KR20060078799A - Method for preparing transformants expressing xanthine dehydrogenase and method for purification of 2,6-naphthalene dicarboxylic acid using the transformants - Google Patents

Method for preparing transformants expressing xanthine dehydrogenase and method for purification of 2,6-naphthalene dicarboxylic acid using the transformants Download PDF

Info

Publication number
KR20060078799A
KR20060078799A KR1020040118136A KR20040118136A KR20060078799A KR 20060078799 A KR20060078799 A KR 20060078799A KR 1020040118136 A KR1020040118136 A KR 1020040118136A KR 20040118136 A KR20040118136 A KR 20040118136A KR 20060078799 A KR20060078799 A KR 20060078799A
Authority
KR
South Korea
Prior art keywords
buffer
acid
transformant
xanthine dehydrogenase
sodium
Prior art date
Application number
KR1020040118136A
Other languages
Korean (ko)
Other versions
KR100811380B1 (en
Inventor
김동성
최용복
Original Assignee
주식회사 효성
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 효성 filed Critical 주식회사 효성
Priority to KR1020040118136A priority Critical patent/KR100811380B1/en
Publication of KR20060078799A publication Critical patent/KR20060078799A/en
Application granted granted Critical
Publication of KR100811380B1 publication Critical patent/KR100811380B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2523/00Culture process characterised by temperature
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2750/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
    • C12N2750/00011Details
    • C12N2750/00034Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein

Abstract

본 발명은 바실러스 섭틸리스 (Bacillus subtilis) 유래의 크산틴 디하이드로게나제를 코드화하는 유전자로 숙주세포를 형질전환시켜 형질전환체를 제조하는 방법 및 이러한 방법에 의해 수득된 형질전환체를 이용하여 2,6-디메틸나프탈렌을 산화시켜 생산한 조제 나프탈렌 디카르복실산(crude Naphthalene dicarboxylic acid) 내의 2-포밀-6-나프토산을 제거함으로써 고순도의 2,6-나프탈렌 디카르복실산을 정제하는 방법에 관한 것이다.The present invention provides a method for preparing a transformant by transforming a host cell with a gene encoding xanthine dehydrogenase derived from Bacillus subtilis and using the transformant obtained by the method. Method for purifying high purity 2,6-naphthalene dicarboxylic acid by removing 2-formyl-6-naphthoic acid in crude naphthalene dicarboxylic acid produced by oxidizing 2,6-dimethylnaphthalene It is about.

크산틴 디하이드로게나제, 2-포밀-6-나프토산, 2,6-나프탈렌 디카르복실산Xanthine dehydrogenase, 2-formyl-6-naphthoic acid, 2,6-naphthalene dicarboxylic acid

Description

크산틴 디하이드로게나제를 발현하는 형질전환체의 제조방법 및 이를 이용한 2,6-나프탈렌 디카르복실산의 정제방법 {METHOD FOR PREPARING TRANSFORMANTS EXPRESSING XANTHINE DEHYDROGENASE AND METHOD FOR PURIFICATION OF 2,6-NAPHTHALENE DICARBOXYLIC ACID USING THE TRANSFORMANTS}        METHOD FOR PREPARING TRANSFORMANTS EXPRESSING XANTHINE DEHYDROGENASE AND METHOD FOR PURIFICATION OF 2,6-NAPHTHALENE DICARBOXYLIC ACID USING THE TRANSFORMANTS}             

도 1은 종래 기술에 의한 2,6-디메틸 나프탈렌(DMN)을 산화시켜 나프탈렌 디카르복실산(NDA) 및 나프탈렌 디카르복실레이트(NDC)를 수득하는 과정을 나타내는 반응 스킴, 1 is a reaction scheme illustrating a process of oxidizing 2,6-dimethyl naphthalene (DMN) according to the prior art to obtain naphthalene dicarboxylic acid (NDA) and naphthalene dicarboxylate (NDC),

도 2는 2,6-디메틸 나프탈렌(DMN)의 산화시 생성되는 생성물 및 부산물을 도시한 도면, FIG. 2 shows the products and by-products produced upon oxidation of 2,6-dimethyl naphthalene (DMN);

도 3은 퓨린 분해에 관여하는 바실러스 섭틸리스 (Bcillus subtilis)의 유전자 지도 및 효소를 도시한 도면,3 is a diagram showing a gene map and enzymes of Bacillus subtilis involved in purine degradation,

도 4는 바실러스 섭틸리스 (Bcillus subtilis) 유래의 크산틴 디하이드로게나제를 코드화하는 유전자를 포함하는 재조합 발현벡터 pFOREXT-pucABCDE의 유전자 지도이다.
4 is a B. subtilis (Bcillus subtilis) is a gene map of the recombinant expression vector pFOREXT-pucABCDE containing a gene coding for xanthine-di dehydrogenase derived.

본 발명은 크산틴 디하이드로게나제를 발현하는 형질전환체의 제조방법 및 이를 이용한 2,6-나프탈렌 디카르복실산의 정제 방법에 관한 것으로, 더욱 상세하게는 바실러스 섭틸리스 (Bacillus subtilis) 유래의 크산틴 디하이드로게나제를 코드화하는 유전자로 숙주세포를 형질전환시키는 단계를 포함하는 크산틴 디하이드로게나제를 발현하는 형질전환체의 제조방법 및 이를 이용한 2,6-나프탈렌 디카르복실의 고순도 정제 방법에 관한 것이다.The present invention relates to a method for preparing a transformant expressing xanthine dehydrogenase and a method for purifying 2,6-naphthalene dicarboxylic acid using the same, and more specifically, from Bacillus subtilis A method for preparing a transformant expressing xanthine dehydrogenase comprising the step of transforming a host cell with a gene encoding xanthine dehydrogenase of and high purity of 2,6-naphthalene dicarboxyl using the same It relates to a purification method.

2,6-나프탈렌 디카르복실산은 폴리에스테르 및 폴리아미드와 같은 고성능 중합체 물질의 제조에 유용한 단량체이다. 대표적인 고성능 중합체 물질 중에 폴리에틸렌 2,6-나프탈레이트 (이하 "PEN"이라 약칭한다)가 있는데, 현재는 2,6-나프탈렌 디카복실레이트(2,6-naphthalene dicarboxylate, 이하 "NDC"라 약칭한다)와 에틸렌글리콜의 중합반응에 의해 합성하고 있다. PEN은 강도, 내열성, 차기성(gas-barrier) 등이 폴리에틸렌테레프탈레이트(이하, "PET"라 약칭한다) 보다 우수하기 때문에 장시간, 대용량 자기테이프, 내열콘덴서, 음료 용기 등으로의 용도가 예상되고 있다. 2,6-naphthalene dicarboxylic acid is a monomer useful in the preparation of high performance polymeric materials such as polyesters and polyamides. Among the representative high performance polymer materials are polyethylene 2,6-naphthalate (abbreviated as "PEN"), which is now abbreviated as 2,6-naphthalene dicarboxylate (hereinafter referred to as "NDC"). It is synthesize | combined by the polymerization reaction of and ethylene glycol. Since PEN is superior to polyethylene terephthalate (hereinafter, abbreviated as "PET") in strength, heat resistance, gas-barrier, etc., PEN is expected to be used as a large capacity magnetic tape, heat condenser, beverage container, etc. for a long time. have.

2,6-나프탈렌 디카르복실산 (2,6-naphthalene dicarboxylic acid; 이하 "NDA"라 약칭한다)는 가장 편리하게는 산화 반응용 산소 공급원으로서 분자 산소, 특히 공기를 사용하고 액상 중금속 촉매를 사용하여 2,6-디메틸 나프탈렌 (이하 "DMN"이라 약칭한다)을 산화시켜 제조한다. 이러한 산화 반응 동안 2,6-DMN의 나 프탈렌 환에 존재하는 메틸 치환체는 카르복실기로 산화된다. 이러한 액상 반응에 의해 2,6-DMN을 2,6-NDA로 산화시키는 방법은 공지되어 있다. 예를 들어, 하퍼(Harper) 등의 미국 특허 제 5,183,933호에는 산화 반응 혼합물에 첨가된 다량의 망간 및 코발트 산화 촉매 금속을 사용하여 2,6-DMN을 2,6-NDA로 산화시키는 방법이 기재되어 있다. 2,6-naphthalene dicarboxylic acid (abbreviated as "NDA") is most conveniently an oxygen source for oxidation reactions using molecular oxygen, in particular air, and liquid heavy metal catalysts. To 2,6-dimethyl naphthalene (hereinafter abbreviated as "DMN"). During this oxidation reaction, the methyl substituents present on the naphthalene ring of 2,6-DMN are oxidized to the carboxyl group. It is known to oxidize 2,6-DMN to 2,6-NDA by this liquid phase reaction. For example, US Pat. No. 5,183,933 to Harper et al. Describes a method for oxidizing 2,6-DMN to 2,6-NDA using large amounts of manganese and cobalt oxidation catalyst metals added to an oxidation reaction mixture. It is.

현재 2,6-NDC는, 도 1에 도시한 바와 같이, 2,6-디메틸나프탈렌을 산화시켜 조제 나프탈렌 디카르복실산 ("cNDA": crude naphthalene dicarboxylic acid))을 생산한 다음 에스테르화하여 생산하고 있다. 현재 NDC가 PEN 합성시 주원료로 사용되고 있지만 NDA를 주원료로 사용할 경우에 비해 몇 가지 문제점을 가지고 있다. 첫째, NDA 축합반응 시에는 물이 생산되는데 비해 NDC의 경우 메탄올이 부산물로 생성되어 폭발의 위험이 있으며, 둘째, NDC제조 공정중 순수한 NDC를 얻기 위하여 NDA를 에스테르화하여 정제공정을 거쳐 NDC를 생산하므로 NDA에 비하여 한 단계의 공정이 추가로 필요하게 되고, 셋째로 기존의 PET 생산설비를 가지고 있을 경우 기존 설비의 이용 차원에서 NDC의 사용을 적절치 못하다. 이러한 NDC의 단점에도 불구하고 PEN 제조시 NDA 대신에 NDC가 사용되는 이유는 아직까지 중합에 필요한 순도를 가진 정제된 NDA를 제조하지 못하기 때문이다. 디메틸나프탈렌의 산화시, 도 2에 도시한 바와 같이, 2,6-포르밀나프토산(2,6-FNA), 트리멜리트산 등의 각종 불순물을 포함하는 cNDA가 생성되는데, 이들 불순물 가운데 특히 FNA가 제거하기 어렵다. 이와 같이 cNDA에 FNA가 존재하면 중합반응이 중간에서 정지되어 중합체의 물성에 나쁜 영향을 미친다.        Currently, 2,6-NDC is produced by oxidizing 2,6-dimethylnaphthalene to produce crude naphthalene dicarboxylic acid ("cNDA": crude naphthalene dicarboxylic acid) as shown in FIG. Doing. Currently, NDC is used as a main raw material when synthesizing PEN, but there are some problems compared to using NDA as a main raw material. Firstly, water is produced during NDA condensation reaction, whereas methanol produces as a by-product in the case of NDC, and there is a danger of explosion. Second, NDA is esterified to obtain pure NDC during NDC manufacturing process, and then NDC is produced through purification process. Therefore, one step process is needed compared to NDA, and thirdly, if you have existing PET production facilities, it is not appropriate to use NDC in terms of using existing facilities. Despite the disadvantages of NDC, the reason why NDC is used instead of NDA in PEN production is that it has not yet produced a purified NDA having the purity necessary for polymerization. Upon oxidation of dimethylnaphthalene, cNDA containing various impurities, such as 2,6-formylnaphthoic acid (2,6-FNA), trimellitic acid, is produced, as shown in FIG. Is difficult to remove. As such, when FNA is present in cNDA, the polymerization reaction is stopped in the middle, which adversely affects the physical properties of the polymer.                         

