KR20060110603A - Dielectric ceramic composition and multilayer ceramic capacitor using the same - Google Patents
Dielectric ceramic composition and multilayer ceramic capacitor using the same Download PDFInfo
- Publication number
- KR20060110603A KR20060110603A KR1020050033009A KR20050033009A KR20060110603A KR 20060110603 A KR20060110603 A KR 20060110603A KR 1020050033009 A KR1020050033009 A KR 1020050033009A KR 20050033009 A KR20050033009 A KR 20050033009A KR 20060110603 A KR20060110603 A KR 20060110603A
- Authority
- KR
- South Korea
- Prior art keywords
- mol
- compound
- compounds
- dielectric
- dielectric ceramic
- Prior art date
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 25
- 239000000919 ceramic Substances 0.000 title claims abstract description 23
- 239000003985 ceramic capacitor Substances 0.000 title claims abstract description 16
- 150000001875 compounds Chemical class 0.000 claims abstract description 48
- 239000002245 particle Substances 0.000 claims abstract description 17
- 239000004615 ingredient Substances 0.000 claims abstract description 15
- 229910052761 rare earth metal Inorganic materials 0.000 claims abstract description 7
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 10
- 238000000034 method Methods 0.000 claims description 7
- 229910052804 chromium Inorganic materials 0.000 claims description 6
- 230000000996 additive effect Effects 0.000 claims description 2
- 239000000654 additive Substances 0.000 claims 1
- 229910002113 barium titanate Inorganic materials 0.000 abstract 3
- 229910010252 TiO3 Inorganic materials 0.000 abstract 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 abstract 1
- DBERGLNNXHLATL-UHFFFAOYSA-N [Ba].[C] Chemical compound [Ba].[C] DBERGLNNXHLATL-UHFFFAOYSA-N 0.000 abstract 1
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 abstract 1
- 239000011258 core-shell material Substances 0.000 abstract 1
- 239000003989 dielectric material Substances 0.000 description 13
- 238000010304 firing Methods 0.000 description 8
- 230000009467 reduction Effects 0.000 description 7
- 239000000370 acceptor Substances 0.000 description 6
- 230000008859 change Effects 0.000 description 6
- 239000011521 glass Substances 0.000 description 6
- 239000012071 phase Substances 0.000 description 6
- 239000000843 powder Substances 0.000 description 5
- 238000005245 sintering Methods 0.000 description 5
- 239000013078 crystal Substances 0.000 description 4
- 230000005684 electric field Effects 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 230000015556 catabolic process Effects 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 239000010419 fine particle Substances 0.000 description 3
- 238000009413 insulation Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- 230000002159 abnormal effect Effects 0.000 description 2
- 229910052785 arsenic Inorganic materials 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000000889 atomisation Methods 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000007606 doctor blade method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000001027 hydrothermal synthesis Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 229910052692 Dysprosium Inorganic materials 0.000 description 1
- 229910052691 Erbium Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 1
- 230000005610 quantum mechanics Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 238000010532 solid phase synthesis reaction Methods 0.000 description 1
- 210000000952 spleen Anatomy 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/002—Details
- H01G4/018—Dielectrics
- H01G4/06—Solid dielectrics
- H01G4/08—Inorganic dielectrics
- H01G4/12—Ceramic dielectrics
- H01G4/1209—Ceramic dielectrics characterised by the ceramic dielectric material
- H01G4/1218—Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
- H01G4/1227—Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates based on alkaline earth titanates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/46—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
- C04B35/462—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
- C04B35/465—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
- C04B35/468—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B3/00—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
- H01B3/02—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
- H01B3/12—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances ceramics
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/002—Details
- H01G4/005—Electrodes
- H01G4/008—Selection of materials
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F11/00—Compounds of calcium, strontium, or barium
- C01F11/18—Carbonates
- C01F11/186—Strontium or barium carbonate
- C01F11/188—Barium carbonate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/002—Details
- H01G4/005—Electrodes
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Ceramic Capacitors (AREA)
Abstract
Description
도 1은 유전체의 코어셀 구조의 형상 개략도로서,1 is a shape schematic view of a core cell structure of a dielectric material;
도 1(a)는 조립의 부성분을 사용한 유전체이고,Figure 1 (a) is a dielectric using a subsidiary component of the assembly,
도 1(b)는 미립의 부성분을 사용한 유전체이다.Fig. 1 (b) is a dielectric using fine particles.
도 2는 적층세라믹 커패시터의 제조공정의 일례도. 2 is an example of a manufacturing process of a multilayer ceramic capacitor.
일본 공개특허공보 2003-277136Japanese Laid-Open Patent Publication 2003-277136
일본 공개특허공보 2004-079686Japanese Laid-Open Patent Publication 2004-079686
본 발명은 주성분이 BaTiO3 결정입자와 (Ba1-xCax)TiO3결정입자로 조성되는 유전체 자기조성물과 이를 이용한 적층세라믹 커패시터에 관한 것이다. The present invention relates to a dielectric ceramic composition composed of BaTiO 3 crystal grains and (Ba 1-x Ca x ) TiO 3 crystal grains, and a multilayer ceramic capacitor using the same.
최근, 전자기기의 소형화와 고성능화에 수반하여 적층세라믹 커패시터도 고 용량 박층화가 진행되고 있다. 이에 따라, 고전계에 따른 DC-바이어스(bias) 및 온도에 따른 용량변화의 특성 등의 신뢰성 특성이 문제가 되고 있다.In recent years, with the miniaturization and high performance of electronic devices, multilayer ceramic capacitors have also undergone high capacity thinning. Accordingly, reliability characteristics such as DC-bias according to the high electric field and capacity change due to temperature have become a problem.
