 (en) Rechargeable aluminum-air electrochemical cell
US8304121B2 (en) Primary aluminum hydride battery
Cao et al. Electrochemical discharge performance of Mg-Li based alloys in NaCl solution
JP2022068077A (ja) 金属銅をカソード電極とする1コンパートメント型水溶液燃料電池
KR100685907B1 (ko) 무기물질을이용한 전극제조 방법
Botte et al. Electrochemical energy storage: applications, processes, and trends
US10211464B2 (en) Electrochemical cell aluminum-manganese
CN105322238A (zh) 一种叠式铜酸蓄电池
Wang et al. Research and development of metal-air fuel cells
WO1980000284A1 (fr) Piles, accumulateurs et generateurs electriques a electrodes non metalliques ou en solution
TWI532242B (zh) 電化學電池
JP2012248529A (ja) ハイブリッド水素燃料電池
CN101814595B (zh) 一种海水动力电池用铝阳极材料
EP4398383A1 (en) Air battery in which metallic copper or alloy thereof serves as oxygen reducing air electrode
Lv et al. The electrochemical behaviors of the Mg-7.5 Li-3.5 Al and Mg-7.5 Li-3.5 Al-1Y electrodes in sodium chloride solution
JP2024034270A (ja) 金属銅又はその合金を酸素還元空気極とする空気電池
US10601095B2 (en) Anaerobic aluminum-water electrochemical cell
KR20240056730A (ko) 금속 구리 또는 그 합금을 산소 환원 공기극으로 하는 공기 전지
Bockelmann Investigation and prevention of anodic zinc passivation in alkaline zinc-air batteries

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee
R401 Registration of restoration
FPAY Annual fee payment

Payment date: 20130206

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20131125

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20150130

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20160111

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20170131

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20180219

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20190312

Year of fee payment: 13