cNDA에 존재하는 FNA를 제거하기 위한 방법이 여러 가지 알려져 있다. 예를 들어, NDA를 정제하기 위한 재결정법, 산화공정을 한 번 더 거치는 방법, cNDA를 메탄올을 이용하여 NDC로 제조한 후 수화시켜 NDA를 제조하거나 수소화 공정에 의해 정제된 NDA를 제조하는 방법 등이 제안되었다. 또한 용매 처리, 용융 결정, 고압 결정, 초임계추출 등 여러 가지 정제방법을 사용하고 있으나 아직까지 만족할 만한 순도를 가진 NDA를 제조하지 못하고 있다. 또한 순도를 높이는 경우 수율이 매우 떨어져 실제 생산에 적용하기가 어려운 실정이다.       Various methods are known for removing FNA present in cNDA. For example, a method of recrystallization for NDA purification, a method of undergoing an oxidation process once more, a method of preparing cNDA using NDC using methanol, followed by hydration to produce NDA, or a method of preparing purified NDA by hydrogenation, etc. This has been proposed. In addition, various purification methods such as solvent treatment, melting crystals, high pressure crystals, and supercritical extraction have been used, but have not yet produced NDAs with satisfactory purity. In addition, if the purity is increased, the yield is very difficult to apply to actual production.

상술한 바와 같이, 화학적 방법에 의한 2,6-NDA의 생산은 환경오염과 고온, 고압으로 인한 폭발의 위험, 사용 장치 규모의 대형화와 에너지의 과다 소비로 인하여 제조 공정 비용이 급격하게 상승하는 문제점을 가진다. 또한 2,6-나프탈렌디카르복실산을 바로 중합 공정에 사용하기 위해서는 상당한 고순도를 유지하고 있어야 하는데, 종래의 방법에 의할 경우 이러한 순도에 도달하기 어렵기 때문에 별도의 정제공정을 거치게 되며, 이는 공정의 복잡화와 생산성의 저하 등을 초래하는 문제점이 있다.As described above, the production of 2,6-NDA by the chemical method is a problem that the manufacturing process cost increases rapidly due to environmental pollution, the risk of explosion due to high temperature and high pressure, the size of equipment used and the excessive consumption of energy. Has In addition, in order to use 2,6-naphthalenedicarboxylic acid directly in the polymerization process, it has to maintain a high purity, but it is difficult to reach this purity by the conventional method, so it is subjected to a separate purification process. There is a problem that leads to complexity of the process and a decrease in productivity.

따라서 미생물을 이용하는 방법들이 연구되고 있는데, 본 출원인은 국내 특허 출원 제 2002-0087819에서 신규한 바실러스속 균주를 이용하여 FNA를 제거하는 방법을 제안한 바 있고, 국내특허출원 제 2002-7005344호는 크실렌 모노옥시제나제(Xylene monooxygenase)를 이용하여 방향족 알데히드 및 카르복실산을 제조하는 방법을 개시하고 있다. 그러나 아직까지 크산틴 디하이드로게나제에 에 의하여 FNA를 NDA로 전환하는 방법에 대해선 알려진 바가 없다.        Therefore, methods using microorganisms have been studied. The present applicant has proposed a method for removing FNA using a novel Bacillus strain in Korean Patent Application No. 2002-0087819, and Korean Patent Application No. 2002-7005344 discloses xylene mono Disclosed is a process for preparing aromatic aldehydes and carboxylic acids using Xylene monooxygenase. However, there is no known method of converting FNA to NDA by xanthine dehydrogenase.

본 발명은 상술한 바와 같은 종래기술의 문제점을 해결하기 위한 것으로, 본 발명의 목적은 pucABCDE 유전자에 의해 형질전환된 고순도의 NDA 정제 과정에 사용될 수 있는 크산틴 디하이드로게나제를 발현하는 형질전환체의 제조방법을 제공하는 것이다. The present invention is to solve the problems of the prior art as described above, an object of the present invention is a transformant expressing xanthine dehydrogenase that can be used in the high purity NDA purification process transformed by the pucABCDE gene It is to provide a manufacturing method.

본 발명의 다른 목적은 상기 크산틴 디하이드로게나제를 발현하는 형질전환체를 이용하여 cNDA중의 FNA를 NDA로의 산화를 유도하여 고순도의 NDA를 수득할 수 있는 방법을 제공하는 것이다.Another object of the present invention is to provide a method for obtaining high purity NDA by inducing oxidation of FNA in cNDA to NDA using a transformant expressing xanthine dehydrogenase.

상기 목적을 달성하기 위한 본 발명의 한 측면은 바실러스 섭틸리스 (Bacillus subtilis) HSB-21 (KFCC-11221) 유래의 크산틴 디하이드로게나제(Xanthine dehydrogenase)를 코드화하는 유전자(pucABCDE)를 재조합 발현벡터에 삽입하는 단계; 및 One aspect of the present invention for achieving the above object is recombinant expression of a gene ( pucABCDE ) encoding xanthine dehydrogenase derived from Bacillus subtilis HSB-21 (KFCC-11221) Inserting into a vector; And

상기 발현벡터로 숙주세포를 형질전환시키는 단계를 포함하는 크산틴 디하이드로게나제를 발현하는 형질전환체의 제조방법에 관계한다.It relates to a method for producing a transformant expressing xanthine dehydrogenase comprising the step of transforming a host cell with the expression vector.

상기 목적을 달성하기 위한 본 발명의 다른 한 측면은 상기 방법에 의해 제조된 크산틴 디하이드로게나제를 발현하는 형질전환체에 관계한다.Another aspect of the present invention for achieving the above object relates to a transformant expressing xanthine dehydrogenase produced by the method.

상기 목적을 달성하기 위한 본 발명의 또 다른 한 측면은 유기용매를 포함하는 완충용액 내에서 제 4항의 형질전환체를 조제 나프탈렌 디메틸카르복실산(crude Naphthalene dicarboxylic acid)과 반응시켜 상기 조제 나프탈렌 디메틸카르복실산 내의 2-포밀-6-나프토산(2-Formyl-6-naphthoic acid)을 분해하는 단계를 포함하는 2,6-나프탈렌디카르복실산의 정제방법에 관계한다.
Another aspect of the present invention for achieving the above object is to react the transformant of claim 4 with crude naphthalene dimethylcarboxylic acid (crude Naphthalene dicarboxylic acid) in a buffer containing an organic solvent to the crude naphthalene dimethylcar A method for purifying 2,6-naphthalenedicarboxylic acid comprising the step of decomposing 2-formyl-6-naphthoic acid in an acid.

이하에서 첨부 도면을 참고하여 본 발명에 관하여 보다 상세하게 설명한다. Hereinafter, with reference to the accompanying drawings will be described in more detail with respect to the present invention.

본 발명에 따라 크산틴 디하이드로게나제(Xanthine dehydrogenase)를 발현하형질전환체를 제조하는 경우에는 먼저 바실러스 섭틸리스 (Bacillus subtilis) HSB-21 (KFCC-11221) 유래의 크산틴 디하이드로게나제(Xanthine dehydrogenase)를 코드화하는 유전자(pucABCDE)를 수득하여 이를 재조합 발현벡터에 삽입한다. 이어서 이러한 재조합 발현 벡터로 숙주세포를 형질전환시킨다. When preparing a transformant expressing xanthine dehydrogenase according to the present invention, first, xanthine dehydrogenase derived from Bacillus subtilis HSB-21 (KFCC-11221) A gene encoding puxABCDE (Xanthine dehydrogenase) is obtained and inserted into the recombinant expression vector. The host cell is then transformed with this recombinant expression vector.

도 3은 퓨린 분해에 관여하는 바실러스 섭틸리스 (Bcillus subtilis)의 유전자 지도 및 효소를 도시한 도면이다. 도 3을 참고하면, 바실러스 섭틸리스 (Bacillus subtilis) HSB-21 (KFCC-11221)의 염색체 DNA에 존재하는 퓨린 분해에 핵심적인 역할을 하는 puc 오페론상에 존재하는 pucABCDE는 하이포크산틴(hypoxanthine)을 크산틴(xanthine)으로 또한 크산틴을 요산 (uric aicd)로 전환시키는 효소인 크산틴 디하이드로게나제 ("XDH": Xanthine dehydrogenase)를 코드화하는 유전자이다. AMP(Adenosine monophosphate)는 5'-뉴클레오시다제 효소에 의해 아데노신으로 전환된 후 다시 아데노신은 아데노신 디아미다제 (deamidase)에 의해 이노신 (Inosine)으로 전환된다. 전환된 이노신은 뉴클레오시다제에 의해 가수분해 되어 퓨린 염기인 하이포크산틴과 D-리보오스로 분해 된 후 하이포크산틴은 XDH에 의해 크산틴으로 크산틴은 다시 XDH에 의해 요산으로 전환된다. 이렇게 형성된 요산은 알란토인 (Allantoin)으로 알란토인은 알란토익 애시드 (Allantoic acid)로 알란토익 애시드는 다시 우레아(Urea)로 전환되어 최종적으로 암모니아(NH3)와 CO2로 분해된다. 도 3에 도시된 바와 같이, XDH는 pucABCDE의 5개의 서브유닛으로 구성되어 있다. 여기서 pucC는 FAD 결합 도메인, pucD 몰리브덴 (Mo) 결합 도메인, pucE는 철-황의 금속 결합 도메인으로 구성되어 있는 효소로서 전자 공여체로 NAD+를 필요로 한다.3 is a view showing the genetic map and the enzyme of B. subtilis (Bcillus subtilis) which is involved in the purine degradation. Referring to Figure 3, B. subtilis (Bacillus subtilis) HSB-21 pucABCDE present on the puc operon play a key role in the purine degradation present in the chromosomal DNA of (KFCC-11221) is a hypoxanthine (hypoxanthine) It is a gene that encodes xanthine and xanthine dehydrogenase ("XDH"), an enzyme that converts xanthine to uric aicd. Adenosine monophosphate (AMP) is converted to adenosine by the 5'-nucleosidase enzyme, and then adenosine is converted to inosine by adenosine deamimidase. The converted inosine is hydrolyzed by nucleosidase to be decomposed into purine bases hypoxanthine and D-ribose, and then hypoxanthine is converted to uric acid by XDH and xanthine again by XDH. The uric acid thus formed is allantoin, allantoin is allantoic acid, and allantoic acid is converted back to urea and finally decomposed into ammonia (NH 3 ) and CO 2 . As shown in FIG. 3, the XDH consists of five subunits of pucABCDE . Here pucC is an enzyme consisting of a FAD binding domain, a pucD molybdenum (Mo) binding domain, and pucE is an iron-sulfur metal binding domain, which requires NAD + as an electron donor.