고유전율의 유전체 재료로는 페로브스카이트 구조를 갖는 BaTiO3(간단히 BT라고도 표기 함)분말을 많이 사용하고 있다. BT 유전체 재료는 직류 전압인가에 의한 비유전율의 감소(DC-bias)가 크다는 결점이 있다. 이를 해결하기 위해 BT결정 입자를 미소화 시키고 있으나, 유전율의 감소 및 온도에 따른 용량변화의 특성에 악영향을 미치는 결과가 발생하고 있다. 또한, BT유전체 재료는 각 온도별 상전이에 의한 원자 요동에 의해 4000이상의 큰 유전율을 갖는다. 그러나, 이러한 원자요동에 의해 DC 바이어스 인가에 의한 비유전율이 크게 변하는 특성을 갖고 있다. As a dielectric constant of high dielectric constant, BaTiO 3 (simply referred to as BT) powder having a perovskite structure is often used. BT dielectric materials have the drawback that the reduction of the relative dielectric constant (DC-bias) by applying a DC voltage is large. In order to solve this problem, the BT crystal particles are micronized, but there are adverse effects on the reduction of dielectric constant and the characteristics of capacity change with temperature. In addition, the BT dielectric material has a large dielectric constant of 4000 or more due to atomic fluctuations caused by phase transition for each temperature. However, this atomic fluctuation has a characteristic that the relative dielectric constant due to DC bias is greatly changed.
한편, BaTiO3의 내환원성을 증진시키기 위해, BaTiO3의 A자리와 B자리에 부성분으로서 억셉터와 도너 원소를 소성시 따로 고용시킴에 따라 강환원 분위기에서 BaTiO3의 반도체화에 따른 절연 저항의 저하를 억제시키는 방안으로 연구가 진행 되고 있다.On the other hand, the insulation resistance to enhance the reducing resistance of BaTiO 3, in the steel in a reducing atmosphere in accordance with an A position and sub-component to B position of BaTiO 3 Sikkim separately employed at the time of the firing of the acceptor and the donor element of the semiconductor screen of the BaTiO 3 Research is underway to reduce degradation.
BaTiO3의 DC바이어스 특성을 향상시키기 위하여 BaTiO3의 A 자리에 일부 Ca을 고용시킨 (Ba1-xCax)TiO3 (간단히 BCT라고도 표기함) 유전체재료가 개발되었다(일본 공개특허공보 2003-277136호와 일본 공개특허공보 2004-079686호). In order to improve the DC bias characteristics of the BaTiO 3 was employed in some of the Ca A place of BaTiO 3 (Ba 1-x Ca x) TiO 3 has been developed (also called simply denoted BCT) the dielectric material (Japanese Unexamined Patent Application Publication No. 2003- 277136 and Japanese Laid-Open Patent Publication 2004-079686).
BCT유전체재료는 고온 부근의 상전이 온도는 변화가 거의 없지만 저온 부근의 두 상전이 온도를 더 낮은 온도 측으로 이동시켜 DC 바이어스 특성을 향상시킨 것이다. 또한, Ca은 A, B자리 모두 고용이 가능함에 따라 일부 B자리에 고용될 시, 결정 구조의 8면체(Octahedral)가 비틀림(distortion)을 일으켜 환원 분위기에서 산소 공공의 형성을 어렵게 하는 역할을 하여 신뢰성이 향상되는 구조적 장점이 있다. 물론 억셉터의 역할을 수행하는 것도 중요한 내환원성을 증진시키는 이유이다. The BCT dielectric material has little change in the phase transition temperature near the high temperature, but improves the DC bias characteristics by moving the two phase transition temperatures near the low temperature to the lower temperature side. In addition, since Ca can be employed in both A and B sites, when employed in some B sites, the octahedral of the crystal structure causes distortion, which makes it difficult to form oxygen vacancies in a reducing atmosphere. There is a structural advantage of improved reliability. Of course, playing the role of acceptor is also an important reason to promote reduction resistance.
그러나, BCT에서 Ca 고용량이 증가함에 따라 전체적인 체적의 감소에 따른 원자 요동이 감소되어(양자역학, Phonon의 운동 거리) 비유전률이 저하되는 단점을 갖고 있다. 또한, BaTiO3에 Ca이 고용됨에 따라 칩 소성에서 Ca의 물질 이동이 좋아 비정상 입성장이 발생되어 전기적 특성이 저하되는 문제가 발생되어 지고 있다. 따라서 이를 해결하고자 소성 프로파일 및 분위기를 이용하는데, 이렇게 하기 위해서는 많은 설비 투자가 요구 되어진다.However, as the Ca-dissolution in BCT increases, atomic fluctuations are reduced due to the decrease of the overall volume (quantum mechanics, Phonon's movement distance). In addition, as Ca is dissolved in BaTiO 3 , the material movement of Ca is good in chip firing, and abnormal grain growth is generated, thereby deteriorating electrical characteristics. Therefore, to solve this problem, the plastic profile and the atmosphere are used, which requires a lot of equipment investment.
이와 같이, BT유전체 재료는 고유전율의 장점이 있으나, DC-바이어스가 큰 단점이 있다. 또한, BCT유전체 재료는 DC의 바이어스 특성은 개선되지만, 비유전율이 크게 감소하는 단점이 있다. As such, the BT dielectric material has an advantage of high dielectric constant, but a DC-bias has a big disadvantage. In addition, the BCT dielectric material is improved in the bias characteristics of DC, but has a disadvantage in that the relative dielectric constant is greatly reduced.
본 발명에서는 유전체 재료의 주성분으로서 BaTiO3와 (Ba1-xCax)TiO3를 혼정 하여 유전율과 전기적 신뢰성을 개선할 수 있는 유전체 자기조성물과 적층세라믹 커패시터를 제공하는데, 그 목적이 있다. 나아가, 부성분의 미립화에 따른 균일한 코어셀 구조 및 입계를 형성하여 용량 및 전기적특성을 개선하는데도 그 목적이 있다. In the present invention, BaTiO 3 and (Ba 1-x Ca x ) TiO 3 are mixed as main components of the dielectric material. It is an object of the present invention to provide a dielectric ceramic composition and a multilayer ceramic capacitor capable of improving dielectric constant and electrical reliability. Furthermore, the purpose is to improve the capacity and electrical properties by forming a uniform core cell structure and grain boundaries according to the atomization of subcomponents.
상기 목적을 달성하기 위한 본 발명의 유전체 자기 조성물은, 주성분이 (Ba1-xCax)TiO3(여기서, x는 0.01~0.15):25~75중량%와 나머지 BaTiO3로 조성되는 것이다. In the dielectric ceramic composition of the present invention for achieving the above object, the main component is composed of (Ba 1-x Ca x ) TiO 3 (where x is 0.01 to 0.15): 25 to 75% by weight and the remaining BaTiO 3 .
