KR20060106827A - 스터링 엔진 - Google Patents
스터링 엔진 Download PDFInfo
- Publication number
- KR20060106827A KR20060106827A KR1020067008281A KR20067008281A KR20060106827A KR 20060106827 A KR20060106827 A KR 20060106827A KR 1020067008281 A KR1020067008281 A KR 1020067008281A KR 20067008281 A KR20067008281 A KR 20067008281A KR 20060106827 A KR20060106827 A KR 20060106827A
- Authority
- KR
- South Korea
- Prior art keywords
- stirling engine
- heat
- high temperature
- thermal conductivity
- low
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02G—HOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
- F02G1/00—Hot gas positive-displacement engine plants
- F02G1/04—Hot gas positive-displacement engine plants of closed-cycle type
- F02G1/043—Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
- F02G1/053—Component parts or details
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02G—HOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
- F02G1/00—Hot gas positive-displacement engine plants
- F02G1/04—Hot gas positive-displacement engine plants of closed-cycle type
- F02G1/043—Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02G—HOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
- F02G2280/00—Output delivery
- F02G2280/10—Linear generators
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Pistons, Piston Rings, And Cylinders (AREA)
- Cylinder Crankcases Of Internal Combustion Engines (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
- Ceramic Products (AREA)
Abstract
고온부의 가열온도를 높게 할 수 있고, 또한 고온부와 저온부를 연결하는 부재에서의 열손실을 억제함으로써, 열효율이 우수한 고효율 스터링 엔진을 얻는다. 고온부(5)와 상기 고온부와 상기 저온부를 연결하는 부재(재생기 하우징(16))를 각각 다른 재질로 분할구성으로 해서, 고온부(5)를 내열성이 높고 또한 열전도율이 높은 내열·고열전도성 재료로 형성하고, 또한 고온부(5)와 저온부(7)를 연결하는 재생기 하우징(16)을 열전도율이 낮은 내열·저열전도성 재료로 형성하고, 양자를 일체적으로 접합해서 일체의 밀봉구조로 한다.
Description
본 발명은 스터링 엔진, 특히 고효율화를 꾀한 스터링 엔진에 관한 것이다.
스터링 엔진의 이론 열효율은, 고온부와 저온부의 온도에 의해서만 정해지며, 고온부의 온도를 높게, 저온부의 온도를 낮게 하면 할 수록 열효율이 높다. 그리고, 스터링 엔진은 클로즈 사이클이며, 동작가스를 외부에서 가열·냉각을 행하므로, 동작가스의 가열 및 냉각은 고온부 및 저온부의 벽면을 통해 행할 필요가 있고, 고온부 및 저온부에서의 열교환율을 높이기 위해서는 열전도율이 높은 재료가 필요하다. 동작가스로서는, 통상 헬륨 가스나 수소 가스가 사용되고 있으며 고압에서 순환하고 있기 때문에, 동작가스의 유로는 내열성과 함께 내압성·내산화·내식성, 고크리프강도, 고열피로강도를 갖는 것이 요구된다. 그 때문에 종래, 실린더 및 고온측 열교환기를 구성하는 히터관으로서, 내식성·내열성이 우수한 HR30(일본공업규격), SUS310S(일본공업규격), 인코넬(등록상표), 하스테로이(등록상표) 등의 내열합금강을 사용하고 있지만 매우 고가라는 문제점이 있다. 또한, 그 경우에서도, 고온부를 구성하는 부재 및 고온부로부터의 수열(受熱)에 의해 고온으로 되는 부재는 금속재료에 의해 가열온도에 제한을 받게 된다. 예를 들면 동작가스의 압력이 3MPa에나 이르는 고압조건하에서는, 앞서 서술한 금속재료의 크리프의 발생 에 의해, 내구성의 관점에서 가열온도는 700℃정도까지의 온도가 한계라고 생각되어지고 있으며, 그 이상의 가열온도의 고온화에 의한 고효율화를 곤란하게 하고 있다.
또한, 종래의 스터링 엔진에서는 고온부를, 전열면적을 얻기 위해서 동작가스가 통과하는 다수의 내열합금관을 팽창공간 헤드부에 납땜이나 용접에 의해 접합해서 돌출시켜서 형성할 필요가 있고, 시일 불량에 의한 누설이 발생하기 쉽고, 다수의 내열합금관을 필요로 하므로, 구조체로서, 복잡하게 되고, 비용이 높게 된다.
한편, 스터링 엔진에 있어서 고온부와 저온부를 연결시키는 부재는, 고온부 끝이 고온이며 저온부 끝이 저온을 유지하여, 온도차가 큰 상태를 유지하는 것이 요구되며, 고온부의 고온과 저온부의 저온이 인접하게 되므로, 단열성이 높고 열전도율이 낮은 부재로 구성하는 것이 바람직하다. 그러나, 종래의 스터링 엔진에서는, 고온부와 저온부를 연결하는 부재는 내열성·열전도성이 우수한 고니켈강이나 스테인레스 재료로 이루어지는 고온부와 일체부재로 구성되어 있으므로, 고온부와 저온부를 연결하는 부재벽을 통한 열전도에 의해, 큰 열손실이 발생한다는 문제점이 있다.
이렇게, 고온부를 구성하는 재질은 내열성이 우수하고, 한편에서는 높은 열전도성을 갖고, 다른 한편에서는 고효율의 관점에서 고온부와 저온부를 연결시키는 부재는 낮은 열전도성을 갖는다는, 상반되는 특성이 요구되지만, 종래의 스터링 엔진 구조에서는, 이 상반되는 요구를 동시에 만족시키는 것은 불가능하므로, 어느 하나를 희생시키지 않으면 안되었다.
그러한 기술적 배경을 기초로, 스터링 엔진의 열효율을 보다 상승시키는 수단으로서, 예를 들면 연소기의 연소가스와 동작가스의 열교환을 행하는 복수개의 U자상의 히터관 중, 서로 인접하는 관의 U자 굽힘관의 중심위치에 단차를 줌으로써 열응력이나 외력을 받아도 서로 간섭하지 않도록 해서, 각 U자상 관 상호의 균등폭의 간극을 상시 확보하여, 고온의 연소가스와의 접촉을 균등하게 행할 수 있도록 하고, 고온부에서의 열교환효율을 높이도록 한 것(특허문헌1 참조), 또는 압축공간과 팽창공간을 복수의 연결관으로 연결해서, 각 연결관내에 저온부, 재생부, 고온부를 순서대로 배치하고, 고온부의 온도분포에 맞춰서 재생부 및 저온부의 데이터를 자유롭게 바꿈으로써, 엔진 출력의 향상을 꾀한 것(특허문헌2 참조) 등이 제안되어 있다. 또한, 다른 방법으로서, 고온부, 재생기, 저온부를 2중 셸로 둘러싸고, 2중 셸내에 액체염과 같은 비압축성의 단열재료를 충전함으로써, 작동 온도와 압력을 높이고, 재생기의 효율을 향상시킴과 아울러, 동작유체의 흐름에 대해서 직교하는 방향으로 열전달이 증가되도록 하는 것이 제안되어 있다(특허문헌3 참조).
특허문헌1:일본 특허공개 평5-172003호 공보
특허문헌2:일본 특허공개 평6-280678호 공보
특허문헌3:일본 특허공표 2001-505638호 공보
스터링 엔진의 열효율 높이기 위해서 종래 제안되어 있는 상기 방법은 모두 열효율의 향상에는 기여하는 것이지만, 그다지 만족스러운 것은 아니다.
그래서, 본 발명은, 종래와 비교해서 대폭적인 열효율의 향상과 열전도 손실의 저감에 의해, 고효율 스터링 엔진을 얻고자 하는 것이며, 보다 구체적으로는 고온부의 가열온도를 종래보다 높게 하는 것을 가능하게 하고, 또한 고온부와 저온부를 연결하는 부재에서의 큰 열손실을 억제하는 것을 가능하게 함으로써, 고효율화를 달성할 수 있는 스터링 엔진을 제공하는 것을 목적으로 한다.
상기 문제점을 해결하는 본 발명의 스터링 엔진은 고온부와, 상기 고온부와 저온부를 연결하는 부분을 다른 재질로 형성해서 일체적으로 접합해서 이루어지며, 상기 고온부를 내열성이 높고 또한 열전도율이 높은 내열·고열전도성 재료로 일체구조로 형성한 것을 특징으로 하는 것이다. 상기 고온부는, 팽창공간 헤드부와 고온측 열교환기 본체를 동일재질로 일체적으로 성형해서 형성한 것을 특징으로 하는 것이다.
상기 내열·고열전도성 재료로서는, 탄화규소계 세라믹스, 질화규소계 세라믹스, 질화알루미늄계 세라믹스 또는 알루미나계로부터 선택되는 세라믹스, 또는 이들 세라믹스와 금속의 경사기능재료를 바람직하게 채용할 수 있다. 또한 상기 고온부와 저온부를 연결하는 부분을 열전도율이 낮은 내열·저열전도성 재료로 형성하는 것이 바람직하다. 상기 내열·저열전도성 재료로서는, 산화규소계, 코디어라이트계, 마이카계, 티탄산 알루미늄계 또는 석영계로부터 선택되는 세라믹스, 또는 이들 세라믹스와 금속의 경사기능재료를 바람직하게 채용할 수 있다.
상기 스터링 엔진은, 그 형식이 한정되는 것은 아니고, 디스플레이서 피스톤과 파워 피스톤이 동일한 실린더에 배치되어 있는 β형 스터링 엔진, 디스플레이서 피스톤과 파워 피스톤이 독립된 다른 실린더에 배치되어 있는 γ형 스터링 엔진, 또는 팽창 실린더에 배치된 팽창 피스톤과, 압축 실린더에 배치된 압축 피스톤의 2개의 독립된 피스톤을 갖는 α형 스터링 엔진 어느 것에나 적용 가능하다.