본 발명에서 사용되는 크산틴 디하이드로게나제(Xanthine dehydrogenase)를 코드화하는 유전자(pucABCDE)는 바실러스 섭틸리스 (Bacillus subtilis) HSB-21 (KFCC-11221)로부터 유래되고, 약 5.2kb 크기를 가지며 서열 1의 핵산 서열을 포함한다. 먼저 바실러스 섭틸리스 (Bacillus subtilis) HSB-21 (KFCC-11221) 유래의 크산틴 디하이드로게나제(Xanthine dehydrogenase)를 코드화하는 유전자(pucABCDE)를 클로닝하기 위하여 지놈성 DNA를 주형 DNA로 하여 pucABCDE로부터 제작한 프라이머 1 (5'-ATGGGGAATTTTCACACGATGTTAGATGCG-3': 서열 2) 및 프라이머 2 (5'-TTAAAAGCCGGACTCCCGTCTACCCCCGTT-3': 서열 3)를 사용하여 중합효소 연쇄반응(PCR)을 수행함으로써 크산틴 디하이드로게나제를 코드화하는 유전자를 수득할 수 있다. The gene encoding xanthine dehydrogenase ( pucABCDE) used in the present invention is derived from Bacillus subtilis HSB-21 (KFCC-11221), has a size of about 5.2 kb and has a sequence Nucleic acid sequence of 1. First, in order to clone a gene ( pucABCDE ) encoding Xanthine dehydrogenase from Bacillus subtilis HSB-21 (KFCC-11221), the genome DNA was used as a template DNA from pucABCDE . Xanthine dehydrogenase by performing polymerase chain reaction (PCR) using the prepared primer 1 (5'-ATGGGGAATTTTCACACGATGTTAGATGCG-3 ': SEQ ID NO: 2) and primer 2 (5'-TTAAAAGCCGGACTCCCGTCTACCCCCGTT-3': SEQ ID NO: 3). A gene encoding can be obtained.

본 발명의 방법에 의해 크산틴 디하이드로게나제를 발현하는 형질전환체를 제조하는 경우에는 먼저 상기 pucABCDE 유전자 (서열 1)를 포함하는 재조합 발현벡터를 제조한다. 상기 유전가 삽입된 재조합 발현벡터는 상기 방법으로 클로닝된 pucABCDE 유전자를 프로모터에 작동 가능하게(functionally operated) 연결함으로 써 수득할 수 있다. When preparing a transformant expressing xanthine dehydrogenase by the method of the present invention, a recombinant expression vector comprising the pucABCDE gene (SEQ ID NO: 1) is first prepared. The recombinant expression vector into which the gene is inserted can be obtained by operably linking the pucABCDE gene cloned by the above method to a promoter.

도 4는 바실러스 섭틸리스 (Bcillus subtilis) 유래의 크산틴 디하이드로게나제를 코드화하는 유전자를 포함하는 재조합 발현벡터 pFOREXT-pucABCDE의 유전자 지도이다. 도 4에 도시된 바와 같이, 클로닝된 서열 1로 표시되는 약 5.2kb 크기의 DNA 절편을 Forex-T 벡터에 재조합하여 도 4에 표시되는 발현벡터 ForexT-pucABCDE를 제조할 수 있다. 4 is a B. subtilis (Bcillus subtilis) is a gene map of the recombinant expression vector pFOREXT-pucABCDE containing a gene coding for xanthine-di dehydrogenase derived. As shown in FIG. 4, the expression vector ForexT-pucABCDE shown in FIG. 4 may be prepared by recombining a DNA fragment of about 5.2 kb represented by the cloned sequence 1 into a Forex-T vector.

본 발명의 서열 1로 나타나는 바실러스 섭틸리스 (Bacillus subtilis) HSB-21 (KFCC-11221) 유래의 pucABCDE 유전자와 관련하여서는 본원에 제시한 DNA 염기서열만 포함하는 것이 아니라, 여러 방법을 통한 돌연변이 (mutation) 도입에 의하여 새로운 성질을 갖게 된 유전자도 포함할 수 있다. 즉, 유전자의 성질을 변화시키거나 목적에 부합하는 유전자로 제조하기 위하여 인위적으로 합성 뉴클레오타이드에 의한 돌연변이, 화학적 돌연변이, 또는 유도물질에 의한 무작위적 돌연변이 도입 등을 통하여 변화된 DNA 염기서열을 갖게 하여 다른 성질을 갖는 유전자를 제조할 수 있다. 또한 중합 효소 연쇄 반응을 이용한 기술에 의한 돌연변이 도입에 의하여 새로운 성질의 유전자를 제조할 수도 있다.Regarding the pucABCDE gene derived from Bacillus subtilis HSB-21 (KFCC-11221), which is represented by SEQ ID NO: 1 of the present invention, not only the DNA sequence shown herein but also mutation through various methods It may also include genes that have new properties by introduction. In other words, in order to change the properties of the gene or to produce a gene that meets the purpose, the DNA sequence is changed through artificial mutation, chemical mutation, or random mutation introduction by an inducer. Genes having can be prepared. In addition, a gene having a new property can be produced by introducing a mutation by a technique using a polymerase chain reaction.

본 발명에서 발현벡터로 사용가능한 벡터는 특별히 제한되지 않는데, 공지의 pForexT 벡터 (TaKaRa), pUC119 (TaKaRa), pBluescript 계열 벡터 (Stratagene), pET계열 벡터 (Merck) 등을 예로 들 수 있고, 상기 프로모터로는 T7 프로모터, T3 프로모터, Sp6 프로모터 등을 이용할 수 있다.        The vector usable as an expression vector in the present invention is not particularly limited, and examples thereof include known pForexT vectors (TaKaRa), pUC119 (TaKaRa), pBluescript family vectors (Stratagene), pET family vectors (Merck), and the like. As the T7 promoter, T3 promoter, Sp6 promoter and the like can be used.

상기 단계에서 제조된 발현벡터를 이용하여 형질전환체를 제조하는 과정은 일반적인 방법을 통해 진행할 수 있다. 일례로, 통상의 형질전환 방법을 이용하여 숙주 세포 (예를 들어, E. coli XL1-Blue)에 상기에서 제조된 ForexT-pucABCDE 발현벡터를 도입함으로써 크산틴 디하이드로게나제를 발현하는 형질전환체를 수득할 수 있다.The process of preparing a transformant using the expression vector prepared in the above step can be carried out through a general method. In one example, a transformant expressing xanthine dehydrogenase by introducing a ForexT-pucABCDE expression vector prepared above into a host cell (eg, E. coli XL1-Blue) using a conventional transformation method. Can be obtained.

본 발명에서 형질전환체를 제조하기 위한 숙주 세포로는 공지의 MC1061(E. coli), JM109(E. coli), XL1-Blue(E. coli), 및 DH5αF'(E. coli) 등을 예로 들 수 있고, 형질전환 방법으로는 열처리 (heat shock), 전기충격법 (electroporation), 미세주입법(microinjection), particle bombardment (압력을 이용한 분사)법 등을이용할 수 있으나 반드시 이들로 제한되는 것은 아니다.Examples of host cells for preparing transformants in the present invention include known MC1061 ( E. coli ), JM109 ( E. coli ), XL1-Blue ( E. coli ), and DH5αF '( E. coli ). For example, heat transformation, electroporation, microinjection, particle bombardment (pressure injection), etc. may be used as the transformation method, but are not limited thereto.

한편, 상기 형질전환체 XL1-Blue(ForexT-pucABCDE)의 배양에 따른 pucABCDE을 발현하는 형질전환체를 확인하기 위한 방법으로서, 크산틴(Xanthine)을 포함하는 고체 배지에서 배양하면 크산틴 디하이드로게나제에 의해 요산(Uric acid)으로 전환되면서 콜로니 주위에 hollow가 형성되는 것을 응용할 수 있다. 바람직하게는 형질전환체 XL1-Blue(ForexT-pucABCDE)을 엠피실린(ampicillin, 100mg/L)이 포함된 LB 액체배지에 접종해서 진탕배양 한 후, 5 %의 크산틴(Xanthine)과 엠피실린 (ampicillin, 100mg/L)이 포함된 LB 고체배지에 상기의 배양액을 100㎕ 도말하여 37℃ 배양기에서 24시간 배양한 뒤에 hollow가 형성되는 콜로니를 최종 선택한다.On the other hand, as a method for identifying a transformant expressing pucABCDE according to the culture of the transformant XL1-Blue (ForexT-pucABCDE), when cultured in a solid medium containing xanthine (Xanthine) xanthine dehydrogena The conversion of uric acid by the agent can be applied to the formation of hollow around the colony. Preferably, the transformant XL1-Blue (ForexT-pucABCDE) is inoculated into LB liquid medium containing ampicillin (100 mg / L) and shaken to culture, followed by 5% of Xanthine and empicillin ( 100 μl of the culture solution in LB solid medium containing ampicillin (100 mg / L) was incubated in a 37 ° C. incubator for 24 hours to finally select colonies in which hollows were formed.

본 발명에서는 상기 형질전환체들을 각각 LB 액체배지에 접종하여 25∼45℃에서 교반하면서 배양한 다음 원심분리를 통해 균체를 회수하고, 회수한 균체를 생리식염수에 현탁하여 NDA 정제반응의 효소액으로 사용한다. In the present invention, each of the transformants were inoculated in LB liquid medium and incubated with stirring at 25-45 ° C., and then the cells were recovered by centrifugation. The recovered cells were suspended in physiological saline and used as enzyme solution for NDA purification. do.                     

본 발명의 방법에 의해 수득된 형질전환체를 cNDA가 포함된 배지에서 배양하면 FNA가 NDA로 전환되어 불순물인 FNA가 제거된다. FNA로부터 2,6-NDA로 전환되는 과정에서 크산틴 디하이드로게나제의 발현에 의해 FNA의 알데히드기(-COH)가 카로복시기(-COOH)로 전환된 형태의 화합물인 NDA가 형성된다.When the transformant obtained by the method of the present invention is cultured in a medium containing cNDA, FNA is converted to NDA to remove FNA as an impurity. In the process of conversion from FNA to 2,6-NDA, expression of xanthine dehydrogenase results in the formation of NDA, a compound in which the aldehyde group (-COH) of FNA is converted to a carobox group (-COOH).

본 발명에서는 cNDA 내에 포함되어 있는 불순물인 FNA를 제거하기 위하여, 정제하고자 하는 cNDA를 완충용액이 들어있는 효소 반응조에 넣고 상기 형질전환체의 현탁액 (효소액)을 첨가하여 교반하면서 반응을 진행시킨다. In the present invention, in order to remove the FNA which is an impurity contained in the cNDA, the cNDA to be purified is put in an enzyme reaction vessel containing a buffer solution, and the suspension (enzyme solution) of the transformant is added thereto, followed by stirring.

상기 효소반응에 필요한 완충용액으로는 탄산나트륨 완충용액(Na2CO3/NaHCO3), 글리신 완충용액(Glycine/NaOH), 인산칼륨 완충용액(KH 2PO4/KOH), 인산나트륨 완충용액(Na2HPO4/NaH2PO4), 숙신산 완충용액(Succinic acid/NaOH), 아세트산나트륨 완충용액(Sodium acetate/Acetic acid), 시트르산 완충용액(Citric acid/Sodium citrate), 피로인산나트륨 완충용액(Na4P2O7/HCl), 붕산 완충용액(Boric acid/ NaOH), 붕산나트륨 완충용액(Sodium borate/HCl) 등을 사용할 수 있으며, 그 중에서도 인산 완충용액을 사용하는 것이 효소 활성 측면에서 가장 바람직하고, 반응액의 최종 pH는 6~10인 것이 바람직하다. As a buffer solution for the enzyme reaction, sodium carbonate buffer (Na 2 CO 3 / NaHCO 3 ), glycine buffer (Glycine / NaOH), potassium phosphate buffer (KH 2 PO 4 / KOH), sodium phosphate buffer (Na 2 HPO 4 / NaH 2 PO 4 ), succinic acid buffer (Succinic acid / NaOH), sodium acetate buffer (Sodium acetate / Acetic acid), citric acid buffer (Citric acid / Sodium citrate), sodium pyrophosphate buffer (Na 4 P 2 O 7 / HCl), boric acid buffer (Boric acid / NaOH), sodium borate buffer (Sodium borate / HCl), etc. can be used, and among them, the use of phosphate buffer is most preferred in terms of enzyme activity And it is preferable that the final pH of a reaction liquid is 6-10.

또한 상기 효소반응액에는 cNDA를 용해시키기 위한 목적으로 유기용매가 첨가될 수 있는데, 바람직한 유기용매의 예에는 디메틸설폭사이드(Dimethylsulfoxide, "DMSO"), 디메틸포름아미드(N,N-Dimethylformamide, "DMF"), 디메틸아세트아미드(N,N-Dimethylacetamide, "DMA"), 테트라하이드로퓨란 (Tetrahydrofuran, "THF") 등이 포함되며, 그 중에서도 디메틸설폭사이드를 사용하는 것이 효소 활성 측면에서 가장 바람직하다. 유기용매의 첨가량은 전체 반응액의 20%를 넘지 않도록 한다. In addition, an organic solvent may be added to the enzyme reaction solution for the purpose of dissolving cNDA. Examples of preferred organic solvents include dimethylsulfoxide (Dimethylsulfoxide, "DMSO"), and dimethylformamide (N, N-Dimethylformamide, "DMF." "), Dimethylacetamide (N, N-Dimethylacetamide," DMA "), tetrahydrofuran (Tetrahydrofuran," THF "), and the like. Among them, the use of dimethyl sulfoxide is most preferred in terms of enzymatic activity. The amount of the organic solvent added should not exceed 20% of the total reaction solution.

본 발명에서 반응 온도는 25~45℃인 것이 바람직하며, 반응속도 면에서 가장 바람직하게는 30℃에서 반응시키는 것이 좋다. 반응 시간은 6시간 내지 48시간 정도가 바람직하다. In the present invention, the reaction temperature is preferably 25 ~ 45 ℃, in terms of the reaction rate is most preferably reacted at 30 ℃. The reaction time is preferably about 6 hours to 48 hours.

상기의 형질전환체 XL1-Blue(ForexT-pucABCDE)를 cDMN 1,000 ppm과 엠피실린(ampicillin, 100mg/L)이 포함된 LB 액체배지에 접종하여 37℃에서 충분한 시간동안 진탕배양한 후, 농축하여 HPLC 분석을 통해 크산틴 디하이드로게나제 (pucABCDE)의 발현에 의해 FNA가 산화되어 2,6-NDA가 생산되는 것을 확인할 수 있다.The transformant XL1-Blue (ForexT-pucABCDE) was inoculated in an LB liquid medium containing 1,000 ppm cDMN and ampicillin (ampicillin, 100 mg / L), shaken and cultured at 37 ° C. for a sufficient time, and then concentrated by HPLC. Analysis shows that the expression of xanthine dehydrogenase ( pucABCDE ) is oxidized to produce 2,6-NDA.

이하, 실시예를 통하여 본 발명을 보다 상세히 설명하고자 하나 이하의 실시예는 단지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위를 제한하고자 하는 것은 아니다.
Hereinafter, one or more exemplary embodiments will be described in more detail with reference to the following examples, which are intended to illustrate the present invention in more detail, and are not intended to limit the scope of the present invention.

실시예 1 : Example 1: pucABCDEpucABCDE 유전자의 클로닝 Cloning of genes

클로닝된 바실러스 섭틸리스 (Bacillus subtilis) HSB-21 (KFCC-11221) 유래의 pucABCDE를 코드화하는 유전자를 클로닝하기 위하여, 먼저 지놈성 DNA를 분리하였다 (참조 : Sambrook et al., Molecular Cloning, A Laboratory Manual 2nd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989). 상 기 분리한 지놈성 DNA를 주형 DNA로 하여 pucABCDE(참조 : GenBank Sequence Database, Z99120)로부터 제작한 프라이머 1 (5'-ATGGGGAATTTTCACACGATGTTAGATGCG-3': 서열 2) 및 프라이머 2 (5'-TTAAAAGCCGGACTCCCGTCTACCCCCGTT-3': 서열 3)를 사용하여 중합효소 연쇄반응을 수행하였다. 중합효소 연쇄반응은, 첫 번째 변성(denaturation)을 94℃에서 5분간 1회 수행하였고, 이후 두 번째 변성은 94℃에서 1분간, 교잡(annealing)은 60℃에서 1분 30초간, 연장(extension)은 72℃에서 7분간 수행하였으며, 이를 35회 반복하였다. 이와 같은 방법으로 얻어진 절편에서 서열 1로 표시되는 약 5.2kb 크기의 DNA 절편을 분리하고 이를 Forex-T 벡터에 재조합하여 도 4에 나타나는 것과 같은 발현벡터 ForexT-pucABCDE를 제조하였다.
To clone a gene encoding pucABCDE from Bacillus subtilis HSB-21 (KFCC-11221), genome DNA was first isolated (Sambrook et al., Molecular Cloning, A Laboratory). Manual 2nd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989). Primer 1 (5'-ATGGGGAATTTTCACACGATGTTAGATGCG-3 ': SEQ ID NO: 2) and primer 2 (5'-TTAAAAGCCGGACTCCCGTGTACACCCCCGTT-3') prepared from pucABCDE (GenBank Sequence Database, Z99120) using the isolated genomic DNA as template DNA : Polymerase chain reaction was performed using SEQ ID NO: 3). In the polymerase chain reaction, the first denaturation was performed once at 94 ° C. for 5 minutes, the second denaturation was performed at 94 ° C. for 1 minute, and the annealing was performed at 60 ° C. for 1 minute and 30 seconds, extension. ) Was performed at 72 ° C. for 7 minutes and was repeated 35 times. The fragment obtained in this manner was separated from the DNA fragment of about 5.2kb in size represented by SEQ ID NO: 1 and recombined into a Forex-T vector to prepare an expression vector ForexT-pucABCDE as shown in Figure 4.

실시예 2 Example 2 : 클로닝된 유전자 분석Cloned Gene Analysis

클로닝된 재조합 벡터(ForexT-pucABCDE)의 염기서열 분석을 위하여, 두 벡터의 개열지도를 토대로 여러 가지 제한효소(EcoR I, Kpn I, BamH1, Pst I, Hind Ⅲ)들을 이용하여 벡터를 절단하고, 각각의 조각을 M13mp18과 M13mp19에 서브클로닝(subcloning)하였으며, 이들을 AmpliTaq DNA 중합효소를 이용한 ABI PRISM BigDye primer cycle-sequencing kit (Perkin-Elmer, 미국)를 이용하여 서열 분석하였다. 이 때, 두 가닥 DNA의 양쪽 방향을 다 읽기 위하여 부분적으로 합성 뉴클레오타이드를 만들었으며, 이를 통하여 염기서열을 분석하고 재확인하였다.
For sequencing the cloned recombinant vector (ForexT-pucABCDE), the vector was cleaved using various restriction enzymes ( EcoR I, Kpn I, BamH 1, Pst I, Hind III) based on the cleavage map of the two vectors. Each fragment was subcloned into M13mp18 and M13mp19, and they were sequenced using an ABI PRISM BigDye primer cycle-sequencing kit (Perkin-Elmer, USA) using AmpliTaq DNA polymerase. At this time, in order to read both directions of both strands of DNA, partially synthesized nucleotides were made, and the sequence was analyzed and reconfirmed.

실시예 3Example 3 : XDH를 발현하는 형질전환체의 제조 : Preparation of transformant expressing XDH

ForexT-pucABCDE를 칼슘클로라이드 방법을 이용하여 (참조 : Sambrook et al., Molecular Cloning, A Laboratory Manual 2nd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989) 대장균 XL1-Blue에 도입하고 엠피실린 (ampicillin, 100mg/L)과 박토-아가 (bacto-agar, 15g/L)가 첨가된 LB 평판배지 (이스트 추출물, 5g/L ; 트립톤, 10g/L ; NaCl, 10g/L)에서 선별하여 형질전환체 XL1-Blue(ForexT-pucABCDE)을 제조하였다. 클로닝된 DNA 절편의 유전자 염기서열을 분석하여, GenBank에 등록된 염기서열과 비교해 본 결과, pucABCDE 유전자임을 확인할 수 있었다.
ForexT-pucABCDE was introduced into E. coli XL1-Blue using the calcium chloride method (Sambrook et al., Molecular Cloning, A Laboratory Manual 2nd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989). Screened in LB plate medium (yeast extract, 5g / L; tryptone, 10g / L; NaCl, 10g / L) with acillin (ampicillin, 100mg / L) and bacto-agar (15g / L) The transformant XL1-Blue ( ForexTpucABCDE ) was prepared. The gene sequence of the cloned DNA fragment was analyzed and compared with the nucleotide sequence registered in GenBank. As a result, it was confirmed that the gene was pucABCDE .

실시예 4Example 4 : pucABCDE의 발현 확인 : Confirmation of pucABCDE expression

형질전환체의 배양에 따른 ForexT-pucABCDE의 발현을 확인하기 위하여 실시예 1에서 제조한 ForexT-pucABCDE를 사용하여 형질전환시킨 형질전환체 XL1-Blue(ForexT-pucABCDE)와, 대조군으로서 재조합 발현벡터가 포함되지 않은 야생주 XL1-Blue을 동일한 조건으로 배양하여 발현된 XDH의 활성을 측정하였다. 크산틴(Xanthine)이 크산틴 디하이드로게나제에 의해 요산(Uric acid)로 전환되면서 콜로니 주변에 hollow가 형성되는 것을 이용해 pucABCDE의 발현을 확인하였다. 두 종류의 대장균을 각각 엠피실린 (ampicillin, 100mg/L)이 포함된 5ml LB 액체배지에 접종한 다음, 25℃ 내지 45℃의 온도, 특히 37℃에서 충분한 시간동안 진탕배양 하였다. 5 %의 크산틴(Xanthine)와 엠피실린 (ampicillin, 100mg/L)이 포함된 LB 고체배지에 상기의 배양액을 100㎕ 도말하여 37℃ 배양기에서 24시간 배양한 뒤에 콜 로니주변에 hollow의 형성여부를 관찰하였다. 그 결과 재조합 발현벡터가 포함되지 않은 대조군에서는 hollow 형성되지 않은 반면, ForexT-pucABCDE를 사용하여 형질전환시킨 형질전환체 XL1-Blue(ForexT-pucABCDE)에서는 콜로니 주변에 hollow가 형성되는 것이 확인되었다.
In order to confirm the expression of ForexT-pucABCDE according to the culture of the transformant, transformant XL1-Blue (ForexT-pucABCDE) transformed using ForexT-pucABCDE prepared in Example 1 and a recombinant expression vector as a control Wild lines XL1-Blue not included were cultured under the same conditions to determine the activity of the expressed XDH. As xanthine is converted to uric acid by xanthine dehydrogenase, the expression of pucABCDE was confirmed using hollow formation around colonies. Two types of E. coli were inoculated in 5 ml LB liquid medium containing ampicillin (100 mg / L), respectively, and then shaken for a sufficient time at a temperature of 25 ° C. to 45 ° C., particularly 37 ° C. 100 μl of the culture solution in an LB solid medium containing 5% Xanthine and ampicillin (100 mg / L), incubated in a 37 ° C. incubator for 24 hours, and then hollow formation around colonies. Was observed. As a result, it was confirmed that the hollow was not formed in the control group containing no recombinant expression vector, whereas in the transformant XL1-Blue (ForexT-pucABCDE) transformed using ForexT-pucABCDE, hollow was formed around the colony.

실시예 5Example 5 : 발현된 XDH를 이용한 FNA로부터 NDA로의 전환 : Conversion of FNA to NDA using Expressed XDH

형질전환체 XL1-Blue(ForexT-pucABCDE)과, 대조군으로서 재조합 발현벡터가 포함되지 않은 야생주 XL1-Blue를 각각 5 mL LB 시험관에 접종한 다음 37℃에서 충분히 키우고 이를 다시 100㎖의 LB 배지에 1 %(V/V)가 되도록 접종하여 37℃에서 16시간 배양하였다. 배양액을 원심분리하여 균체를 회수하고 0.85 % 생리식염수로 세척한 표 1과 같은 반응액과 25 내지 45℃의 온도, 특히 30℃의 반응조에서 8시간동안 반응 후 고속액체크로마토그래피(HPLC)로 분석하였다. 완충액의 pH는 pH 8.0으로 하였고, 디메틸설폭사이드(Dimethyl-sulfoxide)의 농도는 5 %로 하였다. NDA내 FNA 함량은 9 %인 것을 사용하였다. 실험 결과 표 2에서 보듯이 형질전환체 XL1-Blue(ForexT-pucABCDE)가 야생주에 비하여 높은 FNA의 NDA로의 전환능을 가지고 있었다. HPLC의 분석조건은 표 3과 같았다.       Transformants XL1-Blue (ForexT-pucABCDE) and wild strain XL1-Blue without a recombinant expression vector as a control were inoculated in 5 mL LB test tubes, and then grown sufficiently at 37 ° C., and then again in 100 mL LB medium. Inoculated to 1% (V / V) and incubated for 16 hours at 37 ℃. The cells were recovered by centrifugation of the culture medium, and then reacted with a reaction solution as shown in Table 1 washed with 0.85% physiological saline for 8 hours in a reaction vessel at a temperature of 25 to 45 ° C., particularly at 30 ° C., followed by high performance liquid chromatography (HPLC) It was. The pH of the buffer was pH 8.0 and the concentration of dimethyl sulfoxide (Dimethyl-sulfoxide) was 5%. The FNA content in NDA was 9%. As shown in Table 2, the transformant XL1-Blue (ForexT-pucABCDE) had a higher FNA conversion ability to NDA than the wild strain. HPLC analysis conditions were as shown in Table 3.                     

반응액 조성Reaction liquid composition 조 성Furtherance 비 율ratio 비 고Remarks 0.1 M KH2PO4/KOH (pH 8.0)0.1 M KH 2 PO 4 / KOH (pH 8.0) 42.5 ml42.5 ml 글로코오스Glocoose 0.25 g0.25 g 최종 농도 : 0.5% Final concentration: 0.5% DMSODMSO 0.5 ml0.5 ml NDA 용액(100 mg/ml DMSO)NDA solution (100 mg / ml DMSO) 2 ml 2 ml DMSO 최종 농도 : 5% NDA내 FNA 함량 : 9 % DMSO final concentration: FNA content in 5% NDA: 9% 균체 현탁액Cell suspension 5 ml5 ml 합계Sum 50 ml50 ml

FNA의 NDA로의 전환 (상대비율 %)Conversion of FNA to NDA (% Contrast Ratio) 실험구Experiment 반응시간Reaction time FNAFNA NDANDA 1 XL1-Blue (ForexT-pucABCDE)1 XL1-Blue ( ForexTpucABCDE ) 0 hr0 hr 100.0100.0 100.0100.0 2 hr2 hr 74.774.7 103.0103.0 4 hr4 hr 53.553.5 104.6104.6 8 hr8 hr 44.344.3 106.1106.1 2 XL1-Blue2 XL1-Blue 0 hr0 hr 100.0100.0 100.0100.0 2 hr2 hr 99.799.7 100.1100.1 4 hr4 hr 99.599.5 100.0100.0 8 hr8 hr 99.699.6 100.0100.0

HPLC 분석조건HPLC analysis conditions HPLCHPLC LC 10-ADVP(SHIMADZU)LC 10-AD VP (SHIMADZU) 컬 럼column XTerraTMRP18 (4.6 × 50 mm, Waters) XTerra TM RP18 (4.6 × 50 mm , Waters) 검 출 기Detector UV 240 nm UV 240 nm 컬 럼 온 도Column temperature 40℃ 40 ℃ 유 속Flux 1 ml/min. 1 ml / min. 주 입 부 피Injection mouth 20 ㎕ 20 μl 이 동 상 (mobile phase)Mobile phase 시간 (min)Time (min) 0.3% 인산0.3% phosphoric acid 아세토니트릴Acetonitrile 00 9898 22 55 9292 88 2828 5252 4848 3030 2020 8080 3535 55 9595 3636 9898 22 4949 9898 22

실시예 6Example 6 : 발현된 XDH를 이용한 FNA로부터 NDA로의 전환 : Conversion of FNA to NDA using Expressed XDH

형질전환체 XL1-Blue(ForexT-pucABCDE)과, 대조군으로서 재조합 발현벡터가 포함되지 않은 야생주 XL1-Blue를 각각 5 mL LB 시험관에 접종한 다음 37℃에서 16시간 진탕배양하였다. 이를 다시 20 ㎖의 표 4와 같은 조성의 배지에 상기 배양액 1 %를 접종한 후 37℃ 배양기에서 48시간 동안 진탕 배양하였다. 배양액을 둥근바닥 플라스크에 넣고 건조 증발기로 배양액을 증발시키고 DMSO로 남은 건조분말을 용해시킨 후, 실시예 5의 조건으로 액체크로마토그래피(HPLC)로 분석하여 FNA에서 2,6-NDA으로의 전환 능력을 측정하였다. 디메틸설폭사이드(Dimethyl-sulfoxide)의 농도는 5 %로 하였다. NDA내 FNA 함량은 9 %인 것을 사용하였다. 실험 결과 형질전환체 XL1-Blue(ForexT-pucABCDE)가 야생주에 비하여 높은 FNA의 NDA로의 전환능을 가지고 있었다.        Transformant XL1-Blue (ForexT-pucABCDE) and wild strain XL1-Blue without a recombinant expression vector as a control were inoculated in 5 mL LB test tubes, and then shaken for 16 hours at 37 ° C. This was inoculated again with 1% of the culture solution to the medium of the composition shown in Table 4 of 20 ml shaking culture for 48 hours in a 37 ℃ incubator. The culture solution was placed in a round bottom flask, the culture solution was evaporated with a dry evaporator, and the remaining dry powder was dissolved in DMSO, and analyzed by liquid chromatography (HPLC) under the conditions of Example 5 to convert FNA to 2,6-NDA. Was measured. The concentration of dimethyl sulfoxide (dimethyl-sulfoxide) was 5%. The FNA content in NDA was 9%. As a result, the transformant XL1-Blue (ForexT-pucABCDE) had higher FNA conversion ability than NDA.

배양액 조성Culture composition 조 성Furtherance 함 량content 이스트 추출물Yeast extract 5 g/L5 g / L 트립톤Trypton 10 g/L10 g / L NaClNaCl 10 g/L10 g / L 2,6-DMN2,6-DMN 1 g/L1 g / L 엠피실린Empicillin 100 mg/L100 mg / L DMSODMSO 10 mL10 mL

본 발명의 방법에 의해 수득되는 형질전환체는 조제 나프탈렌 디카르복실산에 포함되어 있는 2-포밀-6-나프토산을 제거하는데 뛰어난 효과가 있으므로, 본 발명의 방법에 의해 고순도의 2,6-나프탈렌 디카르복실산의 대량생산이 실현될 것으로 기대된다. 또한 본 발명에 의하면 화학적 방법의 적용에 의한 환경오염, 폭발의 위험, 설비의 대형화 및 에너지 과다 소비 등의 문제를 극복할 수 있다. Since the transformant obtained by the method of the present invention has an excellent effect of removing 2-formyl-6-naphthoic acid contained in the crude naphthalene dicarboxylic acid, it is highly purified 2,6- by the method of the present invention. Mass production of naphthalene dicarboxylic acid is expected to be realized. In addition, according to the present invention it is possible to overcome problems such as environmental pollution, the risk of explosion, the enlargement of equipment and excessive consumption of energy by applying the chemical method.