본 발명에서 상기 (Ba1-xCax)TiO3(여기서, x는 0.In the present invention, the (Ba 1-x Ca x ) TiO 3 , wherein x is 0.
01~0.15)의 함량이 45~55중량%가 바람직하다. 상기 자기조성물에는 부성분이 추가로 포함되고, 부성분의 입도는 D50이 0.2㎛이하이고, 비표면적이 20M2/g이상이 바람직하다. 상기 부성분은 제1부성분으로 Mg화합물, Ba화합물에서 선택된 적어도 1종:0.01~2몰%. 제2부성분으로 Y화합물, Re화합물(Re:희토류원소)에서 선택된 적어도 1종:0.1~1.5몰%, 제3부성분으로 Mn화합물, Cr화합물, V화합물의 적어도 1종: 0.01~3.0몰%, 제4성분으로 Si화합물:1.0~3.0몰%가 바람직하다. 가장 바람직하게는 부성분으로, BaCO3:0.01~2.0몰%, MgO:0.01~1.5몰%, Y2O3:0.1~1.5몰%, MnO2:0.01~0.3몰%, Cr2O3:0.01~0.10몰%, SiO2:1.0~3.0몰%가 추가로 포함되는 것이다. 01 to 0.15) is preferably 45 to 55% by weight. The magnetic composition further includes a subcomponent, and the particle size of the subcomponent is preferably D50 of 0.2 µm or less and a specific surface area of 20 M 2 / g or more. The subcomponent is at least one selected from Mg compound and Ba compound as a first subcomponent: 0.01 to 2 mol%. At least one selected from Y compound and Re compound (Re: rare earth element) as the second sub ingredient: 0.1-1.5 mol%, and at least one kind of Mn compound, Cr compound, and V compound as the third sub ingredient: 0.01-3.0 mol%, As a 4th component, Si compound: 1.0-3.0 mol% is preferable. Most preferably, as a minor component, BaCO 3 : 0.01 to 2.0 mol%, MgO: 0.01 to 1.5 mol%, Y 2 O 3 : 0.1 to 1.5 mol%, MnO 2 : 0.01 to 0.3 mol%, Cr 2 O 3 : 0.01 0.10 mol%, SiO 2: will be included with 1.0 to 3.0 mol% is added.
또한, 본 발명의 적층세라믹 커패시터는, 내부전극의 사이에 형성되는 유전체 세라믹층을 포함하는 적층체와 상기 적층체의 양단에 내부전극과 전기적으로 접속되는 외부전극이 형성되고, 상기 유전체 세라믹층이 상기한 본 발명의 유전체 자기조성물이다. In addition, in the multilayer ceramic capacitor of the present invention, a laminate including a dielectric ceramic layer formed between internal electrodes and external electrodes electrically connected to internal electrodes are formed at both ends of the laminate, and the dielectric ceramic layer is The above-described dielectric self composition of the present invention.
이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.
본 발명에서는 높은 유전율을 갖는 BaTiO3와 온도 안정성 및 DC-바이어스 특성과 내환원성이 우수한 (Ba1-xCax)TiO3를 혼정함으로써 높은 유전률을 확보하면서 높은 전기적 신뢰성을 구현하는데, 특징이 있다. In the present invention, by mixing BaTiO 3 having a high dielectric constant and (Ba 1-x Ca x ) TiO 3 having excellent temperature stability, DC-bias characteristics, and reduction resistance, high dielectric constant is ensured and high electrical reliability is achieved. .
본 발명에서 BT입자와 BCT입자는 0.2~0.6㎛, 바람직하게는 0.2~0.3㎛를 사용하는 것이 바람직하다. BT입자와 BCT입자는 수열 합성법, 고상법, 공침법, 졸-겔법 등의 방법으로 제조되는데, 그 제조방법에 제한되는 것이 아니다. 본 발명에서 BCT는 Ca의 변성량 x가 0.01~0.15 범위 내가 바람직하다.BT particles and BCT particles in the present invention is preferably 0.2 ~ 0.6㎛, preferably 0.2 ~ 0.3㎛. BT particles and BCT particles are prepared by a hydrothermal synthesis method, a solid phase method, a coprecipitation method, a sol-gel method and the like, but is not limited thereto. In the present invention, the BCT preferably has a modification amount x of Ca in the range of 0.01 to 0.15.
본 발명에 따라 유전체재료의 주성분으로 BT와 BCT가 100중량%를 만족하는데, BCT의 함량은 25~75%이고, 나머지 BT이다. 바람직하게는 BCT의 함량이 25~55%, 보다 바람직하게는 45~55%, 가장 바람직하게는 50%이다. BCT의 함량이 높아질수록 고온측에서의 용량의 온도안정성이 개선되며, DC-바이어스 값이 낮아진다. According to the present invention, BT and BCT satisfy 100 wt% as the main components of the dielectric material, and the content of BCT is 25 to 75%, and the remaining BT is BT. Preferably the content of BCT is 25-55%, more preferably 45-55%, most preferably 50%. The higher the content of BCT, the better the temperature stability of the capacity on the high temperature side and the lower the DC-bias value.
BT유전체재료와 BCT유전체재료에는 부성분이 첨가되는데, 본 발명에서도 이러한 부성분이 첨가될 수 있다. Subsidiary components are added to the BT dielectric material and the BCT dielectric material, and such subcomponents may also be added to the present invention.
부성분에는 억셉터와 도너역할을 하는 성분들과 소결촉진제가 첨가된다. 억셉터로는 Mg, Ba, Mn, Cr, V 등이 알려져 있으며, 도너로는 희토류원소(Dy, Er, Yb)와 Y원소 등이 알려져 있다. 또한, 소결촉진제로는 글라스 프릿트와 SiO2가 있다. As the secondary component, components that act as acceptors and donors and sintering accelerators are added. As the acceptor, Mg, Ba, Mn, Cr, V and the like are known, and as the donor, rare earth elements (Dy, Er, Yb) and Y elements are known. In addition, sintering accelerators include glass frit and SiO 2 .
본 발명에서는 부성분을 미립으로 사용하는데도 큰 특징이 있다. 부성분의 미립화측면에서 소결촉진제는 글라스 프릿트 보다 SiO2가 바람직하다. 글라스 프릿트는 큰 강도에 의해 미분화가 어렵기 때문이다. 도 1(a)에는 글라스 프릿트를 사용한 조립의 부성분의 경우이고, 도 1(b)는 SiO2를 사용한 미립의 부성분의 경우이다. In the present invention, there is a great feature in using the subcomponent as a particulate. In terms of atomization of the minor components, the sintering accelerator is preferably SiO 2 rather than glass frit. This is because glass frit is difficult to be differentiated due to its high strength. Figure 1 (a) is a case of a sub-component of the assembly using the glass frit, and Fig. 1 (b) is a case of a sub-component of the particulate with the SiO 2.
도 1(a)에서 볼 수 있듯이 소결 후 글라스 리치(glass rich) 상(3)이 존재하게 되고, 조립의 부성분을 사용함으로써 균일한 코어(1)와 셀(2)이 형성되지 못하고 국부적으로 따로 존재하는 경향이 많아 진다. 이러한 현상에 의해 유전체의 박층화 됨에 따라 국부적으로 큰 전계가 걸리므로서 파괴전압(BDV)이 낮아지고 DC바이어스가 높아지는 등 신뢰성에 문제가 된다. As can be seen in Figure 1 (a) after the sintered glass rich (glass rich) phase (3) is present, the uniform core (1) and the cell (2) can not be formed locally by using the subsidiary components of the granulation separately, separately There is a tendency to exist. As a result of the thinning of the dielectric material due to this phenomenon, a large electric field is locally applied, which causes a problem in reliability such as a low breakdown voltage (BDV) and a high DC bias.
도 1(b)에는 코어 주위에 균일한 셀 상을 형성 시킬 수 있다. 이는 미립의 부성분을 사용 함으로써 소결 조제를 포함한 모든 부성분이 하나의 상으로 형성되어 균일한 분산이 가능하기 때문이다. 이에 따라 용량의 온도특성과 균일한 입계 형성에 의해 파괴전압(BDV) 및 DC-바이어스 특성이 개선되는 것을 알 수 있다. In Figure 1 (b) it is possible to form a uniform cell phase around the core. This is because all the subcomponents including the sintering aid are formed into one phase by using the particulate subcomponents, so that uniform dispersion is possible. Accordingly, it can be seen that the breakdown voltage (BDV) and the DC-bias characteristics are improved by the temperature characteristics of the capacitance and the formation of uniform grain boundaries.
이와 같이, 본 발명에서는 부성분의 입경을 보다 작게 하여 보다 균일한 코어 셀과 입계를 형성하여 보다 전기적 특성이 향상된다. 이를 위한 부성분의 입도조건은 D50이 0.2㎛이하(입도의 50%이상이 0.2㎛이하를 의미함)이고, 비표면적이 20m2/g이상인 것이 바람직하다. 보다 바람직하게는, D50이 0.1㎛이하이고, 비표면적이 40m2/g이상이다. As described above, in the present invention, the particle diameters of the subcomponents are made smaller to form more uniform core cells and grain boundaries, thereby improving electrical characteristics. Particle size conditions of the secondary component for this purpose is preferably D50 is 0.2㎛ or less (more than 50% of the particle size means 0.2㎛ or less), the specific surface area is more than 20m 2 / g. More preferably, D50 is 0.1 micrometer or less and specific surface area is 40 m <2> / g or more.
본 발명에서 바람직한 부성분의 첨가는 다음과 같다.The addition of the preferable subcomponent in this invention is as follows.
제1부성분으로 Mg화합물, Ba화합물에서 선택된 적어도 1종:0.01~2몰%. 제2부성분으로 Y화합물, Re화합물(Re:희토류원소)에서 선택된 적어도 1종:0.1~1.5몰%, 제3부성분으로 Mn화합물, Cr화합물, V화합물의 적어도 1종: 0.01~3.0몰%, 제4성분으로 Si화합물:1.0~3.0몰%로 하는 것이다. 보다 구체적으로는, BaCO3:0.01~2.0몰%, MgO:0.01~1.5몰%, Y2O3:0.1~1.5몰%, MnO2:0.01~0.3몰%, Cr2O3:0.01~0.10몰%, SiO2:1.0~3.0몰%로 하는 것이 바람직하다. 이들의 한정이유에 대해 구체적으로 설명 한다. At least 1 sort (s) chosen from Mg compound and Ba compound as a 1st component: 0.01-2 mol%. At least one selected from Y compound and Re compound (Re: rare earth element) as the second sub ingredient: 0.1-1.5 mol%, and at least one kind of Mn compound, Cr compound, and V compound as the third sub ingredient: 0.01-3.0 mol%, Si compound: 1.0-3.0 mol% as a 4th component. More specifically, BaCO 3 : 0.01 to 2.0 mol%, MgO: 0.01 to 1.5 mol%, Y 2 O 3 : 0.1 to 1.5 mol%, MnO 2 : 0.01 to 0.3 mol%, Cr 2 O 3 : 0.01 to 0.10 mol%, SiO 2: 1.0 ~ is preferably set to 3.0 mol%. The reason for these limitations is explained concretely.
BaCO3:0.01~2.0몰%BaCO 3 : 0.01 ~ 2.0 mol%
그레인의 반응에 의한 입성장의 억제를 효과적으로 수행하는데, 그 함량이 0.01몰%미만의 경우에는 원하는 첨가효과를 발휘할 수 없고, 2.0몰% 초과의 경우에는 그레인의 소결을 억제하여 소성온도를 증가시킬 뿐 아니라 칩의 유전율의 저하될 수 있다. The effect of suppressing grain growth by the reaction of grains is effectively carried out. If the content is less than 0.01 mol%, the desired additive effect cannot be exerted. In addition, the dielectric constant of the chip may be lowered.
