KR20060079148A - Transformer hollow winding chiller using refrigeration cycle - Google Patents

Transformer hollow winding chiller using refrigeration cycle Download PDF

Info

Publication number
KR20060079148A
KR20060079148A KR1020060026027A KR20060026027A KR20060079148A KR 20060079148 A KR20060079148 A KR 20060079148A KR 1020060026027 A KR1020060026027 A KR 1020060026027A KR 20060026027 A KR20060026027 A KR 20060026027A KR 20060079148 A KR20060079148 A KR 20060079148A
Authority
KR
South Korea
Prior art keywords
transformer
hollow
winding
cooling
refrigerant
Prior art date
Application number
KR1020060026027A
Other languages
Korean (ko)
Inventor
임성황
Original Assignee
임성황
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 임성황 filed Critical 임성황
Priority to KR1020060026027A priority Critical patent/KR20060079148A/en
Publication of KR20060079148A publication Critical patent/KR20060079148A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/003Sedimentation tanks provided with a plurality of compartments separated by a partition wall
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/28Mechanical auxiliary equipment for acceleration of sedimentation, e.g. by vibrators or the like
    • B01D21/286Means for gentle agitation for enhancing flocculation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/30Control equipment
    • B01D21/34Controlling the feed distribution; Controlling the liquid level ; Control of process parameters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/08Corrosion inhibition

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Transformer Cooling (AREA)

Abstract

본 발명은 변압기 권선을 중공도체로 만들고, 권선이 2가닥 이상 병렬도체로 구성됨에 착안하여 병렬도체 중공(42)간에 중공연결로(53)로 연결한 폐회로에 냉매를 통과시켜 변압기 권선을 직접적이고 효과적이고 냉각시키는 냉각장치에 관한 것이다.In the present invention, the transformer winding is made of a hollow conductor, and the winding is composed of two or more parallel conductors, so that the refrigerant is passed through a closed circuit connected by the hollow connection path 53 between the parallel conductor hollows 42 to directly open the transformer winding. An effective and cooling chiller.

변압기에는 무부하손실과 부하손실에 의해 열이 발생하게 된다. 열이 제거되지 않으면 변압기 권선을 싸고 있는 절연물질이 열화현상에 의해 열화 되어 그 정도가 심하면 절연파괴에 의한 변압기 내부고장을 유발시키게 된다. 따라서 변압기용량은 변압기에 가해지는 열을 냉각시키는 정도에 따라 결정된다. 본 발명자는 출원번호 20-2004-0033312로 [냉동사이클의 냉매 기화열을 이용한 변압기 냉각장치]와 출원번호 20-2004-0035375로[냉동사이클을 이용한 방열기 내포형 변압기 냉각장치]에 대한 고안을 하였다. 그러나 이 두 가지 고안은 모두 권선의 열을 절연유에 의해 전달시킨 다음 방열기로 들어온 절연유를 냉각시키는 방법이다.In the transformer, heat is generated by no-load loss and load loss. If the heat is not removed, the insulating material surrounding the transformer winding is degraded by the deterioration phenomenon, and if the degree is severe, it causes the internal breakdown of the transformer by the insulation breakdown. Therefore, the transformer capacity is determined by the degree of cooling the heat applied to the transformer. The present inventors have devised a design for the [transformer cooling device using the refrigerant vaporization heat of the refrigeration cycle] and the application number 20-2004-0033312 [radiator-containing transformer cooling device using the refrigeration cycle]. Both of these designs, however, are a way of transferring the heat from the windings with insulating oil and then cooling the insulating oil entering the radiator.

본 발명에서는 변압기의 열을 발생시키는 권선도체를 직접적으로 냉각시키는 것으로, 변압기 권선이 2가닥 이상 병렬도체로 구성됨에 착안하여 병렬도체를 중공도체로 형상을 변경하고 변경된 도체의 중공(42)간을 고압측 단자 인근에서 중공연결로(53)로 연결하고, 접지단자 인근에서 도체는 접지단자에서 마감되지만 중공이 연장되도록 하여 2개의 냉매유출입로(54)와 연결되도록 한다. 이렇게 구성된 냉각 폐회로에 냉각절연유 또는 냉동사이클의 냉매를 흘려 변압기 권선도체를 직접 냉각 시켜 냉각효과를 극대화 하였다. 또한 냉동사이클의 기화된 냉매의 운동에너지에 의해 터빈(77)을 돌려 터빈(77)축에 연결된 발전기(또는 기계장치)(78)에서 전력 또는 물리적 에너지를 생산하는 기능도 추가하였다.In the present invention, by directly cooling the winding conductor that generates the heat of the transformer, focusing on the transformer winding is composed of two or more parallel conductors, changing the shape of the parallel conductor into a hollow conductor and between the hollow 42 of the changed conductor It is connected to the hollow connection path 53 in the vicinity of the high-voltage side terminal, and the conductor closes at the ground terminal, but the hollow is extended so as to be connected to the two refrigerant inlet and outlet 54. The cooling winding of the transformer was directly cooled by flowing cooling insulating oil or refrigerant from the refrigeration cycle to maximize the cooling effect. In addition, by adding the kinetic energy of the vaporized refrigerant of the refrigeration cycle by turning the turbine 77, the generator (or mechanism) 78 connected to the shaft of the turbine 77 was added to produce power or physical energy.

변압기, 냉동사이클, 평각권선, 전위전선, 중공권선 Transformer, refrigeration cycle, flat winding, potential wire, hollow winding

Description

냉동사이클을 이용한 변압기 중공권선 냉각장치{omitted}Transformer hollow winding chiller using refrigeration cycle

도 1은 기존의 변압기 권선(전위전선; Tansposed wire) 설명도이다.1 is an explanatory diagram of a conventional transformer winding (Tansposed wire).

도 2는 동심배치 변압기권선 설명도이다.2 is an explanatory diagram of a concentrically arranged transformer winding.

도 3은 교호배치 변압기권선 설명도이다.3 is an explanatory diagram of alternating transformer windings.

도 4는 편각동선의 개선전·후 비교도면이다.4 is a comparative drawing before and after improvement of a declination copper line.

도 5는 변압기 권선(전위전선)을 펼쳐 개념화 시킨 설명도이다.5 is an explanatory diagram in which a transformer winding (potential wire) is unfolded and conceptualized.

도 6은 본 발명에 의한 절연유 강제순환 냉각시스템 구성도이다.6 is a configuration diagram of the forced oil circulating cooling system according to the present invention.

도 7은 냉동사이클에 의한 방열기 냉각시스템 구성도이다.7 is a configuration diagram of a radiator cooling system by a refrigeration cycle.

도 8은 냉동사이클 냉매순환에 의한 냉각시스템 구성도이다.8 is a configuration diagram of a cooling system using a refrigerant cycle refrigerant circulation.

도 9는 변압기 년간운전 온도지속곡선 설명도이다.9 is an explanatory diagram of a temperature curve of annual operation of a transformer.

〈도면의 주요부분에 대한 부호의 설명〉<Explanation of symbols for main parts of drawing>

11 : 평각동선 12 : 도체배열11: flat copper wire 12: conductor arrangement

21 : 저압권선 22 : 고압권선21: low voltage winding 22: high voltage winding

23 : 절연통 24 : 절연판23: insulation cylinder 24: insulation plate

41 : 도체 42 : 중공41 conductor 42 hollow

51 : 전압단자 52 : 접지단자51: voltage terminal 52: ground terminal

53 : 중공연결로 54 : 냉매유출입로53: hollow connection path 54: refrigerant flow path

61 : 방열기 62 : 유순환펌프61: radiator 62: circulating pump

63 : 냉각팬 71 : 증발기63: cooling fan 71: evaporator

72 : 팽창밸브(또는 모세관) 73 : 냉매저장탱크72: expansion valve (or capillary tube) 73: refrigerant storage tank

74 : 응축기 75 : 압축기74: condenser 75: compressor

76 : 모터(또는 엔진) 77 : 터빈76: motor (or engine) 77: turbine

78 : 발전기(또는 기계장치) 81 : 연결밸브78: generator (or mechanism) 81: connecting valve

91 : 냉각영역 92 : 추가냉각영역91: cooling zone 92: additional cooling zone

변압기 권선을 감고 있는 절연체가 열화되는 정도에 따라 변압기 수명이 달라지므로 대체로 변압기 허용전류와 관련 있는 용량도 권선 절연체가 열화되지 않도록 변압기에 가해지는 열을 제거시키는 방법에 달렸다고 볼 수 있다. 전류가 적은 변압기는 환선을 사용하고 대전류 변압기는 단면이 구형인 평각동선(11)을 절연하여 사용한다. 대전류 변압기는 표피효과를 제거하기 위하여 2개이상의 절연된 평각동선(11)을 병렬로 사용하며 기술적인 문제를 제거하기 위하여 도1과 같이 전위전선(Transposed wire)을 사용한다. 지금까지 변압기 권선은 전기적 또는 물리적인 문제만을 해결하기 위하여 그 형상을 바꾸어 왔다. 따라서 권선의 배치방식, 전위방법, 절연방법 등에 많은 관심을 두었고 도체를 직접 냉각하는 방법은 제시되지 않고 단지 변압기내에 충진된 절연유의 순환에 의한 냉각방법이 유일하다.Since the life of the transformer varies according to the degree of deterioration of the insulation wound around the transformer windings, the capacity related to the transformer allowable current may also depend on the method of removing heat applied to the transformer so that the winding insulation does not deteriorate. A transformer with a low current uses a round wire, and a high current transformer uses an insulated flat copper wire 11 having a rectangular cross section. The high current transformer uses two or more insulated flat copper wires 11 in parallel to remove the skin effect, and uses a transposed wire as shown in FIG. 1 to eliminate technical problems. To date, transformer windings have been reshaped to solve only electrical or physical problems. Therefore, much attention has been paid to the arrangement of the windings, the potential method, the insulation method, etc., and the method of directly cooling the conductor is not suggested. The only cooling method is the circulation of the insulating oil filled in the transformer.

본 발명에서는 변압기의 열문제는 전류가 흐르는 도체에 있음을 착안하여 도체를 직접 냉각시키는 방법을 강구하고자 한다. 따라서 도체내에 중공을 만들고 이를 연결하여 폐회로를 구성하는 방안을 마련한다. 또한 냉각에 동원되는 냉동사이클 과정에 터어빈을 설치하여 기화된 냉매가 가지는 운동에너지를 전력 또는 물리적 에너지로 변환시키는 기능도 추가하였다.In the present invention, the thermal problem of the transformer is to focus on the current flowing conductor to find a method of cooling the conductor directly. Therefore, a method of constructing a closed circuit by making a hollow in the conductor and connecting it is prepared. In addition, by installing a turbine during the refrigeration cycle mobilized for cooling, the function of converting the kinetic energy of the vaporized refrigerant into electric power or physical energy was added.

도1은 기존의 변압기 권선(전위전선; Transposed wire) 설명도이다. 평각동선(11)은 일정한 두께의 단면을 가지고 있음을 알 수 있고, 권선이 여러 가닥의 평각동선(11)으로 구성되어 있음을 알 수 있다.1 is an explanatory diagram of a conventional transformer winding (transposed wire). It can be seen that the flat copper wire 11 has a cross section of a constant thickness, and the winding is composed of several strands of the flat copper wire 11.

도2는 동심배치 변압기 권선의 설명도이다.2 is an explanatory diagram of a concentrically arranged transformer winding.

도3은 교호배치 변압기 권선의 설명도이다.3 is an explanatory diagram of alternating transformer windings.

도4는 평각동선의 개선전·후 비교도면이다. 개선후에는 도체(41)의 중앙에 냉매의 통과를 위하여 중공(42)이 형성되어 있음을 알 수 있다. 줄어드는 만큼의 단면적은 냉각효과로도 충분히 극복할 수 있다.4 is a comparison drawing before and after improvement of a flat copper wire. After the improvement, it can be seen that the hollow 42 is formed in the center of the conductor 41 for the passage of the refrigerant. The reduced cross-sectional area can be sufficiently overcome by the cooling effect.

도5는 변압기 권선(전위전선)을 펼쳐 개념화시킨 설명도이다. 각 평각동선(11)에 형성된 중공(42)은 전압단자(51) 인근에서 중공연결로(53)에 의해 연결되며 접지단자(52)에서 도체(41)는 단말처리되나 중공(42)은 연장되어 짝수개의 그룹으로 묶여져 짝수개의 냉매유출입로(54)를 만든다.5 is an explanatory diagram in which a transformer winding (potential wire) is unfolded and conceptualized. The hollows 42 formed in each of the flat copper wires 11 are connected by the hollow connection paths 53 near the voltage terminals 51. In the ground terminal 52, the conductors 41 are terminated, but the hollows 42 are extended. To be evenly grouped to create an even number of refrigerant outlets (54).

도6은 본 발명에 의한 절연유 강제순환 냉각시스템 구성도이다. 냉매유출입 로(54)에 방열기(61)을 연결하여 자연냉각을 시키든지, 유순환펌프(62)와 냉각팬(63)을 추가하여 냉각효과를 높이든지 하는 선택을 할 수 있다.6 is a configuration diagram of the forced oil circulating cooling system according to the present invention. The radiator 61 may be connected to the coolant outlet 54 to allow natural cooling or to increase the cooling effect by adding the circulation pump 62 and the cooling fan 63.

도7은 본 발명에 의한 냉동사이클에 의한 방열기 냉각시스템 구성도이다. 도6에서 방열기 구조를 변경하여 방열기 내부에 냉동사이클의 증발기(71)가 완전히 내포되어 열교환이 일어나도록 구성한다. 이 때의 냉동사이클은 압축기(75), 응축기(74), 냉매저장탱크(73), 팽창벨브(또는 모세관)(72), 증발기(71), 터빈(77), 다시 압축기(75)로 구성된다. 압축기(75)는 기체상태의 냉매를 압축하고, 응축기(74)에서는 압축된 냉매가 열을 발산하면서 액체가 되고, 액체가 된 냉매는 냉각 시스템의 관성을 높이고자 설치된 냉매저장탱크(73)에 모이게 되고, 액체상태의 냉매는 팽창밸브(또는 모세관)(72)를 통과하면서 기체상태로 변화를 일으키며 부피가 팽창하기 시작한다. 팽창밸브(또는 모세관)(72)를 빠져나온 냉매는 팽창밸브(또는 모세관)(72)와 연결된 증발기(71)에서 방열기(61)로부터 기화열을 흡수하면서 기체가 된다. 증발기(71)를 지나온 기체는 터빈(77)을 돌리고 압축기(75)로 들어가 압축되면서 냉동사이클의 한 사이클을 종료한다. 팽창밸브(또는 모세관)(72)와 응축기(74) 사이에 설치된 냉매저장탱크(73)를 제거하는 것도 본 발명의 범위에 포함된다. 또한 변압기 권선온도 또는 절연유 온도를 감지하여 냉동사이클을 사용자의 의지에 따라 원활히 작동시키는 제어장치를 추가하는 것도 본 발명의 범위에 포함된다. 터빈(77), 압축기(75), 응축기(74)를 제외시키고 외부에서 만든 냉매가 저장된 냉매저장탱크(73)에서 팽창밸브(또는 모세관)(72), 증발기(71), 대기로 냉각회로를 종료하는 개방형 냉각회로를 사용하는 것도 본 발명의 범위에 포함된다.7 is a block diagram of a radiator cooling system according to a refrigeration cycle according to the present invention. In FIG. 6, the evaporator 71 of the refrigerating cycle is completely contained in the radiator to change the radiator structure so that heat exchange occurs. The refrigeration cycle at this time is composed of a compressor 75, a condenser 74, a refrigerant storage tank 73, an expansion valve (or capillary tube) 72, an evaporator 71, a turbine 77, again a compressor 75. do. The compressor 75 compresses a refrigerant in a gaseous state, and in the condenser 74, the compressed refrigerant dissipates heat to become liquid, and the refrigerant, which becomes liquid, is supplied to the refrigerant storage tank 73 installed to increase the inertia of the cooling system. As it is collected, the liquid refrigerant passes through expansion valve (or capillary tube) 72, causing a change in gaseous state and the volume begins to expand. The refrigerant exiting the expansion valve (or capillary tube) 72 becomes gas while absorbing heat of vaporization from the radiator 61 in the evaporator 71 connected to the expansion valve (or capillary tube) 72. The gas passing through the evaporator 71 turns the turbine 77 and enters the compressor 75 to be compressed and ends one cycle of the refrigeration cycle. It is also within the scope of the present invention to remove the refrigerant storage tank 73 provided between the expansion valve (or capillary tube) 72 and the condenser 74. In addition, it is also within the scope of the present invention to add a control device for sensing the transformer winding temperature or the insulating oil temperature to smoothly operate the refrigeration cycle according to the user's will. Except for the turbine 77, the compressor 75, and the condenser 74, the expansion valve (or capillary tube) 72, the evaporator 71, and the cooling circuit to the atmosphere are stored in the refrigerant storage tank 73 in which the externally made refrigerant is stored. The use of terminating open cooling circuits is also within the scope of the present invention.

도8은 본 발명에 의한 냉동사이클 냉매순환에 의한 냉각시스템 구성도이다. 도5에서 냉매유출입로(54) 단말부위에 연결밸브(81)를 형성하고 도7에서 도시한 냉동사이클에서 증발기(71)을 제외한 냉동사이클을 연결밸브(81)에 설치한다. 증발기(71)의 역할은 도5에서 도시한 바와 같이 폐회로를 형성한 평각동선(11) 중앙에 형성된 중공(42)이 대행한다. 냉동사이클 원리는 도7에서 설명한 바와 같다.8 is a configuration of a cooling system by the refrigerant cycle refrigerant circulation according to the present invention. In FIG. 5, a connection valve 81 is formed at the terminal portion of the refrigerant outlet 54, and a refrigeration cycle except the evaporator 71 is installed in the connection valve 81 in the refrigeration cycle shown in FIG. As shown in FIG. 5, the evaporator 71 has a hollow 42 formed in the center of the flat copper line 11 having a closed circuit. The refrigeration cycle principle is as described in FIG.

도9는 변압기 년간운전 온도지속곡선 설명도이다. 1년중 변압기 허용온도를 초과하는 냉각영역(91)은 아주 적고, 과부하운전을 하여도 추가냉각영역(92)은 별로 크지 않음을 알 수 있다.9 is an explanatory diagram of a temperature curve of the annual operation of a transformer. It can be seen that the cooling zone 91 exceeding the transformer allowable temperature during the year is very small, and the additional cooling zone 92 is not very large even after overload operation.

변압기에서 열을 주로 발생하는 부위는 권선부위이다. 이제까지는 변압기 내부 절연유를 통하여 열전달에 의한 방법으로 냉각하였기 때문에 냉각효과가 낮아서 변압기 용량이 열에 의해 많은 제한을 가져왔다. 본 발명에서는 변압기 권선 중앙에 중공(42)를 형성하여 이 중공에 냉각된 절연유 또는 냉동사이클의 냉매를 직접 통과 시켜 냉각효과를 극대화함으로써 변압기 용량을 증대시킬 수 있게 하였다.The main part of the transformer that generates heat is the winding part. Up to now, since the cooling by heat transfer method through the insulating oil inside the transformer, the cooling effect is low, the transformer capacity has a lot of limitations due to heat. In the present invention, by forming a hollow 42 in the center of the transformer winding to directly pass through the refrigerant of the insulating oil or refrigeration cycle cooled in this hollow to maximize the cooling effect to increase the transformer capacity.

Claims (4)

도체 또는 도체를 형성하는 평각동선(11) 단면에 길이방향으로 형성되는 중공(42)을 설치하고, 2개 이상의 중공(42)을 전압단자 인근에서 연결하여 변압기 내부 냉매통로를 형성하고 그 양단을 접지단자측으로 인출하여 변압기 외부의 냉각장치와 냉매순환 회로를 형성하도록 관을 연결하여 중공(42)을 냉매통로의 일부로 역할하도록 하여 변압기를 냉각하는 방법.A hollow 42 is formed in the longitudinal direction on the cross section of the flat copper wire 11 forming the conductor or conductor, and two or more hollows 42 are connected in the vicinity of the voltage terminal to form a refrigerant passage in the transformer and connect both ends thereof. A method of cooling a transformer by drawing a pipe to the ground terminal and connecting a pipe to form a cooling circuit and a cooling circuit outside the transformer so that the hollow 42 serves as part of the refrigerant passage. 평각동선(11) 중앙에 형성되는 중공(42)과; 병렬 평각동선들의 중공(42)을 전압단자 인근에서 상호 연결하여 권선내부 냉매통로를 연결하는 중공연결로(53)와; 접지단자를 통과하여 연장되는 중공(42)들을 짝수개 그룹으로 묶은 짝수개의 냉매유출입로(54)와; 냉매유출입로(54)에 연결하여 냉매폐회로를 형성하도록 설치되는 방열기(61)를 특징으로 하는 냉동사이클을 이용한 변압기 중공 권선 냉각장치.A hollow 42 formed at the center of the flat copper line 11; A hollow connection path 53 which connects the hollow 42 of the parallel flat copper wires in the vicinity of the voltage terminal to connect the refrigerant passage in the winding; An even number of coolant outlet passages 54 that bundle the hollows 42 extending through the ground terminal into an even number group; Transformer hollow winding cooling device using a refrigeration cycle characterized in that the radiator 61 is installed to connect to the refrigerant flow path (54) to form a refrigerant closed circuit. 제2항에 있어서, 방열기(61) 내부에 증발기(71) 공간을 형성하고, 증발기(71), 터빈(77), 압축기(75), 응축기(74), 냉매저장탱크(73), 팽창밸브(또는 모세관)(72), 다시 증발기(71) 순서로 관으로 연결되는 냉동사이클을 특징으로 하는 냉동사이클을 이용한 변압기 중공 권선 냉각장치.The space of the evaporator 71 is formed inside the radiator 61, and the evaporator 71, the turbine 77, the compressor 75, the condenser 74, the refrigerant storage tank 73, and the expansion valve. (Or capillary tube) 72, the transformer hollow winding cooling device using a refrigerating cycle, characterized in that the refrigeration cycle is connected to the tube in the order of evaporator 71 again. 평각동선(11) 중앙에 형성되는 중공(42)과; 병렬 평각동선들의 중공(42)을 전압단자 인근에서 상호 연결하여 권선내부 냉매통로를 연결하는 중공연결로(53)와; 접지단자를 통과하여 연장되는 중공(42)들을 짝수개 그룹으로 묶은 짝수개의 냉매유출입로(54)와; 냉매유출입로(54)의 단말에 형성되는 연결밸브(81)와; 연결밸브(81), 터빈(77), 압축기(75), 응축기(74), 냉매저장탱크(73), 팽창밸브(또는 모세관)(72), 다시 연결밸브(81)로 관으로 연결되어 변압기 권선 내부 냉매통로와 연결되어 폐회로를 형성하는 것을 특징으로 하는 냉동사이클을 이용한 변압기 중공권선냉각장치.A hollow 42 formed at the center of the flat copper line 11; A hollow connection path 53 which connects the hollow 42 of the parallel flat copper wires in the vicinity of the voltage terminal to connect the refrigerant passage in the winding; An even number of coolant outlet passages 54 that bundle the hollows 42 extending through the ground terminal into an even number group; A connecting valve 81 formed at a terminal of the coolant outlet channel 54; Connecting valve 81, turbine 77, compressor 75, condenser 74, refrigerant storage tank 73, expansion valve (or capillary tube) 72, the connection valve 81 is connected to the pipe to the transformer The hollow winding cooling device of the transformer using a refrigerating cycle, characterized in that to form a closed circuit is connected to the refrigerant passage inside the winding.
KR1020060026027A 2006-03-22 2006-03-22 Transformer hollow winding chiller using refrigeration cycle KR20060079148A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060026027A KR20060079148A (en) 2006-03-22 2006-03-22 Transformer hollow winding chiller using refrigeration cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060026027A KR20060079148A (en) 2006-03-22 2006-03-22 Transformer hollow winding chiller using refrigeration cycle

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR20-2004-0037514U Division KR200380361Y1 (en) 2004-12-30 2004-12-30 Transformer hollow winding chiller using refrigeration cycle

Publications (1)

Publication Number Publication Date
KR20060079148A true KR20060079148A (en) 2006-07-05

Family

ID=37170881

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060026027A KR20060079148A (en) 2006-03-22 2006-03-22 Transformer hollow winding chiller using refrigeration cycle

Country Status (1)

Country Link
KR (1) KR20060079148A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100943967B1 (en) * 2008-11-28 2010-02-26 김순기 Cooling system for transformer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100943967B1 (en) * 2008-11-28 2010-02-26 김순기 Cooling system for transformer

Similar Documents

Publication Publication Date Title
US20120268227A1 (en) Embedded cooling of wound electrical components
CN102612721B (en) Cooling structure for magnet-fitted reactor
CN103280928A (en) Enclosure pipeline-type stator evaporating and cooling device
JP4935609B2 (en) How to use the reactor
CN101840779B (en) Oil-immersed water-cooled high-power electric and electronic capacitor
US11355273B2 (en) Non-liquid immersed transformers with improved coil cooling
KR200375025Y1 (en) Transformer cooling device using refrigerant vaporization heat of refrigeration cycle
JP5332753B2 (en) Mechanical and electric integrated drive
KR20060079148A (en) Transformer hollow winding chiller using refrigeration cycle
KR200380361Y1 (en) Transformer hollow winding chiller using refrigeration cycle
CN104779548A (en) Enclosed switchgear provided with liquid nitrogen cooling circulation system
KR200378014Y1 (en) Radiator-embedded transformer chiller using refrigeration cycle
CN205279386U (en) Prevent condensation structure, motor wire board, helical -lobe compressor and air conditioner
JP2008300600A (en) Film capacitor
CN100545963C (en) Evaporative cooling traction transformer
KR200435314Y1 (en) Electric power equipment cooling device using refrigerant vaporization heat
KR200402624Y1 (en) Transformer / reactor winding cooling system with refrigerant passage
KR200382307Y1 (en) Transformer body chiller using refrigeration cycle
KR200385032Y1 (en) Transformer chiller through spaced additional radiator refrigeration cycle
KR200380359Y1 (en) Jacketed transformer chiller using refrigeration cycle
JP2011077385A (en) Gas-insulated transformer
KR200382236Y1 (en) Underground distribution transformer applying refrigeration cycle to cooling system
KR20060080135A (en) Cable cooling device by forced circulation of insulating oil between parallel OF cables
KR200400778Y1 (en) Crosslinked Polyethylene (XLPE) Insulated Hollow Winding Cooling Transformer
KR200380360Y1 (en) Cable cooling device using hollow conductor cable hollow and sheath inner space

Legal Events

Date Code Title Description
A108 Dual application of patent
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application