<110> HYOSUNG CORPORATION <120> METHOD FOR PREPARING RECOMBINANT MOCROORGANISM AND PURIFICATION METHOD OF 2,6-NAPHTHALENE DICARBOXYLIC ACIT USING THE MICROORGANISM <130> 04-TNC-29 <160> 3 <170> KopatentIn 1.71 <210> 1 <211> 5188 <212> DNA <213> Bacillus subtilis <400> 1 atggggaatt ttcacacgat gttagatgcg ctcctggaag accaggagga ggctgtactg 60 gcgacaattg ttcaagttga aggctccgcg tatcgaaaag caggcgcctc tatgctcttt 120 aagaaaaaag gcagacggat tggcttgctg agcggcgggt gtgtggaaga agatgtattc 180 caaagaatca gtgcgctggg cgatcagctc acatcaacgc tgattcccta cgacatgcgg 240 tcggaggacg atctttcttg gggcatggga gccgggtgca atggcattat tcatgttcat 300 gcagagcgaa tcactcagga aaaaaggcgg cactatgaga aagtgaggga ctgccttcat 360 tcaggcaaag ctgtcacttc cgttataaag attgaatcct cccattattt atttctgacg 420 gagaacggac attttgggaa ctggccggac gcgcctctgc aagatattca acgtactgtt 480 tcaacgcttc atttaccgca tttcgatcaa accactaaca tgtttattca gcgaattgaa 540 ccgaagccgc gtctcattct gtttggggcg ggaccggata atgtaccgct ggccaatttg 600 gcggctgaca cagggttttc tgttatcgtg acggattggc ggcccgctta ttgtacatcc 660 tctctttttc caaaagcgga tcagctgatc accgcttttc cggaacaaat gcttagcgaa 720 tttcaatttt ttccgcatga tgcagctgtt gtggcaaccc atcattatca gcacgatcaa 780 acgatcatca acttcttatt ttctcaaaac ctccattata ttggactgtt gggttcggca 840 aaccgcacga aacggctgct gagcggaaaa catcctccgt ctcactttta cagtccggtc 900 gggctgaaaa tcggtgcgga aggtcccgag gaaattgcgg taagtgtagt tgcagaaatc 960 attcaaacaa gaaaacgggt ggcggttgta tgagaagccc ctatctgatc ggcgtgtttc 1020 tcgctgccgg caaaagcaga agaatgggac aaaacaagct ggctttgccg ctaaaaggag 1080 aaaacatagg ctcactttcc ttgaaaactg ctctgtcgtc ccgccttgat cacgtgctgg 1140 tcgtcgagcg gacagaacat gcctcccttg agtggatagg agcgccgtat cacgctccgc 1200 cttttcaaaa acgctggagc ctgcacgttt gccaagacgc agaaaagggt caggggcatt 1260 cagtcagcag cggggtgaga aaagcagaaa gcatgggggc ggacggcatt gtcattttgt 1320 tagccgacca gcctcagctt tccgtcgatc atctcaatgc ccttgtggct ctggctcctg 1380 agtcatttgc cgtgtcatcg tttttagggg cgttcacccc gccaatctac ttctcgtcga 1440 catgttttcc ttatgtaaag ggattaaagg gagatgaagg ggctcgcagg ctcctgaaaa 1500 gcggacagct tggagcagga gcggttttgg aggcaaagga tagcggtgag ttggacgata 1560 ttgatacacc ccgaggaata tgacatggta aggagggcga tgtcttgaac ggccaagtga 1620 caaaagcaag gatgaatatt caattatgga gaccggcagc gcttgatgag gcctattcgc 1680 ttttagagaa gcttgctccg gatgtgtgtg ccgcatcggg aagcacgctc cttcagcttc 1740 agtgggacaa aggaactcta ccgaaacagc accttgtcag ccttgaaggg attgacgaaa 1800 tgcgagggat cagcaccagt gacacccacg tgtcgatcgg ggggctcaca tcactgaatg 1860 aatgcagaaa gaaccctttg attaagagag cgcttagctg tttcagtgac gctgcttccg 1920 ctgtcgctgc accggggatt cgcagccgtg ccacgattgg cggcaacata gcgagtaaaa 1980 tcggtgattt cattccgctt ctgcttgtgc ttggtgctga gcttatcgta tatcaaaagg 2040 agctaatcag gctgccgctt ggcgcttggc tcagtgagga agactttaga acggctatcg 2100 tcacgcgtgt catcatcccg cgggcggagg gagagcgtgt attttatcac aagcttggaa 2160 ggcgccaggc ttttaccgga gcggctgctg ttgcagctgg acgttttttg aaagacggca 2220 gcattcgcct cgccgctggc catgccgata tcactcctag gagattattg gacagcgaag 2280 cgaaatggat ggcaccaggg tgggacccgc atgagctgta caaaacactt atccatgagc 2340 tgccgttttc ctcagatgtt tttatgtcag cggcatacag aaaaaaagcc gctgccaacg 2400 tcatcatggc agagctgatg gctgagggag gggaataaat gatcatcaac aaaccgtcaa 2460 gagtcaggcc ggatggaagg ggtaaggtca caggggaatt gaaatatatg accgatctca 2520 gctttccagg aatgctgtat ggcaaggtgc tgagaagtgc ttatcctcat gcagagattg 2580 tgtcggtttg caccataaaa gctgagaaaa tggaaggcgt gcaggccgtc gtcacacata 2640 aagacgttcc cggcttaaac cgatttggca ttgtcatccc tgatcagccg gttttatgtg 2700 aggacagggt gcggtatgtc ggggatgcga tcgccgcagt tgctgcggaa acggaagaaa 2760 tcgcggaagc ggcgctggag ctgattcaag ttgagtataa agagctggaa gtcatggatt 2820 caccagaaaa agcgcttcgg ccgaatgcgc aaagactgca tgaggacggg aatatcctgc 2880 accgcgcatt tttttcaaac ggtgatgtgg aagaagggtt tcaagcatct gacacagtct 2940 ttgaagaaac ctatgagctg ccgcggcaga tgcatacgta tatggaaacg gagggaggtg 3000 tagccgttcc ggaagacgac gggggtttta cgatgtatgc aggaacccag cacggctata 3060 aagaccgttt ccagcttgcc cgtatttttg atattcctga agagaagatc agaattgtgt 3120 caagtccgat gggcggctcg ttcggaggga aggatgagct gaatattcag ccgtatgctg 3180 cgcttttggc cctgaaaagc ggacgccctg tcaaaattca tcagacacga aaggaatctg 3240 tacgttctgg cattaagcgc catccgatga agattacgat aaaaacgggt gcagatcatt 3300 cgggaaatct attggcgcac gacgtgaaaa ttgtggcgga cacaggcgct tacgctacgc 3360 tcggaccggc tgttcttgat ttttctgtcg agcatgccgc ggggccgtac cgtattccga 3420 atatccggac tgaaggaata tcagtattta cgaacaacgg ggtggcgggg gaatttcggg 3480 gctttggcgg caaccaaatc acatttgcac tcgaaaccca tctcgatcgt ctcagcggca 3540 tgcttggcat cgacccgctc gagctgagaa gaaaaaatat cagaaaaccg catgacttgg 3600 ggccgcttga gcatcgaatt gcaccaactg acggagcggc acaggtgttg aatgccatat 3660 ctaaatctcc cattcttaaa aaaacaagcc ggaactgcgg gtatctgcaa agaggcacgg 3720 gagcggcaat tacaatgcac ggcggcgggc tggggtttgg ccgaatggat gcggcaggag 3780 gccgtttgtc tctttcgagt gaaggcaaaa tcactgcttc gtttggattt gaagaatgcg 3840 gacaggggat tctagcagcg attgaacaga ttgtcatgga ggagctgggt tgtgccgcag 3900 aggatatttc cattgttatt ggggataccg caaaagtgcc gaagtcaggc tcctccacag 3960 catcccgcgg cacaagcatg gtgtggcacg cgatccagcg tttgaagaag ccgtttctag 4020 ctcagttgaa aaaacgggcg gcagaatgga gcggctgttc agcggaaaat cttattcccg 4080 gcgctgcagg cttgcgtgac aaaaacacaa aggcgctcgt ggtgacgtat aaggagctgg 4140 ctgaaaaagg ccctttggca gaggaaacgg cctttgactt tccaacaacg cctgatcctg 4200 tggtgggcgg ccatttcctc tactcatttg gagcggctgc cgttgaggtg gaggtagatc 4260 tgttaacagg cgatgtcaaa ttgatagatt gtgagcacgc tattgcggca ggtccggttg 4320 tcagtccgca gggatatcga ggtcaaattg aaggcggcgc tgccatggca ctcggctaca 4380 cactgatgga ggaagcgaaa atgacggatg gccgttatgc tgcggaaaat ctcgatcact 4440 atttgattcc cggaatcaaa gatgttcctg acatgaagct gattgcaata gaagacttaa 4500 tgaagggaga cgtatatgga ccgcgcggtg ttggtgaaat cggaacaatc gccatcactc 4560 cggcgattgt aaaggcagta catgatgcgg tcggatgctg gataaacaag ctgccaattt 4620 caagagaaga gttgcttgaa gcgatcgaca gaaaggggct gaagcaatgg acataaaaga 4680 ggccgggcca tttcctgtaa aaaaggaaca gttccggatg accgtgaatg gtcaggcgtg 4740 ggaggttgct gccgttccta cgacacatct gagtgacctg cttagaaagg aatttcagct 4800 gaccgggaca aaggtgtcct gcggaatcgg ccgctgcgga gcctgctcta ttttaatcga 4860 cggaaaactg gccaatgcgt gcatgacgat ggcctatcaa gcagacggcc attccatcac 4920 aaccatcgag gggcttcaaa aagaagagct ggatatgtgt caaaccgctt tcctggaaga 4980 aggcggcttc caatgcggct actgtacgcc gggaatgatc attgcgctta aagcattgtt 5040 tcgggaaacc cctcaacctt ctgacaaaga tatagaagaa gggctggcgg ggaatttgtg 5100 ccggtgtacc gggtatggcg ggattatgcg gtcagcttgc aggattagaa gagagttgaa 5160 cgggggtaga cgggagtccg gcttttaa 5188 <210> 2 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> PRIMER <400> 2 atggggaatt ttcacacgat gttagatgcg 30 <210> 3 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> PRIMER <400> 3 ttaaaagccg gactcccgtc tacccccgtt 30 <110> HYOSUNG