MgO:0.01~1.5몰%MgO: 0.01-1.5 mol%
억셉터 조성으로 그레인의 입성장 억제 및 코어와 셀분율을 제어하기 위한 것으로, 0.01몰%미만의 경우에는 입성장 억제 역할이 충분하지 못하고 1.5몰% 초과의 경우에는 쉘의 분율을 증가시켜 칩의 유전율이 저하되는 원인이 된다.In order to control grain growth and control core and cell fraction by acceptor composition, it is not enough to suppress grain growth in case of less than 0.01 mol% and increase the fraction of shell in case of more than 1.5 mol%. It is the cause of decreasing the dielectric constant.
Y2O3 :0.1~1.5몰%Y 2 O 3 : 0.1 ~ 1.5 mol%
도너조성으로 내환원성 및 신뢰성을 증가시키기 위한 것으로, 0.1몰%미만의 경우에는 유전체층의 내환원성 및 절연저항 특성이 나빠지며, 1.5몰%초과의 경우에는 유전체층을 구성하는 그레인의 셀분율을 증가시켜 유전율이 저하될 수 있다.In order to increase the reduction resistance and reliability by the donor composition, the reduction resistance and the insulation resistance of the dielectric layer are deteriorated in the case of less than 0.1 mol%, and the cell fraction of the grain constituting the dielectric layer is increased in the case of exceeding 1.5 mol%. The dielectric constant may be lowered.
MnO2:0.01~0.3몰%MnO 2 : 0.01 to 0.3 mol%
억셉터 조성으로 그레인의 입성장 억제 및 신뢰성 향상을 위한 것으로, 0.01몰%미만의 경우에는 충분한 신뢰성 향상을 도모하지 못하고, 0.3몰% 초과의 경우에는 역으로 초기 신뢰성의 저하 및 쉘분율 증가에 의한 유전율의 저하될 수 있다.In order to suppress grain growth of grain and improve reliability by acceptor composition, it is not possible to improve sufficient reliability in case of less than 0.01 mol%, and inversely by lowering initial reliability and increasing shell fraction in case of more than 0.3 mol% The dielectric constant may be lowered.
Cr2O3:0.01~0.1몰%Cr 2 O 3 : 0.01 ~ 0.1 mol%
억셉트 조성으로 유전율을 증가시키며 신뢰성 향상을 위한 것으로, 0.01몰%미만의 경우에는 충분한 유전율 증진 및 신뢰성 향상을 도모하지 못하고, 0.1몰% 초과의 경우에는 역으로 신뢰성 저하 및 쉘분율 증가에 의한 유전율의 저하의 원인이 된다.In order to increase the dielectric constant with the accept composition and improve the reliability, it is not possible to increase the sufficient permittivity and the reliability improvement in case of less than 0.01 mol%, and in the case of more than 0.1 mol%, the dielectric constant due to the decrease of reliability and the increase of the shell fraction Causes a decrease in
SiO2:1.0~3.0몰%SiO 2 : 1.0 ~ 3.0 mol%
소결촉진제의 역할을 하기 위하여 1.0몰%이상 첨가되어야 하며, 3.0몰% 초과의 경우에는 소성온도는 낮아지지만 국부적인 비정상 입성장이 발생하여 신뢰성 저하의 원인이 된다. In order to act as a sintering accelerator, more than 1.0 mol% should be added. In case of more than 3.0 mol%, the firing temperature is lowered, but local abnormal grain growth occurs, which causes a decrease in reliability.
다음으로 본 발명의 유전체 자기조성물을 이용하는 적층세라믹 커패시터에 대해 설명한다.Next, a multilayer ceramic capacitor using the dielectric magnetic composition of the present invention will be described.
적층세라믹 커패시터는, 내부전극의 사이에 형성되는 유전체 세라믹층을 포 함하는 적층체와 상기 적층체의 양단에 내부전극과 전기적으로 접속되는 외부전극이 형성되고, 상기 유전체 세라믹층이 본 발명의 유전체 자기조성물로 되는 것이다. 적층세라믹 커패시터에서 내부전극과 유전체세라믹층의 적층상태는, 복수의 유전체 세라믹층과 이 세라믹층의 사이에 형성되는 내부전극을 포함하는 적층체로 기재하기도 한다. The multilayer ceramic capacitor includes a laminate including a dielectric ceramic layer formed between internal electrodes, and external electrodes electrically connected to the internal electrodes at both ends of the laminate, wherein the dielectric ceramic layer is the dielectric of the present invention. It is a self-composition. The stacked state of the internal electrode and the dielectric ceramic layer in the multilayer ceramic capacitor may be described as a laminate including a plurality of dielectric ceramic layers and internal electrodes formed between the ceramic layers.
본 발명의 적층세라믹 커패시터에서 유전체 자기조성물은 주성분이 (Ba1-xCax)TiO3(여기서, x는 0.01~0.15):25~75중량%와 나머지 BaTiO3로 조성되는 것이다. 본 발명에서 상기 (Ba1-xCax)TiO3(여기서, x는 0.01~0.15)의 함량이 45~55중량%가 바람직하다. 상기 자기조성물에는 부성분이 추가로 포함되고, 부성분의 입도는 D50이 0.2㎛이하이고, 비표면적이 20m2/g이상이 바람직하다. 보다 바람직하게는, D50이 0.1㎛이하이고, 비표면적이 40m2/g이상이다. 상기 부성분은 제1부성분으로 Mg화합물, Ba화합물에서 선택된 적어도 1종:0.01~2몰%. 제2부성분으로 Y화합물, Re화합물(Re:희토류원소)에서 선택된 적어도 1종:0.1~1.5몰%, 제3부성분으로 Mn화합물, Cr화합물, V화합물의 적어도 1종: 0.01~3.0몰%, 제4성분으로 Si화합물:1.0~3.0몰%가 바람직하다. 가장 바람직하게는 부성분으로, BaCO3:0.01~2.0몰%, MgO:0.01~1.5몰%, Y2O3:0.1~1.5몰%, MnO2:0.01~0.3몰%, Cr2O3:0.01~0.10몰%, SiO2:1.0~3.0몰%가 추가로 포함되는 것이다. The dielectric ceramic composition of the multilayer ceramic capacitor of the present invention is composed of (Ba 1-x Ca x ) TiO 3 (where x is 0.01 to 0.15): 25 to 75% by weight and the remaining BaTiO 3 . In the present invention, the content of (Ba 1-x Ca x ) TiO 3 (where x is 0.01 to 0.15) is preferably 45 to 55% by weight. The magnetic composition further includes a subcomponent, and the particle size of the subcomponent is preferably D50 of 0.2 µm or less and a specific surface area of 20 m 2 / g or more. More preferably, D50 is 0.1 micrometer or less and specific surface area is 40 m <2> / g or more. The subcomponent is at least one selected from Mg compound and Ba compound as a first subcomponent: 0.01 to 2 mol%. At least one selected from Y compound and Re compound (Re: rare earth element) as the second sub ingredient: 0.1-1.5 mol%, and at least one kind of Mn compound, Cr compound, and V compound as the third sub ingredient: 0.01-3.0 mol%, As a 4th component, Si compound: 1.0-3.0 mol% is preferable. Most preferably, as a minor component, BaCO 3 : 0.01 to 2.0 mol%, MgO: 0.01 to 1.5 mol%, Y 2 O 3 : 0.1 to 1.5 mol%, MnO 2 : 0.01 to 0.3 mol%, Cr 2 O 3 : 0.01 0.10 mol%, SiO 2: will be included with 1.0 to 3.0 mol% is added.
