KR100764408B1 - Transformer Cooling Device Using Power Generation Rankine Cycle - Google Patents

Transformer Cooling Device Using Power Generation Rankine Cycle Download PDF

Info

Publication number
KR100764408B1
KR100764408B1 KR1020060026026A KR20060026026A KR100764408B1 KR 100764408 B1 KR100764408 B1 KR 100764408B1 KR 1020060026026 A KR1020060026026 A KR 1020060026026A KR 20060026026 A KR20060026026 A KR 20060026026A KR 100764408 B1 KR100764408 B1 KR 100764408B1
Authority
KR
South Korea
Prior art keywords
transformer
heat exchanger
working fluid
boiler
gas
Prior art date
Application number
KR1020060026026A
Other languages
Korean (ko)
Inventor
임성황
Original Assignee
임성황
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 임성황 filed Critical 임성황
Priority to KR1020060026026A priority Critical patent/KR100764408B1/en
Priority to PCT/KR2007/001328 priority patent/WO2007108625A1/en
Priority to JP2009501348A priority patent/JP2009530844A/en
Priority to CN2007800101621A priority patent/CN101454849B/en
Priority to EP07745595A priority patent/EP1999766A4/en
Priority to US12/092,972 priority patent/US20080314077A1/en
Application granted granted Critical
Publication of KR100764408B1 publication Critical patent/KR100764408B1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F19/00Advertising or display means not otherwise provided for
    • G09F19/22Advertising or display means on roads, walls or similar surfaces, e.g. illuminated
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C11/00Details of pavings
    • E01C11/24Methods or arrangements for preventing slipperiness or protecting against influences of the weather
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C2201/00Paving elements
    • E01C2201/08Paving elements having direction indicating means
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F19/00Advertising or display means not otherwise provided for
    • G09F19/22Advertising or display means on roads, walls or similar surfaces, e.g. illuminated
    • G09F2019/223Advertising or display means on roads, walls or similar surfaces, e.g. illuminated in pavement panels

Abstract

An apparatus for cooling a transformer is provided to reduce an installation space by reducing the size of a condenser and to recollect energy in an expander. An apparatus for cooling a transformer includes an operation fluid, a transformer(10), a boiler heat exchanger(13), more than two circulation pipes(11), a circulation pump(12) and a generation Rankine cycle. The operation fluid is a refrigerant or liquefied gas. The boiler heat exchanger(13) consists of two separate spaces, one of which is for the circulation of insulation oil or gas of the transformer(10), and the other of which is for the circulation and heat-exchange of the operation fluid, refrigerant or liquefied gas. The circulation pipes(11) circulates the dielectric oil or gas inside the transformer(10) between the transformer(10) and the boiler heat exchanger(13). The circulation pump(12) is installed at more than one circulation pipe(11). The generation Rankine cycle is the connection by a pipe from the boiler heat exchanger(13), a pressure adjusting valve(14), an expander(15), a condenser(16), an operation fluid tank(17), an operation fluid supplying pump(18), an operation fluid adjusting valve(19), and back to the boiler heat exchanger(13).

Description

발전랭킨사이클을 활용한 변압기 냉각장치{omitted}Transformer chiller using power generation Rankine cycle {omitted}

도 1은 본 발명의 발전랭킨사이클을 활용한 변압기 냉각장치 설명도이다.1 is an explanatory view of a transformer cooling device utilizing the power generation Rankine cycle of the present invention.

도 2는 냉동사이클의 P-h선도 설명도이다.2 is an explanatory view of a P-h diagram of a refrigeration cycle.

도 3은 랭킨사이클의 P-h선도 설명도이다.3 is an explanatory diagram of a P-h diagram of a Rankine cycle.

도 4는 서지드럼(Surge Drum)이 추가된 변압기 냉각장치 설명도이다.4 is an explanatory diagram of a transformer cooling device to which a surge drum is added.

도 5는 팽창부에 터빈이 설치된 사례 설명도이다.5 is an explanatory view of a case in which a turbine is installed in the expansion unit.

도 6은 기체작동유체순환관이 설치된 사례 설명도이다.6 is a diagram illustrating a case where a gas working fluid circulation tube is installed.

도 7은 보일러 내포형 방열기를 보일러용열교환기로 활용한 사례 설명도이다.7 is a diagram illustrating an example in which a boiler-containing radiator is used as a heat exchanger for a boiler.

도 8은 보일러 외포형 방열기를 보일러용열교환기로 활용한 사례 설명도이다.8 is a diagram illustrating a case using a boiler envelope radiator as a heat exchanger for a boiler.

도 9는 미응축기체압축기가 설치된 사례 설명도이다.9 is a diagram illustrating a case where a non-condensing gas compressor is installed.

〈도면의 주요부분에 대한 부호의 설명〉<Explanation of symbols for main parts of drawing>

10 : 변압기(또는 방열판) 11 : 순환관10: transformer (or heat sink) 11: circulation tube

12 : 순환펌프 13 : 보일러용열교환기12: circulation pump 13: heat exchanger for boiler

14 : 압력조절밸브 15 : 팽창기14 pressure control valve 15 expander

16 : 응축기 17 : 작동유체탱크16 condenser 17 working fluid tank

18 : 작동유체공급펌프 19 : 작동유체량조절밸브18: working fluid supply pump 19: working fluid volume control valve

41 : 서지드럼(Surge Drum) 42 : 작동유체순환펌프41: Surge Drum 42: Working Fluid Circulation Pump

51 : 터빈 52 : 발전기(또는 기계장치)51 turbine 52 generator (or mechanism)

53 : 액분리기 61 : 기체작동유체순환관53 liquid separator 61 gas working fluid circulation tube

71 : 변압기방열기 72 : 보일러71: transformer radiator 72: boiler

81 : 단열재 82 : 외함81: insulation 82: enclosure

91 : 미응축기체압축기91: non-condensing gas compressor

현재까지 상용화된 변압기 냉각방법은 공냉식, 풍냉식, 송유풍냉식 및 수냉식이 적용되고 있으며 본 발명자는 실용신안등록 제375025호(2005.01.26), 제378014호(2005.02.28) 및 제385032호(2005.05.16) 등을 통하여 폐회로냉동사이클 및 온도차발전냉동사이클이 적용된 변압기 냉각장치를 고안한 바 있다. 그러나 고안들에 적용된 것은 냉동사이클이다. 냉동사이클을 사용하면 압축기를 필히 사용하여야 하며 응축기에서 제거시켜야 하는 열은 변압기에서 빼앗아 온 열에 압축기가 행한 일에 해당하는 열을 추가한 것이 되어 응축기가 커지는 단점이 있다.Commercially available transformer cooling methods are air-cooled, wind-cooled, oil-cooled, and water-cooled. The present inventors have applied for utility model registration Nos. 375025 (January 26, 2005), 378014 (October 28, 2005) and 385032 ( 2005.05.16) has devised a transformer cooling system to which closed-loop refrigeration cycle and temperature-differential generation refrigeration cycle are applied. But what has been applied to the designs is the refrigeration cycle. If a refrigeration cycle is used, the compressor must be used and the heat to be removed from the condenser has a disadvantage in that the condenser becomes large because heat added to the heat taken from the transformer is added to the work performed by the compressor.

본 발명에서는 변압기의 온도에 대한 운전기준은 상온보다 훨씬 높은 온도인 95℃ 정도이므로 변압기를 냉각한다고 하더라도 냉각대상인 변압기 온도를 응축시 키는 대기온도 보다 높게 유지해도 상관이 없으므로 냉동사이클 보다는 역냉동사이클인 발전랭킨사이클을 적용하는 것을 고려한다. 변압기 냉각에 있어서 냉동사이클이나 발전랭킨사이클이나 변압기로부터 취득한 열을 최종적으로 응축기에서 공기 또는 물로 제거시켜야 한다. 이 경우 응축기는 변전소 구내에 설치되어야 하므로 응축기도 설치공간을 필요로 하므로 효과적인 변압기 냉각장치를 구현하기 위해서는 응축기를 최소화하는 방안을 고려한다. 또한 기존의 변압기방열기를 활용하여 본 고안에 의한 냉각장치가 가동되지 않을 경우에도 냉각성능을 발휘하는 방법을 강구한다.In the present invention, since the operating standard for the temperature of the transformer is about 95 ° C., which is much higher than room temperature, even if the transformer is cooled, it does not matter whether the temperature of the transformer to be condensed is kept higher than the atmospheric temperature. Consider applying phosphorus-generated Rankine cycles. In transformer cooling, the heat obtained from refrigeration cycles, power generating cycles or transformers must be finally removed from the condenser with air or water. In this case, the condenser must be installed in the substation premises, so the condenser also needs a space for installation. Therefore, in order to implement an effective transformer cooling system, the condenser must be minimized. In addition, by using a conventional transformer radiator, even if the cooling device according to the present invention is devised a method of exhibiting the cooling performance.

도1은 본 발명의 발전랭킨사이클을 활용한 변압기 냉각장치 설명도이다. 절연유 또는 절연가스를 저장하는 변압기(또는 방열판)(10)의 절연유 또는 절연가스는 순환펌프(12)의 작동에 변압기(또는 방열판)(10)와 보일러용열교환기(13) 1차측 사이를 순환관(11)을 통하여 순환하면서 열교환에 의해 보일러용열교환기(13) 2차측에 유입되는 작동유체를 끓인다. 본 발명에 사용되는 작동유체는 냉동사이클에 사용되는 냉매나 액화가스 등을 사용한다. 보일러용열교환기(13) 2차측에 유입된 작동유체는 1차측에 유입 되어 순환되는 변압기의 절연유 또는 절연가스로부터 열을 흡수하여 끓어 기체가 되며 압력조절밸브(14)에 의해 압력과 비등점이 조절된다. 기화된 작동유체는 압력조절밸브(14)를 통하여 넓은 공간을 가진 팽창기(15)로 유입되어 단열팽창 되고 그 내부에 설치된 터빈 등의 기계장치에 일을 행하고 에너지를 일부 상실하고 응축기(16)로 유입되어 열을 빼앗기고 액체상태로 상태변화를 한다. 액화된 작동유체는 작동유체탱크(17)로 유입되고 작동유체공급펌프(18)에 의해 작동유체량조절밸브(19)를 거쳐 보일러용열교환기(13)에 유입되어 냉각의 한 사이클을 종료한다.1 is an explanatory view of a transformer cooling device utilizing the power generation Rankine cycle of the present invention. The insulating oil or insulating gas of the transformer (or heat sink) 10 storing the insulating oil or insulating gas is circulated between the transformer (or heat sink) 10 and the primary side of the heat exchanger 13 for the boiler during operation of the circulation pump 12. Boil the working fluid flowing into the secondary side of the heat exchanger for the boiler 13 by heat exchange while circulating through the pipe 11. The working fluid used in the present invention uses a refrigerant or liquefied gas used in a refrigeration cycle. The working fluid flowing into the secondary side of the boiler heat exchanger (13) absorbs heat from the insulating oil or insulating gas of the transformer, which flows into the primary side, and boils to become a boiling gas, and the pressure and boiling point are controlled by the pressure regulating valve (14). do. The vaporized working fluid flows into the inflator 15 having a large space through the pressure regulating valve 14 to insulate and expand adiabatic and to work on a mechanical device such as a turbine installed therein. It flows in and loses heat and changes its state to a liquid state. The liquefied working fluid flows into the working fluid tank 17 and enters the boiler heat exchanger 13 through the working fluid flow control valve 19 by the working fluid supply pump 18 to end one cycle of cooling.

도 2는 냉동사이클의 P-h선도 설명도이다. 냉동사이클에서 증발기의 압력(Pe)과 온도는 응축기의 압력(Pc)과 온도 보다 낮다. 그렇지만 변압기에서는 증발기와 접하는 변압기절연유 온도를 응축기가 접하는 대기온도 보다 낮게 유지할 이유가 없다. 또한 응축기가 제거해야 하는 열량(Ec)은 변압기로부터 취득한 열량(Ee)에 압축기가 행한 일에 상응하는 열량(Ep)을 추가하여 응축기가 커지는 단점이 있다.2 is an explanatory view of a Ph diagram of a refrigeration cycle. In the refrigeration cycle, the pressure (P e ) and temperature of the evaporator are lower than the pressure (P c ) and temperature of the condenser. However, in a transformer, there is no reason to keep the temperature of the transformer oil in contact with the evaporator below the ambient temperature in contact with the condenser. In addition, the heat amount E c that the condenser needs to be removed has a disadvantage in that the condenser becomes large by adding a heat amount E p corresponding to the work done by the compressor to the heat amount E e obtained from the transformer.