CORPORATION <120> METHOD FOR PREPARING RECOMBINANT MOCROORGANISM AND PURIFICATION          METHOD OF 2,6-NAPHTHALENE DICARBOXYLIC ACIT USING THE          MICROORGANISM <130> 04-TNC-29 <160> 3 <170> KopatentIn 1.71 <210> 1 <211> 5188 <212> DNA <213> Bacillus subtilis <400> 1 atggggaatt ttcacacgat gttagatgcg ctcctggaag accaggagga ggctgtactg 60 gcgacaattg ttcaagttga aggctccgcg tatcgaaaag caggcgcctc tatgctcttt 120 aagaaaaaag gcagacggat tggcttgctg agcggcgggt gtgtggaaga agatgtattc 180 caaagaatca gtgcgctggg cgatcagctc acatcaacgc tgattcccta cgacatgcgg 240 tcggaggacg atctttcttg gggcatggga gccgggtgca atggcattat tcatgttcat 300 gcagagcgaa tcactcagga aaaaaggcgg cactatgaga aagtgaggga ctgccttcat 360 tcaggcaaag ctgtcacttc cgttataaag attgaatcct cccattattt atttctgacg 420 gagaacggac attttgggaa ctggccggac gcgcctctgc aagatattca acgtactgtt 480 tcaacgcttc atttaccgca tttcgatcaa accactaaca tgtttattca gcgaattgaa 540 ccgaagccgc gtctcattct gtttggggcg ggaccggata atgtaccgct ggccaatttg 600 gcggctgaca cagggttttc tgttatcgtg acggattggc ggcccgctta ttgtacatcc 660 tctctttttc caaaagcgga tcagctgatc accgcttttc cggaacaaat gcttagcgaa 720 tttcaatttt ttccgcatga tgcagctgtt gtggcaaccc atcattatca gcacgatcaa 780 acgatcatca acttcttatt ttctcaaaac ctccattata ttggactgtt gggttcggca 840 aaccgcacga aacggctgct gagcggaaaa catcctccgt ctcactttta cagtccggtc 900 gggctgaaaa tcggtgcgga aggtcccgag gaaattgcgg taagtgtagt tgcagaaatc 960 attcaaacaa gaaaacgggt ggcggttgta tgagaagccc ctatctgatc ggcgtgtttc 1020 tcgctgccgg caaaagcaga agaatgggac aaaacaagct ggctttgccg ctaaaaggag 1080 aaaacatagg ctcactttcc ttgaaaactg ctctgtcgtc ccgccttgat cacgtgctgg 1140 tcgtcgagcg gacagaacat gcctcccttg agtggatagg agcgccgtat cacgctccgc 1200 cttttcaaaa acgctggagc ctgcacgttt gccaagacgc agaaaagggt caggggcatt 1260 cagtcagcag cggggtgaga aaagcagaaa gcatgggggc ggacggcatt gtcattttgt 1320 tagccgacca gcctcagctt tccgtcgatc atctcaatgc ccttgtggct ctggctcctg 1380 agtcatttgc cgtgtcatcg tttttagggg cgttcacccc gccaatctac ttctcgtcga 1440 catgttttcc ttatgtaaag ggattaaagg gagatgaagg ggctcgcagg ctcctgaaaa 1500 gcggacagct tggagcagga gcggttttgg aggcaaagga tagcggtgag ttggacgata 1560 ttgatacacc ccgaggaata tgacatggta aggagggcga tgtcttgaac ggccaagtga 1620 caaaagcaag gatgaatatt caattatgga gaccggcagc gcttgatgag gcctattcgc 1680 ttttagagaa gcttgctccg gatgtgtgtg ccgcatcggg aagcacgctc cttcagcttc 1740 agtgggacaa aggaactcta ccgaaacagc accttgtcag ccttgaaggg attgacgaaa 1800 tgcgagggat cagcaccagt gacacccacg tgtcgatcgg ggggctcaca tcactgaatg 1860 aatgcagaaa gaaccctttg attaagagag cgcttagctg tttcagtgac gctgcttccg 1920 ctgtcgctgc accggggatt cgcagccgtg ccacgattgg cggcaacata gcgagtaaaa 1980 tcggtgattt cattccgctt ctgcttgtgc ttggtgctga gcttatcgta tatcaaaagg 2040 agctaatcag gctgccgctt ggcgcttggc tcagtgagga agactttaga acggctatcg 2100 tcacgcgtgt catcatcccg cgggcggagg gagagcgtgt attttatcac aagcttggaa 2160 ggcgccaggc ttttaccgga gcggctgctg ttgcagctgg acgttttttg aaagacggca 2220 gcattcgcct cgccgctggc catgccgata tcactcctag gagattattg gacagcgaag 2280 cgaaatggat ggcaccaggg tgggacccgc atgagctgta caaaacactt atccatgagc 2340 tgccgttttc ctcagatgtt tttatgtcag cggcatacag aaaaaaagcc gctgccaacg 2400 tcatcatggc agagctgatg gctgagggag gggaataaat gatcatcaac aaaccgtcaa 2460 gagtcaggcc ggatggaagg ggtaaggtca caggggaatt gaaatatatg accgatctca 2520 gctttccagg aatgctgtat ggcaaggtgc tgagaagtgc ttatcctcat gcagagattg 2580 tgtcggtttg caccataaaa gctgagaaaa tggaaggcgt gcaggccgtc gtcacacata 2640 aagacgttcc cggcttaaac cgatttggca ttgtcatccc tgatcagccg gttttatgtg 2700 aggacagggt gcggtatgtc ggggatgcga tcgccgcagt tgctgcggaa acggaagaaa 2760 tcgcggaagc ggcgctggag ctgattcaag ttgagtataa agagctggaa gtcatggatt 2820 caccagaaaa agcgcttcgg ccgaatgcgc aaagactgca tgaggacggg aatatcctgc 2880 accgcgcatt tttttcaaac ggtgatgtgg aagaagggtt tcaagcatct gacacagtct 2940 ttgaagaaac ctatgagctg ccgcggcaga tgcatacgta tatggaaacg gagggaggtg 3000 tagccgttcc ggaagacgac gggggtttta cgatgtatgc aggaacccag cacggctata 3060 aagaccgttt ccagcttgcc cgtatttttg atattcctga agagaagatc agaattgtgt 3120 caagtccgat gggcggctcg ttcggaggga aggatgagct gaatattcag ccgtatgctg 3180 cgcttttggc cctgaaaagc ggacgccctg tcaaaattca tcagacacga aaggaatctg 3240 tacgttctgg cattaagcgc catccgatga agattacgat aaaaacgggt gcagatcatt 3300 cgggaaatct attggcgcac gacgtgaaaa ttgtggcgga cacaggcgct tacgctacgc 3360 tcggaccggc tgttcttgat ttttctgtcg agcatgccgc ggggccgtac cgtattccga 3420 atatccggac tgaaggaata tcagtattta cgaacaacgg ggtggcgggg gaatttcggg 3480 gctttggcgg caaccaaatc acatttgcac tcgaaaccca tctcgatcgt ctcagcggca 3540 tgcttggcat cgacccgctc gagctgagaa gaaaaaatat cagaaaaccg catgacttgg 3600 ggccgcttga gcatcgaatt gcaccaactg acggagcggc acaggtgttg aatgccatat 3660 ctaaatctcc cattcttaaa aaaacaagcc ggaactgcgg gtatctgcaa agaggcacgg 3720 gagcggcaat tacaatgcac ggcggcgggc tggggtttgg ccgaatggat gcggcaggag 3780 gccgtttgtc tctttcgagt gaaggcaaaa tcactgcttc gtttggattt gaagaatgcg 3840 gacaggggat tctagcagcg attgaacaga ttgtcatgga ggagctgggt tgtgccgcag 3900 aggatatttc cattgttatt ggggataccg caaaagtgcc gaagtcaggc tcctccacag 3960 catcccgcgg cacaagcatg gtgtggcacg cgatccagcg tttgaagaag ccgtttctag 4020 ctcagttgaa aaaacgggcg gcagaatgga gcggctgttc agcggaaaat cttattcccg 4080 gcgctgcagg cttgcgtgac aaaaacacaa aggcgctcgt ggtgacgtat aaggagctgg 4140 ctgaaaaagg ccctttggca gaggaaacgg cctttgactt tccaacaacg cctgatcctg 4200 tggtgggcgg ccatttcctc tactcatttg gagcggctgc cgttgaggtg gaggtagatc 4260 tgttaacagg cgatgtcaaa ttgatagatt gtgagcacgc tattgcggca ggtccggttg 4320 tcagtccgca gggatatcga ggtcaaattg aaggcggcgc tgccatggca ctcggctaca 4380 cactgatgga ggaagcgaaa atgacggatg gccgttatgc tgcggaaaat ctcgatcact 4440 atttgattcc cggaatcaaa gatgttcctg acatgaagct gattgcaata gaagacttaa 4500 tgaagggaga cgtatatgga ccgcgcggtg ttggtgaaat cggaacaatc gccatcactc 4560 cggcgattgt aaaggcagta catgatgcgg tcggatgctg gataaacaag ctgccaattt 4620 caagagaaga gttgcttgaa gcgatcgaca gaaaggggct gaagcaatgg acataaaaga 4680 ggccgggcca tttcctgtaa aaaaggaaca gttccggatg accgtgaatg gtcaggcgtg 4740 ggaggttgct gccgttccta cgacacatct gagtgacctg cttagaaagg aatttcagct 4800 gaccgggaca aaggtgtcct gcggaatcgg ccgctgcgga gcctgctcta ttttaatcga 4860 cggaaaactg gccaatgcgt gcatgacgat ggcctatcaa gcagacggcc attccatcac 4920 aaccatcgag gggcttcaaa aagaagagct ggatatgtgt caaaccgctt tcctggaaga 4980 aggcggcttc caatgcggct actgtacgcc gggaatgatc attgcgctta aagcattgtt 5040 tcgggaaacc cctcaacctt ctgacaaaga tatagaagaa gggctggcgg ggaatttgtg 5100 ccggtgtacc gggtatggcg ggattatgcg gtcagcttgc aggattagaa gagagttgaa 5160 cgggggtaga cgggagtccg gcttttaa 5188 <210> 2 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> PRIMER <400> 2 atggggaatt ttcacacgat gttagatgcg 30 <210> 3 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> PRIMER <400> 3 ttaaaagccg gactcccgtc tacccccgtt 30  

Claims (9)

서열 1의 핵산 서열을 포함하는 재조합 발현벡터를 제조하는 단계; 및 Preparing a recombinant expression vector comprising the nucleic acid sequence of SEQ ID NO: 1; And 상기 재조합 발현벡터로 숙주세포를 형질전환시키는 단계를 포함하는 크산틴 디하이드로게나제를 발현하는 형질전환체의 제조방법.Method for producing a transformant expressing xanthine dehydrogenase comprising the step of transforming the host cell with the recombinant expression vector. 제 1항에 있어서, 상기 재조합 발현벡터는 Forex-T, pUC119, pBluscript, 및 pET로 이루어진 군 중에서 선택된 벡터인 것을 특징으로 하는 크산틴 디하이드로게나제를 발현하는 형질전환체의 제조방법.       The method for preparing a transformant expressing xanthine dehydrogenase according to claim 1, wherein the recombinant expression vector is a vector selected from the group consisting of Forex-T, pUC119, pBluscript, and pET. 제 1항에 있어서, 상기 숙주세포가 MC1061(E. coli), JM109(E. coli), XL1-Blue(E. coli), 및 DH5αF'(E. coli)로 이루어진 군중에서 선택되는 것임을 특징으로 하는 크산틴 디하이드로게나제를 발현하는 형질전환체의 제조방법.The method of claim 1, wherein the host cell is characterized in that is selected from the group consisting of MC1061 ( E. coli ), JM109 ( E. coli ), XL1-Blue ( E. coli ), and DH5αF '( E. coli ). A method for producing a transformant expressing xanthine dehydrogenase. 제 1항의 방법에 의해 제조된 형질전환체.A transformant prepared by the method of claim 1. 유기용매를 포함하는 완충용액 내에서 제 4항의 형질전환체를 조제 나프탈렌 디메틸카르복실산(crude Naphthalene dicarboxylic acid)과 반응시켜 상기 조제 나프탈렌 디메틸카르복실산 내의 2-포밀-6-나프토산(2-Formyl-6-naphthoic acid)을 분해하는 단계를 포함하는 2,6-나프탈렌디카르복실산의 정제방법.The transformant of claim 4 is reacted with crude naphthalene dimethylcarboxylic acid in a buffer containing an organic solvent to form 2-formyl-6-naphthoic acid (2- in the crude naphthalene dimethylcarboxylic acid. Method for purifying 2,6-naphthalenedicarboxylic acid comprising the step of decomposing Formyl-6-naphthoic acid). 제 5항에 있어서, 상기 유기용매가 디메틸설폭사이드, 디메틸포름아미드, 디메틸아세트아미드 및 테트라하이드로퓨란으로 구성된 군에서 선택되는 1종이고 그 농도가 0 내지 20%인 것을 특징으로 하는 방법.The method according to claim 5, wherein the organic solvent is one selected from the group consisting of dimethyl sulfoxide, dimethylformamide, dimethylacetamide and tetrahydrofuran and the concentration is 0 to 20%. 제 5항에 있어서, 상기 유기용매가 디메틸설폭사이드, 디메틸포름아미드, 디메틸아세트아미드 및 테트라하이드로퓨란으로 구성된 군에서 선택되는 1종이고 그 농도가 0 내지 20%인 것을 특징으로 하는 방법.The method according to claim 5, wherein the organic solvent is one selected from the group consisting of dimethyl sulfoxide, dimethylformamide, dimethylacetamide and tetrahydrofuran and the concentration is 0 to 20%. 제 5항에 있어서, 상기 상기 반응을 25~45℃의 온도에, 6 시간 내지 48시간 동안 진행하는 것을 특징으로 하는 방법.The method of claim 5, wherein the reaction is carried out at a temperature of 25 ~ 45 ℃, 6 hours to 48 hours. 제 5항에 있어서, 상기 완충용액이 탄산나트륨 완충용액(Na2CO3/NaHCO3), 글리신 완충용액(Glycine/NaOH), 인산칼륨 완충용액(KH2PO4/KOH), 인산나트륨 완충용액(Na2HPO4/NaH2PO4), 숙신산 완충용액(Succinic acid/NaOH), 아세트산나트륨 완충용액(Sodium acetate/Acetic acid), 시트르산 완충용액(Citric acid/Sodium citrate), 피로인산나트륨 완충용액(Na4P2O7/HCl), 붕산 완충용액(Boric acid/NaOH) 및 붕산나트륨 완충용액(Sodium borate/HCl)으로 구성된 군에서 선택되는 1종이고, 완충용액의 pH는 6.0 내지 10.0인 것을 특징으로 하는 방법.The method of claim 5, wherein the buffer solution is sodium carbonate buffer (Na 2 CO 3 / NaHCO 3 ), glycine buffer (Glycine / NaOH), potassium phosphate buffer (KH 2 PO 4 / KOH), sodium phosphate buffer ( Na 2 HPO 4 / NaH 2 PO 4 ), succinic acid buffer (Succinic acid / NaOH), sodium acetate buffer (Sodium acetate / Acetic acid), citric acid buffer (Citric acid / Sodium citrate), sodium pyrophosphate buffer ( Na 4 P 2 O 7 / HCl), boric acid buffer (Boric acid / NaOH) and sodium borate buffer (Sodium borate / HCl) is one selected from the group consisting of, the pH of the buffer solution is 6.0 to 10.0 How to feature.
KR1020040118136A 2004-12-31 2004-12-31 26- method for preparing transformants expressing xanthine dehydrogenase and method for purification of 26-naphthalene dicarboxylic acid using the transformants KR100811380B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020040118136A KR100811380B1 (en) 2004-12-31 2004-12-31 26- method for preparing transformants expressing xanthine dehydrogenase and method for purification of 26-naphthalene dicarboxylic acid using the transformants

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040118136A KR100811380B1 (en) 2004-12-31 2004-12-31 26- method for preparing transformants expressing xanthine dehydrogenase and method for purification of 26-naphthalene dicarboxylic acid using the transformants

Publications (2)

Publication Number Publication Date
KR20060078799A true KR20060078799A (en) 2006-07-05
KR100811380B1 KR100811380B1 (en) 2008-03-07

Family

ID=37170636

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040118136A KR100811380B1 (en) 2004-12-31 2004-12-31 26- method for preparing transformants expressing xanthine dehydrogenase and method for purification of 26-naphthalene dicarboxylic acid using the transformants

Country Status (1)

Country Link
KR (1) KR100811380B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100847984B1 (en) * 2006-10-10 2008-07-22 주식회사 효성 26- Purification method of crude naphthalene dicarboxylic acid using recombinated microorganism and 26-naphthalene dicarboxylic acid in crystalline form obtained by using the same
KR100850164B1 (en) * 2006-11-17 2008-08-04 주식회사 효성 26- Purification method of crude naphthalene dicarboxylic acid using enzyme from Bacillus subtilis and 26-naphthalene dicarboxylic acid in crystalline form obtained by using the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06279355A (en) * 1993-03-26 1994-10-04 Sekiyu Sangyo Kasseika Center Production of 2,6-naphthalene-dicarboxylic acid
KR100471112B1 (en) * 2002-12-30 2005-03-10 주식회사 효성 A refining process of 2,6-Naphtalene Dicarboxylic Acid using a microorganism
KR100475007B1 (en) * 2002-12-31 2005-03-10 주식회사 효성 Novel bacillus strains and method for purifying 2,6-naphthalene dicarboxylic acid thereby

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100847984B1 (en) * 2006-10-10 2008-07-22 주식회사 효성 26- Purification method of crude naphthalene dicarboxylic acid using recombinated microorganism and 26-naphthalene dicarboxylic acid in crystalline form obtained by using the same
KR100850164B1 (en) * 2006-11-17 2008-08-04 주식회사 효성 26- Purification method of crude naphthalene dicarboxylic acid using enzyme from Bacillus subtilis and 26-naphthalene dicarboxylic acid in crystalline form obtained by using the same

Also Published As

Publication number Publication date
KR100811380B1 (en) 2008-03-07

Similar Documents

Publication Publication Date Title
US7470770B2 (en) Gene encoding malic enzyme and method for preparing succinic acid using the same
US7572615B2 (en) Gene encoding formate dehydrogenases D and E and method for preparing succinic acid using the same
EP1543114B1 (en) Aldehyde dehydrogenase gene
EP1688499A1 (en) Alcohol-aldehyd-dehydrogenases
JP3880624B2 (en) Various improved mutants of (2.5-DKG) reductase
JPH11206385A (en) Lactate dehydrogenase gene and lactate dehydrogenase gene distruption strain
CN111235123A (en) Carbonyl reductase with high-concentration tolerance of alcoholic solution and application thereof
KR100811380B1 (en) 26- method for preparing transformants expressing xanthine dehydrogenase and method for purification of 26-naphthalene dicarboxylic acid using the transformants
JP4987727B2 (en) Preparation of 2,6-naphthalene dicarboquinic acid using a transformant expressing benzaldehyde dehydrogenase
EP0869175B1 (en) Cytochrome C and its gene
KR100719687B1 (en) 26- Method for Preparing Aldehyde Dehydrogenage Derived from Bacillus subtilis and Method for Purification of 26-Naphthalane Dicarboxylic Acid by Using It
CN114134127A (en) Diaminobutyrate acetyltransferase mutants for the synthesis of ectoin
CN113061593A (en) L-malate dehydrogenase mutant and application thereof
KR102179895B1 (en) COMPOSITION FOR PRODUCING α,ω-DICARBOXYLIC ACID FROM ω-HYDROXYFATTY ACID AND METHOD FOR PRODUCING α,ω-DICARBOXYLIC ACID USING THE SAME
JP5175845B2 (en) Asymmetric oxidase used in the production of optically active 1,2-diols
EP3760723A1 (en) Method for producing 4-aminocinnamic acid, and vector and host cell used in same
KR101411920B1 (en) A novel ribitol dehydrogenase and L-ribulose production using the said enzyme
KR100702317B1 (en) 26- an aldehyde dehydrogenase from bacillus subtilis preparation method of the same and preparation method of 26-naphthalene dicarboxylic acid using the same
KR100811385B1 (en) 26- Method for preparing Microorganism expressing Xylene monooxygenase and Method for production of 26-naphthalene dicarboxylic acid using the microorganism
WO2005054462A1 (en) Thermotolerant 2,6-dihydroxybenzoate decarboxylase and method of producing 2,6-dihydroxybenzoic acid
KR20050060078A (en) Process for producing l-ascorbic acid
US6407203B1 (en) Cytochrome c and polynucleotides encoding cytochrome c
EA013412B1 (en) Gene sms 27
CN116769845A (en) Method for producing 1,3-dihydroxyacetone from glycerol and application thereof
CN116536281A (en) Ethanol dehydrogenase ADH10C1 with improved thermal stability, and gene and application thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20111216

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20121220

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee