KR100471112B1 - A refining process of 2,6-Naphtalene Dicarboxylic Acid using a microorganism - Google Patents

A refining process of 2,6-Naphtalene Dicarboxylic Acid using a microorganism Download PDF

Info

Publication number
KR100471112B1
KR100471112B1 KR10-2002-0087132A KR20020087132A KR100471112B1 KR 100471112 B1 KR100471112 B1 KR 100471112B1 KR 20020087132 A KR20020087132 A KR 20020087132A KR 100471112 B1 KR100471112 B1 KR 100471112B1
Authority
KR
South Korea
Prior art keywords
reaction solution
reaction
dicarboxylic acid
fna
purification
Prior art date
Application number
KR10-2002-0087132A
Other languages
Korean (ko)
Other versions
KR20040060351A (en
Inventor
김동성
최용복
김성균
권익현
Original Assignee
주식회사 효성
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 효성 filed Critical 주식회사 효성
Priority to KR10-2002-0087132A priority Critical patent/KR100471112B1/en
Publication of KR20040060351A publication Critical patent/KR20040060351A/en
Application granted granted Critical
Publication of KR100471112B1 publication Critical patent/KR100471112B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/44Polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/30Organic components
    • C12N2500/34Sugars
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/60Buffer, e.g. pH regulation, osmotic pressure

Abstract

본 발명은 2,6-디메틸나프탈렌을 산화시켜 생산한 조 나프탈렌 디카르복실산을 미생물을 이용하여 불순물로 포함되어 있는 2-포밀-6-나프토산을 제거시킴으로써 2,6-나프탈렌 디카르복실산의 순도를 높이는 방법에 관한 것이다. 토양으로부터 분리한 바실러스 속(Bacillus sp.) F-3를 이용한 조 나프탈렌디카르복실산의 정제반응에서 반응액에 탄소원으로 글루코오스를 첨가하고, 반응액 초기의 pH를 조절할 경우 2-포밀-6-나프토산의 감소속도가 증가하여 정제반응을 효율적으로 진행할 수 있으며, 균체를 회수하여 계속적인 정제반응 또한 가능하다.The present invention relates to crude naphthalene dicarboxylic acid produced by oxidizing 2,6-dimethylnaphthalene by removing 2-formyl-6-naphthoic acid, which is contained as an impurity, using microorganisms to remove 2,6-naphthalene dicarboxylic acid. It is about how to increase the purity. In the purification of crude naphthalenedicarboxylic acid using Bacillus sp. F-3 isolated from soil, glucose was added as a carbon source to the reaction solution, and the pH of the reaction solution was adjusted to 2-formyl-6-. The rate of reduction of naphthoic acid is increased, so that the purification reaction can proceed efficiently. Also, the purification of the bacteria can be continued to recover the cells.

Description

미생물을 이용한 2,6-나프탈렌 디카르복실산의 정제방법{A refining process of 2,6-Naphtalene Dicarboxylic Acid using a microorganism}A refining process of 2,6-naphtalene dicarboxylic acid using a microorganism

본 발명은 2,6-디메틸나프탈렌(2,6-Dimethyl naphthalene ; 이하 2,6-DMN)을 산화시켜 생산한 조 나프탈렌 디카르복실산(crude Naphthalene Dicarboxylic Acid ; 이하 CNDA)으로부터 미생물을 이용하여 불순물인 2-포밀-6-나프토산 (2-Formyl-6-Naphthoic Acid ; 이하 FNA)를 제거시킴으로써 2,6-나프탈렌 디카르복실산 (2,6-Naphthalene Dicarboxylic Acid ; 이하 NDA)의 순도를 높이는 방법에 관한 것이다. The present invention provides impurities using microorganisms from crude naphthalene dicarboxylic acid (hereinafter referred to as CNDA) produced by oxidizing 2,6-dimethyl naphthalene (hereinafter referred to as 2,6-DMN). Purity of 2,6-Naphthalene Dicarboxylic Acid (NDA) by removing Phosphorus 2-Formyl-6-Naphthoic Acid (FNA) It is about a method.

또 본 발명은 반응액에 탄소원을 첨가하고, 반응액의 pH를 조절함으로써 FNA를 빠른 속도로 감소시킬 수 있는 NDA의 정제방법에 관한 것이다.The present invention also relates to a method for purifying NDA which can reduce FNA at a rapid rate by adding a carbon source to the reaction solution and adjusting the pH of the reaction solution.

나프탈렌 디카르복실산의 디에스테르는 폴리에스테르 및 폴리아미드와 같은 여러 가지의 고분자 물질을 제조하는데 유용하다. Diesters of naphthalene dicarboxylic acids are useful for preparing various polymeric materials such as polyesters and polyamides.

특히 유용한 디에스테르의 한 예로는 디메틸-2,6-나프탈렌 디카르복실레이트(Demethyl-2,6-Naphthalene Decarboxylate ; 이하 NDC)가 있다. One example of a particularly useful diester is dimethyl-2,6-naphthalene decarboxylate (NDC).

NDC는 에틸렌 글리콜과 축합하여 고성능의 폴리에스테르 물질인 폴리(에틸렌-2,6-나프탈렌)(Poly(Ethylene-2,6-Naphthalene) ; 이하 PEN)을 생성 할 수 있다.NDC can be condensed with ethylene glycol to produce poly (ethylene-2,6-naphthalene) (Poly (Ethylene-2,6-Naphthalene); hereinafter PEN), a high-performance polyester material.

PEN으로부터 제조된 섬유 및 필름은 폴리(에틸렌테레프탈레이트)(이하 PET)에 비하여 강도가 높고 열적 성질이 우수하므로 PEN은 자기 녹음 테이프 및 전자 부품 제조용 박막과 같은 상용품을 제조하는데 사용되는 매우 우수한 물질이다. Fibers and films made from PEN have higher strength and better thermal properties than poly (ethylene terephthalate) (PET), so PEN is a very good material for making commercial products such as magnetic recording tapes and thin films for electronic component manufacturing. to be.

또한 PEN은 기체 확산, 특히 이산화탄소, 산소 및 수증기에 대한 우수한 저항성으로 인하여 PEN으로 제조된 필름은 식품 용기, 특히 고온 충전물용 식품 용기를 제조하는데 유용하다. PEN is also useful for making food containers, especially food containers for high temperature fillings, because of their excellent resistance to gas diffusion, particularly carbon dioxide, oxygen and water vapor.

또한 타이어 코드 제조에 유용한 강화 섬유를 제조하는데 사용될 수 있다.It can also be used to make reinforcing fibers useful for making tire cords.

현재 NDC는 도 1에서 보듯이 2,6-DMN을 산화시켜 CNDA를 생산한 다음 에스테르화하여 생산하고 있다. Currently, NDC produces CNDA by oxidizing 2,6-DMN and then esterifying it, as shown in FIG. 1.

현재 NDC가 PEN 합성시 주원료로 사용되고 있지만 NDA를 원료로 사용할 경우에 비해 몇 가지 문제점을 가지고 있다. Currently, NDC is used as a main raw material when synthesizing PEN, but there are some problems compared to using NDA as a raw material.

첫째, NDA 축합반응시에는 물이 생산되는데 비해 NDC의 경우 메탄올이 부산물로 생성되므로 폭발의 위험이 있으며, 둘째, 순수한 NDC는 NDA를 에스테르화 한 다음에 정제공정을 거쳐 생산하므로 NDA에 비하여 한 단계의 공정이 더 필요하고, 셋째로 기존의 PET 생산설비를 가지고 있을 경우 기존 설비의 이용 차원에서 NDC의 사용은 적절치 못하다. Firstly, water is produced during NDA condensation reaction, whereas NDC generates methanol as a by-product, and there is a risk of explosion. Second, since pure NDC is produced after esterification of NDA and then purification process, it is one step compared to NDA. Thirdly, if there is a need for further processing, and thirdly if you have an existing PET production facility, the use of NDC is not appropriate to use the existing facility.

이러한 NDC의 단점에도 불구하고 PEN 제조시 NDA 대신에 NDC가 사용되는 이유는 아직까지 중합에 필요한 순도를 가진 정제된 NDA를 제조하지 못하기 때문이다. Despite the disadvantages of NDC, the reason why NDC is used instead of NDA in PEN production is that it has not yet produced a purified NDA having the purity necessary for polymerization.

DMN을 산화시키면 FNA, 2-나프토산, 트리멜리트산 등 각종 불순물이 포함되는 CNDA가 생성되는데 이중에서 특히 FNA를 제거하기 어렵다. Oxidation of DMN generates CNDA containing various impurities such as FNA, 2-naphthoic acid, trimellitic acid, and it is particularly difficult to remove FNA.

이 FNA가 존재하면 중합반응이 중간에서 멈추게 되어 중합체의 물성에 나쁜 영향을 미친다. The presence of this FNA causes the polymerization to stop in the middle, adversely affecting the physical properties of the polymer.

CNDA에 존재하는 FNA를 제거하기 위하여 또는 NDA를 정제하기 위하여 재결정법, 산화공정을 한번 더 거치는 방법, CNDA를 메탄올을 이용하여 NDC로 제조한 후 수화시켜 NDA를 제조하거나 수소화 공정에 의해 정제된 NDA를 제조하는 방법 등이 연구되었다. In order to remove FNA present in CNDA or to purify NDA, recrystallization, oxidation process is performed once more, NDA is prepared by NDC using methanol and then hydrated to produce NDA or purified NDA by hydrogenation process The method of preparing the same and the like have been studied.

또한 용매 처리, 용융 결정, 고압 결정, 초임계추출 등 여러 가지 정제방법을 사용하고 있으나 아직까지 만족할 만한 순도를 가진 NDA를 제조하지 못하고 있다. In addition, various purification methods such as solvent treatment, melting crystals, high pressure crystals, and supercritical extraction have been used, but have not yet produced NDAs with satisfactory purity.

또한 순도를 높이는 경우 수율이 매우 떨어져 실제 생산에 적용하기가 어려운 실정이다.In addition, if the purity is increased, the yield is very difficult to apply to actual production.

따라서, 본 발명은 상기한 바와 같은 NDA 정제에 관한 문제점을 해결하기 위한 것으로, 미생물을 이용한 생물학적인 방법에 의하여 CNDA 내에 포함되어 있는 FNA를 선택적으로 제거하여 NDA를 정제하는 새로운 방법을 제공하는데 기술적 과제를 두고 있다. Accordingly, the present invention has been made to solve the problems related to NDA purification as described above, and provides a novel method for purifying NDA by selectively removing FNA contained in CNDA by a biological method using microorganisms. I put it.

또 본 발명의 다른 목적은 정제 반응액에 탄소원을 첨가하고, pH를 조절함으로써 정제효율을 크게 증가시키는 NDA의 정제방법을 제공하는데 있다. Another object of the present invention is to provide a method for purifying NDA, which greatly increases the purification efficiency by adding a carbon source to the purification reaction solution and adjusting the pH.

본 발명의 이들 목적과 특징 및 장점은 첨부 도면 및 다음의 상세한 설명을 참조함으로서 더욱 쉽게 이해될 수 있을 것이다. These objects, features and advantages of the present invention will be more readily understood by reference to the accompanying drawings and the following detailed description.

또한, 본 실시예는 이해를 돕기위해 예시적으로 기재하는 것일 뿐 본 발명을 한정하려는 것은 아니다. In addition, this embodiment is only illustrative for the purpose of understanding and is not intended to limit the present invention.

본 발명은 토양에서 분리한 미생물 균주에 의하여 CNDA 내에 포함되어 있는 불순물인 FNA를 제거함으로써 순도 높은 NDA로 정제하는 방법에 관한 것이다. The present invention relates to a method for purifying NDA with high purity by removing FNA which is an impurity contained in CNDA by a microbial strain isolated from soil.

특히 반응액에 탄소원을 첨가하고, 반응액의 pH를 조절함으로써 정제 효율을 크게 증가시키는 방법에 관한 것이다. In particular, the present invention relates to a method of significantly increasing the purification efficiency by adding a carbon source to the reaction solution and adjusting the pH of the reaction solution.

본 발명에 사용한 미생물은 바실러스 속(Bacillus sp.) F-3이며, 국제기탁기관인 한국생명공학연구원 유전자은행에 수탁번호 KCTC-10335BP(수탁일자 2002년 9월 10일)로 기탁한 것이다.The microorganism used in the present invention is Bacillus sp. F-3, which was deposited with the accession number KCTC-10335BP (September 10, 2002) to the Genetic Bank of Korea Biotechnology Institute, an international depository.

바실러스속 F-3는 LB 액체배지를 이용하여 쉽게 배양할 수 있으며, 25∼45℃의 넓은 범위의 온도에서 배양이 가능하였다. Bacillus F-3 can be easily cultured using the LB liquid medium, it was possible to culture at a wide range of 25 ~ 45 ℃.

CNDA 내에 포함되어 있는 불순물인 FNA를 제거하기 위하여, 상기 미생물 균주들을 각각 LB 액체배지에 접종하여 30℃에서 교반하면서 배양한 다음 원심분리를 통해 균체를 회수하였다. In order to remove FNA, an impurity contained in CNDA, the microbial strains were inoculated in LB liquid medium, incubated with stirring at 30 ° C., and the cells were recovered by centrifugation.

회수한 균체를 생리식염수에 현탁하여 정제반응의 효소액으로 사용하였다. The recovered cells were suspended in physiological saline and used as an enzyme solution for purification.

정제하고자 하는 CNDA를 유기용매인 디메틸설폭사이드(Dimethylsulfoxide ; 이하 DMSO)와 함께 인산 완충용액(KH2PO4 / KOH, pH 8.0)이 들어있는 효소 반응조에 넣고 상기 미생물 현탁액을 첨가하여 25 내지 45℃에서, 특히 30℃에서 교반하면서 반응을 진행시켰다.CNDA to be purified together with dimethylsulfoxide (DMSO), an organic solvent, phosphoric acid buffer solution (KH 2 PO 4 / KOH, pH 8.0) was added to the enzyme reaction tank containing the microbial suspension was added and the reaction proceeded with stirring at 25 to 45 ℃, especially at 30 ℃.

반응액에 첨가하는 탄소원으로는 글루코오스(glucose), 프룩토오스(fructose), 리보오스(ribose), 트레할로스(trehalose), 만노오스(mannose), 말토오스(maltose), 수크로오스(sucrose), 덱스트린(dextrin), 싸이클로덱스트린(cyclodextrin), 시트르산(citric acid), 숙신산(succinic acid)을 이용하였다.Carbon sources added to the reaction solution include glucose, fructose, ribose, trehalose, mannose, maltose, sucrose, dextrin, Cyclodextrin, citric acid, and succinic acid were used.

반응액의 pH 변화를 완화하기 위하여 인산 완충용액(KH2PO4 / KOH, pH 8.0)을 사용하였으나, 고농도의 CNDA가 첨가됨으로 인해 반응액의 pH가 낮아지는 현상이 발견되었다.Phosphoric acid buffer solution (KH 2 PO 4 / KOH, pH 8.0) was used to mitigate the pH change of the reaction solution, but the pH of the reaction solution was found to be low due to the addition of high concentration of CNDA.

반응액의 pH가 낮을 경우 반응액 내의 CNDA가 완전히 용해되지 않고 현탁된 상태에서 반응이 진행되기 때문에 반응 종료 후 균체의 분리가 어려운 문제가 있었다. When the pH of the reaction solution is low, since the reaction proceeds in a suspended state without completely dissolving CNDA in the reaction solution, there is a problem that separation of the cells after the reaction is difficult.

이 문제를 해결하기 위하여 KOH를 이용하여 반응액의 초기 pH를 조절한 결과 반응액의 pH가 7.0 미만일 경우에는 CNDA가 완전히 용해되지 않고 현탁된 상태에서 반응이 진행되었으나, pH 7.0 이상의 경우에서는 CNDA가 반응액 내에서 완전히 용해됨이 확인되었다. In order to solve this problem, when the initial pH of the reaction solution was adjusted using KOH, when the pH of the reaction solution was less than 7.0, the reaction proceeded in a suspended state without completely dissolving CNDA. It was confirmed that it completely dissolved in the reaction solution.

그 결과 반응 후 균체 분리가 용이해졌으며, 균체를 회수하여 계속적인 정제반응이 가능하게 되었다. As a result, the cells were easily separated after the reaction, and the cells were recovered to allow the continuous purification reaction.

덧붙여 반응에 적합한 초기 pH를 확인하기 위하여 pH 6.0 내지 10.0으로 조절하여 반응을 진행하였다.In addition, in order to confirm the initial pH suitable for the reaction, the reaction was adjusted to pH 6.0 to 10.0.

상기 실험 결과 반응액에 첨가하는 탄소원으로 0.5% 농도의 글루코오스를 사용하고, 초기 pH를 8.0으로 할 경우에 FNA 감소율이 가장 우수하였다. As a result of the above experiment, 0.5% concentration of glucose was used as the carbon source added to the reaction solution, and the FNA reduction rate was the best when the initial pH was 8.0.

pH가 6.0 미만에서는 반응이 진행되지 않았으며, 8.0이 넘을 경우 FNA의 감소율이 떨어지는 결과를 보였다. When the pH was lower than 6.0, the reaction did not proceed, and when the concentration was higher than 8.0, the decrease rate of FNA decreased.

실시예 1Example 1

바실러스속 F-3을 LB 액체배지에 배양하여 균체를 회수한 다음 이를 0.85% 생리식염수 5 ml에 현탁하여 반응에 이용하였다. Bacillus F-3 was incubated in LB liquid medium to recover the cells, and then suspended in 5 ml of 0.85% saline was used for the reaction.

표 1에서처럼 0.1%의 FNA를 포함하는 CNDA를 정제하고자 하는 반응기질로 이용하였고, 0.1 M KH2PO4/KOH(pH 8.0)을 완충용액으로 사용하였으며, 유기용매인 DMSO의 농도를 5%, 반응온도는 30℃로 하여 CNDA의 정제반응을 진행하였다.As shown in Table 1, CNDA containing 0.1% of FNA was used as a reactor to be purified, 0.1 M KH 2 PO 4 / KOH (pH 8.0) was used as a buffer, and the concentration of DMSO, an organic solvent, was 5%, The reaction temperature was 30 deg. C to purify CNDA.

탄소원은 글루코오스를 0.5% 농도로 첨가하였으며, 반응액의 초기 pH는 8.0으로 조절하여 반응을 시작하였다.As the carbon source, glucose was added at a concentration of 0.5%, and the initial pH of the reaction solution was adjusted to 8.0 to start the reaction.

< 표 1 > 반응액의구성<Table 1> Composition of reaction solution

미생물microbe CNDACNDA 완충용액Buffer 반응액초기 pHInitial pH of the reaction solution 탄소원Carbon source DMSODMSO 반응온도Reaction temperature 바실러스속F-3Bacillus F-3 FNA 함량0.1%FNA content0.1% 0.1 MKH2PO4/KOH0.1 MKH 2 PO 4 / KOH 8.08.0 Glucose0.5%농도Glucose 0.5% concentration 5% 농도5% concentration 30℃30 ℃

반응액은 표 2와 같은 조건으로 고속액체크로마토그래피(HPLC)를 이용하여 분석하였다. The reaction solution was analyzed using high performance liquid chromatography (HPLC) under the conditions shown in Table 2.

분석 결과 표 4에서 보듯이 FNA가 급속히 감소하여 반응시간 1시간만에 검출되지 않는 결과를 보였다.As a result, as shown in Table 4, FNA decreases rapidly, and the result is not detected in 1 hour of reaction time.

< 표 2 > HPLC 분석 조건<Table 2> HPLC Analysis Conditions

HPLCHPLC LC 10-ADVP (SHIMADZU)LC 10-AD VP (SHIMADZU) ColumnColumn XTerraTM RP18 (4.6×250 mm, Waters) XTerra TM RP18 (4.6 × 250 mm , Waters) DetectorDetector UV 240 nm UV 240 nm Column temp.Column temp. 40℃ 40 ℃ Flow rateFlow rate 1 ml/min. 1 ml / min. Injection volumeInjection volume 20 ㎕ 20 μl Mobile phaseMobile phase Time(분)Time (minutes) 0.3%Phosphoric acid0.3% Phosphoric acid 100%Acetonitrile100% Acetonitrile 00 9898 22 55 9292 88 2828 5252 4848 3030 2020 8080 3535 55 9595 3636 9898 22 4949 9898 22

실시예 2 내지 22Examples 2 to 22

정제반응 최적화를 위하여 바실러스 속 F-3를 이용하여 상기 실시예 1에서 탄소원의 종류, 탄소원의 농도, 반응액 초기 pH를 표 3과 같이 변화시키면서 나프탈렌디카르복실산(NDA)의 정제반응을 진행하여 FNA 감소율을 비교하였다. In order to optimize the purification reaction, the reaction of naphthalenedicarboxylic acid (NDA) was performed while changing the type of carbon source, the concentration of the carbon source, and the initial pH of the reaction solution as shown in Table 3 using F. genus Bacillus. FNA reduction rate was compared.

표 3에 표시하지 않은 반응액 조성인 완충용액은 0.1 M KH2PO4 / KOH(pH 8.0), 유기용매는 DMSO 5%, 반응온도는 30℃로 모두 동일하였다.The buffer solution of the reaction solution composition not shown in Table 3 was 0.1 M KH 2 PO 4 / KOH (pH 8.0), the organic solvent was DMSO 5%, the reaction temperature was the same as 30 ℃.

반응 3시간 후 반응액을 채취하여 표 2와 동일한 분석조건에서 분석하였으며, 그 결과를 표 4에 정리하였다.After 3 hours, the reaction solution was collected and analyzed under the same analysis conditions as in Table 2. The results are summarized in Table 4.

< 표 3 > 정제반응의 구성 변화<Table 3> Changes in Composition of Purification Reactions

CNDA내FNA 함량FNA content in CNDA 탄 소 원Carbon element 반응액초기 pHInitial pH of the reaction solution 종 류Kinds 농 도Concentration 실시예 2Example 2 0.1%0.1% -- -- 6.56.5 실시예 3Example 3 0.1%0.1% -- -- 8.08.0 실시예 4Example 4 10%10% -- -- 8.08.0 실시예 5Example 5 10%10% 글루코오스Glucose 0.5%0.5% 8.08.0 실시예 6Example 6 10%10% 프룩토오스Fructose 0.5%0.5% 8.08.0 실시예 7Example 7 10%10% 트레할로스Trehalose 0.5%0.5% 8.08.0 실시예 8Example 8 10%10% 리보오스Ribose 0.5%0.5% 8.08.0 실시예 9Example 9 10%10% 만노오스Mannose 0.5%0.5% 8.08.0 실시예 10Example 10 10%10% 말토오스maltose 0.5%0.5% 8.08.0 실시예 11Example 11 10%10% 수크로오스Sucrose 0.5%0.5% 8.08.0 실시예 12Example 12 10%10% 덱스트린dextrin 0.5%0.5% 8.08.0 실시예 13Example 13 10%10% 싸이클로덱스트린Cyclodextrin 0.5%0.5% 8.08.0 실시예 14Example 14 10%10% 시트르산Citric acid 0.5%0.5% 8.08.0 실시예 15Example 15 10%10% 숙신산Succinic acid 0.5%0.5% 8.08.0 실시예 16Example 16 10%10% 글루코오스Glucose 0.1%0.1% 8.08.0 실시예 17Example 17 10%10% 글루코오스Glucose 0.2%0.2% 8.08.0 실시예 18Example 18 10%10% 글루코오스Glucose 1.0%1.0% 8.08.0 실시예 19Example 19 10%10% 글루코오스Glucose 5.0%5.0% 8.08.0 실시예 20Example 20 10%10% 글루코오스Glucose 0.5%0.5% 6.06.0 실시예 21Example 21 10%10% 글루코오스Glucose 0.5%0.5% 7.07.0 실시예 22Example 22 10%10% 글루코오스Glucose 0.5%0.5% 9.09.0

비교예 1Comparative Example 1

반응액의 초기 pH를 10.0으로 하였을 경우를 확인하기 위하여 완충용액을 0.1 M Na2CO3/NaHCO3로 바꿔 실험을 실시하였다.In order to confirm the case where the initial pH of the reaction solution was 10.0, the experiment was performed by changing the buffer solution to 0.1 M Na 2 CO 3 / NaHCO 3 .

기존에 사용하던 0.1 M KH2PO4/KOH의 경우는 pH 10.0이 완충범위에서 벗어나기 때문에 완충용액을 교체하여 실험을 실시하였다.In the case of 0.1 M KH 2 PO 4 / KOH, the experiment was performed by replacing the buffer solution because the pH 10.0 is out of the buffer range.

탄소원으로는 글루코오스 0.5%를 첨가하였으며, 그 외의 모든 조건은 실시예 1과 동일하였다. As a carbon source, 0.5% of glucose was added, and all other conditions were the same as in Example 1.

반응 3시간 경과 후 반응액을 채취하여 HPLC로 분석하였으며, 그 결과는 표 4에 정리하였다.After 3 hours, the reaction solution was collected and analyzed by HPLC, and the results are summarized in Table 4.

실시예 23 Example 23

정제반응 종료 후 회수한 균체를 이용하여 다시 정제반응을 실시하였다. Purification reaction was performed again using the recovered cells after the completion of the purification reaction.

표 1과 동일한 조건으로 정제반응을 실시한 후 반응액 전체를 원심분리하여 균체만을 분리한 다음 표 1과 동일한 조성의 반응액에 균체를 다시 첨가하여 2차 정제반응을 실시하였다. After carrying out the purification reaction under the same conditions as in Table 1, the whole reaction solution was centrifuged to separate only the cells, and then the cells were added again to the reaction solution having the same composition as in Table 1 to carry out the second purification reaction.

같은 방법으로 4차 정제반응까지 실시하여 계속적인 정제반응이 가능한지를 확인하였다.In the same manner, the fourth purification reaction was carried out to determine whether the continuous purification reaction was possible.

실험 결과 표 5에서 보듯이 5차 정제반응까지 97%의 비슷한 수준의 FNA 감소율을 유지하였다. As shown in Table 5, the FNA reduction rate of 97% was maintained until the fifth purification reaction.

따라서 균체를 회수하여 계속적인 정제반응이 가능한 것으로 보인다.Therefore, it seems that it is possible to continue the purification by recovering the cells.

실시예 24Example 24

반응액 전체를 교체한 실시예 23와 비교하기 위하여, 반응액의 일부인 20%만을 교체하여 계속적인 정제반응을 실시하였다. In comparison with Example 23, in which the entire reaction solution was replaced, only 20% of the reaction solution was replaced, followed by continuous purification.

1차 정제반응 후 반응액의 20%만을 원심분리하여 균체를 회수한 다음 남은 반응액에 첨가하고, 1차 반응액과 동일한 조성으로 조절한 다음 정제반응을 진행하였으며, 같은 방법으로 5차 정제반응까지 진행하였다. After the first purification reaction, only 20% of the reaction solution was centrifuged to recover the cells, and then added to the remaining reaction solution, adjusted to the same composition as the first reaction solution, followed by the purification reaction. Proceed to

실험 결과 표 5에서 보듯이 높은 FNA 감소율을 얻었으나, 반응이 반복될수록 감소율이 떨어지는 경향을 보였다. As a result, as shown in Table 5, a high FNA reduction rate was obtained, but the decrease rate decreased as the reaction was repeated.

< 표 4 > 정제반응 3시간 후의 FNA 감소율<Table 4> Reduction rate of FNA after 3 hours of purification

실시예 No.Example No. 반응 변수Response variables FNA 감소율(%)% Decrease in FNA 비 고Remarks 1One 글루코오스 0.5%/초기 pH 8.0Glucose 0.5% / Initial pH 8.0 100.0100.0 FNA 함량 : 0.1% / 1시간 반응FNA content: 0.1% / 1 hour reaction 22 탄소원 없음/초기 pH 6.5No carbon source / initial pH 6.5 95.195.1 FNA 함량 : 0.1% / 6시간 반응FNA content: 0.1% / 6 hours reaction 33 탄소원 없음/초기 pH 8.0No carbon source / initial pH 8.0 95.595.5 FNA 함량 : 0.1%FNA content: 0.1% 44 탄소원 없음/초기 pH 8.0No carbon source / initial pH 8.0 77.477.4 FNA 함량 : 10%FNA content: 10% 55 탄소원 종 류Carbon source Kinds 글루코오스 0.5%Glucose 0.5% 96.896.8 FNA 함량 : 10%FNA content: 10% 66 프룩토오스 0.5%Fructose 0.5% 87.187.1 FNA 함량 : 10%FNA content: 10% 77 트레할로스 0.5%Trehalose 0.5% 94.794.7 FNA 함량 : 10%FNA content: 10% 리보오스 0.5%Ribose 0.5% 81.281.2 FNA 함량 : 10%FNA content: 10% 88 99 만노오스 0.5%Mannose 0.5% 85.885.8 FNA 함량 : 10%FNA content: 10% 1010 말토오스 0.5%Maltose 0.5% 91.791.7 FNA 함량 : 10%FNA content: 10% 1111 수크로오스 0.5%Sucrose 0.5% 87.387.3 FNA 함량 : 10%FNA content: 10% 1212 덱스트린 0.5%Dextrin 0.5% 89.889.8 FNA 함량 : 10%FNA content: 10% 1313 싸이클로덱스트린 0.5%Cyclodextrin 0.5% 84.284.2 FNA 함량 : 10%FNA content: 10% 1414 시트르산 0.5%Citric acid 0.5% 54.154.1 FNA 함량 : 10%FNA content: 10% 1515 숙신산 0.5%Succinic Acid 0.5% 71.071.0 FNA 함량 : 10%FNA content: 10% 1616 탄소원농 도Carbon source concentration 글루코오스 0.1%Glucose 0.1% 84.184.1 FNA 함량 : 10%FNA content: 10% 1717 글루코오스 0.2%Glucose 0.2% 89.489.4 FNA 함량 : 10%FNA content: 10% 1818 글루코오스 1.0%Glucose 1.0% 96.996.9 FNA 함량 : 10%FNA content: 10% 1919 글루코오스 5.0%Glucose 5.0% 97.097.0 FNA 함량 : 10%FNA content: 10% 2020 반응액 초기 pHReaction solution Initial pH 초기 pH 6.0Initial pH 6.0 1.21.2 FNA 함량 : 10%FNA content: 10% 2121 초기 pH 7.0Initial pH 7.0 90.490.4 FNA 함량 : 10%FNA content: 10% 2222 초기 pH 9.0Initial pH 9.0 78.978.9 FNA 함량 : 10%FNA content: 10% 비교예 1Comparative Example 1 초기 pH 10.0Initial pH 10.0 41.241.2 FNA 함량 : 10%FNA content: 10%

< 표 5 > 균체 회수 후 정제반응시 FNA 감소율 (3시간씩 반응)<Table 5> Reduction rate of FNA during purification after cell recovery

정제반응 횟수Purification Reaction FNA 감소율 (%)FNA Reduction (%) 실시예 23Example 23 1차Primary 96.896.8 2차Secondary 96.996.9 3차3rd 97.297.2 4차4th 97.697.6 5차5th 97.797.7 실시예 24Example 24 1차Primary 96.796.7 2차Secondary 95.295.2 3차3rd 94.094.0 4차4th 92.792.7 5차5th 91.891.8

이상의 본 발명은 상기에 기술된 실시예들에 의해 한정되지 않고, 당업자들에 의해 다양한 변형 및 변경을 가져올 수 있으며, 이는 첨부된 청구항에서 정의되는 본 발명의 취지와 범위에 포함된다.The present invention is not limited to the embodiments described above, and various modifications and changes can be made by those skilled in the art, which are included in the spirit and scope of the present invention as defined in the appended claims.

본 발명은 바실러스 속(Bacillus sp) F-3 균체를 이용하여 CNDA 중의 FNA를 효과적으로 제거 할 수 있으며, 더 나아가서 반응액에 탄소원으로 글루코오스등을 첨가하고, pH를 8.0으로 조절할 경우 CNDA에 포함되어 있는 FNA를 더욱 빠른 속도로 제거 할 수 있다.The present invention can effectively remove FNA in CNDA using Bacillus sp F-3 cells, furthermore, by adding glucose as a carbon source to the reaction solution and adjusting the pH to 8.0, FNA can be removed more quickly.

또 본 발명은 바실러스 속 F-3 균체를 계속적으로 재활용할 수 있으므로 계속적이고 효율적으로 NDA를 정제 할 수 있다. In addition, the present invention can be continuously recycled F-3 cells in Bacillus can be purified NDA continuously and efficiently.

도 1은 DMN을 산화시켜 NDA 및 NDC를 합성하는 과정을 나타내는 반응식.1 is a scheme illustrating a process of synthesizing NDA and NDC by oxidizing DMN.

도 2는 DMN의 산화시의 생성물을 나타내는 반응식.2 is a scheme showing the product upon oxidation of DMN.

Claims (6)

조 나프탈렌 디메틸카르복실산(Crude Naphthalene Dicarboxylic Acid;CNDA)을 기질로 사용하고, 상기 기질에 인산 완충용액(KH2PO4/KOH, pH 8.0)과 용매인 디메틸 설폭사이드(Dimethyl sulfoxide)를 첨가하여 반응액을 만들고, 상기 반응액에 바실러스 속(Bacillus sp.) F-3 균체(KCTC-10335BP)를 첨가 한 다음에 반응액의 pH를 6.0 ∼ 10.0으로 하고, 온도를 25 ∼ 45℃로 유지시키면서 반응시켜서 CNDA에 포함되어 있는 2-포밀-6-나프토산(2-Formyl-6-Naphthoic Acid)를 제거함을 특징으로 하는 미생물을 이용한 2,6-나프탈렌 디카르복실산의 정제방법.Crude Naphthalene Dicarboxylic Acid (CNDA) is used as a substrate, phosphate buffer (KH 2 PO 4 / KOH, pH 8.0) and dimethyl sulfoxide (Dimethyl sulfoxide) as a solvent are added to the substrate. After making the reaction solution, Bacillus sp. F-3 cells (KCTC-10335BP) were added to the reaction solution, and then the pH of the reaction solution was 6.0 to 10.0, and the temperature was maintained at 25 to 45 ° C. A method for purifying 2,6-naphthalene dicarboxylic acid using a microorganism, characterized in that the reaction removes 2-formyl-6-naphthoic acid contained in CNDA. 제 1 항에 있어서, 상기 반응액에 탄소원을 첨가하는 것을 특징으로 하는 미생물을 이용한 2,6-나프탈렌 디카르복실산의 정제방법. The method for purifying 2,6-naphthalene dicarboxylic acid using a microorganism according to claim 1, wherein a carbon source is added to the reaction solution. 제 2 항에 있어서, 탄소원으로 글루코오스(glucose), 프룩토오스(fructose), 트레할로스(trehalose), 리보오스(ribose), 만노오스(mannose), 말토오스 (maltose), 수크로오스(sucrose), 덱스트린(dextrin), 싸이클로덱스트린 (cyclodextrin), 시트르산(citric acid), 숙신산(succinic acid)으로 구성된 그룹으로부터 선택된 탄소원을 사용하는 것을 특징으로 하는 미생물을 이용한 2,6-나프탈렌 디카르복실산의 정제방법. The method of claim 2, wherein the carbon source is glucose, fructose, trehalose, ribose, mannose, maltose, sucrose, dextrin, A method for purifying 2,6-naphthalene dicarboxylic acid using a microorganism, characterized by using a carbon source selected from the group consisting of cyclodextrin, citric acid, and succinic acid. 제 1 항에 있어서, 정제반응 이후 반응액 전체 또는 일부에서 균체를 분리하여, 새로운 반응액 또는 기존의 반응액과 혼합하여 정제반응을 계속적으로 실시하는 것을 특징으로 하는 미생물을 이용한 2,6-나프탈렌 디카르복실산의 정제방법.According to claim 1, 2,6-naphthalene using a microorganism, characterized in that after the purification reaction to remove the cells from all or a part of the reaction solution, mixed with a new reaction solution or an existing reaction solution to continue the purification reaction Method for Purifying Dicarboxylic Acid. 제 2 항 또는 제 3 항중 어느 한 항에 있어서, 탄소원은 농도가 5%의 글루코오스임을 특징으로 하는 미생물을 이용한 2,6-나프탈렌 디카르복실산의 정제방법. The method for purifying 2,6-naphthalene dicarboxylic acid using a microorganism according to claim 2, wherein the carbon source is glucose at a concentration of 5%. 제 1 항에 있어서, 반응액의 초기 PH를 8.0으로 조절하는 것을 특징으로 하는 미생물을 이용한 2,6-나프탈렌 디카르복실산의 정제방법. The method for purifying 2,6-naphthalene dicarboxylic acid using a microorganism according to claim 1, wherein the initial pH of the reaction solution is adjusted to 8.0.
KR10-2002-0087132A 2002-12-30 2002-12-30 A refining process of 2,6-Naphtalene Dicarboxylic Acid using a microorganism KR100471112B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2002-0087132A KR100471112B1 (en) 2002-12-30 2002-12-30 A refining process of 2,6-Naphtalene Dicarboxylic Acid using a microorganism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0087132A KR100471112B1 (en) 2002-12-30 2002-12-30 A refining process of 2,6-Naphtalene Dicarboxylic Acid using a microorganism

Publications (2)

Publication Number Publication Date
KR20040060351A KR20040060351A (en) 2004-07-06
KR100471112B1 true KR100471112B1 (en) 2005-03-10

Family

ID=37352265

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0087132A KR100471112B1 (en) 2002-12-30 2002-12-30 A refining process of 2,6-Naphtalene Dicarboxylic Acid using a microorganism

Country Status (1)

Country Link
KR (1) KR100471112B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100792104B1 (en) 2005-12-12 2008-01-04 주식회사 효성 26- Purification method of crude naphthalene dicarboxylic acid using microorganism and 26-naphthalene dicarboxylic acid in crystalline form obtained by using the same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100770516B1 (en) * 2004-12-30 2007-10-25 주식회사 효성 26- Method for preparing Transformants expressing Benzaldehyde dehydrogenase and Method for Purification of 2 6-naphthalene dicarboxylic acid using the Transformants
KR100811380B1 (en) * 2004-12-31 2008-03-07 주식회사 효성 26- method for preparing transformants expressing xanthine dehydrogenase and method for purification of 26-naphthalene dicarboxylic acid using the transformants
KR20080004041A (en) * 2006-07-04 2008-01-09 주식회사 효성 Purification method of crude naphthalene dicarboxylic acid using recombinated microorganism and 2,6-naphthalene dicarboxylic acid in crystalline form obtained by using the same
KR100850161B1 (en) * 2006-10-11 2008-08-04 주식회사 효성 26- Purification method of crude naphthalene dicarboxylic acid using microorganism and 26-naphthalene dicarboxylic acid in crystalline form obtained by using the same
KR100823411B1 (en) * 2006-12-26 2008-04-17 주식회사 효성 Purification method of crude naphthalene dicarboxylic acid using microorganism

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100792104B1 (en) 2005-12-12 2008-01-04 주식회사 효성 26- Purification method of crude naphthalene dicarboxylic acid using microorganism and 26-naphthalene dicarboxylic acid in crystalline form obtained by using the same

Also Published As

Publication number Publication date
KR20040060351A (en) 2004-07-06

Similar Documents

Publication Publication Date Title
AU2013253153B2 (en) Novel D-lactic acid-producing strain and use thereof
US20100035314A1 (en) Method for the enzymatic production of 2-hydroxy-2-methyl carboxylic acids
KR20090066958A (en) Method for purifying succinic acid by crystallization of culture broth
KR100471112B1 (en) A refining process of 2,6-Naphtalene Dicarboxylic Acid using a microorganism
KR100475007B1 (en) Novel bacillus strains and method for purifying 2,6-naphthalene dicarboxylic acid thereby
Law et al. Production of polyhydroxybutyrate by Bacillus species isolated from municipal activated sludge
US8202714B2 (en) Pseudomonas SP. HN-72 and purification method of 2,6-naphthalene dicarboxylic acid using the same
US20100063318A1 (en) Purification Method of Crude Naphthalene Dicarboxylic Acid Using Microorganism and 2,6-Naphthalene Dicarboxylic Acid in Crystalline Form Obtained by Using the Same
KR20050007216A (en) Novel bacillus strains and method for purifying 2,6-naphthalene dicarboxylic acid thereby
KR20010049918A (en) Process for producing xylitol of high purity
KR100659419B1 (en) Expression vector for benzaldehyde dehydrogenase gene from Pseudomonas putida, bacteria transformed with the same and method for preparing 2,6-Naphthalene dicarboxylic acid with highly purified using the transformants
WO2000037666A1 (en) Process for producing (r)-2-hydroxy-1-phenoxypropane derivative
KR100971353B1 (en) Method for preparing 2,6-naphthalene dicarboxylic acid with high purity using ?-cyclodextrin and aldehyde dehydrogenase
JPH07313176A (en) New microorganism and production of 2, 6-naphthalene dicarboxylic acid using the same
US20230332098A1 (en) A bioprocess for the simultaneous production of polyhydroxybutyrate and violacein pigment from himalayan bacterium iodobacter sp. pch 194
JP3682679B2 (en) High-purity L-lactic acid producing bacterium and method for producing L-lactic acid
JPH09121877A (en) Production of highly pure l-lactic acid with bacillus group microorganism
KR100850161B1 (en) 26- Purification method of crude naphthalene dicarboxylic acid using microorganism and 26-naphthalene dicarboxylic acid in crystalline form obtained by using the same
KR100731377B1 (en) Microorganism producing 2,6-Naphthalene dicarboxylic acid, preparing method thereof and method for preparing 2,6-Naphthalene dicarboxylic acid using the same
KR100702317B1 (en) 26- an aldehyde dehydrogenase from bacillus subtilis preparation method of the same and preparation method of 26-naphthalene dicarboxylic acid using the same
JP3750339B2 (en) Method for producing slateol
KR100823411B1 (en) Purification method of crude naphthalene dicarboxylic acid using microorganism
KR100660264B1 (en) Method for preparing 2,6-naphthalene dicarboxylic acid using xanthine oxidase
JP3743172B2 (en) Method for producing L-homocysteine
JP2715260B2 (en) New green algae, new yeast, and method for producing 2,6-naphthalenedicarboxylic acid using the green algae or the yeast

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20110111

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee