KR200375025Y1 - Transformer cooling device using refrigerant vaporization heat of refrigeration cycle - Google Patents

Transformer cooling device using refrigerant vaporization heat of refrigeration cycle Download PDF

Info

Publication number
KR200375025Y1
KR200375025Y1 KR20040033312U KR20040033312U KR200375025Y1 KR 200375025 Y1 KR200375025 Y1 KR 200375025Y1 KR 20040033312 U KR20040033312 U KR 20040033312U KR 20040033312 U KR20040033312 U KR 20040033312U KR 200375025 Y1 KR200375025 Y1 KR 200375025Y1
Authority
KR
South Korea
Prior art keywords
transformer
cooling
heat
radiator
refrigerant
Prior art date
Application number
KR20040033312U
Other languages
Korean (ko)
Inventor
임성황
Original Assignee
임성황
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 임성황 filed Critical 임성황
Priority to KR20040033312U priority Critical patent/KR200375025Y1/en
Priority claimed from KR20-2004-0035075U external-priority patent/KR200378014Y1/en
Application granted granted Critical
Publication of KR200375025Y1 publication Critical patent/KR200375025Y1/en
Priority claimed from KR20-2005-0005335U external-priority patent/KR200385032Y1/en
Priority to PCT/KR2005/003979 priority patent/WO2006057516A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating
    • H01F27/085Cooling by ambient air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B11/00Compression machines, plants or systems, using turbines, e.g. gas turbines
    • F25B11/02Compression machines, plants or systems, using turbines, e.g. gas turbines as expanders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating
    • H01F27/10Liquid cooling
    • H01F27/12Oil cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/14Power generation using energy from the expansion of the refrigerant
    • F25B2400/141Power generation using energy from the expansion of the refrigerant the extracted power is not recycled back in the refrigerant circuit
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Abstract

본 고안은 변압기에서 발생하는 열을 냉동사이클을 이용하여 냉각시킴으로써 냉각효과를 한층 높인 변압기 냉각장치에 관한 것이다.The present invention relates to a transformer cooling device that further enhances the cooling effect by cooling the heat generated from the transformer using a refrigeration cycle.

변압기에는 무부하손실과 부하손실에 의해 열이 발생하게 된다. 작은 변압기는 자연공냉식으로 냉각을 시키지만 변압기 용량이 커지면 이 방법은 적용하기 어렵다. 열이 제거되지 않으면 변압기 권선을 싸고 있는 절연물질이 열화현상에 의해 열화되어 그 정도가 심하면 절연파괴에 의한 변압기 내부고장을 유발시키게 된다. 따라서 변압기 용량은 변압기에 가해지는 열을 냉각시키는 정도에 따라 결정 된다. 154kV, 345kV, 765kV 등으로 전력계통의 전압이 높아짐에 따라 변압기 용량이 대형화되고 변압기 손실도 커지게 되어 변압기내에서 발생하는 열을 효과적으로 제거시킬 필요가 있다. 기존에는 방열기를 통한 자연냉각과 절연유 순환펌프와 송풍기에 의한 강제냉각방식이 사용되었고, 지하변전소의 경우 수냉각 방식을 사용하고 있다.In the transformer, heat is generated by no-load loss and load loss. Small transformers are cooled by natural air cooling, but this method is difficult to apply as the transformer capacity increases. If the heat is not removed, the insulating material surrounding the transformer winding is degraded by the deterioration phenomenon, and if the degree is severe, the internal breakdown of the transformer may be caused by the insulation breakdown. Therefore, the transformer capacity is determined by the degree of cooling the heat applied to the transformer. As the voltage of the power system increases to 154kV, 345kV, 765kV, etc., the transformer capacity is increased and the transformer loss is increased. Therefore, it is necessary to effectively remove heat generated in the transformer. Conventionally, natural cooling through radiators and forced cooling by insulating oil circulation pumps and blowers have been used. In the case of underground substations, water cooling is used.

최근에는 도심지내에서 변전소를 새로 건설할 필요성이 있어도 건설할 부지도 부족하고 사람들의 반대도 심해 어려움이 많으므로 기존 변압기에서 발생하는 열을 효과적으로 제거시켜 기존 변압기 용량을 증대시키는 것이 중요한 요소가 되고 있다.In recent years, even if there is a need to construct a new substation in the city center, there is a lack of site to build and there is a lot of opposition. Therefore, it is important to increase the capacity of the existing transformer by effectively removing the heat generated from the existing transformer. .

본 고안에서는 냉동사이클에서 냉매가 기화되면서 주변으로부터 기화열을 흡수하는 현상을 변압기 냉각에 이용한다. 변압기방열기(11) 구조를 변화시켜 냉동사이클의 냉매 기화 부위인 증발기(41)를 방열기 내부 또는 방열기와 접촉하도록 설치하여 변압기방열기(11)로 들어온 절연유의 열을 효과적으로 제거시키도록 하였다. 기화된 냉매는 부피팽창에 의한 물리적 에너지를 지니고 있으므로 이를 이용하여 냉동사이클의 방열기(41)와 압축기(45) 사이에 터빈(51)을 설치하고, 이 터빈(51) 축에 발전기(또는 기계장치)(52)를 설치하여 전기에너지 또는 물리에너지를 얻을 수 있도록 한다.In the present invention, a phenomenon in which a refrigerant is vaporized in a refrigeration cycle and absorbs heat of vaporization from the surroundings is used for cooling the transformer. By changing the structure of the transformer radiator 11, the evaporator 41, which is a refrigerant vaporization part of the refrigerating cycle, was installed to contact the inside of the radiator or the radiator so as to effectively remove the heat of the insulating oil entering the transformer radiator 11. Since the vaporized refrigerant has physical energy due to volume expansion, a turbine 51 is installed between the radiator 41 and the compressor 45 of the refrigeration cycle by using this, and a generator (or a mechanical device) on the shaft of the turbine 51 is used. 52) to obtain electrical or physical energy.

Description

냉동사이클의 냉매 기화열을 이용한 변압기 냉각장치{omitted}Transformer cooling device using refrigerant vaporization heat of refrigeration cycle

변압기는 변압기 권선을 감고 있는 절연체가 열화되는 정도에 따라 수명이 달라지므로 대체로 변압기 허용전류와 관련 있는 용량도 권선 절연체가 열화되지 않도록 변압기에 가해지는 열을 제거시키는 방법에 달렸다고 볼 수 있다. 154kV 45/60MVA 변압기는 약340kW, 345kV 500MVA 변압기는 약1,200kW, 765kV 2000MVA 변압기는 약 5,100kW의 전력손실이 발생한다. 이 손실은 변압기 내부에서 열이 되어 권선주변에 충진되어 있는 절연유를 가열하게 되고 절연유는 이렇게 얻은 열을 대류현상에 의해 변압기 몸체 또는 방열기에서 대기로 방출한다. 용량이 작을 경우에는 자연냉각을 시행하고, 용량이 큰 경우에는 절연유를 방열기로 강제 순환시키고 방열기 주변에 설치된 냉각용송풍기(31)를 가동시켜 냉각효과를 높이고 있다. 그러나 송풍기가 바람을 송풍하기 위해서는 많은 전기가 소모되지만 생성된 바람이 방열기와 효과적으로 열교환을 하지 못하는 단점이 있다. 이렇게 효과적이지 못한 방법으로 대기와 열교환을 시키는 관계로 방열기의 단면적을 넓히기 위하여 큰 규모의 방열기가 필요하고 심지어 방열기 규모가 변압기몸체만큼 되어 변전소 부지면적을 크게 하는 요인이 된다. 최근 도심지에는 지하변전소가 건설되면서 냉각문제는 더욱더 심각해지고 있다. 지하변전소에는 지상의 냉각탑에서 냉각수를 만들어 지하변압기를 냉각시키는 수냉각시스템을 사용한다.Since transformers have different lifespans depending on the degree of deterioration of the insulation wound around the transformer windings, the capacity associated with the transformer's allowable current also depends on the method of removing the heat applied to the transformer so that the winding insulation does not deteriorate. A power loss of about 340 kW for a 154 kV 45/60 MVA transformer, about 1,200 kW for a 345 kV 500 MVA transformer, and about 5,100 kW for a 765 kV 2000 MVA transformer occurs. This loss becomes heat inside the transformer and heats the insulating oil filled around the winding, which releases the heat thus obtained from the transformer body or radiator to the atmosphere by convection. When the capacity is small, natural cooling is performed. When the capacity is large, the insulating oil is forced to circulate to the radiator, and the cooling blower 31 installed around the radiator is operated to increase the cooling effect. However, although the blower consumes a lot of electricity to blow the wind, the generated wind does not have effective heat exchange with the radiator. Since the heat exchange with the atmosphere in such an inefficient way, a large radiator is needed to increase the cross-sectional area of the radiator, and even the radiator size is as large as the transformer body, which causes a large substation area. Recently, with the construction of underground substations in urban areas, the cooling problem becomes more and more serious. Underground substations use a water cooling system that cools the underground transformers by creating cooling water in the cooling towers above the ground.

본 고안은 변압기방열기(11) 구조를 변화시켜 냉동사이클의 냉매가 기화되는증발기(41)와 열교환이 쉽게 되도록 하여 변압기에 가해지는 열을 효과적으로 제거하는 냉각장치를 제안한다. 우선 변압기방열기(11)와 냉동사이클의 증발기(41)가 열교환을 효과적으로 하는 방안을 고려하여 냉각장치의 크기를 되도록 작게 만든다. 지하변전소 등의 경우 변압기에서 발생하는 열을 변압기로부터 먼 장소로 이동시켜 제거할 수 있도록 변압기로부터 열을 흡수하는 장소와 흡수한 열을 배출하는 장소를 다르게 하는 분리형이 가능하도록 한다. 증발기(41)에서 기화된 냉매는 부피팽창에 의한 물리적 에너지를 지니고 있으므로 이를 이용하여 냉동사이클의 방열기(41)와 압축기(45) 사이에 터빈(51)을 설치하여 회전력을 얻고, 이 터빈(51) 축에 발전기(또는 기계장치)(52)를 설치하여 전기에너지 또는 물리에너지를 얻을 수 있도록 한다.The present invention proposes a cooling device that changes the structure of the transformer radiator 11 to facilitate heat exchange with the evaporator 41 in which the refrigerant of the refrigerating cycle is evaporated, thereby effectively removing heat applied to the transformer. First, the transformer radiator 11 and the evaporator 41 of the refrigerating cycle are made smaller in size in consideration of the effective heat exchange. In the case of underground substations, a separate type that allows the heat absorbing heat from the transformer to move away from the transformer to be removed may be separated from the location where the heat is absorbed from the transformer. Since the refrigerant evaporated in the evaporator 41 has physical energy due to volume expansion, a turbine 51 is installed between the radiator 41 and the compressor 45 of the refrigerating cycle to obtain a rotational force by using the refrigerant. A generator (or mechanical device) 52 is installed on the shaft to obtain electrical energy or physical energy.

도 1은 기존의 변압기 사시도이다.1 is a perspective view of a conventional transformer.

도 2는 변압기 정면도이다.2 is a front view of a transformer.

도 3은 기존 변압기 냉각방법 설명도이다.3 is a diagram illustrating a conventional transformer cooling method.

도 4는 냉동사이클의 냉매 기화열을 이용한 변압기 냉각장치 설명도이다.4 is an explanatory diagram of a transformer cooling device using refrigerant vaporization heat of a refrigeration cycle.

도 5는 냉매의 기화 물리력을 이용한 에너지 회수장치가 추가된 설명도이다.5 is an explanatory diagram in which an energy recovery device using a vaporization physical force of a refrigerant is added.

도 6은 변압기의 년간 온도지속곡선 설명도이다.6 is an explanatory diagram of the annual temperature sustain curve of the transformer.

<도면의 주요부분에 대한 부호의 설명><Description of the code | symbol about the principal part of drawing>

11 : 변압기방열기 12 : 변압기몸체11: transformer radiator 12: transformer body

13 : 콘서베이터 14 : 붓싱13: Conservator 14: Bushing

31 : 냉각용송풍기 41 : 증발기31: cooling blower 41: evaporator

42 : 팽창벨브(또는 모세관) 43 : 냉매저장탱크42: expansion valve (or capillary tube) 43: refrigerant storage tank

44 : 응축기 45 : 압축기44 condenser 45 compressor

46 : 모터(또는 엔진) 51 : 터빈46: motor (or engine) 51: turbine

52 : 발전기(또는 기계장치) 61 : 냉각영역52: generator (or mechanism) 61: cooling zone

62 : 추가냉각영역62: additional cooling zone

도1은 기존의 변압기 사시도이다. 변압기몸체(12)에 큰 규모의 변압기방열기(11) 여러 개가 병렬로 붙어서 변압기 전체 규모가 더 커 지는 것을 알 수 있다.1 is a perspective view of a conventional transformer. It can be seen that a large transformer radiator 11 is attached to the transformer body 12 in parallel so that the total size of the transformer becomes larger.

도2는 변압기 정면도이다. 변압기몸체(12) 좌우에는 변압기방열기(11)가 다수 붙어있는 것을 알 수 있다.2 is a front view of a transformer. It can be seen that the transformer radiators 11 are attached to the left and right sides of the transformer body 12.

도3은 기존 변압기의 풍냉식 냉각방식을 설명하는 도면이다. 변압기몸체(12)에서 가열된 절연유는 대류현상에 의해 변압기몸체(12) 상부로 이동하고, 이 절연유는 변압기방열기(11)로 유입되고 다수로 분리된 관을 통하여 유입되어 대기와 접하는 면적을 크게 하면서 하부로 내려오는 중에 대기와 열교환을 하여 식혀진다.식혀진 절연유는 변압기방열기(11) 아래로 내려온 다음 변압기몸체(12)로 다시 흘러들어가 대류의 한 사이클을 종료한다. 냉각의 효과를 높이기 위하여 변압기방열기(11) 주변에 설치된 냉각용송풍기(31)를 가동하기도 한다.3 is a view illustrating a wind-cooled cooling method of an existing transformer. The insulating oil heated in the transformer body 12 moves to the upper portion of the transformer body 12 by convection, and the insulating oil flows into the transformer radiator 11 and enters through a plurality of separated pipes, thereby greatly increasing the area in contact with the atmosphere. While cooling down, it cools by exchanging heat with the atmosphere. The cooled insulating oil descends below the transformer radiator 11 and then flows back into the transformer body 12 to end one cycle of convection. In order to increase the cooling effect, the cooling blower 31 installed around the transformer radiator 11 may be operated.

도4는 본 고안에 의한 냉동사이클의 냉매 기화열을 이용한 냉각장치 설명도이다. 본 고안에서 냉동사이클은 압축기(45), 응축기(44), 냉매저장탱크(43), 팽창벨브(또는 모세관)(42), 증발기(41)로 구성된다. 압축기(45)는 기체상태의 냉매를 압축하고, 응축기(44)에서는 압축된 냉매가 열을 발산하면서 액체가 되고, 액체가 된 냉매는 냉각시스템의 관성을 높이고자 설치된 냉매저장탱크(43)에 모이게 되고, 액체상태의 냉매는 팽창벨브(또는 모세관)(42)를 통과하면서 기체상태로 상태변화를 일으키며 부피가 팽창하기 시작한다. 팽창벨브(또는 모세관)(42)를 빠져나온 냉매는 팽창벨브(또는 모세관)(42)와 연결된 증발기(41)에서 주변에서 기화열을 흡수하면서 기체가 된다. 냉각의 효과를 높이기 위하여 변압기방열기(11)와 열교환하는 증발기(41)는 여러개 병렬로 설치한다. 증발기(41)를 지나온 기체는 압축기(45)로 들어가 압축되면서 냉동사이클의 한 사이클을 종료한다. 냉동사이클의 증발기(41)가 변압기 방열기(11)와 열교환이 잘 되도록 증발기(41)를 변압기방열기(11)가 완전히 감싸고 증발기(41) 표면에 절연유가 접하도록 한다. 변압기몸체(12)에 병렬로 설치된 여러개의 변압기방열기(11)에 도4와 같은 냉각장치를 모두 설치하여 일부 냉각장치의 고장에도 변압기 냉각에 문제점이 발생하지 않도록 한다. 변압기의 열을 쉽게 제거할 수 있다면 초전도변압기와 같은 효과를 얻을 수 있다. 팽창벨브(또는 모세관)(42)와 응축기(44) 사이에 설치된 냉매저장탱크(43)를 제거하는 것도 본고안의 범위에 포함된다. 변압기 손실전력이 상당히 큰 것을 감안하여 냉동시스템으로 냉각시킨 변압기방열기(11) 주변에 냉각용송풍기(31)을 설치하여 병렬로 운전하는 것도 본 고안의 범위에 포함된다. 최근 변전소가 건물내부 또는 지하에 설치되는 경우가 많으므로 변압기방열기(11)와 증발기(41)의 열교환은 변압기 근처에서 일어나므로 이렇게 기체상태의 냉매가 흡수한 열을 멀리 떨어진 다른 장소로 이동시켜 압축기(45)로 압축하고 응축기(44)에서 흡수한 열을 발산시킴으로써 실내 또는 지하공간의 열을 외부로 이동시킬 수 있도록 분리형으로 냉동시스템을 구성하는 것도 본 고안의 범위에 포함된다. 변압기방열기(11)는 변압기몸체(12)에서 쉽게 분리·조립되도록 하여 본 고안에 의한 냉각장치는 변압기방열기(11) 부속설비로 다룰 수 있다.4 is an explanatory view of a cooling apparatus using refrigerant vaporization heat of a refrigerating cycle according to the present invention. In the present invention, the refrigeration cycle is composed of a compressor 45, a condenser 44, a refrigerant storage tank 43, an expansion valve (or capillary tube) 42, the evaporator 41. The compressor 45 compresses the refrigerant in a gaseous state, and in the condenser 44, the compressed refrigerant dissipates heat to become liquid, and the refrigerant, which becomes liquid, is supplied to the refrigerant storage tank 43 installed to increase the inertia of the cooling system. As the liquid phase cools down, the liquid refrigerant passes through the expansion valve (or capillary tube) 42, causing a state change to a gaseous state and the volume starts to expand. The refrigerant exiting the expansion valve (or capillary) 42 becomes a gas while absorbing heat of vaporization from the evaporator 41 connected to the expansion valve (or capillary) 42. In order to enhance the cooling effect, the transformer radiator 11 and the evaporator 41 that exchange heat are installed in parallel. The gas passing through the evaporator 41 enters the compressor 45 and is compressed to end one cycle of the refrigeration cycle. The transformer radiator 11 completely surrounds the evaporator 41 and the insulating oil contacts the surface of the evaporator 41 so that the evaporator 41 of the refrigeration cycle exchanges heat well with the transformer radiator 11. By installing all of the cooling devices as shown in Figure 4 in a plurality of transformer radiators 11 installed in parallel in the transformer body 12 to prevent the cooling of the transformer even if some of the cooling device failure. If the heat of the transformer can be easily removed, the same effect as a superconducting transformer can be obtained. It is also within the scope of the present disclosure to remove the refrigerant storage tank 43 installed between the expansion valve (or capillary tube) 42 and the condenser 44. In consideration of the considerably large transformer loss power, it is also included in the scope of the present invention to operate the cooling blowers 31 in parallel around the transformer radiator 11 cooled by the refrigeration system. Recently, since substations are often installed in buildings or underground, heat exchange between the transformer radiator 11 and the evaporator 41 takes place near the transformer, thus moving the heat absorbed by the gaseous refrigerant to another place far away. It is also within the scope of the present invention to construct a refrigeration system in a separate type to be able to move the heat in the indoor or underground space to the outside by compressing to 45 and dissipating heat absorbed by the condenser 44. The transformer radiator 11 can be easily separated and assembled from the transformer body 12 so that the cooling device according to the present invention can be treated as an accessory of the transformer radiator 11.

도5는 증발기(41)와 압축기(45) 사이에 터빈(51)을 설치하여 기화된 냉매가 기체가 되어 부피가 확장되면서 발생하는 물리적 힘에 의해 터빈(51)이 돌 수 있도록 한다. 터빈(51) 축에는 발전기(또는 기계장치)(52)를 설치하여 전기에너지 또는 물리에너지를 얻을 수 있어 에너지 생산도 가능하다. 터빈(51)을 돌린 기체상태의 냉매는 압축기(45)로 들어가서 다시 압축되어 새로운 사이클을 시작한다.5 shows that the turbine 51 is installed between the evaporator 41 and the compressor 45 so that the turbine 51 can be turned by the physical force generated as the vaporized refrigerant becomes gas and expands in volume. Turbine 51 shaft is provided with a generator (or a mechanical device) 52 to obtain electrical energy or physical energy, energy production is also possible. The gaseous refrigerant that rotated the turbine 51 enters the compressor 45 and is compressed again to start a new cycle.

도6은 변압기의 1년간 운전과정에서 변압기에 가해지는 온도를 높은 것부터 낮은 것 순서로 정렬한 그래프다. 변압기부하와 대기온도에 따라 변압기 온도는 달라진다. 변압기허용온도 이상의 온도에 해당하는 영역은 냉각영역(61)에 해당되며 기존의 냉각방법으로 냉각을 한다. 그러나 동일 변압기를 과부하운전하면 변압기 온도는 과부하운전곡선과 같이 온도가 올라가고 추가로 냉각이 필요한 추가냉각 영역(62)이 발생하며 이 영역은 본 고안에 의한 냉각장치로 냉각을 시킨다면 변압기는 기존의 개념과는 달리 더 많은 용량까지 운전이 가능하므로 도심지와 같이 변전소건설이 어려운 지역에서 과부하운전이 필요한 경우 매우 유용하다.FIG. 6 is a graph in which the temperature applied to the transformer during one year of operation of the transformer is arranged in order from high to low. Transformer temperature varies with transformer load and ambient temperature. The area corresponding to the temperature above the transformer allowable temperature corresponds to the cooling area 61 and is cooled by the existing cooling method. However, when overloading the same transformer, the transformer temperature rises like the overload operation curve, and an additional cooling zone 62 is required, which requires additional cooling. If this zone is cooled by the cooling device according to the present invention, the transformer is a conventional concept. Unlike this, it is possible to operate up to more capacity, so it is very useful when overload operation is required in the area where substation construction is difficult such as downtown.

변압기에 가해지는 열을 냉동사이클에 의한 냉매 기화열을 이용하여 냉각시킴으로써 열을 효과적으로 냉각시켜 변압기의 용량을 증대하고 효율을 높일 수 있다. 또한 지금까지의 자연냉각 또는 풍냉식 또는 수냉식 등의 방법보다 더 강한 냉동의 방법으로 변압기를 냉각시켜 변압기방열기(11) 규모를 축소시켜 변전소 부지의 규모를 획기적으로 줄일 수 있다. 또한 냉매의 기화시 팽창되는 부피에 의한 물리적인 힘에 의해 터빈(51)을 돌려 전기에너지 또는 물리에너지를 생산할 수도 있다.By cooling the heat applied to the transformer using the refrigerant vaporization heat by the refrigeration cycle, the heat can be effectively cooled to increase the capacity of the transformer and increase efficiency. In addition, by reducing the size of the transformer radiator 11 by cooling the transformer by a method of stronger refrigeration than the conventional methods such as natural cooling or air cooling or water cooling, the size of the substation site can be drastically reduced. In addition, the turbine 51 may be turned by the physical force due to the volume that is expanded during the vaporization of the refrigerant to produce electrical energy or physical energy.

Claims (2)

증발기(41)를 변압기방열기(11)가 완전히 감싸고 증발기(41) 표면에 변압기 절연유가 접하도록 만든 다수의 증발기(41)·변압기방열기(11) 열교환장치와; 다수의 증발기(41)·변압기방열기(11) 열교환장치, 압축기(45), 응축기(44), 냉매저장탱크(43), 다수의 팽창벨브(또는 모세관), 다시 다수의 증발기(41)·변압기방열기(11) 열교환장치로 순환되도록 순서를 이루며 관으로 연결되는 냉동사이클을 특징으로 하는 냉동사이클의 냉매 기화열을 이용한 변압기 냉각장치.A plurality of evaporator 41 and transformer radiator 11 heat exchangers in which the evaporator 41 is completely enclosed by the transformer radiator 11 and the transformer insulating oil is in contact with the surface of the evaporator 41; Multiple evaporators 41 and transformer radiators 11 Heat exchangers, compressors 45, condensers 44, refrigerant storage tanks 43, multiple expansion valves (or capillaries), again multiple evaporators 41 and transformers Radiator (11) Transformer cooling device using the refrigerant vaporization heat of the refrigeration cycle characterized in that the cooling cycle is connected to the tube in order to circulate to the heat exchanger. 제1항에 있어서, 다수의 증발기(41)·변압기방열기(11) 열교환장치와 압축기(45) 사이에 추가되는 터빈(51)과; 터빈(51) 축에 연결되는 발전기(또는 기계장치)(52)를 특징으로 하는 냉동사이클의 냉매 기화열을 이용한 변압기 냉각장치.A turbine (51) added between the plurality of evaporators (41) and the transformer radiators (11) of the heat exchanger and the compressor (45); Transformer (51) using the refrigerant vaporization heat of the refrigeration cycle characterized in that the generator (or mechanism) 52 connected to the shaft of the turbine (51).
KR20040033312U 2004-11-24 2004-11-24 Transformer cooling device using refrigerant vaporization heat of refrigeration cycle KR200375025Y1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR20040033312U KR200375025Y1 (en) 2004-11-24 2004-11-24 Transformer cooling device using refrigerant vaporization heat of refrigeration cycle
PCT/KR2005/003979 WO2006057516A1 (en) 2004-11-24 2005-11-24 The cooler for transformer using refrigeration cycle

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR20040033312U KR200375025Y1 (en) 2004-11-24 2004-11-24 Transformer cooling device using refrigerant vaporization heat of refrigeration cycle
KR20-2004-0035075U KR200378014Y1 (en) 2004-12-09 2004-12-09 Radiator-embedded transformer chiller using refrigeration cycle
KR20-2005-0005335U KR200385032Y1 (en) 2005-02-28 2005-02-28 Transformer chiller through spaced additional radiator refrigeration cycle

Publications (1)

Publication Number Publication Date
KR200375025Y1 true KR200375025Y1 (en) 2005-02-04

Family

ID=36498225

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20040033312U KR200375025Y1 (en) 2004-11-24 2004-11-24 Transformer cooling device using refrigerant vaporization heat of refrigeration cycle

Country Status (2)

Country Link
KR (1) KR200375025Y1 (en)
WO (1) WO2006057516A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007108625A1 (en) * 2006-03-22 2007-09-27 Seong-Hwang Rim The cooler for transformer using generation cycle
KR100764408B1 (en) 2006-03-22 2007-10-05 임성황 Transformer Cooling Device Using Power Generation Rankine Cycle

