KR200380360Y1 - Cable cooling device using hollow conductor cable hollow and sheath inner space - Google Patents

Cable cooling device using hollow conductor cable hollow and sheath inner space Download PDF

Info

Publication number
KR200380360Y1
KR200380360Y1 KR20-2004-0037513U KR20040037513U KR200380360Y1 KR 200380360 Y1 KR200380360 Y1 KR 200380360Y1 KR 20040037513 U KR20040037513 U KR 20040037513U KR 200380360 Y1 KR200380360 Y1 KR 200380360Y1
Authority
KR
South Korea
Prior art keywords
cable
refrigerant
hollow
conductor
oil
Prior art date
Application number
KR20-2004-0037513U
Other languages
Korean (ko)
Inventor
임성황
Original Assignee
임성황
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 임성황 filed Critical 임성황
Priority to KR20-2004-0037513U priority Critical patent/KR200380360Y1/en
Application granted granted Critical
Publication of KR200380360Y1 publication Critical patent/KR200380360Y1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B17/00Insulators or insulating bodies characterised by their form
    • H01B17/34Insulators containing liquid, e.g. oil
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B17/00Insulators or insulating bodies characterised by their form
    • H01B17/38Fittings, e.g. caps; Fastenings therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B17/00Insulators or insulating bodies characterised by their form
    • H01B17/54Insulators or insulating bodies characterised by their form having heating or cooling devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/42Insulated conductors or cables characterised by their form with arrangements for heat dissipation or conduction
    • H01B7/421Insulated conductors or cables characterised by their form with arrangements for heat dissipation or conduction for heat dissipation
    • H01B7/423Insulated conductors or cables characterised by their form with arrangements for heat dissipation or conduction for heat dissipation using a cooling fluid

Abstract

본 고안은 전력케이블에 있어서 밀폐된 시스내측냉매이동로(21)와 도체중심에 형성되는 중공냉매이동로(22)를 활용하여 냉동사이클을 통해 케이블을 냉각시키는 케이블 냉각장치에 관한 것이다.The present invention relates to a cable cooling apparatus for cooling a cable through a refrigeration cycle utilizing a sealed sheath inner refrigerant movement passage 21 and a hollow refrigerant movement passage 22 formed in the conductor center in a power cable.

현재 케이블은 크게 OF케이블과 XLPE케이블로 크게 두가지로 분류할 수 있다. 케이블의 중심에는 도체가 설치되어 있고, 도체에 전류가 흐를 때 도체에 발생하는 전기손실에 의한 열은 OF케이블의 경우는 절연유를 통하여, XLPE케이블은 절연체를 통하여 외부로 방출된다. 그러나 현재의 케이블은 케이블 내부를 순환하면서 열을 교환하는 장치가 없어서 가공선로보다 최대송전용량이 매우 적은 편이다. 본 고안에서는 OF케이블이나 XLPE케이블의 도체를 중심에 공간을 가지는 중공도체로 제작하여 이 공간으로 냉매가 이동할 수 있도록 하고, 밀폐된 시스와 외부반도전측 사이의 공간으로 냉매가 회수될 수 있도록 냉매 흐름의 폐회로를 형성하여 케이블 내부에서 발생한 열을 냉매를 통해 다른 공간으로 이동시켜 냉각효과를 극대화하였다. 냉매는 절연유로 하고 절연유의 열팽창량을 흡수하고 압력을 유지해주는 유압탱크(PT 또는 BPT) 내부에 냉동사이클의 증발기(71)를 설치하여 냉각하는 방법과, 절연유 대신 냉동사이클의 냉매를 적접 사용하여 냉각하는 XLPE케이블에만 적용할 수 있는 방안을 제시하였다. 냉동사이클의 냉매가 증발기에서 기화하면서 기체상태의 냉매가 지니는 운동에너지로 터빈(77)을 돌려 터빈축에 연결된 발전기(또는 기계장치)(78)에서 전력 또는 물리적 에너지를 얻는 장치도 부가하였다. 케이블의 1년간 운전 실적을 보면 중부하가 걸리는 시간은 불과 몇 시간에 지나지 않으므로 이 짧은 시간동안만 냉동사이클로 케이블을 효과적으로 냉각을 시키면 케이블 용량은 더욱더 증대될 것이다.Currently, there are two main types of cables: OF cable and XLPE cable. In the center of the cable, a conductor is installed. When current flows through the conductor, heat caused by electrical losses in the conductor is discharged through the insulating oil in the case of the OF cable, and the XLPE cable is discharged to the outside through the insulator. However, current cables do not have a device to exchange heat while circulating inside the cable, so the maximum transmission capacity is much smaller than that of overhead lines. In the present invention, the conductor of the OF cable or XLPE cable is made of a hollow conductor having a space in the center so that the refrigerant can move to this space, and the refrigerant can be recovered to the space between the sealed sheath and the external semiconducting side. By forming a closed circuit of the flow, the heat generated inside the cable is moved to another space through the refrigerant to maximize the cooling effect. Refrigerant is used as an insulating oil and the cooling of the refrigeration cycle by installing the evaporator 71 of the refrigeration cycle inside the hydraulic tank (PT or BPT) that absorbs the thermal expansion amount of the insulating oil and maintains pressure, and using the refrigerant of the refrigeration cycle instead of the insulating oil A method that can be applied only to the XLPE cable for cooling has been suggested. As the refrigerant in the refrigerating cycle was evaporated in the evaporator, a device for obtaining electric power or physical energy from the generator (or mechanism) 78 connected to the turbine shaft by turning the turbine 77 with the kinetic energy of the gaseous refrigerant was added. The cable's one-year operation shows that heavy loads take only a few hours, so effective cooling of the cables in the refrigeration cycle during these short periods will increase cable capacity even further.

Description

중공도체케이블 중공과 시스 내측공간을 이용한 케이블 냉각장치{omitted}Cable cooling device using hollow conductor cable hollow and sheath inner space {omitted}

OF케이블은 지절연을 하고 도체중심의 유통로 또는 밀폐된 시스내측 공간에 절연유를 충진하여 절연을 보강하며 이 절연유의 대류현상을 통해 도체 내부에서 발생한 열을 케이블 외부로 방출 한다. XLPE케이블은 별도의 냉각장치가 없이 도체에서 발생한 열을 절연체를 통하여 외부로 방출한다. 두가지 방법 모두 케이블을 빠져나온 열이 케이블이 설치된 전력구 또는 관로에 축적되므로 케이블 용량을 증대시키지 못하는 단점을 지니고 있다. 최근에 이 열을 외부공간으로 제거시키기 위하여 수냉각 설비를 도입하고 있으나 열교환이 효과적이지 않고 새롭게 수냉각 설비를 갖추어야 하므로 많은 비용을 유발한다. 또한 초전도 케이블이 생산단계에 있으나 전력손실이 기존 케이블의 절반 정도나 되고 기술이 완성단계가 아니라서 가격도 비싸고 기술적 문제점이 있어 상용화에는 많은 시간이 필요할 것으로 보인다.OF cable reinforces insulation by ground insulation and fills the insulating oil in the distribution center of the conductor center or inside the sealed sheath and releases the heat generated inside the conductor through the convection of the insulating oil to the outside of the cable. XLPE cable dissipates heat generated from the conductor to the outside through the insulator without a separate cooling device. Both methods have the disadvantage of not increasing the cable capacity because the heat that escapes the cable accumulates in the power outlet or conduit where the cable is installed. Recently, a water cooling system has been introduced to remove this heat to the outside space, but heat exchange is not effective and a new water cooling system must be provided, which causes a lot of cost. In addition, superconducting cables are in the production stage, but the power loss is about half of existing cables, and the technology is not completed, so the price is expensive and there are technical problems.

본 고안에서는 OF케이블이나 XLPE케이블의 도체를 중공도체로 만들어 이 공간을 중공냉매이동로(22)로 활용하고, 밀폐된 시스내측공간을 시스내측냉매이동로(21)로 활용하여 접속부위에서 두 공간 사이에 폐회로를 형성하여 이 폐회로에 절연유(이 경우 절연유는 유압탱크에서 냉동사이클로 냉각시킴) 또는 냉동사이클의 냉매를 통과시켜 케이블을 냉각하고, 냉동사이클의 기화된 냉매의 운동에너지로 터빈을 돌려 전기 또는 물리적 에너지를 얻을 수 있도록 한다.In the present invention, the conductor of the OF cable or the XLPE cable is made into a hollow conductor, and this space is used as the hollow refrigerant movement path 22, and the sealed inner space of the sheath is used as the inner refrigerant movement path of the sheath. A closed circuit is formed between the spaces and the insulating oil (in this case, the insulating oil is cooled by a refrigeration cycle in the hydraulic tank) or the refrigerant of the refrigeration cycle is passed through the closed circuit to cool the cable, and the turbine is turned by the kinetic energy of the vaporized refrigerant in the refrigeration cycle. Make sure you get electrical or physical energy.

도1은 기존의 케이블 단면도이다. OF케이블은 도체가 중공도체도 있으나 아닌 것도 있고, XLPE케이블은 중공도체를 사용하지 않고 있다.1 is a cross-sectional view of a conventional cable. OF cables have hollow conductors, but some do not, and XLPE cables do not use hollow conductors.

도2는 본 고안에 적용될 케이블구조 단면도이다. OF케이블이나 XLPE케이블을 구분하지 않고 도체는 중공도체로 한다. 중공은 도체(17)와 절연층(15)에 의해 감싸지면서 밀폐되므로 중공자체가 완전밀폐일 필요는 없다. 시스는 외부와 내부가 통하는 구멍이 없도록 밀폐시킨다. 냉각된 냉매(절연유 또는 냉동사이클 냉매)가 중공냉매이동로(22)를 통하여 유입되고 시스내측냉매이동로(21)를 통하여 유출되면서 케이블을 냉각시킨다.2 is a cross-sectional view of the cable structure to be applied to the present invention. The conductor shall be a hollow conductor without the distinction between OF cable and XLPE cable. Since the hollow is enclosed by the conductor 17 and the insulating layer 15, the hollow does not need to be completely sealed. The sheath is sealed so that there is no opening between the outside and the inside. The cooled refrigerant (insulating oil or refrigeration cycle refrigerant) flows through the hollow refrigerant movement path 22 and flows out through the sheath internal refrigerant movement path 21 to cool the cable.

도3은 OF케이블 유지접속(SJ; Stop joint) 접속재 연결상태 설명도이다. 유통로(18)를 통한 절연유흐름은 접속재(31) 내부에서 중지되고 절연유흐름은 절연유유출홈(32)을 통하여 접속함 내부로 연결된다.3 is an explanatory diagram of a connection state of the OF cable stop joint (SJ) connection member. The insulating oil flow through the flow path 18 is stopped inside the connecting member 31 and the insulating oil flow is connected to the inside of the junction box through the insulating oil outflow groove 32.

도4는 OF케이블 유지접속(SJ; Stop joint) 접속함 단면도이다. 유통로(18)를 통한 절연유흐름은 접속재(31) 내부에서 중지되고, 절연파괴의 염려로 절연유는 절연유유출홈(32)를 지나 도체와 수직방향으로 인출되지 못하고 경사진 공간을 따라 접속함 내부 절연유공간(42)으로 유입된다. 절연유유출홈(32) 및 접속도체부위 상부는 절연보강층을 형성하여 절연 약화를 막는다. 현재 케이블 접속시 세미연공부(41)와 테이프로 시스 말단 부위를 막음으로 인해 절연지사이의 미세한 절연유흐름을 제외하고는 유통로(18)와 접속함 내부 절연유공간(42)의 유계통과 시스내측공간(13)의 유계통이 분리되어 있는 실정이다.4 is a cross-sectional view of an OF cable stop joint (SJ) junction box. Insulating oil flow through the flow path 18 is stopped inside the connecting member 31, and the insulating oil is not drawn out in the direction perpendicular to the conductor through the insulating oil outflow groove 32 due to the risk of insulation breakdown. It flows into the insulating oil space 42. The insulating outflow groove 32 and the upper portion of the connection conductor form an insulating reinforcement layer to prevent insulation weakening. Currently, when connecting the cable, the semi-perforated part 41 and the tape block the end of the sheath, so that it is connected to the flow path 18 except for the minute insulating oil flow between the insulating paper. The oil system of (13) is separated.

도5는 기존 유압탱크(PT, BPT) 설명도이다. 절연유 유입셀형 PT는 밀폐된 유조 외함(51) 내부의 하부에 외유(55)를 주입하고 그 내부에 절연유셀(54)을 배치하고 상부에는 N2가스로 충진하여 케이블 절연유에 압력을 가한다. 케이블내의 절연유가 열팽창하면 PT내부로 절연유가 유입되고 절연유셀(54)은 팽창한다. 절연유가 열수축하면 반대로 절연유셀(54)은 수축한다. 가스 유입셀형 PT는 밀폐된 유조 외함(51) 내부에 N2가스로 충진된 N2가스셀(56)을 배치하고 나머지 공간에 절연유를 주입한다. 케이블내의 절연유가 열팽창하면 PT내부로 절연유가 유입되고 N2가스셀(56)은 수축한다. 절연유가 열수축하면 반대로 N2가스셀(56)은 팽창한다.5 is an explanatory view of the existing hydraulic tank (PT, BPT). Insulating oil inlet cell type PT injects the outer oil 55 into the lower portion of the sealed oil tank enclosure 51, arranges the insulating oil cell 54 therein, and fills the upper portion with N 2 gas to apply pressure to the cable insulating oil. When the insulating oil in the cable thermally expands, the insulating oil flows into the PT and the insulating oil cell 54 expands. On the contrary, when the insulating oil heat shrinks, the insulating oil cell 54 contracts. Gas inlet cell type PT is disposed a N 2 gas cell 56 filled with the N 2 gas inside the closed enclosure an oil bath (51) and injecting the insulating oil in the remaining space. When the insulating oil in the cable is thermally expanded, the insulating oil flows into the PT and the N 2 gas cell 56 contracts. On the contrary, when the insulating oil heat shrinks, the N 2 gas cell 56 expands.

도6은 기존 OF케이블과 유압탱크 연결설명도이다. 유압탱크에서 유출되는 1가닥의 유관(61)은 절연유주입커넥터(45)를 통하여 OF케이블과 연결된다. 1가닥의 유관으로는 폐회로를 형성할 수 없어서 절연유 순환에 의한 냉각방식은 적용할 수 없고 절연유 대류현상에 의존할 뿐이고, 유압탱크는 단지 케이블 포설의 고저차에 따른 유압을 극복하는 역할만 수행한다. 더욱이 세미연공부(41)와 인근의 테이핑은 시스내측공간(13)의 절연유계통과 유통로(18) 및 접속함(46)의 절연유공간(42)의 절연유계통을 분리시켜 두 공간 사이의 절연유 유통은 촘촘히 감겨진 절연지 사이 공간에 의존하는 실정이다.6 is an explanatory diagram of connecting the existing OF cable and the hydraulic tank. One strand of oil pipe 61 flowing out of the hydraulic tank is connected to the OF cable through the insulated oil injection connector 45. One stranded conduit cannot form a closed circuit, so the cooling method by insulating oil circulation is not applicable and only depends on the convection of insulating oil. The hydraulic tank only serves to overcome the hydraulic pressure due to the high and low level of cable laying. Furthermore, the semi-perforated portion 41 and the taping in the vicinity separate the insulating oil system of the sheath inner space 13 from the oil passage 42 and the insulating oil system 42 of the insulating oil space 42 of the junction box 46, thereby insulating oil between the two spaces. The distribution depends on the space between the tightly wound insulating paper.

도7은 본 고안에 의한 절연유 유입셀형 유압탱크(PT) 개선 도면이다. 유압탱크 외유(55) 내부에 냉동사이클의 증발기(71)을 설치하였고, 냉동사이클의 다른 설비는 탱크 외부에 배치하였다. 케이블로 절연유가 유출되는 출구에는 절연유 순환팬(70)을 설치하여 절연유를 강제순환 시킨다. 이 때의 냉동사이클은 압축기(75), 응축기(74), 냉매저장탱크(73), 팽창벨브(또는 모세관)(72), 증발기(71), 터빈(77), 다시 압축기(75)로 구성된다. 압축기(75)는 기체상태 냉매를 압축하고, 응축기(74)에서는 압축된 냉매가 열을 발산하면서 액체가 되고, 액체가 된 냉매는 냉각시스템의 관성을 높이고자 설치된 냉매저장탱크(73)에 모이게 되고, 액체상태의 냉매는 팽창밸브(또는 모세관)(72)를 통과하면서 기체상태로 변화를 일으키며 부피가 팽창하기 시작한다. 팽창밸브(또는 모세관)(72)를 빠져나온 냉매는 팽창밸브(또는 모세관)(72)와 연결된 증발기(71)에서 외유(55)로부터 기화열을 흡수하면서 기체가 된다. 증발기(71)를 지나온 기체는 터빈(77)을 회전시키고 압축기(75)로 들어가 압축되면서 냉동사이클의 한 사이클을 종료한다. 냉매저장탱크(73)를 제거하는 것과 절연유 온도를 감지하여 냉동사이클을 사용자의 의지에 따라 원활히 작동시키는 제어장치를 추가하는 것도 본 고안의 범위에 포함된다. 개방 냉각방식은 외부에서 만든 냉매가 저장된 냉매저장탱크(73)에서 액체상태 냉매를 팽창밸브(또는 모세관)(72)를 통과하면서 기체로 변화를 일으키며 부피가 팽창하기 시작한다. 팽창밸브(또는 모세관)(72)를 빠져나온 냉매는 팽창밸브(또는 모세관)(72)와 연결된 증발기(71)에서 외유(55)로부터 기화열을 흡수하면서 기체가 된다. 절연유(53)와 외유(55)간에 열교환이 더 잘 일어나도록 하기 위하여 셀간 연결부위를 지그재그로 배치하는 것도 본 고안의 범위에 포함된다.7 is an improved oil inlet cell type hydraulic tank PT according to the present invention. The evaporator 71 of the refrigerating cycle was installed inside the oil tank 55 and the other equipment of the refrigerating cycle was disposed outside the tank. At the outlet of the insulating oil flows into the cable by installing an insulating oil circulation fan 70 for forced circulation of the insulating oil. The refrigeration cycle at this time is composed of a compressor 75, a condenser 74, a refrigerant storage tank 73, an expansion valve (or capillary tube) 72, an evaporator 71, a turbine 77, again a compressor 75. do. The compressor 75 compresses the gaseous refrigerant, and in the condenser 74, the compressed refrigerant dissipates heat to become liquid, and the refrigerant, which becomes liquid, collects in the refrigerant storage tank 73 installed to increase the inertia of the cooling system. As the liquid refrigerant passes through the expansion valve (or capillary tube) 72, the liquid phase changes into a gaseous state and the volume begins to expand. The refrigerant exiting the expansion valve (or capillary tube) 72 becomes a gas while absorbing heat of vaporization from the external oil 55 in the evaporator 71 connected to the expansion valve (or capillary tube) 72. The gas passing through the evaporator 71 rotates the turbine 77 and enters the compressor 75 to be compressed and ends one cycle of the refrigeration cycle. It is also within the scope of the present invention to remove the refrigerant storage tank 73 and to add a control device for sensing the insulating oil temperature to smoothly operate the refrigeration cycle according to the user's will. In the open cooling method, the liquid refrigerant is changed into a gas while the liquid refrigerant passes through the expansion valve (or capillary tube) 72 in the refrigerant storage tank 73 in which the externally made refrigerant is stored, and the volume starts to expand. The refrigerant exiting the expansion valve (or capillary tube) 72 becomes a gas while absorbing heat of vaporization from the external oil 55 in the evaporator 71 connected to the expansion valve (or capillary tube) 72. It is also included in the scope of the present invention to arrange the inter-cell connections in a zigzag manner so that heat exchange between the insulating oil 53 and the outer oil 55 occurs better.

도8은 본 고안에 의한 가스유입셀형 유압탱크(PT)의 개선도면이다. 증발기(71)를 절연유(53) 내부에 위치하도록 하며 기타는 도7의 경우와 같다.Figure 8 is an improved view of the gas inlet cell hydraulic tank PT according to the present invention. The evaporator 71 is positioned inside the insulating oil 53, and the other is the same as the case of FIG.

도9는 본 고안에 의한 벨로우즈형 유압탱크(BPT)의 개선도면이다. 증발기(71)를 벨로우즈(57) 안의 절연유(53) 내부에 위치하도록 하며 벨로우즈가 접어질 경우 증발기(71)와 중첩되지 않도록 증발기보호대(91)를 설치한다. 증발기보호대(91)는 접혀지지 않는 재질로 만든다. 기타는 도7의 경우와 같다.9 is an improved view of the bellows-type hydraulic tank (BPT) according to the present invention. The evaporator 71 is positioned inside the insulating oil 53 in the bellows 57, and when the bellows are folded, an evaporator protector 91 is installed so as not to overlap the evaporator 71. Evaporator guard 91 is made of a material that is not folded. Others are the same as in the case of FIG.

도10은 본 고안에 따른 절연유 강제순환 케이블 냉각시스템 구성도이다. 중요한 변화는 유압탱크가 연결되는 접속함의 벨마우스(43)의 날개를 연장하여 냉매회로차단막(101)을 만들어 접속함내 절연유공간(42)을 2개로 분할한다. 세미연공부(41)를 제거한 세미연공제거부(102)를 통하여 시스내측냉매이동로(21)와 분할된 절연유공간(42)이 통하도록 이어준다. 냉동사이클에 의해 냉각된 절연유는 절연유순환팬(70)에 의해 유압탱크를 빠져나와 유입유관(103)을 통하여 접속함으로 흘러들어간다. 이 절연유는 절연유유출홈(32)을 역으로 들어가 중공냉매이동로(22)로 유입되면서 도체에서 발생한 열을 흡수하며 도체를 냉각시킨다. 절연유는 계속하여 반대편 접속함의 절연유유출홈(32)으로 유출 되고, 다시 시스내측냉매이동로(21)를 통하여 세미연공제거부(102)를 지나 유출유관(104)을 통하여 유압탱크로 유입된다. 케이블 도체의 열을 흡수해온 절연유는 유압 탱크 내부에서 냉동사이클의 증발기(71)에 의해 다시 냉각되고 절연유순환팬(70)을 통하여 유출됨으로써 냉각 폐회로의 한 사이클을 마친다. 지금까지 XLPE케이블에는 절연유를 사용하지 않았으나 XLPE케이블 접속부위에도 절연파괴의 문제없이 위와 같은 절연유 흐름이 연결되도록 하면 이 냉각방식은 OF케이블과 XLPE케이블에 모두 적용될 수 있다. 절연유주입커넥터(45)와 절연유유출커넥터(105)는 접지를 하여 전위를 낮춘다.10 is a configuration diagram of the forced oil circulation cable cooling system according to the present invention. An important change is to extend the vanes of the bell mouse 43 of the junction box to which the hydraulic tank is connected to create a refrigerant circuit barrier film 101 to divide the insulating oil space 42 in the junction box into two. Through the semi-pore removal portion 102 from which the semi-pore portion 41 is removed, the sheath-side refrigerant movement path 21 and the divided insulating oil space 42 are connected to each other. The insulating oil cooled by the refrigeration cycle flows out of the hydraulic tank by the insulating oil circulation fan 70 and is connected through the inflow oil pipe 103. The insulating oil enters the insulating oil outflow groove 32 in the reverse direction and enters the hollow refrigerant movement path 22 to absorb heat generated from the conductor and cool the conductor. The insulating oil continues to flow into the insulating oil outflow groove 32 of the opposite junction box, and then flows into the hydraulic tank through the outflow oil pipe 104 through the semi-cold removing portion 102 through the inner sheath refrigerant movement path 21. The insulating oil which has absorbed the heat of the cable conductor is cooled again by the evaporator 71 of the refrigeration cycle inside the hydraulic tank and flowed out through the insulating circulation fan 70 to complete one cycle of the cooling closed circuit. So far, no insulation oil has been used in the XLPE cable, but this cooling method can be applied to both OF cable and XLPE cable if the above oil flow is connected to the XLPE cable connection without any problem of insulation breakdown. The insulated oil inflow connector 45 and the insulated oil outflow connector 105 are grounded to lower the potential.

도11은 본 고안에 따른 냉동사이클 냉매순환에 의한 XLPE케이블 냉각시스템 구성도이다. 도10의 경우와는 순환하는 냉매가 절연유가 아니라 냉동사이클의 냉매라는 것이 크게 다른 점이다. 팽창밸브(또는 모세관)(72)를 지난 냉매는 접속함으로 유입되고 이 냉매는 절연유유출홈(32)을 역으로 들어가 중공냉매이동로(22)로 유입되면서 도체에서 발생한 열을 흡수하며 도체를 냉각시키고 냉매는 기체로 변한다.11 is a configuration diagram of the XLPE cable cooling system by the refrigerant cycle refrigerant circulation according to the present invention. Unlike the case of FIG. 10, the refrigerant circulating is not the insulating oil but the refrigerant of the refrigerating cycle. The refrigerant passing through the expansion valve (or capillary tube) 72 flows into the junction, and the refrigerant flows back into the insulating oil outlet groove 32 and enters the hollow refrigerant movement path 22 to absorb the heat generated from the conductor and to cool the conductor. And the refrigerant turns into gas.

중공냉매이동로(22)가 증발기(71)의 역할을 한다. 냉매는 계속하여 반대편 접속함의 절연유유출홈(32)로 유출 되고, 다시 시스내측냉매이동로(21)를 통하여 세미연공제거부(102)를 지나 냉동사이클의 터빈(77)을 회전시키고 압축기(75)로 들어가 압축되고 방열기(74)에서 열을 방출하고 냉매는 액체가 되어 냉매저장탱크(73)에 모이게 된다. 이 액체상태 냉매는 다시 팽창밸브(또는 모세관)(72)를 통과하면서 냉각순환회로의 한 사이클을 마친다. 이 냉각방식은 XLPE케이블에만 적용될 수 있다.The hollow refrigerant movement path 22 serves as the evaporator 71. The refrigerant continues to flow into the insulated outflow groove 32 of the opposite junction box, and again through the sheath-inside refrigerant movement path 21 to pass through the semi-pore removal section 102 to rotate the turbine 77 of the refrigeration cycle and the compressor (75). ) Is compressed and releases heat from the radiator 74, and the refrigerant becomes a liquid and is collected in the refrigerant storage tank 73. This liquid refrigerant again passes through the expansion valve (or capillary tube) 72 to complete one cycle of the cooling circuit. This cooling method is only applicable to XLPE cables.

도12는 현재 운전중인 345kV OF케이블의 년간 운전전류 지속곡선 설명도이다. 도시한 바와 같이 1년중 중부하는 아주 짧은 시간에 국한함을 볼 수 있다. 따라서 이 짧은 시간만이라도 냉각성능이 우수한 냉동사이클로 도체를 직접 냉각시킨다면 케이블 용량은 엄청나게 늘어날 것이다.Fig. 12 is an explanatory diagram of a continuous operating current curve of an annual 345kV OF cable in operation. As shown, the middle of the year is limited to a very short time. Therefore, even in this short time, if the conductor is directly cooled by a refrigeration cycle with excellent cooling performance, the cable capacity will increase enormously.

케이블은 내부에서 발생하는 열을 효과적으로 제거시키는 방법이 없어서 이제까지 송전용량을 증대시키지 못하여 왔다. 또한 OF케이블에 있어서 유압탱크는 유관(61) 1가닥으로 케이블과 연결되어 단지 압력을 가하는 기능만 하였다. 본 고안에서는 유조 내부에 냉동사이클의 증발기(71)를 설치고, 2개의 유관인 유입유관(103)과 유출유관(104), 중공냉매이동로(22)와 시스내측냉매이동로(21), 유압탱크로 구성되는 냉각폐회로를 통하여 냉각된 절연유가 순환하면서 도체를 직접 냉각시켜 케이블 용량을 증대시킬 수 있으며, XLPE케이블의 경우 중공냉매이동로(22)와 시스내측냉매이동로(21)를 냉동사이클의 증발기(71) 대신으로 하고 케이블 외부에 다른 부속 냉동사이클 설비를 설치하여 냉동사이클 냉각으로 케이블의 송전용량을 대폭 증대시킬 수 있다.Cables have not been able to effectively remove heat generated internally and thus have not been able to increase transmission capacity. In addition, in the OF cable, the hydraulic tank was connected to the cable by one strand of the oil pipe (61), and only functioned to apply pressure. In the present invention, the evaporator 71 of the refrigerating cycle is installed inside the oil tank, and the two oil pipes, the inflow oil pipe 103 and the outflow oil pipe 104, the hollow refrigerant moving path 22 and the inner sheath refrigerant moving path 21, the hydraulic pressure As the insulating oil cooled through the closed circuit consisting of the tank circulates, the conductor can be directly cooled to increase the cable capacity.In the case of the XLPE cable, the hollow refrigerant movement path 22 and the inner sheath refrigerant movement path 21 are refrigerated cycles. By replacing the evaporator 71 of the other and the other refrigeration cycle equipment to the outside of the cable by the refrigeration cycle cooling can greatly increase the transmission capacity of the cable.

도 1은 기존의 케이블 단면도이다.1 is a cross-sectional view of a conventional cable.

도 2는 본 고안에 적용될 케이블 단면도이다.2 is a cross-sectional view of the cable to be applied to the present invention.

도 3은 OF케이블 유지접속(SJ; Stop Joint) 접속재 연결상태 설명도이다.3 is an explanatory diagram of a connection state of the OF cable stop joint (SJ) connection member.

도 4는 OF케이블 유지접속(SJ; Stop Joint) 접속함 단면도이다.4 is a cross-sectional view of an OF cable stop joint (SJ) junction box.

도 5는 기존 유압탱크(PT, BPT) 설명도이다.5 is an explanatory view of the existing hydraulic tank (PT, BPT).

도 6은 기존 OF케이블과 유압탱크 연결 설명도이다.6 is an explanatory diagram of connecting the existing OF cable and the hydraulic tank.

도 7은 본 고안에 의한 절연유 유입 셀형 유압탱크(PT) 개선도면이다.7 is an improved view of the insulating oil inlet cell hydraulic tank PT according to the present invention.

도 8은 본 고안에 의한 가스 유입 셀형 유압탱크(PT) 개선도면이다.8 is an improved view of the gas inlet cell hydraulic tank PT according to the present invention.

도 9는 본 고안에 의한 벨로우즈형 유압탱크(BPT) 개선도면이다.9 is an improved view of the bellows-type hydraulic tank (BPT) according to the present invention.

도 10은 절연유 강제순환에 의한 케이블 냉각장치 시스템 구성도이다.10 is a configuration diagram of a system for cooling a cable by forced oil circulation.

도 11은 냉동사이클 냉매순환에 의한 XLPE케이블 냉각장치 시스템 구성도이다.11 is a configuration diagram of the XLPE cable cooling system by the refrigeration cycle refrigerant circulation.

도 12는 345kV OF Cable 년간 운전전류 지속곡선 설명도이다.12 is an explanatory diagram of a 345 kV OF cable year operating current sustain curve.

〈도면의 주요부분에 대한 부호의 설명〉<Explanation of symbols for main parts of drawing>

11 : 방식층 12 : 시스11: anticorrosive layer 12: sheath

13 : 시스내측공간 14 : 외부반도전층13: inner space of the sheath 14: outer semiconducting layer

15 : 절연층 16 : 내부반도전층15 insulation layer 16 internal semiconducting layer

17 : 도체 18 : 유통로17: conductor 18: distribution channel

21 : 시스내측냉매이동로 22 : 중공냉매이동로21: inner refrigerant refrigerant passage 22: hollow refrigerant passage

31 : 접속재 32 : 절연유유출홈31: connecting member 32: insulating oil leakage groove

41 : 세미연공부 42 : 절연유공간41: semi-soft part 42: insulating oil space

43 : 벨마우스 44 : 절연보강층43: Bell Mouse 44: insulation reinforcement layer

45 : 절연유주입커넥터 46 : 접속함45: insulated oil injection connector 46: connection box

51 : 외함 52 : N2가스51: enclosure 52: N 2 gas

53 : 절연유 54 : 절연유셀53: insulating oil 54: insulating oil

55 : 외유 56 : N2가스셀55: foreign oil 56: N 2 gas cell

57 : 벨로우즈 61 : 유관57: bellows 61: related

70 : 절연유순환팬 71 : 증발기70: insulated circulation fan 71: evaporator

72 : 팽창밸브(또는 모세관) 73 : 냉매저장탱크72: expansion valve (or capillary tube) 73: refrigerant storage tank

74 : 응축기 75 : 압축기74: condenser 75: compressor

76 : 모터(또는 엔진) 77 : 터빈76: motor (or engine) 77: turbine

78 : 발전기(또는 기계장치) 79 : 절연유셀78: generator (or machinery) 79: insulation oil cell

91 : 증발기보호대 101 : 냉매회로차단막91: evaporator protector 101: refrigerant circuit barrier

102 : 세미연공제거부 103 : 유입유관102: semi-pore removal unit 103: inflow oil pipe

104 : 유출유관 105 : 절연유유출커넥터104: outflow oil pipe 105: insulated oil outflow connector

Claims (2)

OF케이블 또는 XLPE케이블의 도체단면 중심에서 도체방향으로 형성되는 중공냉매이동로(22)와; 시스내측냉매이동로(21)와; 냉동사이클의 방열기(71)로 절연유(53)를 냉각시키고, 절연유순환팬(70)이 설치된 유압탱크와; 유압탱크 냉동사이클의 증발기(71)와 압축기(75) 사이에 배치되는 터빈(77), 터빈축에 연결되는 발전기(또는 기계장치)와; 냉매회로차단막(101)과; 세미연공제거부(102)와; 유압탱크, 유입유관(103), 절연유유출홈(32), 중공냉매이동로(22), 반대 접속함측 절연유유출홈(32), 시스내측냉매이동로(21), 세미연공제거부(102), 유출유관(104), 유압탱크로 냉각 폐회로를 형성하는 것을 특징으로 하는 중공도체케이블 중공과 시스 내측공간을 이용한 케이블 냉각장치.A hollow refrigerant moving path (22) formed in the conductor direction at the center of the conductor cross section of the OF cable or the XLPE cable; Sheath inner refrigerant movement path (21); A hydraulic tank for cooling the insulating oil 53 with the radiator 71 of the refrigerating cycle, and having an insulating oil circulating fan 70 installed therein; A turbine 77 disposed between the evaporator 71 and the compressor 75 of the hydraulic tank refrigeration cycle, and a generator (or a mechanical device) connected to the turbine shaft; A refrigerant circuit blocking film 101; Semi-pore removal portion 102; Hydraulic tank, inflow oil pipe 103, insulated oil outflow groove 32, hollow refrigerant flow path 22, opposing junction side insulated oil outflow groove 32, sheath inner refrigerant movement path 21, semi-pore removing portion 102 Cable cooling apparatus using a hollow conductor cable hollow and the sheath inner space, characterized in that the closed oil circuit 104, the hydraulic closed tank to form a cooling closed circuit. XLPE케이블의 도체단면 중심에서 도체방향으로 형성되는 중공냉매이동로(22)와; 시스내측냉매이동로(21)와; 냉매회로차단막(101)와; 세미연공제거부(102)와; 팽창밸브(또는 모세관)(72), 절연유주입커넥터(45), 유입유관(103), 절연유유출홈(32), 중공냉매이동로(22), 반대 접속함측 절연유유출홈(32), 시스내측냉매이동로(21), 세미연공제거부(102), 절연유유출커넥터(105), 터빈(78)과 터빈축에 연결된 발전기(또는 기계장치), 압축기(75), 응축기(74), 냉매저장탱크(73), 다시 팽창밸브(또는 모세관)(72)로 관으로 연결되며 냉동사이클을 형성하는 것을 특징으로 하는 중공도체케이블 중공과 시스 내측공간을 이용한 케이블 냉각장치.A hollow refrigerant movement path (22) formed in the conductor direction at the center of the conductor cross section of the XLPE cable; Sheath inner refrigerant movement path (21); A refrigerant circuit blocking film 101; Semi-pore removal portion 102; Expansion valve (or capillary tube) 72, insulated oil inlet connector 45, inlet oil pipe 103, insulated oil outflow groove 32, hollow refrigerant flow path 22, insulated outlet side insulated outflow groove 32, inner sheath Refrigerant movement path 21, semi-fuel removal unit 102, insulated oil outflow connector 105, a generator (or a mechanical device) connected to the turbine 78 and the turbine shaft, compressor 75, condenser 74, refrigerant storage Cable (73), the cable cooling apparatus using a hollow hollow hollow cable and the sheath inner space, characterized in that the pipe connected to the expansion valve (or capillary tube) 72 to form a refrigeration cycle.
KR20-2004-0037513U 2004-12-30 2004-12-30 Cable cooling device using hollow conductor cable hollow and sheath inner space KR200380360Y1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR20-2004-0037513U KR200380360Y1 (en) 2004-12-30 2004-12-30 Cable cooling device using hollow conductor cable hollow and sheath inner space

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20-2004-0037513U KR200380360Y1 (en) 2004-12-30 2004-12-30 Cable cooling device using hollow conductor cable hollow and sheath inner space

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020060026029A Division KR20060079150A (en) 2006-03-22 2006-03-22 Cable cooling device using hollow conductor cable hollow and sheath inner space

Publications (1)

Publication Number Publication Date
KR200380360Y1 true KR200380360Y1 (en) 2005-03-29

Family

ID=43681983

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20-2004-0037513U KR200380360Y1 (en) 2004-12-30 2004-12-30 Cable cooling device using hollow conductor cable hollow and sheath inner space

Country Status (1)

Country Link
KR (1) KR200380360Y1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117153477A (en) * 2023-10-30 2023-12-01 广东南缆电缆有限公司 Tensile dual cooling liquid cooling cable

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117153477A (en) * 2023-10-30 2023-12-01 广东南缆电缆有限公司 Tensile dual cooling liquid cooling cable
CN117153477B (en) * 2023-10-30 2024-02-02 广东南缆电缆有限公司 Tensile dual cooling liquid cooling cable

Similar Documents

Publication Publication Date Title
JP4982119B2 (en) Rotating electric machine
CN101183808B (en) Stator structure of inner cooling type self-circulation vaporization cooling wind power generator
RU2543098C1 (en) Cooling device of heat exchange type for transformer
KR20120086429A (en) Stop Joint for Hight Temperature Superconducting
JP2015078685A (en) Air cooling unit
CN103280928A (en) Enclosure pipeline-type stator evaporating and cooling device
KR200380360Y1 (en) Cable cooling device using hollow conductor cable hollow and sheath inner space
KR20060080135A (en) Cable cooling device by forced circulation of insulating oil between parallel OF cables
KR20060079150A (en) Cable cooling device using hollow conductor cable hollow and sheath inner space
KR200380362Y1 (en) Electric wire cooling device using parallel hollow of hollow conductor wire
KR200381497Y1 (en) Cable cooling device by forced circulation of insulating oil between parallel OF cables
KR200381498Y1 (en) Cable cooling system utilizing space inside the sheath between parallel XLPE cables
CA1164031A (en) Fast starting cold shield cooling circuit for superconducting generators
KR20060079149A (en) Electric wire cooling device using parallel hollow of hollow conductor wire
KR20060080136A (en) Cable cooling system utilizing space inside the sheath between parallel XLPE cables
JP2009085528A (en) Heat-pump hot-water supply device
KR200435314Y1 (en) Electric power equipment cooling device using refrigerant vaporization heat
CN110768413A (en) Self-circulation cooling type motor stator
KR200402624Y1 (en) Transformer / reactor winding cooling system with refrigerant passage
KR200382307Y1 (en) Transformer body chiller using refrigeration cycle
KR200378014Y1 (en) Radiator-embedded transformer chiller using refrigeration cycle
KR200380359Y1 (en) Jacketed transformer chiller using refrigeration cycle
CN103280926A (en) Clamping stator evaporative cooling device
KR200400774Y1 (en) Cross-linked polyethylene (XLPE) shunt reactor with hollow winding cooling system
KR200385032Y1 (en) Transformer chiller through spaced additional radiator refrigeration cycle

Legal Events

Date Code Title Description
REGI Registration of establishment
FPAY Annual fee payment

Payment date: 20060323

Year of fee payment: 3

LAPS Lapse due to unpaid annual fee