본 발명의 청구항1에 의하면, 고온부와 저온부를 연결하는 부재를 분할구성으로 해서, 고온부를 내열성이 높고 또한 열전도율이 높은 내열·고열전도성 재료로 형성했으므로, 고온부의 온도를 종래보다 높게 설정할 수 있어 효율을 높일 수 있었다. 그리고, 청구항2의 발명에 의하면, 상기 고온부를, 팽창공간 헤드부와 고온측 열교환기 본체가 동일재질인 내열·고열전도성 재료로 일체로 성형되어서 형성되어 있으므로, 고온측 열교환기 본체를 두껍게 일체적으로 형성할 수 있어, 종래의 전열관만을 돌출형성한 고온측 열교환기에 비해서 내압구조를 갖고, 고온부에서의 가열온도의 보다 고온화를 가능하게 함과 아울러, 내구성을 향상시킬 수 있다. 또한, 청구항4의 발명에 의하면, 상기 연결시키는 부분을 열전도율이 낮은 내열·저열전도성 재료로 형성했으므로, 연결시키는 부분에서의 열전도에 의한 열손실을 종래와 비교해서 대폭 저감시킬 수 있고, 그 결과 고효율 스터링 엔진을 얻을 수 있다. 그리고, 고온부를 내열·고열전도성의 세라믹스 재료로, 및 이음부를 내열·저열전도성의 세라믹스 재료로 형성함으로써, 동작가스에 대한 내열성과 함께 내압성·내산화·내식성, 고크리프 강도, 고열피로강도를 높일 수 있고, 고온부에서의 가열온도의 보다 고온화를 가능하게 함과 아울러, 내구성을 향상시킬 수 있다.
도 1은 본 발명의 실시형태에 따른 스터링 엔진의 정면 단면도이다.
도 2는 본 발명의 다른 실시형태에 따른 스터링 엔진의 모식도이며, (a)는 α형, (b)은 γ형의 스터링 엔진을 각각 나타내고 있다.
도 3은 스터링 엔진에 있어서의 팽창공간 온도와 이론 열효율의 관계를 나타내는 선도이다.
(부호의 설명)
1,35,50:스터링 엔진
2,51:디스플레이서 피스톤
3,52:파워 피스톤
4,53,58:실린더
5,40,55:고온부
7,43,57:저온부
6:재생기
10:영구자석
11:이너 요크
12:팽창공간 헤드부
13:팽창공간
14:고온측 열교환기 본체
15,44,60:동작가스유로
16,41,56:재생기 하우징
20:실린더 본체
21:내통
22:외통
27,28,29,30:부착 플랜지
31,32:클램프
36:팽창 피스톤
38:압축 피스톤
59:압축공간
이하, 본 발명을 도면을 기초로 상세하게 설명한다. 도 1은, 본 발명을 β형의 프리 피스톤형 스터링 엔진에 적용한 본 발명의 실시형태를 나타내고 있다.
도면 중, 2는 디스플레이서 피스톤, 3은 파워 피스톤, 4는 실린더, 5는 고온부인 고온측 열교환기, 6은 재생기, 7은 저온부이다. 그리고, 본 실시형태에서는 파워 피스톤(3)의 출력에 의해 발전하고 있는 경우를 나타내며, 파워 피스톤(3)의 하단에 고정된 끝판(8)의 끝부에, 영구자석(10)이 선단부에 고정된 환상 링(9)을 직립시키고, 영구자석(10)과 실린더(4)의 외주부에 설치된 이너 요크(11)내에 삽입 고정된 코일(도시생략) 사이에 발전기를 구성하고, 파워 피스톤(3)이 왕복운동함으로써 영구자석(10)이 상하 진동해서 발전하도록 되어 있다. 그러나, 파워 피스톤(3)의 출력형식은, 이것에 한정되는 것은 아니고, 파워 피스톤(3)의 상하운동을 회전운동이나 직동 왕복운동으로 해서 출력하는 등 여러가지 용도에 적용할 수 있는 것이며, 특별히 한정되지 않는다.
본 실시형태에서는, 상기 구성의 β형의 스터링 엔진(1)에 있어서, 디스플레이서 피스톤(2)이 슬라이딩하는 실린더(4)를, 상부로부터 순서대로 고온부(5), 재생기(6), 저온부(7)에 대응하는 부분으로 분할해서 다른 재질로 구성하고 있다. 고온부(5)는 실린더(4)의 팽창공간 헤드부(12)와 고온측 열교환기 본체(14)를 구성하고, 열전도율이 높고 또한 내열성이 우수한 세라믹스 재료로 일체로 성형해서 형성되어 있다. 고온측 열교환기 본체(14)의 내부에는, 재생기(6)와 팽창공간(13)을 이동하는 동작가스를 가열시키기 위해서 동작가스유로(15)가 형성되고, 고온측 열교환기 본체(14)를 외부에서 가열함으로써, 동작가스유로를 통과하는 동작가스를 가열하도록 되어 있다. 본 실시형태에서는 도 1에 나타내듯이, 동작가스 유로(15)에 후술하는 재생기(6)와 팽창공간(13)을 연결하는 가열 파이프(19)를 끼워합쳐서, 고온측 열교환기를 구성하고 있지만, 내열·고열전도성 세라믹스로 일체로 성형된 고온측 열교환기 본체내에 형성된 동작가스 유로(15)내를 직접 동작가스가 이동하도록 해도 좋다.
본 실시형태에서는 고온측 열교환기 본체(14)를 열전도율이 높고 또한 내열성이 우수한 재료로 형성하고 있으므로, 고온측 열교환기 본체(14)내의 동작가스 유로(15)를 통과하는 동작가스를 1000℃이상으로 가열하는 것이 가능하다. 그리고, 본 실시형태에 의하면, 후술하는 바와 같이 고온측 열교환기 본체를 열전도율이 높고 또한 내열성이 우수한 세라믹스 또는 경사기능재이며, 그 내부에 다수의 동작가스 유로를 설치해서 일체로 성형한 일체구조로 되어 있으므로, 종래와 같이, 연소실내에 동작유체가 유통하는 다수의 가열 튜브를 U자상으로 외부돌출시킬 필요가 없어, 고온측 열교환기(히터)의 구성을 단순화시킬 수 있음과 아울러, 고온측 열교환기 본체를 두껍게 형성해도 동작유체를 효율좋게 가열할 수 있으므로, 고온측 열교환기 본체를 두껍게 형성해서 내압성을 향상시킬 수 있다.
열전도율이 높고 또한 내열성이 우수한 재료로서는, 내열온도가 750℃이상이며, 열전도율이 20W/mK이상인 것이 바람직하고, 탄화규소계(SiC), 질화규소계(Si3N4), 질화알루미늄(ALN)계, 알루미나계(Al2O3) 등의 세라믹스나, 이들 세라믹스와 금속의 경사기능재를 바람직하게 채용할 수 있다. SiC계 세라믹스는 내열성, 내마모성, 내식성에 있어서 우수한 특성을 갖고, 1000℃이상의 고온하에서도 강도의 저하는 거의 보여지지 않는다. 또, SiC계 세라믹스의 모재 중에 SiC계 세라믹스 섬유가 매입된 복합재로 함으로써, 보다 높은 강도와 인성을 아울러 갖는 재료가 얻어진다. 그리고, SiC계 세라믹스, ALN계 세라믹스는, 모두 열전도율이 100W/mK이상이며 열전도성이 우수하고 또한 내열성이 우수하므로, 고온측 열교환기 본체(히터)를 형성하는 데에 적합하다. 질화규소계 세라믹스는 공유결합성이 높은 물질이며 기계적, 열적 성질이 우수하다. 특히, 강도, 인성, 내마모성이 우수하고, 팽창계수가 낮고 열전도성(열전도율이 약 20∼30W/mK)이 높고, 대충격성도 매우 양호하며, 1000℃이상의 고온에서 충분히 사용 가능하다. 또한, 알루미나계 세라믹스는 내마모성, 절연성이 우수하고, 또한 열전도율이 약 30W/mK로 높고, 또한 비교적 저렴하다는 이점이 있다.
재생기(6)는 통형상의 재생기 하우징(16)에 그 환상 벽내에 소정 간격마다 철망(17)이 끼워맞춰져서 동작유체가 통과하는 구멍(18)을, 고온측 열교환기(14)의 동작가스 유로(15)와 연통하도록 형성되어 있다. 또, 본 실시형태에서는 재생기를 통형상의 재생기 하우징(16)에 축심과 평행하게 소정 피치로 복수의 구멍(18)을 형성해서 구성했지만, 재생기 하우징을 실린더의 내벽면이 되는 내통과 외통으로 분할하고, 내통과 외통 사이의 환형 구멍에 철망을 끼워맞춰서 형성하는 것도 가능하다. 재생기 하우징(16)은 내열·저열전도 재료로 형성되고, 내열·저열전도 재료로서는, 내열온도가 750℃이상이며, 열전도율이 10W/mK이하의 재료인 것이 바람직하고, 예를 들면 산화 규소계(열전도율 약 1W/mK), 코디어라이트계(열전도율 약 1W/mK), 마이카계(열전도율 약 2W/mK) 또는 석영유리계(열전도율 약 1w/mK) 등의 저열전도 세라믹스를 바람직하게 사용할 수 있다. 이들 세라믹스 재료는 스테인레스와 비교해서 강도는 약 1/5정도이므로, 두께를 5배로 할 필요가 있지만, 열전도율이 약 1/16이므로, 전체적으로 열전도에 의한 열손실을 1/3로 저감시킬 수 있다.
또한 재생기 하우징(16)의 재료로서는, 상기의 세라믹스 단독의 경우에 한정되지 않고, 내벽측이 마이카, 코디어라이트, 지르코니아, 석영유리, 티탄산 알루미늄 등의 열전도율이 낮은 세라믹스층, 외벽측에 저렴하며 또한 강도가 강한 철재층을 적층해서 이루어지는 복합재 또는 외벽측이 되는 철재에 상기 열전도율이 낮은 세라믹스를 용사해서 이루어지는 복합재, 또한, 상기 복합재의 외측이 되는 철재의 표면에 또한 마이카, 코디어라이트, 지르코니아, 석영유리, 티탄산 알루미늄 등을 용사해서 외벽면에 열전도율이 낮은 층을 형성한 복합재 등을 채용함으로써, 보다 저렴하게 또한 얇게 형성할 수 있다. 또한, 내측면이 열전도율이 낮은 세라믹스층 이며 외측이 철재로 되도록 두께방향으로 분자 레벨에 의해 성분이 변화된 경사기능재를 사용할 수도 있다.
본 실시형태에서는 저온부로부터 하방의 파워 피스톤(3)이 슬라이딩하는 부분까지를 일체로 실린더 본체(20)로서 형성하고, 그 상방 외주부에 저온부(쿨러)(7)를 구성하는 내통(21)과 외통(22)을 설치하고, 내통(21)과 외통(22) 사이에 동작가스가 통과하는 복수개의 냉각 파이프(23)를 배치해서, 상기 냉각 파이프와 열교환하는 냉각유체를 공급구(24), 배출구(25)를 통해 순환시켜서, 쿨러를 형성하고 있다. 작동유체가 통과하는 냉각 파이프(23)는 종래와 마찬가지로 스테인레스 금속재 또는 열전도성이 우수한 세라믹스재 등 열전도성이 우수하며 기계적 성질이 우수한 것이면, 특별히 그 재질은 한정되지 않는다. 냉각 파이프(23)의 하단은, 실린더 본체(20)내의 디스플레이서 피스톤(2)의 하방위치에 매니폴드(26)를 통해 연통되어 있다.
이상과 같이, 본 실시형태에서는 디스플레이서 피스톤(2), 파워 피스톤(3)이 슬라이딩하는 실린더(4)를, 실린더 본체20, 재생기 하우징(16), 고온측 열교환기 본체(14)로 3분할해서 구성하고 있으므로, 그 이음매의 시일구조는 유통하는 고압 동작가스가 누설되지 않기 위해서 중요하다. 다음에 그 시일구조에 대해서 설명한다.
본 실시형태에서는 고온측 열교환기 본체(히터헤드)(14)에 부착 플랜지(27)를 형성함과 아울러, 재생기 하우징(16)의 상단에 부착 플랜지(28)를 대향해서 형성하고, 양자를 클램프(31)로 고정하고, 또한 재생기 하우징(16)의 하단에도 부착 플랜지(29)를 형성하고, 저온부(7)의 외통(22) 상단에 형성한 부착 플랜지(30)와 함께 저온부(7)의 내통(21)의 상단에 형성한 부착 플랜지(30) 사이를 클램프(32)로 고정하여 3개를 긴밀하게 일체화하고 있다. 그 때, 고온측의 부착 플랜지(27)로부터 냉각측의 부착 플랜지(28)로 열이 빠져나가 버릴 우려가 있지만, 양자의 결합면에 내열성·단열성·내식성이 우수한 세라믹스 섬유 등의 시일재를 개재시킴으로써, 재생기 하우징에의 전열을 적게 함과 아울러, 접합면의 밀봉성을 높이고 있다. 시일재로서는, 상기와 같이 세라믹스 섬유 등으로 형성한 패킹 등을 채용할 수 있지만, 고내열성을 갖는 퍼티(putty)상의 부정형 시일제나 무기접착제도 채용 가능하다.
이상과 같이, 본 실시형태의 스터링 엔진에서는, 고온측에 탄화규소 세라믹스(SiC), 질화규소 세라믹스(Si3N4), 알루미나(Al2O3) 등의 세라믹스나, 이들 세라믹스와 금속의 복합재나 경사기능재를 사용함으로써, 팽창공간 온도(Te)를 1000℃로 해도 충분히 강도적으로 가능하므로, 도 3에 나타내듯이, 저온측의 온도를 60℃로 한 경우, 이론 열효율은 73.8%로 향상가능하다. 따라서, 종래의 스테인레스 금속재를 사용한 경우의 팽창공간 온도 700℃의 경우에는, 이론 열효율은 65.8%이므로, 종래와 비교해서 대폭 열효율을 향상시킬 수 있다.
이상의 실시형태는, 본 발명을 디스플레이서 피스톤과 파워 피스톤이 동일한 실린더에 배치되어 있는 β형의 스터링 엔진에 적용한 경우에 대해서 설명했지만, 본 발명의 스터링 엔진은 β형에 한정되지 않고, α형 또는 γ형의 스터링 엔진에 도 적용할 수 있다. 도 2(a)는, α형의 스터링 엔진에 적용한 경우, 도 2(b)는 γ형의 스터링 엔진에 적용한 경우의 실시형태의 개략을 나타내고 있다.