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL2104116T3 (en) 2008-03-12 2017-09-29 Alstom Transport Technologies Oil cooling system, particularly for transformers feeding traction electric motors, transformer with said system and method for determining the cooling fluid flow in a cooling system
EP2431985A1 (en) 2010-09-16 2012-03-21 Starkstrom-Gerätebau GmbH Integrated cooling system
RU180433U1 (en) * 2017-05-23 2018-06-14 Александр Михайлович Брянцев Three-phase reactor-transformer with adjustable saturation of the magnetic circuit
RU177199U1 (en) * 2017-05-23 2018-02-13 Федеральное государственное бюджетное образовательное учреждение высшего образования "Уфимский государственный нефтяной технический университет" OIL TRANSFORMER COOLING UNIT WITH ELECTRIC CLEANING FILTER
RU2717230C1 (en) * 2019-02-18 2020-03-19 Федеральное государственное бюджетное образовательное учреждение высшего образования "Уфимский государственный нефтяной технический университет" Device of sf6-water cooling of oil transformer
CN109935446B (en) * 2019-03-27 2021-05-04 国网山东省电力公司日照供电公司 Oil-immersed transformer heat abstractor
CN111584195B (en) * 2020-05-26 2021-04-23 广东电网有限责任公司 Air cooling device of power transformer
RU2764732C1 (en) * 2021-03-22 2022-01-20 Федеральное государственное бюджетное образовательное учреждение высшего образования "Уфимский государственный нефтяной технический университет" Oil transformer cooling device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030062519A (en) * 2002-01-17 2003-07-28 정기영 Cooling system for transformer
JP4007847B2 (en) * 2002-05-07 2007-11-14 愛知電機株式会社 Deterioration product recovery and deodorization equipment in vacuum heating equipment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007108625A1 (en) * 2006-03-22 2007-09-27 Seong-Hwang Rim The cooler for transformer using generation cycle
KR100764408B1 (en) 2006-03-22 2007-10-05 임성황 Transformer Cooling Device Using Power Generation Rankine Cycle
EP1999766A1 (en) * 2006-03-22 2008-12-10 Seong-Hwang Rim The cooler for transformer using generation cycle
EP1999766A4 (en) * 2006-03-22 2013-01-02 Seong-Hwang Rim The cooler for transformer using generation cycle

Also Published As

Publication number Publication date
WO2006057516A1 (en) 2006-06-01
WO2006057516A8 (en) 2006-07-27

Similar Documents

Publication Publication Date Title
KR200375025Y1 (en) Transformer cooling device using refrigerant vaporization heat of refrigeration cycle
JPWO2009072364A1 (en) Geothermal equipment
KR100356627B1 (en) Ammonia refrigerator
JP2009530844A (en) Transformer cooling device using power generation cycle
KR100764408B1 (en) Transformer Cooling Device Using Power Generation Rankine Cycle
WO2013012270A2 (en) Low temperature boiling cooling system in which a condenser is located below or at a lateral side of an evaporator
KR200378014Y1 (en) Radiator-embedded transformer chiller using refrigeration cycle
KR200435314Y1 (en) Electric power equipment cooling device using refrigerant vaporization heat
KR200382307Y1 (en) Transformer body chiller using refrigeration cycle
CN100545963C (en) Evaporative cooling traction transformer
JP2009085528A (en) Heat-pump hot-water supply device
KR100764328B1 (en) Transformer chiller using compressor-less refrigeration cycle
KR200426427Y1 (en) Thermo-Siphon Applied Transformer Cooling System
KR200385032Y1 (en) Transformer chiller through spaced additional radiator refrigeration cycle
KR200382236Y1 (en) Underground distribution transformer applying refrigeration cycle to cooling system
JPH01503324A (en) Centralized cascade refrigeration system
KR200380359Y1 (en) Jacketed transformer chiller using refrigeration cycle
KR200380361Y1 (en) Transformer hollow winding chiller using refrigeration cycle
JP2011077385A (en) Gas-insulated transformer
KR200382400Y1 (en) Generator / Motor Frame Cooling Device with Refrigeration Cycle
KR200402624Y1 (en) Transformer / reactor winding cooling system with refrigerant passage
KR20060079148A (en) Transformer hollow winding chiller using refrigeration cycle
KR20050074748A (en) Airconditioner using thermoelectric semiconductor
KR200382399Y1 (en) Generator / motor stator cooling system using refrigeration cycle
KR20060080135A (en) Cable cooling device by forced circulation of insulating oil between parallel OF cables

Legal Events

Date Code Title Description
REGI Registration of establishment
FPAY Annual fee payment

Payment date: 20060124

Year of fee payment: 3

LAPS Lapse due to unpaid annual fee