도 3은 랭킨사이클의 P-h선도 설명도이다. 랭킨사이클에서 보일러의 압력(Pb)과 온도는 응축기의 압력(Pc)과 온도 보다 높다. 따라서 변압기에서는 보일러와 접하는 변압기절연유 온도는 응축기가 접하는 대기온도 보다 높게 유지할 수 있다. 또한 응축기가 제거해야 하는 열량(Ec)은 변압기로부터 취득한 열량(Eb)에서 팽창기 내부에 존재하는 기기가 외부로 행한 일에 상응하는 열량(Eg)을 차감한 값이 되므로 응축기가 작아지는 장점이 있다.3 is an explanatory diagram of a Ph diagram of a Rankine cycle. In the Rankine cycle, the pressure (P b ) and temperature of the boiler are higher than the pressure (P c ) and temperature of the condenser. Therefore, in the transformer, the temperature of the transformer insulating oil in contact with the boiler can be maintained higher than the ambient temperature in contact with the condenser. In addition, the amount of heat (E c ) that the condenser needs to be removed is equal to the amount of heat (E b ) obtained from the transformer minus the amount of heat (E g ) corresponding to the work done outside of the equipment inside the expander by the condenser. There is an advantage.

도 4는 서지드럼(Surge Drum)이 추가된 변압기 냉각장치 설명도이다. 보일러용열교환기(13) 2차측에 공급되는 작동유체의 공급을 원활하게 하기 위하여 작동유체순환펌프(42)에 의해 보일러용열교환기(13) 2차측과 서지드럼(Surge Drum)(41) 사이를 작동유체가 순환하도록 관으로 연결하고 서지드럼(Surge Drum)(41) 내부로 유입된 기체상태 작동유체는 압력조절밸브(14)를 통하여 유출되도록 관으로 연결하고, 작동유체량조절밸브(19)를 지나온 액체상태 작동유체는 서지드럼(Surge Drum)(41)으로 유입되도록 관으로 연결한다. 작동유체는 보일러용열교환기(13) 2차측과 서지드럼(Surge Drum)(41) 사이를 순환하면서 보일러용열교환기(13) 1차측과 열교환을 잘 하여 빨리 증기상태로 변한다. 즉 보일러기능을 보강한 것이다. 나머지 작동원리는 도1에서 설명한 바와 같다.4 is an explanatory diagram of a transformer cooling device to which a surge drum is added. In order to facilitate the supply of the working fluid supplied to the secondary side of the boiler heat exchanger (13), between the secondary side of the boiler heat exchanger (13) and the surge drum (41) by the operating fluid circulation pump (42). Connect the working fluid to the pipe to circulate, and the gaseous working fluid introduced into the surge drum 41 is connected to the pipe so that the working fluid flows out through the pressure regulating valve 14, and the working fluid flow control valve 19 is connected. Passing the liquid working fluid is connected to the pipe to enter the surge drum (Surge Drum) (41). The working fluid circulates between the secondary side of the boiler heat exchanger 13 and the surge drum 41, and exchanges heat well with the primary side of the boiler heat exchanger 13 to quickly change into a vapor state. In other words, the boiler function is reinforced. The remaining operation principle is as described in FIG.

도 5는 팽창기에 터빈이 설치된 사례 설명도이다. 팽창기(15)(미도시)는 넓은 공간을 형성하고 있으며 그 안에 터빈(51)을 두고 터빈 축에 발전기(또는 기계장치)(52)를 설치하여 기화된 작동유체의 흐름에 의해 에너지를 회수한다. 그림에서는 팽창기(15)를 터빈(51)으로 대체하여 도시하였다. 이 때 에너지 상실에 따라 작동유체의 일부가 액화될 경우 이를 순환회로에 투입하기 위하여 액분리기(53)를 터빈(51)에 이어 설치한다. 액체상태 작동유체는 액분리기(53)에서 작동유체탱크(17)로 유입되고 기체상태 작동유체는 응축기(16)로 유입된다. 나머지 원리는 도1과 도4에서 설명한 바와 같다.5 is a diagram illustrating a case where a turbine is installed in the expander. The expander 15 (not shown) forms a large space, and has a turbine 51 therein, and installs a generator (or a mechanism) 52 on the turbine shaft to recover energy by the flow of vaporized working fluid. . In the figure, the inflator 15 is replaced with the turbine 51. At this time, when a part of the working fluid is liquefied due to the energy loss, the liquid separator 53 is installed after the turbine 51 in order to inject it into the circulation circuit. The liquid working fluid flows into the working fluid tank 17 from the liquid separator 53 and the gas working fluid flows into the condenser 16. The remaining principles are the same as described with reference to FIGS. 1 and 4.

도 6은 기체작동유체순환관이 설치된 사례 설명도이다. 터빈(51)의 회전에 의해 기체상태 작동유체는 송풍되지만 순환회로가 없으며 응축기(16)에서 열교환이 잘 일어나지 않을 수 있다. 응축기(16) 끝부분에 액분리기(53)를 추가하고 액분리기(53)의 기체유출관과 터빈(51) 기체유체유입관 사이를 연결하는 기체작동유체순환관(61)을 추가하여 터빈(51), 액분리기(53), 응축기(16), 액분리기(53), 다시 터빈(51)으로 기체상태 작동유체가 순환하여 응축효과를 높이도록 한다. 나머지 원리는 도1, 도4, 도5에서 설명한 바와 같다.6 is a diagram illustrating a case where a gas working fluid circulation tube is installed. The gaseous working fluid is blown by the rotation of the turbine 51, but there is no circulation circuit and heat exchange in the condenser 16 may not occur. A liquid separator (53) is added to the end of the condenser (16), and a gas working fluid circulation tube (61) connecting the gas outlet pipe of the liquid separator (53) and the gas fluid inlet pipe of the turbine (51) is added to the turbine (51). ), The liquid separator 53, the condenser 16, the liquid separator 53, and the turbine 51 again circulate gaseous working fluid to increase the condensation effect. The remaining principles are the same as those described with reference to FIGS. 1, 4, and 5.

도 7은 보일러 내포형 방열기를 보일러용열교환기로 활용한 사례 설명도이다. 변압기방열기(71)의 내부에 보일러(72)의 공간을 형성하여 작동유체가 보일러(72)에 유입되어 끓을 수 있도록 하고, 냉각장치를 작동하지 않을 경우에는 변압기방열판(71) 외부 표면을 통하여 냉각장치 기능을 수행할 수 있다. 이 것으로 보일러용열교환기(13)를 대신할 수 있다.7 is a diagram illustrating an example in which a boiler-containing radiator is used as a heat exchanger for a boiler. A space of the boiler 72 is formed inside the transformer radiator 71 so that the working fluid flows into the boiler 72 and boils, and when the cooling device is not operated, cooling is performed through the outer surface of the transformer radiator 71. Device functions can be performed. This can replace the heat exchanger 13 for boilers.

도 8은 보일러 외포형 방열기를 보일러용열교환기로 활용한 사례 설명도이다. 변압기방열기(71)를 감싸도록 설치되는 보일러(72)와 이 보일러(72)를 감싸도록 순서대로 외부에 설치되는 단열재(81), 외함(82)으로 마감처리 한다. 이 것으로 보일러용열교환기(13)를 대신할 수 있다.8 is a diagram illustrating a case using a boiler envelope radiator as a heat exchanger for a boiler. Boiler 72 is installed to surround the transformer radiator 71 and the heat insulating material 81, the outer box 82 is installed in order to surround the boiler 72 is finished. This can replace the heat exchanger 13 for boilers.

도 9는 미응축기체압축기가 설치된 사례 설명도이다. 응축기(16)의 성능이 모자랄 경우 일부 미응축기체가 존재할 수 있고 응축기(16)를 통과한 미응축기체는 미응축기체압축기(91)에서 압축된 후 액체상태로 변하고 작동유체공급펌프(18)를 통하여 보일러용열교환기(13)로 유입된다. 다른 원리는 도1에서 설명한 바와 같다.9 is a diagram illustrating a case where a non-condensing gas compressor is installed. If the performance of the condenser 16 is insufficient, some uncondensed gas may be present, and the uncondensed gas that has passed through the condenser 16 is compressed in the uncondensed gas compressor 91 to become a liquid state, and the working fluid supply pump 18 Through the heat exchanger for the boiler 13 is introduced. The other principle is as described in FIG.

변압기의 냉각에 냉동사이클을 적용할 수도 있지만 이 경우 압축기는 반드시 필요하며 응축기(16)는 증발기에서 취득한 열과 압축기가 한 일에 해당하는 열을 추가하여 제거해야 하므로 응축기가 커지는 단점이 있었다. 변압기의 유지온도가 상온보다 높아도 문제가 되지 않은 점을 착안하여 역냉동사이클인 발전랭킨사이클을 적용하면 응축기(16)의 규모를 줄일 수 있어 설치공간이 작아지고, 팽창기(15) 에서 에너지도 회수 할 수 있는 장점이 있다. 큰 규모의 압축기가 필요치 않으므로 에너지 사용량도 줄일 수 있다.Although a refrigeration cycle may be applied to the cooling of the transformer, a compressor is necessary in this case, and the condenser 16 has a disadvantage in that the condenser becomes large because the heat obtained from the evaporator must be removed by adding heat corresponding to the work done by the compressor. Taking into consideration that it is not a problem even if the maintenance temperature of the transformer is higher than room temperature, the application of the power generation Rankine cycle, which is a reverse refrigeration cycle, can reduce the size of the condenser 16, thereby reducing the installation space and recovering energy from the expander 15. There is an advantage to this. Energy consumption is also reduced because no large compressor is required.

Claims (7)

삭제delete 냉매 또는 액화가스인 작동유체와; 변압기(또는 방열판)(10)와; 2개의 분리된 공간으로 구성되고 1개 공간에는 변압기(또는 방열판)(10)의 절연유 또는 가스가 순환하고, 또 1개의 공간에는 냉매 또는 액화가스인 작동유체가 순환하면서 열교환하여 끓는 보일러용열교환기(13)와; 변압기 내부에 채워진 절연유 또는 가스가 변압기(또는 방열판)(10)와 보일러용열교환기(13) 사이에 순환하도록 설치되는 2개 이상의 순환관(11)과; 1개 이상의 순환관(11)에 설치되는 순환펌프(12)와; 보일러용열교환기(13), 압력조절밸브(14), 팽창기(15), 응축기(16), 작동유체탱크(17), 작동유체공급펌프(18), 작동유체량조절밸브(19), 다시 보일러용열교환기(13) 순서로 관으로 연결되며 폐회로를 구성하는 발전랭킨사이클을 특징으로 하는 발전랭킨사이클을 활용한 변압기 냉각장치.A working fluid which is a refrigerant or a liquefied gas; A transformer (or heat sink) 10; Insulated oil or gas of transformer (or heat sink) 10 is circulated in two separate spaces, and in one space, a working heat exchanger, which is a refrigerant or a liquefied gas, circulates while circulating heat and boils. (13); Two or more circulation pipes 11 installed to circulate between the insulating oil or gas filled in the transformer between the transformer (or heat sink) 10 and the boiler heat exchanger 13; A circulation pump 12 installed at one or more circulation pipes 11; Heat exchanger for boiler (13), pressure regulating valve (14), expander (15), condenser (16), working fluid tank (17), working fluid supply pump (18), working fluid volume control valve (19), boiler again The heat exchanger (13) is connected to the pipe in the order of the transformer cooling device using the power generation Rankine cycle, characterized in that the power generation Rankine cycle constituting a closed circuit. 제2항에 있어서, 응축기(16) 후단에 관으로 연결되는 미응축기체압축기(91)와; 미응축기체압축기(91)와 보일러용열교환기(13) 사이를 연결하는 관에 연결되는 작동유체공급펌프(18)를 특징으로 하는 발전랭킨사이클을 활용한 변압기 냉각장치.The non-condensing gas compressor (91) of claim 2 connected to the rear end of the condenser (16); Transformer cooling device utilizing the power generation Rankine cycle, characterized in that the working fluid supply pump (18) connected to the pipe connecting the non-condensing gas compressor (91) and the heat exchanger for the boiler (13). 제2항에 있어서, 보일러용열교환기(13)와 2개이상의 순환관으로 연결되는 서지드럼(Surge Drum)(41)과; 보일러용열교환기(13)와 서지드럼(Surge Drum)(41) 사이를 연결하는 순환관로에 설치되는 작동유체순환펌프(42)와; 압력조절밸브(14)와 보일러용열교환기(13)를 연결하는 관을 제거하고 압력조절밸브(14)와 서지드럼(Surge Drum)(41) 상부 기체공간과 연결하는 관과; 작동유체량조절밸브(19)와 보일러용열교환기(13)를 연결하는 관을 제거하고 작동유체량조절밸브(19)와 서지드럼(Surge Drum)(41) 하부 액체공간과 연결하는 관을 특징으로 하는 발전랭킨사이클을 활용한 변압기 냉각장치.According to claim 2, Surge drum (41) connected to the heat exchanger (13) for boiler and two or more circulation pipes; A working fluid circulation pump 42 installed in a circulation pipe connecting the boiler heat exchanger 13 and the surge drum 41; A pipe connecting the pressure control valve 14 and the boiler heat exchanger 13 to the upper gas space of the pressure control valve 14 and the surge drum 41; Remove the pipe connecting the working fluid volume control valve 19 and the heat exchanger for the boiler (13), characterized in that the pipe connecting the working fluid volume control valve (19) and the liquid space below the surge drum (Surge Drum) (41) Transformer cooling system using power generation Rankine cycle. 제2항에 있어서, 팽창기(15) 내부에 설치되는 터빈(51)과; 터빈(51) 축에 연결되는 발전기(또는 기계장치)(52)와; 터빈(51)과 응축기(16)를 연결하는 관 사이에 설치되는 액분리기(53)를 특징으로 하는 발전랭킨사이클을 활용한 변압기 냉각장치.3. The turbine of claim 2, further comprising: a turbine (51) installed inside the expander (15); A generator (or mechanism) 52 connected to the shaft of the turbine 51; Transformer cooling device utilizing the power generation Rankine cycle, characterized in that the liquid separator 53 is installed between the pipe connecting the turbine 51 and the condenser 16. 제5항에 있어서, 응축기(16) 후단에 추가로 설치되는 액분리기(53)와; 추가된 액분리기(53)에서 분리된 기체가 순환하도록 터빈(51)과 압력조절밸브(14) 사이의 관과 추가된 액분리기(53)와 연결하도록 설치되는 기체작동유체순환관(61)을 특징으로 하는 발전랭킨사이클을 활용한 변압기 냉각장치.A liquid separator (53) further installed after the condenser (16); A gas working fluid circulation tube 61 is installed to connect the tube between the turbine 51 and the pressure control valve 14 and the additional liquid separator 53 so that the gas separated in the additional liquid separator 53 circulates. Transformer cooling system utilizing power generation Rankine cycle. 삭제delete
KR1020060026026A 2006-03-22 2006-03-22 Transformer Cooling Device Using Power Generation Rankine Cycle KR100764408B1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020060026026A KR100764408B1 (en) 2006-03-22 2006-03-22 Transformer Cooling Device Using Power Generation Rankine Cycle
PCT/KR2007/001328 WO2007108625A1 (en) 2006-03-22 2007-03-19 The cooler for transformer using generation cycle
JP2009501348A JP2009530844A (en) 2006-03-22 2007-03-19 Transformer cooling device using power generation cycle
CN2007800101621A CN101454849B (en) 2006-03-22 2007-03-19 The cooler for transformer using generation cycle
EP07745595A EP1999766A4 (en) 2006-03-22 2007-03-19 The cooler for transformer using generation cycle
US12/092,972 US20080314077A1 (en) 2006-03-22 2007-03-19 Cooler For Transformer Using Generation Cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060026026A KR100764408B1 (en) 2006-03-22 2006-03-22 Transformer Cooling Device Using Power Generation Rankine Cycle

Publications (1)

Publication Number Publication Date
KR100764408B1 true KR100764408B1 (en) 2007-10-05

Family

ID=39419397

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060026026A KR100764408B1 (en) 2006-03-22 2006-03-22 Transformer Cooling Device Using Power Generation Rankine Cycle

Country Status (2)

Country Link
KR (1) KR100764408B1 (en)
CN (1) CN101454849B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101239303B1 (en) * 2013-01-16 2013-03-06 갑 동 김 Heat exchange type cooling system for transformer
CN116130211A (en) * 2023-03-31 2023-05-16 江苏恒大变压器有限公司 Energy-saving oil immersed transformer

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103256837A (en) * 2013-06-06 2013-08-21 国家电网公司 Evaporative cooling system
CN103794337B (en) * 2014-02-19 2016-05-04 国家电网公司 A kind of with SF6For the main transformer shell and tube heat dissipating method of coolant media
CN103824677B (en) * 2014-03-13 2016-06-01 国家电网公司 A kind of main transformer winding and oil flow optimum intelligent control system and the control method of the temperature difference
CN106240581A (en) * 2016-08-28 2016-12-21 中车大连机车车辆有限公司 Electric locomotive cooling system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020068001A (en) * 2002-07-08 2002-08-24 박종률 Heat recovery method of additional drain water of feed water heater discharged to condenser in power plant
WO2005004179A1 (en) 2003-07-07 2005-01-13 Rafic Chehouri Method of cooling an oil immersed electrical machine using a heat pump
KR200375025Y1 (en) 2004-11-24 2005-02-04 임성황 Transformer cooling device using refrigerant vaporization heat of refrigeration cycle
KR200378014Y1 (en) 2004-12-09 2005-03-10 임성황 Radiator-embedded transformer chiller using refrigeration cycle
KR20050108508A (en) * 2004-05-12 2005-11-17 이충석 Oil forced cooling apparatus for oil type high voltage transformer

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2399809Y (en) * 1999-06-09 2000-10-04 阮仕荣 Transpiration-cooled power transformer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020068001A (en) * 2002-07-08 2002-08-24 박종률 Heat recovery method of additional drain water of feed water heater discharged to condenser in power plant
WO2005004179A1 (en) 2003-07-07 2005-01-13 Rafic Chehouri Method of cooling an oil immersed electrical machine using a heat pump
KR20050108508A (en) * 2004-05-12 2005-11-17 이충석 Oil forced cooling apparatus for oil type high voltage transformer
KR200375025Y1 (en) 2004-11-24 2005-02-04 임성황 Transformer cooling device using refrigerant vaporization heat of refrigeration cycle
KR200378014Y1 (en) 2004-12-09 2005-03-10 임성황 Radiator-embedded transformer chiller using refrigeration cycle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101239303B1 (en) * 2013-01-16 2013-03-06 갑 동 김 Heat exchange type cooling system for transformer
CN116130211A (en) * 2023-03-31 2023-05-16 江苏恒大变压器有限公司 Energy-saving oil immersed transformer
CN116130211B (en) * 2023-03-31 2023-10-27 江苏恒大变压器有限公司 Energy-saving oil immersed transformer

Also Published As

Publication number Publication date
CN101454849A (en) 2009-06-10
CN101454849B (en) 2012-10-31

Similar Documents

Publication Publication Date Title
KR100764408B1 (en) Transformer Cooling Device Using Power Generation Rankine Cycle
JP2007064047A (en) Waste heat recovery facility for steam turbine plant
JP4471992B2 (en) Multi-source heat pump steam / hot water generator
JP2004251125A (en) Exhaust heat recovery system
JP2009530844A (en) Transformer cooling device using power generation cycle
KR101214209B1 (en) Hiting system using heat of condensation
KR20140033475A (en) Cooling system of natural circulation by low temperature boiling of water for industrial machine
KR20110097745A (en) Cooling system of low temperature boiling with lower-height/side positioned condenser compare to evaporator
KR200435314Y1 (en) Electric power equipment cooling device using refrigerant vaporization heat
CN215412605U (en) Drilling fluid cooling system
KR200426427Y1 (en) Thermo-Siphon Applied Transformer Cooling System
KR20110059568A (en) Cooling system of natural circulation by low temperature boiling of water
KR100764328B1 (en) Transformer chiller using compressor-less refrigeration cycle
KR100661676B1 (en) Heat recycling system using heatpump
KR20090095744A (en) Cooling cycle device
CN111023617A (en) Device and method for cooling dead steam cooling water based on refrigeration mode
KR100867272B1 (en) Vortex tube solar cooler
KR20150033567A (en) elctronic power generator using heat pump and driving method thereof
KR200414655Y1 (en) Heat pump for condensing heat of room cooler, which is capable of using heating and hot water
JP6007455B1 (en) Cold heat supply apparatus and cold heat supply method
RU2407960C1 (en) Installation for water cooling
KR20120058481A (en) Cooling system of natural circulation by low temperature boiling of water
KR102417161B1 (en) Vapor compression cycle apparatus and water treatment system having the same
KR100862277B1 (en) Multi Functional Evaporator for Heat Pump Type Heating System
KR20100013010A (en) Energy saving type water supplying apparatus for a public

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
J201 Request for trial against refusal decision
AMND Amendment
B701 Decision to grant
GRNT Written decision to grant
G170 Publication of correction
FPAY Annual fee payment

Payment date: 20120925

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20130906

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20140912

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20150923

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20160921

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20180831

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20190829

Year of fee payment: 13