도 2(a)의 본 실시형태는 α형 스터링 엔진(35)을 나타낸다. 상기 α형 스터링 엔진(35)에 있어서, 36이 팽창 실린더(37)내에 배치된 팽창 피스톤(파워 피스톤), 38이 압축 실린더(39)내에 배치된 압축 피스톤이며, 팽창 실린더(37)가 고온부(40), 재생기 하우징(41) 및 팽창 실린더 본체(42)를 각각 다른 부재로 형성해서 일체적으로 구성되어 있다. 고온부(40) 및 재생기 하우징(41)의 구성은 상기 실시형태와 같은 구성이며, 또한 각각 재질도 상기 실시형태와 같은 재질을 채용해서 구성되어 있으므로, 상세한 설명은 생략한다. 압축 실린더(39)는 압축 피스톤 헤드부와 압축 실린더 본체(45)를 다른 부재로 형성해서 일체적으로 구성하고 있으며, 압축 피스톤 헤드부가 저온부(43)로 되어 있으며, 상기 저온부에 팽창 실린더(37)의 재생기 하우징(41)의 하부로부터 동작가스유로(44)가 형성되어 냉각측 열교환기를 구성하고 있다.
도 2(b)는, 본 실시형태의 γ형의 스터링 엔진(50)을 나타내고 있다. 상기 γ형의 스터링 엔진(50)에 있어서, 디스플레이서 피스톤(51)과 파워 피스톤(52)이 다른 실린더에 배치되어 있다. 디스플레이서 피스톤(51)이 배치되어 있는 실린더(53)는 도 1에 나타내는 실시형태와 마찬가지로, 고온부(55), 재생기 하우징(56) 및 저온부(57)로 구성되고, 각각을 다른 재료로 형성해서 일체적으로 접합하고 있다. 즉 고온부(55)는 팽창공간 헤드부와 고온측 열교환기 본체가 내열·고열전도성 재료로 일체로 형성되고, 재생기 하우징(56)은 내열·저열전도성 재료로 형성되고, 저온부(57)는 저온측 열교환기를 구성하며 고열전도성 재료로 형성되어 있다. 그리고, 저온부의 일단이 파워 피스톤(52)이 배치되어 있는 실린더(58)의 동작가스유로(60)를 통해 압축공간과 연통되어 있다.
본 발명의 스터링 엔진은, 그 출력형태에 따라 대형·소형을 막론하고 여러가지 분야에서 이용 가능하며, 예를 들면 리니어형 발전기, 압축기, 그 밖의 회전기관이나 직동기관으로서 이용할 수 있고, 또 우주에서의 태양에너지를 이용한 태양전지보다 효율이 좋은 고효율의 발전기로서 이용가능하다.
Claims (8)
- 스터링 엔진에 있어서, 고온부와, 상기 고온부와 저온부를 연결하는 부분을 다른 재질로 형성해서 일체적으로 접합해서 이루어지며, 상기 고온부를 내열성이 높고 또한 열전도율이 높은 내열·고열전도성 재료로 일체구조로 형성한 것을 특징으로 하는 스터링 엔진.
- 제1항에 있어서, 상기 고온부의 일체구조는 팽창공간 헤드부와 고온측 열교환기 본체가 동일재질로 일체로 성형되어서 이루어지는 것을 특징으로 하는 스터링 엔진.
- 제1항 또는 제2항에 있어서, 상기 내열·고열전도성 재료는 탄화규소계 세라믹스, 질화규소계 세라믹스, 질화알루미늄계 세라믹스 또는 알루미나계로부터 선택되는 세라믹스, 또는 이들 세라믹스와 금속의 경사기능재료인 것을 특징으로 하는 스터링 엔진.
- 제1항 내지 제3항 중 어느 한 항에 있어서, 상기 고온부와 저온부를 연결하는 부분이 열전도율이 낮은 내열·저열전도성 재료로 형성되어 있는 것을 특징으로 하는 스터링 엔진.
- 제4항에 있어서, 상기 내열·저열전도성 재료가, 산화규소계, 코디어라이트계, 마이카계, 티탄산 알루미늄계 또는 석영계에서 선택되는 세라믹스, 또는 이들 세라믹스와 금속의 경사기능재료인 것을 특징으로 하는 스터링 엔진.
- 제1항 내지 제5항 중 어느 한 항에 있어서, 상기 스터링 엔진은 디스플레이서 피스톤과 파워 피스톤이 동일한 실린더에 배치되어 있는 β형 스터링 엔진인 것을 특징으로 하는 스터링 엔진.
- 제1항 또는 제2항에 있어서, 상기 스터링 엔진은 디스플레이서 피스톤과 파워 피스톤이 독립된 다른 실린더에 배치되어 있는 γ형 스터링 엔진인 것을 특징으로 하는 스터링 엔진.
- 제1항 또는 제2항에 있어서, 상기 스터링 엔진은 팽창 실린더에 배치된 팽창 피스톤과, 압축 실린더에 배치된 압축 피스톤의 2개의 독립된 피스톤을 갖는 α형 스터링 엔진인 것을 특징으로 하는 스터링 엔진.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003371147A JP3796498B2 (ja) | 2003-10-30 | 2003-10-30 | スターリングエンジン |
JPJP-P-2003-00371147 | 2003-10-30 | ||
PCT/JP2004/016135 WO2005042958A1 (ja) | 2003-10-30 | 2004-10-29 | スターリングエンジン |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20060106827A true KR20060106827A (ko) | 2006-10-12 |
KR101107136B1 KR101107136B1 (ko) | 2012-01-31 |
Family
ID=34543932
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020067008281A KR101107136B1 (ko) | 2003-10-30 | 2004-10-29 | 스터링 엔진 |
Country Status (7)
Country | Link |
---|---|
US (1) | US7640740B2 (ko) |
EP (1) | EP1683955B1 (ko) |
JP (1) | JP3796498B2 (ko) |
KR (1) | KR101107136B1 (ko) |
CN (1) | CN100434685C (ko) |
CA (1) | CA2543690C (ko) |
WO (1) | WO2005042958A1 (ko) |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4858424B2 (ja) * | 2007-11-29 | 2012-01-18 | トヨタ自動車株式会社 | ピストン機関及びスターリングエンジン |
JP5076238B2 (ja) * | 2008-01-18 | 2012-11-21 | 株式会社eスター | スターリングエンジン |
CN101560928B (zh) * | 2008-04-19 | 2013-09-11 | 黄元卓 | 有内加热器的热气机 |
CN101349215B (zh) * | 2008-08-28 | 2013-12-18 | 白坤生 | 双作用式斯特林发动机 |
JP5418885B2 (ja) * | 2009-03-30 | 2014-02-19 | 日本精線株式会社 | 高温用ステンレス鋼繊維焼結成形体、及び該成形体によるスターリング機関の熱再生器 |
GB201016522D0 (en) * | 2010-10-01 | 2010-11-17 | Osborne Graham W | Improvements in and relating to reciprocating piston machines |
JP2014501868A (ja) * | 2010-11-18 | 2014-01-23 | エタリム インコーポレイテッド | スターリングサイクル変換器装置 |
BR102012015554A8 (pt) * | 2012-06-25 | 2017-09-19 | Associacao Paranaense Cultura Apc | Máquina térmica que opera em conformidade com o ciclo termodinâmico de carnot e processo de controle |
JP5972695B2 (ja) * | 2012-07-19 | 2016-08-17 | 本田技研工業株式会社 | スターリングエンジン |
EP2740922B1 (de) * | 2012-12-06 | 2019-02-13 | Technische Universität Hamburg-Harburg | Zylinder-Kolben-Baugruppe betrieben mit einem abgeschlossenen Arbeitsgas |
BR102013026634A2 (pt) | 2013-10-16 | 2015-08-25 | Abx En Ltda | Máquina térmica diferencial com ciclo de oito transformações termodinâmicas e processo de controle |
US11106567B2 (en) | 2019-01-24 | 2021-08-31 | International Business Machines Corporation | Combinatoric set completion through unique test case generation |
US11010285B2 (en) | 2019-01-24 | 2021-05-18 | International Business Machines Corporation | Fault detection and localization to generate failing test cases using combinatorial test design techniques |
US10970195B2 (en) | 2019-06-13 | 2021-04-06 | International Business Machines Corporation | Reduction of test infrastructure |
US10970197B2 (en) | 2019-06-13 | 2021-04-06 | International Business Machines Corporation | Breakpoint value-based version control |
US10990510B2 (en) | 2019-06-13 | 2021-04-27 | International Business Machines Corporation | Associating attribute seeds of regression test cases with breakpoint value-based fingerprints |
US10963366B2 (en) | 2019-06-13 | 2021-03-30 | International Business Machines Corporation | Regression test fingerprints based on breakpoint values |
NL2024829B1 (en) * | 2020-02-04 | 2021-09-13 | Jacobus Maria Schilder Johannes | Energy transfer apparatus and associated methods |
BR112022013518A2 (pt) * | 2020-02-04 | 2022-09-13 | Jacobus Maria Schilder Johannes | Aparelho de transferência de energia e métodos associados |
NL2024827B1 (en) * | 2020-02-04 | 2021-09-13 | Jacobus Maria Schilder Johannes | Energy transfer apparatus and associated methods |
FR3120916B1 (fr) | 2021-03-17 | 2023-03-17 | Berthelemy Pierre Yves | Cartouche pour machine thermique à cycle thermodynamique et module pour machine thermique associé |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL7209298A (ko) * | 1972-07-01 | 1974-01-03 | ||
NL7212380A (ko) * | 1972-09-13 | 1974-03-15 | ||
US4392350A (en) * | 1981-03-23 | 1983-07-12 | Mechanical Technology Incorporation | Stirling engine power control and motion conversion mechanism |
US4422291A (en) * | 1981-10-05 | 1983-12-27 | Mechanical Technology Incorporated | Hot gas engine heater head |
JPS59203854A (ja) * | 1983-05-06 | 1984-11-19 | Asahi Glass Co Ltd | スタ−リングエンジンの加熱器 |
US4901787A (en) | 1988-08-04 | 1990-02-20 | Balanced Engines, Inc. | Regenerative heat exchanger and system |
US5050570A (en) * | 1989-04-05 | 1991-09-24 | Thring Robert H | Open cycle, internal combustion Stirling engine |
CN1051241A (zh) * | 1989-04-20 | 1991-05-08 | 空间公共有限公司 | 致冷装置 |
KR920007589Y1 (ko) * | 1990-08-24 | 1992-10-16 | 주식회사 금성사 | 스터링 엔진의 디스플레이서 로드씰 |
JPH05172003A (ja) | 1991-12-18 | 1993-07-09 | Mitsubishi Electric Corp | スターリングエンジンの高温熱交換器 |
JPH06280678A (ja) | 1993-03-29 | 1994-10-04 | Aisin Seiki Co Ltd | スターリングエンジン |
KR960034912A (ko) * | 1995-03-27 | 1996-10-24 | 구자홍 | 스터링 엔진을 이용한 이동식 온수기 |
US6093504A (en) | 1996-12-03 | 2000-07-25 | Bliesner; Wayne Thomas | Electro-chemical-thermal rechargeable energy storage cell (ECT cell) |
US6591609B2 (en) * | 1997-07-15 | 2003-07-15 | New Power Concepts Llc | Regenerator for a Stirling Engine |
US6263671B1 (en) * | 1997-11-15 | 2001-07-24 | Wayne T Bliesner | High efficiency dual shell stirling engine |
JP2003214717A (ja) * | 2002-01-25 | 2003-07-30 | Sharp Corp | 熱交換器及びこれを利用する熱機械 |
-
2003
- 2003-10-30 JP JP2003371147A patent/JP3796498B2/ja not_active Expired - Lifetime
-
2004
- 2004-10-29 KR KR1020067008281A patent/KR101107136B1/ko active IP Right Grant
- 2004-10-29 CA CA2543690A patent/CA2543690C/en not_active Expired - Fee Related
- 2004-10-29 EP EP04793236.3A patent/EP1683955B1/en not_active Not-in-force
- 2004-10-29 US US10/577,804 patent/US7640740B2/en not_active Expired - Fee Related
- 2004-10-29 WO PCT/JP2004/016135 patent/WO2005042958A1/ja active Search and Examination
- 2004-10-29 CN CNB2004800308981A patent/CN100434685C/zh not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN1871423A (zh) | 2006-11-29 |
CN100434685C (zh) | 2008-11-19 |
CA2543690A1 (en) | 2005-05-12 |
EP1683955A1 (en) | 2006-07-26 |
US20080282693A1 (en) | 2008-11-20 |
JP3796498B2 (ja) | 2006-07-12 |
KR101107136B1 (ko) | 2012-01-31 |
EP1683955B1 (en) | 2019-03-27 |
US7640740B2 (en) | 2010-01-05 |
JP2005133653A (ja) | 2005-05-26 |
WO2005042958A1 (ja) | 2005-05-12 |
EP1683955A4 (en) | 2012-06-20 |
CA2543690C (en) | 2012-08-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101107136B1 (ko) | 스터링 엔진 | |
CN101275541B (zh) | 热声行波发动机及其应用 | |
US8181461B2 (en) | Coolant penetrating cold-end pressure vessel | |
US6560970B1 (en) | Oscillating side-branch enhancements of thermoacoustic heat exchangers | |
US20100257858A1 (en) | Piston engine and stirling engine | |
JP4897335B2 (ja) | スターリングエンジン | |
JP2005133653A5 (ko) | ||
US20120144821A1 (en) | Free-Piston Stirling Machine For Extreme Temperatures | |
JPS58500450A (ja) | 並列流熱交換器を持つスタ−リングエンジン | |
JP3857587B2 (ja) | 周期的に作動する冷凍機 | |
JP5076238B2 (ja) | スターリングエンジン | |
JP5532034B2 (ja) | スターリングエンジン | |
NL2024832B1 (en) | Energy transfer apparatus and associated methods | |
NL2024830B1 (en) | Energy transfer apparatus and associated methods | |
JP5838035B2 (ja) | 熱交換器 | |
JPS58202350A (ja) | スタ−リング機関 | |
SE469851B (sv) | Energiomvandlare, vilken arbetar enligt Stirling-, Ericsson- eller en liknande termodynamsik cykel | |
JPH085176A (ja) | 冷凍装置 | |
JPS60243352A (ja) | スタ−リング機関 | |
JPH0868359A (ja) | 熱駆動装置 | |
JPH08136074A (ja) | 冷凍装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20141222 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20151215 Year of fee payment: 5 |
|
FPAY | Annual fee payment |
Payment date: 20170109 Year of fee payment: 6 |
|
FPAY | Annual fee payment |
Payment date: 20171213 Year of fee payment: 7 |
|
FPAY | Annual fee payment |
Payment date: 20200106 Year of fee payment: 9 |