본 발명의 적층세라믹 커패시터는 도 2의 예시된 방법에 따라 제조될 수 있다. The multilayer ceramic capacitor of the present invention can be manufactured according to the illustrated method of FIG.
본 발명의 유전체 자기조성물의 조성을 만족하도록 주성분을 칭량하고, 미립의 부성분을 혼합한 원료분말을 닥터블레이드법 등의 성형법에 의해 유전체 시트를 성형한다. 유전체 시트에 스크린 인쇄법 등에 의해 내부전극 패턴을 형성한다. 이때 사용된 내부전극은 비금속인 Ni 메탈을 사용하는 것이 바람직하다. 내부전극이 인쇄된 유전체시트를 적층하여 압착한다. 이 적층체를 소성한 후 적층체의 양단에 내부전극과 전기적으로 접속되는 외부전극이 형성한다. 이때 외부 전극은 Cu 메탈 또는 Ni 메탈로 제조된 페이스트를 사용하는 것이 바람직하다. The main component is weighed so as to satisfy the composition of the dielectric ceramic composition of the present invention, and the dielectric sheet is formed by molding methods such as a doctor blade method from a raw material powder containing fine particles. An internal electrode pattern is formed on the dielectric sheet by screen printing or the like. In this case, the internal electrode used is preferably a non-metal Ni metal. A dielectric sheet printed with internal electrodes is laminated and pressed. After firing the laminate, external electrodes electrically connected to the internal electrodes are formed at both ends of the laminate. In this case, it is preferable to use a paste made of Cu metal or Ni metal.
이하, 본 발명을 실시예를 통하여 보다 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.
[실시예] EXAMPLE
수열합성법으로 제조된 0.2㎛~0.3㎛인 BaTiO3분말과 (Ba1-xCax)TiO3분말(x는 0.06로서, Ca 변성양:6mol%)을 사용하였다. 부성분은 비즈 밀 및 볼밀, 애트리션(Attrition)밀 등에 의해 제조되어진 분쇄품을 이용하였다. 표 1에는 부성분의 몰비가 표 2에는 부성분의 분체특성이 나타나 있다. BaTiO 3 powder and (Ba 1-x Ca x ) TiO 3 powder (x is 0.06, Ca modification amount: 6 mol%) prepared by hydrothermal synthesis were used. As the secondary component, a milled product manufactured by a bead mill, a ball mill, an Attrition mill, or the like was used. Table 1 shows the molar ratios of the subcomponents, and Table 2 shows the powder characteristics of the subcomponents.
상기와 같이 준비된 주성분과 부성분을 표 3과 같은 조건으로 칭량하였다.The main components and subcomponents prepared as described above were weighed under the conditions shown in Table 3.
표 3과 같이 칭량하고, 여기에 유기 솔벤트와 분산제를 첨가하여 비즈밀을 이용하여 슬러리 분산을 하였다. 이렇게 분산된 슬러리에 폴리 비닐 부티랄(Polyvinyl Butyral)을 첨가하여 바인더 분산을 실시 하였다. 이 후 닥터 블레이드 법에 의해 성형 두께 2.5㎛이하로 성형하였다. Weighing was carried out as in Table 3, and an organic solvent and a dispersant were added thereto, and the slurry was dispersed using a bead mill. The binder dispersion was performed by adding polyvinyl butyral to the slurry thus dispersed. Thereafter, molding was performed at a thickness of 2.5 µm or less by the doctor blade method.
이렇게 성형된 시트 위에 2.0㎜×1.2㎜ 패턴으로 내부전극을 인쇄하였다. 이때 내부 전극의 두께는 건조 후 2㎛이하가 되도록 조정하였다. 이렇게 인쇄된 시트를 100층으로 적층하고, 350℃에서 바인더를 연소한 후 산소 분압 10-9~10-12MPa의 H2-N2-H2O 환원 분위기에서 각각의 최적의 온도에서 2시간 유지 하여 칩을 소성 하였다.The internal electrodes were printed on a 2.0 mm x 1.2 mm pattern on the sheet thus formed. At this time, the thickness of the internal electrode was adjusted to be 2㎛ or less after drying. The printed sheets were laminated in 100 layers, and the binder was burned at 350 ° C., followed by 2 hours at an optimum temperature of H 2 -N 2 -H 2 O in a reducing atmosphere of 10 -9 to 10 -12 MPa at an oxygen partial pressure. The chips were fired by holding.
각 최적의 조건의 온도에서 소성된 칩은 1khz 주파수에 AC전계 1Vrms에서 용량 및 손실 그리고 쇼트율을 평가하였다. 온도에 따른 용량변화율은 85℃에서 실시 하였다. 그리고 BDV 평가는 DC 전계를 올리면서 칩이 파단 되는 순간 기준으로 평가하였다. DC-바이어스 평가는 DC 전계 6.3V에 교류 1Vrms, 주파수 1khz의 환경에 용량 변화율을 측정 하였다.The chips fired at each optimum temperature were evaluated for capacity, loss and short rate at 1Vrms of AC field at 1khz frequency. Capacity change rate with temperature was carried out at 85 ℃. BDV was evaluated based on the moment when the chip was broken while raising the DC electric field. DC-bias evaluation measured the capacity change rate in the environment of AC 1Vrms, frequency 1kHz to 6.3V DC electric field.
그 평가 결과는 아래 표 4와 같다.The evaluation results are shown in Table 4 below.
표 4에 나타난 바와 같이, B1, B2의 경우 BT를 100%로 사용한 경우로서 용량이 5uF이상이고, 쇼트율 또한 2~3%이고 BDV도 150V이상이었다. 그러나, 85℃에서 용량 변화 율이 -10~-13%이내이고, DC 6.3V에서 바이어스 특성이 -67% 수준으로 X5R 특성에 만족하지 못하는 결과를 보였다. As shown in Table 4, in the case of B1 and B2, when BT was used at 100%, the capacity was 5uF or more, the short rate was 2-3%, and the BDV was 150V or more. However, at 85 ° C, the capacity change rate was within -10 ~ -13% and the bias characteristic was -67% at DC 6.3V, which did not satisfy the X5R characteristics.
B1, B2에서 부성분의 입도특성에 따른 영향을 보면, 부성분을 더욱 미립으로 사용한 B2의 경우에는 용량 및 전반적인 전기적 특성이 향상되는 결과를 얻을 수 있었다. 이는 미립의 부성분을 사용함으로서 균일한 코어셀 구조를 형성시켜 용량 저하 및 온도 특성을 향상시키고, 균일한 입계를 형성 함으로써, 절연 저항 및 BDV를 향상 시키는 결과를 얻을 수 있었다. 이러한 경향은 부성분의 입경이 작고 비표면적이 보다 큰 경우가 더욱 균일한 코어 셀과 입계를 형성하는 것으로 판단할 수 있었다.As a result of the particle size characteristics of the subcomponents in B1 and B2, in the case of B2 using the subcomponent as a fine particle, the capacity and the overall electrical characteristics were improved. This resulted in the formation of a uniform core cell structure by using particulate subcomponents to improve capacity reduction and temperature characteristics, and to form uniform grain boundaries, thereby improving insulation resistance and BDV. This tendency was judged that the case where the particle size of the subcomponent was small and the specific surface area was larger formed a more uniform core cell and grain boundaries.
또한, B3, B4의 경우 BCT 함유율이 25%인 경우로 B1,B2에 비해 용량과 BDV는 다소 감소하였다. 그러나, 용량의 온도 안정성과 DC-바이어스 특성이 향상되는 결과를 얻었다.In the case of B3 and B4, the BCT content was 25% and the dose and BDV were slightly decreased compared to B1 and B2. However, results have been obtained in which the temperature stability of the capacity and the DC-bias characteristics are improved.
또한, B5, B6의 경우 BCT 함유율이 50%인 경우로 BCT 함유량이 증가됨에 따라 용량과 BDV는 감소하였다. 그러나, 용량의 온도 안정성과 DC-바이어스 특성이 향상되었으며, X5R 규격에 만족하는 것을 볼 수 있었다. In the case of B5 and B6, the BCT content was 50%. As the BCT content increased, the dose and BDV decreased. However, the temperature stability and DC-bias characteristics of the capacity were improved, and it was found that the X5R specification was satisfied.
BCT 함유율이 75%까지는 DC-바이어스 특성이 개선되는 것을 확인할 수 있었으나, BCT함유량이 75%에서 쇼트율은 급격히 증가하는 현상을 보였다. 이는 BT보다 BCT의 함유율이 커짐으로써, 소성시 비정장 입성장이 유발에 의해 일어난 결과로 여겨진다.The DC-bias characteristics were improved until the BCT content was 75%, but the short rate increased rapidly at 75% of the BCT content. This is thought to be a result of the occurrence of spleen growth during firing due to the higher BCT content than BT.
또한, 표 4에 나타난 바와 같이, BT와 BCT의 혼정에 따라 소성온도가 낮아지면서 소성온도의 작업범위가 넓어지는 것을 확인할 수 있었다. In addition, as shown in Table 4, it was confirmed that the working range of the firing temperature is widened as the firing temperature is lowered according to the mixing of BT and BCT.
표 4를 정리하면, BT와 BCT를 적절히 혼정하고 나아가 부성분을 미립화하면 최적의 전기적특성을 얻을 수 있다는 것을 알 수 있었다.Table 4 shows that optimum electrical properties can be obtained by properly mixing BT and BCT and further atomizing minor components.
상술한 바와 같이, 본 발명에서는 유전체재료의 주성분으로 BaTiO3와 (Ba1-xCax)TiO3를 혼정함으로써 높은 유전율과 함께 고온에서의 높은 용량의 온도 안정성과 DC-바이어스 특성이 개선되는 것을 알 수 있었다. 또한, 부성분을 더욱 미립화 시킴으로서 균일한 코어 셀 구조 및 입계를 형성 시킴에 따라 용량 및 전기적 특성이 향상되는 결과를 얻을 수 있었다.As described above, in the present invention, by mixing BaTiO 3 and (Ba 1-x Ca x ) TiO 3 as a main component of the dielectric material, it is possible to improve the high temperature stability and DC-bias characteristics at high temperatures with high dielectric constant. Could know. In addition, by further minimizing the subcomponents, as a result of forming a uniform core cell structure and grain boundaries, capacities and electrical characteristics were improved.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020050033009A KR100638815B1 (en) | 2005-04-21 | 2005-04-21 | Dielectric ceramic composition and multilayer ceramic capacitor using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020050033009A KR100638815B1 (en) | 2005-04-21 | 2005-04-21 | Dielectric ceramic composition and multilayer ceramic capacitor using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20060110603A true KR20060110603A (en) | 2006-10-25 |
KR100638815B1 KR100638815B1 (en) | 2006-10-27 |
Family
ID=37616372
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020050033009A KR100638815B1 (en) | 2005-04-21 | 2005-04-21 | Dielectric ceramic composition and multilayer ceramic capacitor using the same |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100638815B1 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010095860A3 (en) * | 2009-02-18 | 2010-11-25 | 서울대학교 산학협력단 | Sintering precursor powders for manufacturing dielectric substance and method for manufacturing the same |
KR101226157B1 (en) * | 2010-03-11 | 2013-01-24 | 가부시키가이샤 무라타 세이사쿠쇼 | Dielectric ceramic and laminated ceramic capacitor |
KR101380132B1 (en) * | 2010-02-24 | 2014-04-04 | 가부시키가이샤 무라타 세이사쿠쇼 | Dielectric ceramic and laminated ceramic capacitor |
US10892096B2 (en) | 2018-10-10 | 2021-01-12 | Samsung Electro-Mechanics Co., Ltd. | Multilayer ceramic electronic component |
KR20230132261A (en) | 2022-03-08 | 2023-09-15 | 삼성전기주식회사 | Ceramic electronic component |
CN116813355A (en) * | 2023-06-27 | 2023-09-29 | 南充三环电子有限公司 | Ceramic dielectric material and preparation method and application thereof |
US11862399B2 (en) | 2020-12-24 | 2024-01-02 | Samsung Electro-Mechanics Co., Ltd. | Multilayered electronic component and dielectric composition |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103214238B (en) * | 2013-04-03 | 2014-08-06 | 湖北大学 | Preparation method of barium strontium titanate dielectric temperature stable ceramic capacitor material |
-
2005
- 2005-04-21 KR KR1020050033009A patent/KR100638815B1/en not_active IP Right Cessation
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010095860A3 (en) * | 2009-02-18 | 2010-11-25 | 서울대학교 산학협력단 | Sintering precursor powders for manufacturing dielectric substance and method for manufacturing the same |
KR101380132B1 (en) * | 2010-02-24 | 2014-04-04 | 가부시키가이샤 무라타 세이사쿠쇼 | Dielectric ceramic and laminated ceramic capacitor |
KR101226157B1 (en) * | 2010-03-11 | 2013-01-24 | 가부시키가이샤 무라타 세이사쿠쇼 | Dielectric ceramic and laminated ceramic capacitor |
US10892096B2 (en) | 2018-10-10 | 2021-01-12 | Samsung Electro-Mechanics Co., Ltd. | Multilayer ceramic electronic component |
US11784001B2 (en) | 2018-10-10 | 2023-10-10 | Samsung Electro-Mechanics Co., Ltd. | Multilayer ceramic electronic component |
US11862399B2 (en) | 2020-12-24 | 2024-01-02 | Samsung Electro-Mechanics Co., Ltd. | Multilayered electronic component and dielectric composition |
KR20230132261A (en) | 2022-03-08 | 2023-09-15 | 삼성전기주식회사 | Ceramic electronic component |
CN116813355A (en) * | 2023-06-27 | 2023-09-29 | 南充三环电子有限公司 | Ceramic dielectric material and preparation method and application thereof |
CN116813355B (en) * | 2023-06-27 | 2024-04-19 | 南充三环电子有限公司 | Ceramic dielectric material and preparation method and application thereof |
Also Published As
Publication number | Publication date |
---|---|
KR100638815B1 (en) | 2006-10-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7336476B2 (en) | Dielectric ceramic composition for low temperature sintering and multilayer ceramic capacitor using the same | |
KR100638815B1 (en) | Dielectric ceramic composition and multilayer ceramic capacitor using the same | |
US6617273B2 (en) | Non-reducing dielectric ceramic, monolithic ceramic capacitor using the same, and method for making non-reducing dielectric ceramic | |
US8492301B2 (en) | Dielectric ceramic composition and ceramic electronic component | |
US20120075768A1 (en) | Dielectric ceramic composition and manufacturing method thereof, and ceramic electronic device | |
KR20050100427A (en) | Non-reducible dielectric ceramic composition, multilayered ceramic capacitor using the composition | |
KR20170081986A (en) | Dielectric composition and multilayer ceramic capacitor comprising the same | |
US6734127B2 (en) | Ceramic materials for capacitors with a high dielectric constant and a low capacitance change with temperature | |
JP7037945B2 (en) | Ceramic capacitors and their manufacturing methods | |
KR20190116141A (en) | Dielectric ceramic composition and multilayer ceramic capacitor comprising the same | |
KR20190116112A (en) | Dielectric ceramic composition and multilayer ceramic capacitor comprising the same | |
US8395882B2 (en) | Dielectric ceramic and multilayer ceramic capacitor | |
US8492302B2 (en) | Dielectric ceramic composition and ceramic electronic component | |
JP7262640B2 (en) | ceramic capacitor | |
KR100703080B1 (en) | Method for Manufacturing Dielectric Powder for Low Temperature Sintering and Method for Manufacturing Multilayer Ceramic Condenser Using the Same | |
KR20160095383A (en) | Dielectric composition and multilayer ceramic capacitor comprising the same | |
KR20190116110A (en) | Dielectric ceramic composition and multilayer ceramic capacitor comprising the same | |
KR100533638B1 (en) | Non-reducible dielectric composition, multilayer ceramic chip capacitor using the composition and method for manufacturing the same | |
KR101588977B1 (en) | Dielectric ceramic composition and multilayer ceramic capacitor comprising the same | |
KR102202462B1 (en) | Dielectric composition and multilayer ceramic capacitor comprising the same | |
KR100444226B1 (en) | A Dielectric Composition Having Low Dielectric Constant And A Multi Layered Ceramic Capacitor Prepared By Using The Same | |
KR100533639B1 (en) | Non-reducible dielectric composition and method for manufacturing the same | |
KR20240109080A (en) | Dielectric ceramic composition for multi layer ceramic capacitor | |
KR100501184B1 (en) | Dielectric Ceramic Composition Having High Breakdown Voltage Properties and Multilayer Ceramic Chip Capacitor Using The Same | |
KR20240078013A (en) | Ceramic compostion having high temperature stability and ceramic capacitor including the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20121002 Year of fee payment: 7 |
|
FPAY | Annual fee payment |
Payment date: 20130916 Year of fee payment: 8 |
|
LAPS | Lapse due to unpaid annual fee |