KR100475007B1 - Novel bacillus strains and method for purifying 2,6-naphthalene dicarboxylic acid thereby - Google Patents

Novel bacillus strains and method for purifying 2,6-naphthalene dicarboxylic acid thereby Download PDF

Info

Publication number
KR100475007B1
KR100475007B1 KR10-2002-0087819A KR20020087819A KR100475007B1 KR 100475007 B1 KR100475007 B1 KR 100475007B1 KR 20020087819 A KR20020087819 A KR 20020087819A KR 100475007 B1 KR100475007 B1 KR 100475007B1
Authority
KR
South Korea
Prior art keywords
buffer
acid
bacillus
sodium
reaction
Prior art date
Application number
KR10-2002-0087819A
Other languages
Korean (ko)
Other versions
KR20040061548A (en
Inventor
김성균
권익현
최용복
Original Assignee
주식회사 효성
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 효성 filed Critical 주식회사 효성
Priority to KR10-2002-0087819A priority Critical patent/KR100475007B1/en
Publication of KR20040061548A publication Critical patent/KR20040061548A/en
Application granted granted Critical
Publication of KR100475007B1 publication Critical patent/KR100475007B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P1/00Preparation of compounds or compositions, not provided for in groups C12P3/00 - C12P39/00, by using microorganisms or enzymes
    • C12P1/04Preparation of compounds or compositions, not provided for in groups C12P3/00 - C12P39/00, by using microorganisms or enzymes by using bacteria
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/07Bacillus

Abstract

본 발명은 2,6-디메틸나프탈렌을 산화시켜 생산한 조 나프탈렌 디카르복실산(crude Naphthalene dicarboxylic acid) 내의 2-포밀-6-나프토산을 신규한 바실러스속 미생물을 이용하여 제거함으로써 고순도의 2,6-나프탈렌 디카르복실산을 생산하는 방법에 관한 것으로, 본 발명의 신규한 균주인 바실러스속(Bacillus sp.) F-1 및 F-3는 조 나프탈렌 디카르복실산에 포함되어 있는 2-포밀-6-나프토산을 제거하는데 뛰어난 효과가 있으므로, 본 발명의 방법에 의해 고순도의 2,6-나프탈렌 디카르복실산의 대량생산이 실현될 것으로 기대된다.The present invention removes 2-formyl-6-naphthoic acid in crude naphthalene dicarboxylic acid produced by oxidizing 2,6-dimethylnaphthalene by using a novel Bacillus microorganism. A method for producing 6-naphthalene dicarboxylic acid, wherein the novel strains of the present invention Bacillus sp. F-1 and F-3 are 2-formyl contained in crude naphthalene dicarboxylic acid. Since there is an excellent effect of removing -6-naphthoic acid, it is expected that mass production of high purity 2,6-naphthalene dicarboxylic acid is realized by the method of the present invention.

Description

신규한 바실러스속 미생물 및 이를 이용한 2,6-나프탈렌 디카르복실산의 정제방법{NOVEL BACILLUS STRAINS AND METHOD FOR PURIFYING 2,6-NAPHTHALENE DICARBOXYLIC ACID THEREBY} Novel bacillus microorganism and purification method of 2,6-naphthalene dicarboxylic acid using same {NOVEL BACILLUS STRAINS AND METHOD FOR PURIFYING 2,6-NAPHTHALENE DICARBOXYLIC ACID THEREBY}

본 발명은 신규한 바실러스속 미생물 및 이를 이용한 2,6-나프탈렌 디카르복실산의 정제방법에 관한 것으로, 보다 상세하게는 2,6-디메틸나프탈렌(2,6-Dimethyl naphthalene, 이하 2,6-DMN)을 산화시켜 생산한 조 나프탈렌 디카르복실산(crude Naphthalene dicarboxylic acid, 이하 cNDA) 내의 2-포밀-6-나프토산(2-Formyl-6-naphthoic acid, 이하 FNA)을 신규한 바실러스속 미생물을 이용하여 제거함으로써 고순도의 2,6-나프탈렌 디카르복실산(2,6-Naphthalene dicarboxylic acid, 이하 NDA)을 생산하는 방법에 관한 것이다.The present invention relates to a novel Bacillus microorganism and a method for purifying 2,6-naphthalene dicarboxylic acid using the same, and more specifically, 2,6-dimethyl naphthalene (2,6-dimethylnaphthalene, hereinafter 2,6-). A novel Bacillus microorganism is produced from 2-Formyl-6-naphthoic acid (FNA) in crude Naphthalene dicarboxylic acid (cNDA) produced by oxidation of DMN). The present invention relates to a method of producing 2,6-naphthalene dicarboxylic acid (hereinafter referred to as NDA) of high purity by removing the same.

나프탈렌 디카르복실산의 디에스테르는 폴리에스테르 및 폴리아미드와 같은 다양한 고분자 물질을 제조하는데 유용하다. 특히 유용한 디에스테르의 한 예로는 디메틸-2,6-나프탈렌 디카르복실레이트(이하 NDC)가 있다. NDC는 에틸렌 글리콜과 축합하여 고성능 폴리에스테르 물질인 폴리(에틸렌-2,6-나프탈렌)(이하 PEN)을 생성할 수 있다. PEN으로부터 제조된 섬유 및 필름은 폴리(에틸렌테레프탈레이트)(이하 PET)에 비하여 강도가 높고 열적 성질이 우수하다. 이로 인해 PEN은 자기 녹음 테이프 및 전자 부품을 제조하는데 사용될 수 있는 박막과 같은 상용품을 생산하는데 널리 사용되고 있다. 또한 기체 확산, 특히 이산화탄소, 산소 및 수증기에 대한 우수한 저항성으로 인해 PEN으로부터 제조된 필름은 식품 용기, 특히 고온 충전물용 식품 용기를 제조하는데 유용하다. 뿐만 아니라 PEN은 타이어 코드 제조에 유용한 강화 섬유를 제조하는데도 사용될 수 있다.Diesters of naphthalene dicarboxylic acids are useful for preparing a variety of polymeric materials such as polyesters and polyamides. One example of a particularly useful diester is dimethyl-2,6-naphthalene dicarboxylate (hereinafter NDC). NDC can condense with ethylene glycol to produce poly (ethylene-2,6-naphthalene) (hereinafter PEN), a high performance polyester material. Fibers and films made from PEN have higher strength and better thermal properties than poly (ethylene terephthalate) (hereinafter PET). Because of this, PEN is widely used to produce commercial products such as thin films that can be used to make magnetic recording tapes and electronic components. Films made from PEN are also useful for making food containers, especially food containers for high temperature fillings, due to their good resistance to gas diffusion, in particular carbon dioxide, oxygen and water vapor. In addition, PEN can be used to make reinforcing fibers useful for the manufacture of tire cords.

현재 NDC는 도 3에 도시된 바와 같이 2,6-DMN을 산화시켜 cNDA를 생산한 다음 에스테르화하여 생산하고 있다. 이와 같이 생산된 NDC가 PEN 합성시 주원료로 사용되고 있지만 NDA를 원료로 사용할 경우에 비해 몇 가지 문제점을 가지고 있다. 첫째, NDA 축합반응시에는 물이 생성되는데 비해 NDC의 경우 메탄올이 부산물로 생성되어 폭발의 위험이 있으며, 둘째, NDC 제조공정중 순수한 NDC를 얻기 위하여 NDA를 에스테르화한 다음 정제공정을 거쳐 NDC를 생산하므로 NDA에 비하여 한 단계의 공정이 더 필요하고, 셋째로 기존의 PET 생산설비를 가지고 있을 경우 기존 설비의 이용 차원에서 NDC의 사용은 적절치 못하다. Currently, NDC produces cNDA by oxidizing 2,6-DMN and then esterifying it, as shown in FIG. 3. NDC produced in this way is used as a main raw material when synthesizing PEN, but there are some problems compared to using NDA as a raw material. Firstly, water is produced during NDA condensation reaction, while methanol is a by-product in the case of NDC, and there is a risk of explosion. Second, in order to obtain pure NDC, NDC is esterified and purified through The production requires more one step process than NDA, and thirdly, if you have an existing PET production facility, the use of NDC is not appropriate to use the existing facility.

이러한 NDC의 단점에도 불구하고 PEN 제조시 NDA 대신에 NDC가 사용되는 이유는 아직까지 중합에 필요한 순도를 가진 정제된 NDA를 제조하지 못하기 때문이다. 즉, 2,6-DMN의 산화시 도 4에 도시된 바와 같이 FNA, 2-나프토산, 트리멜리트산 등 각종 불순물이 포함된 cNDA가 생성되는데, 이들 불순물 중에서도 특히 FNA가 제거하기 어려운 것으로 알려져 있다. NDA의 축합반응시 FNA가 존재하면 중합반응이 중간에서 멈추게 되어 중합체의 물성에 나쁜 영향을 미치기 때문에, cNDA로부터 FNA를 제거하는 것이 중요한 과제가 되어 왔다.Despite the disadvantages of NDC, the reason why NDC is used instead of NDA in PEN production is that it has not yet produced a purified NDA having the purity necessary for polymerization. That is, cNDA containing various impurities such as FNA, 2-naphthoic acid, trimellitic acid, etc. is generated during oxidation of 2,6-DMN, and among these impurities, FNA is known to be difficult to remove. . The presence of FNA in the condensation reaction of NDA causes the polymerization reaction to stop in the middle, which adversely affects the physical properties of the polymer. Therefore, the removal of FNA from cNDA has become an important problem.

그간 cNDA 내에 존재하는 FNA를 제거하기 위하여 또는 NDA를 정제하기 위하여 재결정법, 산화공정을 한번 더 거치는 방법, cNDA를 메탄올과 반응시켜 NDC를 제조한 후 수화시켜 NDA를 제조하거나 수소화 공정에 의해 정제된 NDA를 제조하는 방법 등이 제안되었다. 그 외에도 용매 처리, 용융 결정, 고압 결정, 초임계추출 등 여러 가지 정제방법을 사용하고 있으나, 아직까지 만족할 만한 순도를 가진 NDA를 제조하지 못하고 있다. 또한 순도를 높이는 경우 수율이 매우 떨어져 실제 생산에 적용하기가 어려운 실정이다.In the meantime, in order to remove FNA present in cNDA or to purify NDA, recrystallization, oxidation process is performed again, cNDA is reacted with methanol to make NDC, and then hydrated to produce NDA or purified by hydrogenation process. A method of producing NDA and the like have been proposed. In addition, various purification methods such as solvent treatment, melting crystals, high pressure crystals, supercritical extraction, etc. have been used, but NDAs with satisfactory purity have not yet been produced. In addition, if the purity is increased, the yield is very difficult to apply to actual production.

본 발명은 상기와 같은 종래기술의 문제점을 해결하기 위한 것으로, FNA 분해 활성이 있는 신규한 미생물을 동정하고 이를 이용한 생물학적인 방법에 의하여 cNDA 내에 포함되어 있는 FNA를 선택적으로 제거하여 NDA를 정제함을 목적으로 한다.The present invention is to solve the problems of the prior art as described above, by identifying a novel microorganism having FNA degradation activity and purifying NDA by selectively removing the FNA contained in cNDA by a biological method using the same. The purpose.

즉, 본 발명의 한 측면은 2-포밀-6-나프토산(2-Formyl-6-naphthoic acid) 분해 활성이 있는 바실러스속(Bacillus sp.) F-1(KCTC-10342BP)을 제공한다.That is, one aspect of the present invention provides Bacillus sp. F-1 (KCTC-10342BP) having 2-formyl-6-naphthoic acid degrading activity.

본 발명의 다른 측면은 2-포밀-6-나프토산(2-Formyl-6-naphthoic acid) 분해 활성이 있는 바실러스속(Bacillus sp.) F-3(KCTC-10335BP)을 제공한다.Another aspect of the present invention provides Bacillus sp. F-3 (KCTC-10335BP) having 2-formyl-6-naphthoic acid degradation activity.

본 발명의 또 다른 측면은 0~20%의 유기용매를 포함하는 pH 6.0~10.0의 완충용액 내에서 25~45℃의 온도에서 상기 바실러스속(Bacillus sp.) F-1(KCTC-10342BP) 또는 상기 바실러스속(Bacillus sp.) F-3(KCTC-10335BP)을 조 나프탈렌 디메틸카르복실산(crude Naphthalene dicarboxylic acid)과 반응시켜 상기 조 나프탈렌 디메틸카르복실산 내의 2-포밀-6-나프토산(2-Formyl-6-naphthoic acid)을 분해하는 단계를 포함하는 2,6-나프탈렌디카르복실산의 정제방법을 제공한다.Another aspect of the present invention is Bacillus sp. F-1 (KCTC-10342BP) or at a temperature of 25 ~ 45 ℃ in a buffer solution of pH 6.0 ~ 10.0 containing 0 ~ 20% organic solvent or Bacillus sp. F-3 (KCTC-10335BP) was reacted with crude naphthalene dimethylcarboxylic acid (crude Naphthalene dicarboxylic acid) 2-formyl-6-naphthoic acid (2) -Formyl-6-naphthoic acid) provides a method for purifying 2,6-naphthalenedicarboxylic acid comprising the step of decomposing.

이하, 본 발명의 신규 균주에 대하여 보다 상세히 설명한다. Hereinafter, the novel strain of the present invention will be described in more detail.

본 발명자들은 FNA를 분해하는 능력이 있는 신규한 2종의 균주를 토양에서 분리하는데 성공하였다. 본 발명의 신균주들은 16S rDNA 부분 시퀀싱(partial sequencing) 방법에 의하여 바실러스속(Bacillus sp.)에 속하는 균주로 동정되었고, 각각 바실러스속(Bacillus sp.) F-1, F-3으로 명명되었다. 상기 바실러스속 F-1, F-3 균주의 16S rDNA 부분 시퀀싱 결과는 각각 도 1(서열 1) 및 도 2(서열 2)에 도시된 바와 같다. 바실러스속 F-3 균주는 2002년 9월 12일 국제기탁기관인 한국생명공학연구원 유전자은행에 수탁번호 KCTC-10335BP로 기탁되었으며, 바실러스속 F-1 균주는 2002년 9월 27일 동일 기관에 수탁번호 KCTC-10342BP로 기탁되었다.We have succeeded in separating two new strains from the soil with the ability to degrade FNA. The new strains of the present invention were identified as strains belonging to the genus Bacillus sp. By 16S rDNA partial sequencing method, and were named Bacillus sp. F-1 and F-3, respectively. 16S rDNA partial sequencing results of the Bacillus genus F-1, F-3 strains are shown in Figure 1 (SEQ ID NO: 1) and Figure 2 (SEQ ID NO: 2), respectively. Bacillus F-3 strain was deposited with KCTC-10335BP at the Korea Biotechnology Research Institute Genetic Bank of Korea on September 12, 2002, and Bacillus F-1 strain was deposited with the same institution on September 27, 2002. Deposited with KCTC-10342BP.

본 발명의 바실러스속 F-1, F-3 균주는 LB 액체배지를 이용하여 쉽게 배양할 수 있으며, 25∼45℃의 넓은 범위의 온도에서 배양이 가능하다. 이들 균주는 형태학적으로는 물론 생화학적으로 매우 유사한 특성을 가지고 있으며(참조: 표 3 및 표 4), FNA 분해에는 높은 활성을 보이는 반면 NDA와는 전혀 반응성이 없다. Bacillus genus F-1, F-3 strains of the present invention can be easily cultured using LB liquid medium, it is possible to culture at a wide range of temperature of 25 ~ 45 ℃. These strains have very similar morphological as well as biochemical properties (see Tables 3 and 4) and show high activity for FNA degradation but are not reactive at all with NDA.

이하, 상기 바실러스속 F-1, F-3 균주를 이용한 본 발명의 NDA 정제방법에 대하여 보다 상세히 설명한다. Hereinafter, the NDA purification method of the present invention using the Bacillus genus F-1, F-3 strain will be described in more detail.

본 발명에서는 상기 미생물 균주들을 각각 LB 액체배지에 접종하여 25∼45℃에서 교반하면서 배양한 다음 원심분리를 통해 균체를 회수하고, 회수한 균체를 생리식염수에 현탁하여 NDA 정제반응의 효소액으로 사용한다.In the present invention, the microbial strains are inoculated in LB liquid medium, incubated with stirring at 25-45 ° C., and the cells are recovered by centrifugation, and the recovered cells are suspended in physiological saline and used as enzyme solution for NDA purification. .

본 발명에서는 cNDA 내에 포함되어 있는 불순물인 FNA를 제거하기 위하여, 정제하고자 하는 cNDA를 완충용액이 들어있는 효소 반응조에 넣고 상기 미생물 현탁액(즉, 효소액)을 첨가하여 교반하면서 반응을 진행시킨다. In the present invention, in order to remove FNA, which is an impurity contained in cNDA, the cNDA to be purified is placed in an enzyme reaction tank containing a buffer solution, and the reaction is performed by adding the microbial suspension (ie, enzyme solution) and stirring.

상기 효소반응에 필요한 완충용액으로는 탄산나트륨 완충용액(Na2CO3 / NaHCO3), 글리신 완충용액(Glycine / NaOH), 인산칼륨 완충용액(KH2PO4 / KOH), 인산나트륨 완충용액(Na2HPO4 / NaH2PO4), 숙신산 완충용액(Succinic acid / NaOH), 아세트산나트륨 완충용액(Sodium acetate / Acetic acid), 시트르산 완충용액(Citric acid / Sodium citrate), 피로인산나트륨 완충용액(Na4P2O7 / HCl), 붕산 완충용액(Boric acid/ NaOH), 붕산나트륨 완충용액(Sodium borate / HCl) 등을 사용할 수 있으며, 그 중에서도 인산 완충용액을 사용하는 것이 효소 활성 측면에서 가장 바람직하고, 반응액의 최종 pH는 6~10인 것이 바람직하다.As a buffer solution for the enzyme reaction, sodium carbonate buffer (Na 2 CO 3 / NaHCO 3 ), glycine buffer (Glycine / NaOH), potassium phosphate buffer (KH 2 PO 4 / KOH), sodium phosphate buffer (Na 2 HPO 4 / NaH 2 PO 4 ), succinic acid buffer (Succinic acid / NaOH), sodium acetate buffer (Sodium acetate / Acetic acid), citric acid buffer (Citric acid / Sodium citrate), sodium pyrophosphate buffer (Na 4 P 2 O 7 / HCl), boric acid buffer (Boric acid / NaOH), sodium borate buffer (Sodium borate / HCl), etc. can be used, and among them, the use of phosphate buffer is most preferred in terms of enzyme activity And it is preferable that the final pH of a reaction liquid is 6-10.

또한 상기 효소반응액에는 cNDA를 용해시키기 위한 목적으로 유기용매가 첨가될 수 있는데, 바람직한 유기용매의 예에는 디메틸설폭사이드(Dimethylsulfoxide, "DMSO"), 디메틸포름아미드(N,N-Dimethylformamide, "DMF"), 디메틸아세트아미드(N,N-Dimethylacetamide, "DMA"), 테트라하이드로퓨란(Tetrahydrofuran, "THF") 등이 포함되며, 그 중에서도 디메틸설폭사이드를 사용하는 것이 효소 활성 측면에서 가장 바람직하다. 유기용매의 첨가량은 전체 반응액의 20%를 넘지 않도록 한다. In addition, an organic solvent may be added to the enzyme reaction solution for the purpose of dissolving cNDA. Examples of preferred organic solvents include dimethylsulfoxide (Dimethylsulfoxide, "DMSO"), and dimethylformamide (N, N-Dimethylformamide, "DMF." "), Dimethylacetamide (N, N-Dimethylacetamide," DMA "), tetrahydrofuran (Tetrahydrofuran," THF "), and the like, and among these, dimethyl sulfoxide is most preferably used in terms of enzymatic activity. The amount of the organic solvent added should not exceed 20% of the total reaction solution.

상기 효소반응의 온도는 25~45℃인 것이 바람직하며, 반응속도 면에서 가장 바람직하게는 30℃에서 반응시키는 것이 좋다. The temperature of the enzyme reaction is preferably 25 ~ 45 ℃, in terms of reaction rate is most preferably reacted at 30 ℃.

이하, 실시예 및 비교예를 통하여 본 발명을 보다 구체적으로 설명하고자 하나, 이러한 실시예들은 단지 설명의 목적을 위한 것으로 본 발명을 제한하는 것으로 해석되어서는 안된다. Hereinafter, the present invention will be described in more detail with reference to examples and comparative examples, but these examples are for illustrative purposes only and should not be construed as limiting the present invention.

실시예 1: 균주의 분리Example 1 Isolation of Strains

FNA 분해활성이 있는 미생물의 분리를 위하여 경기도 소재의 폐수처리장, 유류저장소 및 주유소 부근 토양을 채취하였다. 상기 토양 샘플 각 5 g을 0.85% 생리식염수 50 ml에 넣고 진탕한 후 여과한 여과액을 적당히 희석하여 cNDA 혼합물이 들어있는 LB 고체배지에 도말하고 30℃ 배양기에서 배양하였다. 배양 결과 170여 종의 미생물이 분리되었다. Soils were collected from wastewater treatment plants, oil depots and gas stations in Gyeonggi-do to isolate microorganisms with FNA degradation activity. 5 g of each soil sample was added to 50 ml of 0.85% saline, shaken, and the filtrate was diluted appropriately, plated in an LB solid medium containing a cNDA mixture, and incubated in a 30 ° C. incubator. Over 170 species of microorganisms were isolated from the culture.

그 중 FNA와 동일한 위치에 포밀기(formyl group)를 가지는 2-나프타알데히드(2-Naphthaldehyde)를 분해하는 미생물을 1차 선별하고자, 상기 170여 종의 미생물을 각각 LB 액체배지 5 ml에 접종하여 24시간 동안 30℃에서 200 rpm으로 진탕하면서 배양한 후, 배양액을 원심분리하여 회수된 균체를 0.85% 생리식염수 1 ml에 현탁하였다. 모든 유리 큐벳에 β-NAD 용액(50 mg/ml) 3 ml을 넣고, 샘플 큐벳에는 2-나프타알데히드 용액 0.2 ml을, 그리고 블랭크 큐벳에는 DMSO 0.2 ml을 첨가하여 혼합한 다음, 큐벳을 분광기에 넣고 3분 동안 안정화한 후, 상기 미생물 현탁액 0.05 ml씩을 첨가하고 5분 후 340 nm에서 흡광도를 측정하여 블랭크와의 흡광도 차이를 비교하였다. 그 결과 6종의 미생물 샘플의 흡광도가 블랭크의 흡광도보다 최소 0.1 이상 증가하여, 2-나프타알데히드 분해 활성이 있는 것으로 확인되었다.Among them, the 170 microorganisms were inoculated into 5 ml of LB liquid medium to first screen microorganisms that decompose 2-naphthaldehyde having a formyl group at the same position as FNA. After incubation with shaking at 200 ° C. at 30 ° C. for 24 hours, the culture solution was centrifuged to suspend the recovered cells in 1 ml of 0.85% saline. 3 ml of β-NAD solution (50 mg / ml) was added to all glass cuvettes, 0.2 ml of 2-naphthaaldehyde solution was added to the sample cuvette, and 0.2 ml of DMSO was added to the blank cuvette. After stabilization for 3 minutes, 0.05 ml each of the microbial suspension was added and after 5 minutes the absorbance was measured at 340 nm to compare the absorbance difference with the blank. As a result, the absorbance of the six microbial samples increased by at least 0.1 or more than the absorbance of the blank, and it was confirmed that there was 2-naphthaaldehyde decomposition activity.

이와 같이 1차 선별한 6종의 미생물을 다시 LB 액체배지에 접종하여 24시간 동안 30℃에서 200 rpm으로 진탕하면서 배양하였다. 배양액을 원심분리하여 균체를 회수하고 0.85% 생리식염수에 현탁한 다음, 하기 표 1과 같은 조성의 반응액을 제조하여 30℃의 반응조에서 6시간 동안 반응을 진행한 후, 고속액체크로마토그래피(HPLC)로 분석하여 FNA 제거능이 우수한 균주를 최종 선별하였다. 이때 HPLC 분석 조건은 하기 표 2와 같았다. 분석 결과, F-1, F-3로 명명한 2종류의 균주가 높은 FNA 분해능을 가지고 있었으며, F-3 균주가 F-1 균주에 비해 약간 더 우수하였다.Thus, six kinds of microorganisms primary screened were inoculated in LB liquid medium again and cultured with shaking at 30 ° C. at 200 rpm for 24 hours. The cells were recovered by centrifuging the culture solution, suspended in 0.85% saline solution, and then prepared with a reaction solution having the composition shown in Table 1 below, followed by reaction for 6 hours in a reaction vessel at 30 ° C. ) Was finally selected for the strain having excellent FNA removal ability. At this time, HPLC analysis conditions were as shown in Table 2 below. As a result, two strains named F-1 and F-3 had high FNA resolution, and the F-3 strain was slightly better than the F-1 strain.

최종 선별을 위한 반응액Reaction solution for final screening 성분ingredient 부피(ml)Volume (ml) 비 고Remarks 0.1 M KH2PO4/KOH(pH 8.0)0.1 M KH 2 PO 4 / KOH (pH 8.0) 3939 cNDA 용액cNDA solution 44 cNDA 용액 농도: 50 mg/mlcNDA solution concentration: 50 mg / ml DMSODMSO 1One 반응액 중의 최종 농도: 10%Final concentration in the reaction solution: 10% β-NAD 용액β-NAD solution 1One β-NAD 용액 농도: 50 mg/mlβ-NAD solution concentration: 50 mg / ml 미생물 현탁액Microbial suspension 55 미생물 현탁액 농도: 1×109 cfu/mlMicrobial Suspension Concentration: 1 × 10 9 cfu / ml 합계Sum 5050

HPLC 분석 조건HPLC analysis conditions HPLCHPLC LC 10-ADVP (SHIMADZU)LC 10-AD VP (SHIMADZU) 컬럼column XTerraTM RP18 (4.6×50 mm, Waters) XTerra TM RP18 (4.6 × 50 mm , Waters) 검출기Detector UV 240 nm UV 240 nm 컬럼 온도Column temperature 40℃ 40 ℃ 유속Flow rate 1 ml/min. 1 ml / min. 주입 부피Injection volume 20 ㎕ 20 μl 이동상(mobile phase)Mobile phase 시간(min.)Time (min.) 0.3%인산0.3% phosphoric acid 아세토니트릴Acetonitrile 00 9898 22 55 9292 88 2828 5252 4848 3030 2020 8080 3535 55 9595 3636 9898 22 4949 9898 22

실시예 2: 분리 미생물의 동정Example 2: Identification of Isolated Microorganisms

상기 실시예 1에서 얻어진 2종의 균주를 동정하기 위하여, 16S rDNA 부분 시퀀싱(partial sequencing)을 실시하였고, 그 결과를 도 1(서열 1) 및 도 2(서열 2)에 도시하였다. 이 결과에 따르면, 본 발명의 두 균주는 모두 바실러스속(Bacillus sp.)에 속하는 것으로 밝혀졌으며, 각각 바실러스속(Bacillus sp.) F-1(KCTC-10342BP), F-3(KCTC-10335BP)로 명명되었다.In order to identify two strains obtained in Example 1, 16S rDNA partial sequencing was performed, and the results are shown in FIGS. 1 (SEQ ID NO: 1) and 2 (SEQ ID NO: 2). According to the results, both strains of the present invention were found to belong to the genus Bacillus ( Bacillus sp.), Respectively, Bacillus ( Bacillus sp.) F-1 (KCTC-10342BP), F-3 (KCTC-10335BP) Was named.

F-1, F-3 두 균주의 형태학적 및 생화학적 성질을 시험한 결과 하기 표 3 및 표 4와 같았으며, 두 균주가 매우 유사한 특성을 가지고 있는 것으로 확인되었다.As a result of testing the morphological and biochemical properties of the two strains F-1, F-3 it was as shown in Table 3 and Table 4, it was confirmed that the two strains have very similar characteristics.

바실러스속(Bacillus sp.) F-1 및 F-3의 특성Characteristics of Bacillus sp. F-1 and F-3 항 목Item 특 성Characteristics 그램염색Gram Dyeing 양 성positivity 세포 형태Cell morphology 간 균Bacillus 생육 온도Growth temperature 25∼45℃25 ~ 45 ℃ 카탈라아제 생성Catalase production 양 성positivity 질산염 환원Nitrate reduction 양 성positivity Voges-Proskauer 반응Voges-Proskauer Reaction 양 성positivity 카제인 분해Casein decomposition 양 성positivity 젤라틴 분해Gelatin breakdown 양 성positivity 인돌 생성Indole generation 음 성voice NaCl 농도NaCl concentration 7% 이하7% less than 산 생성(기질) Acid production (substrate) D-글루코오스 D-아라비노스 D-만니톨 D-glucose D-arabinose D-mannitol 양 성양 성양 성Yang Sungyang Sungyang Castle

바실러스속(Bacillus sp.) F-1 및 F-3의 탄수화물 이용Carbohydrates of Bacillus sp. F-1 and F-3 탄수화물carbohydrate 이용능력Ability 탄수화물carbohydrate 이용능력Ability 프룩토스Fructose ++ 수크로스Sucrose ++ 글루코스Glucose ++ 트레할로스Trehalose ++ 이노시톨Inositol -- 람노오스Rhamnose -- 락토오스Lactose -- N-아세틸-D-글루코사민N-acetyl-D-glucosamine -- 말토오스maltose ++ 싸이클로덱스트린Cyclodextrin ++ 말토트리오스Maltotrios ++ 덱스트린dextrin ++ 만니톨Mannitol -- 리보오스Ribose ++ 만노오스Mannose ++

실시예 3: 효소반응시 β-니코틴아미드(β-NAD)의 영향Example 3: Effect of β-nicotinamide (β-NAD) on enzyme reaction

미생물 최종 선별 반응액에 포함되었던 β-니코틴아미드(β-NAD)가 반응에 영향을 미치는지 확인하기 위하여, F-1, F-3 각 균주에 대하여 상기 표 1의 반응액 조성에서 β-NAD를 포함하는 대조구와 포함하지 않는 실험구를 30℃ 반응조에서 6시간 동안 반응시킨 후 각 반응액을 분취하여 HPLC로 분석, 비교하였다. HPLC 분석 조건은 상기 표 2에서와 동일하였다. 그 결과, 하기 표 5에서 보듯이, 두 균주 모두 β-NAD의 첨가 여부와 관계없이 유사한 수준의 FNA 감소율을 유지하였다. 따라서 본 발명의 효소반응시 β-NAD를 첨가하지 않아도 반응에 문제가 없음을 확인할 수 있었다.In order to confirm whether β-nicotinamide (β-NAD) included in the microbial final screening reaction solution affects the reaction, β-NAD was expressed in the reaction solution composition of Table 1 for each strain of F-1 and F-3. The control group included and the experimental group not included were reacted in a 30 ° C. reactor for 6 hours, and each reaction solution was separated and analyzed and compared with HPLC. HPLC analysis conditions were the same as in Table 2 above. As a result, as shown in Table 5, both strains maintained a similar level of FNA reduction regardless of the addition of β-NAD. Therefore, it was confirmed that there is no problem in the reaction even without adding β-NAD in the enzyme reaction of the present invention.

β-NAD의 첨가 유무에 따른 FNA의 감소(FNA 잔존비율, %)Reduction of FNA with or without β-NAD (FNA remaining ratio,%) 미생물microbe 반응시간Reaction time β-NAD 첨가 ○β-NAD added ○ β-NAD 첨가 ×β-NAD addition × 바실러스속F-1Bacillus F-1 0 hr0 hr 100100 100100 6 hr6 hr 30.630.6 30.830.8 바실러스속F-3Bacillus F-3 0 hr0 hr 100100 100100 6 hr6 hr 23.123.1 23.823.8

실시예 4: NDA에 대한 반응성실시예 4: NDA에 대한 반응성Example 4: Reactivity to NDA Example 4: Reactivity to NDA

바실러스속 F-1 또는 F-3가 cNDA 내의 NDA를 감소시킨다면 NDA 정제에 사용하는데 부적절하므로, 이들 두 균주가 NDA를 감소시키는지를 확인하기 위하여, 반응기질로 NDA를 사용하여 하기 표 6의 조성을 가지는 반응액을 제조한 후, 상기 실시예 1에서와 동일한 반응조건으로 효소반응을 수행하고 HPLC로 반응생성물을 분석하였다. 그 결과, 하기 표 7에서 보여지는 바와 같이 반응 24시간 후에도 반응액 내 NDA의 양은 변하지 않았으며, 이러한 결과는 바실러스속 F-1, F-3 모두 NDA와 반응하지 않음을 입증해주는 것이다. Since Bacillus F-1 or F-3 reduces NDA in cNDA, it is not suitable for use in NDA purification, so to determine whether these two strains reduce NDA, the composition of Table 6 below using NDA as a reductant After preparing the reaction solution, the enzyme reaction was carried out under the same reaction conditions as in Example 1, and the reaction product was analyzed by HPLC. As a result, as shown in Table 7 below, even after 24 hours of reaction, the amount of NDA in the reaction solution did not change, and these results demonstrate that neither Bacillus F-1 or F-3 reacted with NDA.

NDA를 포함하는 반응액 조성Reaction liquid composition containing NDA 성분ingredient 부피(ml)Volume (ml) 비 고Remarks 0.1 M KH2PO4/KOH(pH 8.0)0.1 M KH 2 PO 4 / KOH (pH 8.0) 4040 NDA 용액NDA solution 44 NDA 용액 농도: 50 mg/ml NDA solution concentration: 50 mg / ml DMSODMSO 1One 반응액 중의 최종 농도: 10%Final concentration in the reaction solution: 10% 미생물 현탁액Microbial suspension 55 미생물 현탁액 농도: 1×109 cfu/mlMicrobial Suspension Concentration: 1 × 10 9 cfu / ml 합계Sum 5050

바실러스속 F-1 및 F-3에 의한 NDA 감소(NDA 잔존비율, %)NDA Reduction by Bacillus F-1 and F-3 (NDA Remaining Ratio,%) 반응시간Reaction time 바실러스속 F-1Bacillus F-1 바실러스속 F-3Bacillus F-3 0 hr0 hr 100.0100.0 100.0100.0 6 hr6 hr 100.1100.1 100.5100.5 24 hr24 hr 100.3100.3 99.799.7

실시예 5~18 및 비교예 1: 반응조건에 따른 정제효율Examples 5-18 and Comparative Example 1: Purification efficiency according to the reaction conditions

최적의 반응조건을 찾기 위해, 기질로 사용된 cNDA 내 FNA 함량, 완충용액의 종류, pH, 유기용매의 종류 및 농도, 반응온도 등을 하기 표 8과 같이 변화시키면서 NDA의 정제반응을 진행하여 FNA 감소율을 비교하였다. 이때 효소액으로는 바실러스속 F-3을 LB 액체배지 300 ml에서 배양한 후 회수된 균체를 0.85% 생리식염수 5 ml에 현탁한 것을 사용하였으며, 각 반응액 내 균체 농도는 1×109 cfu/ml의 농도로 통일되었다. 반응 6시간 후, 각 반응액을 분취하여 상기 표 2와 동일한 조건으로 HPLC를 이용하여 분석하였다. 분석 결과는 하기 표 9와 같다.In order to find the optimum reaction conditions, the FNA content of cNDA used as a substrate, the kind of buffer solution, the pH, the type and concentration of the organic solvent, the reaction temperature, etc. were changed as shown in Table 8. The reduction rate was compared. In this case, Bacillus F-3 was cultured in 300 ml of LB broth and the recovered cells were suspended in 5 ml of 0.85% physiological saline. The concentration of cells in each reaction solution was 1 × 10 9 cfu / ml. Unified to a concentration of. After 6 hours, each reaction solution was aliquoted and analyzed using HPLC under the same conditions as in Table 2. The analysis results are shown in Table 9 below.

바실러스속 F-3를 이용한 NDA 정제반응의 반응조건 변화Changes in Reaction Conditions for NDA Purification Using Bacillus F-3 ## cNDA 내FNA 함량FNA content in cNDA 완충용액Buffer 유기용매Organic solvent 반응온도Reaction temperature 종류Kinds pHpH 종류Kinds 농도density 실시예 5Example 5 0.01%0.01% KH2PO4/ KOHKH 2 PO 4 / KOH 8.08.0 DMSODMSO 5%5% 30℃30 ℃ 실시예 6Example 6 10%10% KH2PO4/ KOHKH 2 PO 4 / KOH 8.08.0 DMSODMSO 10%10% 30℃30 ℃ 실시예 7Example 7 10%10% KH2PO4/ NaOHKH 2 PO 4 / NaOH 8.08.0 DMSODMSO 10%10% 30℃30 ℃ 실시예 8Example 8 10%10% Na4P2O7 / HClNa 4 P 2 O 7 / HCl 8.08.0 DMSODMSO 10%10% 30℃30 ℃ 실시예 9Example 9 10%10% H3BO3 / NaOHH 3 BO 3 / NaOH 8.08.0 DMSODMSO 10%10% 30℃30 ℃ 실시예 10Example 10 10%10% Na2B4O7 / HClNa 2 B 4 O 7 / HCl 8.08.0 DMSODMSO 10%10% 30℃30 ℃ 실시예 11Example 11 10%10% Na2CO3 / NaHCO3 Na 2 CO 3 / NaHCO 3 10.010.0 DMSODMSO 10%10% 30℃30 ℃ 실시예 12Example 12 10%10% Glycine / NaOHGlycine / NaOH 9.09.0 DMSODMSO 10%10% 30℃30 ℃ 실시예 13Example 13 10%10% Na2HPO4 /NaH2PO4 Na 2 HPO 4 / NaH 2 PO 4 7.07.0 DMSODMSO 10%10% 30℃30 ℃ 실시예 14Example 14 10%10% KH2PO4/ KOHKH 2 PO 4 / KOH 8.08.0 DMSODMSO 0%0% 30℃30 ℃ 실시예 15Example 15 10%10% KH2PO4/ KOHKH 2 PO 4 / KOH 8.08.0 DMSODMSO 10%10% 25℃25 ℃ 실시예 16Example 16 10%10% KH2PO4/ KOHKH 2 PO 4 / KOH 8.08.0 DMSODMSO 10%10% 45℃45 ℃ 실시예 17Example 17 10%10% KH2PO4/ KOHKH 2 PO 4 / KOH 8.08.0 DMFDMF 10%10% 30℃30 ℃ 실시예 18Example 18 10%10% KH2PO4/ KOHKH 2 PO 4 / KOH 8.08.0 DMADMA 10%10% 30℃30 ℃ 비교예 1Comparative Example 1 10%10% 증류수Distilled water -- DMSODMSO 10%10% 30℃30 ℃

정제반응 6시간 후 FNA 감소율Reduction of FNA after 6 hours of purification ## FNA 감소율 (%)FNA Reduction (%) 실시예 5Example 5 95.195.1 실시예 6Example 6 76.576.5 실시예 7Example 7 76.876.8 실시예 8Example 8 61.261.2 실시예 9Example 9 59.659.6 실시예 10Example 10 59.059.0 실시예 11Example 11 59.859.8 실시예 12Example 12 69.869.8 실시예 13Example 13 76.776.7 실시예 14Example 14 59.559.5 실시예 15Example 15 71.471.4 실시예 16Example 16 67.367.3 실시예 17Example 17 59.159.1 실시예 18Example 18 56.756.7 비교예 1Comparative Example 1 3.83.8

상기 표 9에서 볼 수 있듯이, 증류수를 사용한 경우에는 FNA 감소율이 단지 3.8%에 그쳤으며, 반응시간을 24시간 까지 연장하여도 4%만이 감소하였다. 즉, 증류수를 사용하였을 경우 반응이 거의 진행되지 않았으며, 따라서 완충용액 대신 증류수로 대체하기는 어려울 것으로 보인다. 그리고, 상기 표 8 및 9에는 기재하지 않았으나, 유기용매로 에틸에테르, 클로로포름, 아세톤, 에탄올, 메탄올, 프로판올 등을 사용한 경우에는 cNDA가 용해되지 않았으며, 반응 또한 전혀 진행되지 않았다. As can be seen in Table 9, when distilled water was used, the FNA reduction rate was only 3.8%, and the reaction time was reduced by only 4% even if the reaction time was extended to 24 hours. That is, when distilled water was used, the reaction hardly proceeded, and thus, it would be difficult to substitute distilled water for the buffer solution. In addition, although not described in Tables 8 and 9, when ethyl ether, chloroform, acetone, ethanol, methanol, propanol, and the like were used as the organic solvent, cNDA did not dissolve and the reaction did not proceed at all.

이상에서 상세히 설명한 바와 같이, 본 발명의 신규한 균주인 바실러스속(Bacillus sp.) F-1 및 F-3는 조 나프탈렌 디카르복실산에 포함되어 있는 2-포밀-6-나프토산을 제거하는데 뛰어난 효과가 있으므로, 본 발명의 방법에 의해 고순도의 2,6-나프탈렌 디카르복실산의 대량생산이 실현될 것으로 기대된다.As described in detail above, the novel strains of the present invention Bacillus sp. F-1 and F-3 remove 2-formyl-6-naphthoic acid contained in crude naphthalene dicarboxylic acid. Since there is an excellent effect, it is expected that mass production of high purity 2,6-naphthalene dicarboxylic acid is realized by the method of the present invention.

도 1은 바실러스속(Bacillus sp.) F-1 균주의 16S rDNA의 일부 서열(서열 1);1 shows a partial sequence of 16S rDNA of Bacillus sp. F-1 strain (SEQ ID NO: 1);

도 2는 바실러스속(Bacillus sp.) F-3 균주의 16S rDNA의 일부 서열(서열 2);2 shows a partial sequence of 16S rDNA of Bacillus sp. F-3 strain (SEQ ID NO: 2);

도 3은 2,6-DMN으로부터 NDA 및 NDC를 합성하는 과정의 개략도; 및3 is a schematic diagram of a process for synthesizing NDA and NDC from 2,6-DMN; And

도 4는 2,6-DMN의 산화반응으로부터 생성되는 생성물을 도시한 도면이다. 4 shows a product resulting from the oxidation of 2,6-DMN.

<110> HYOSUNG CORPORATION <120> NOVEL BACILLUS STRAINS AND METHOD FOR PURIFYING 2,6-NAPHTHALENE DICARBOXYLIC ACID THEREBY <130> 02-TNC-41 <160> 2 <170> KopatentIn 1.71 <210> 1 <211> 705 <212> DNA <213> Bacillus sp. F-1 <400> 1 agtcgagcgg acagatggga gcttgctccc tgatgttagc ggcggacggg tgagtaacac 60 gtgggtaacc tgcctgtaag actgggataa ctccgggaaa ccggggctaa taccggatgg 120 ttgtttgaac cgcatggttc aaacataaaa ggtggcttcg gctaccactt acagatggac 180 ccgcggcgca ttagctagtt ggtgaggtaa cggctcacca aggcgacgat gcgtagccga 240 cctgagaggg tgatcggcca cactgggact gagacacggc ccagactcct acgggaggca 300 gcagtaggga atcttccgca atggacgaaa gtctgacgga gcaacgccgc gtgagtgatg 360 aaggttttcg gatcgtaaag ctctgttgtt agggaagaac aagtaccgtt cgaatagggc 420 ggtnccttga cggtacctaa ccagaaagcc acggctaact acgtgccagc agccgcggta 480 atacgtaggt ggcaagcgtt gtccggaatt attgggcgta aagggctcgc aggcggtttc 540 ttaagtctga tgtgaaagcc cccggctcaa ccgggagggt cattggaaac tggggaactt 600 gagtgcagaa gaggagagtg gaattccacg tgtagcggtg aaatgcgtaa agatgtggag 660 gaacaccagt ggcgaagcga ctctctggtc tgtaactgac gctga 705 <210> 2 <211> 715 <212> DNA <213> Bacillus sp. F-3 <400> 2 acatgcaagt cgagcggaca gatgggagct tgctccctga tgttagcggc ggacgggtga 60 gtaacacgtg ggtaacctgc ctgtaagact gggataactc cgggaaaccg gggctaatac 120 cggatggttg tttgaaccgc atggttcaaa cataaaaggt ggcttcggct accacttaca 180 gatggacccg cggcgcatta gctagttggt gaggtaacgg ctcaccaagg cgacgatgcg 240 tagccgacct gagagggtga tcggccacac tgggactgag acacggccca nactcctacg 300 ggaggcagca gtagggaatc ttccgcaatg gacgaaagtc tgacggagca acgcccgcgt 360 gagtgatgaa ggttttcgga tcgtaaagct ctgttgttag ggaagaacaa gtaccgttcg 420 aatagggcgg tnccttgacg gtacctaacc agaaagccac ggctaactac gtgccagcag 480 ccgcggtaat acgtaggtgg caagcgttgt ccggaattat tgggcgtaaa gggctcgcag 540 gcggtttctt aagtctgatg tgaaagcccc cggctcaacc ggggagggtc attggaaact 600 ggggaacttg agtgcagaag aggagagtgg aattccacgt gtagcggtga aatgcgtaaa 660 gatgtggagg aacaccagtg gcgaaggcga ctctctggtc tgtaactgac gctga 715<110> HYOSUNG CORPORATION <120> NOVEL BACILLUS STRAINS AND METHOD FOR PURIFYING 2,6-NAPHTHALENE DICARBOXYLIC ACID THEREBY <130> 02-TNC-41 <160> 2 <170> KopatentIn 1.71 <210> 1 <211> 705 <212> DNA <213> Bacillus sp. F-1 <400> 1 agtcgagcgg acagatggga gcttgctccc tgatgttagc ggcggacggg tgagtaacac 60 gtgggtaacc tgcctgtaag actgggataa ctccgggaaa ccggggctaa taccggatgg 120 ttgtttgaac cgcatggttc aaacataaaa ggtggcttcg gctaccactt acagatggac 180 ccgcggcgca ttagctagtt ggtgaggtaa cggctcacca aggcgacgat gcgtagccga 240 cctgagaggg tgatcggcca cactgggact gagacacggc ccagactcct acgggaggca 300 gcagtaggga atcttccgca atggacgaaa gtctgacgga gcaacgccgc gtgagtgatg 360 aaggttttcg gatcgtaaag ctctgttgtt agggaagaac aagtaccgtt cgaatagggc 420 ggtnccttga cggtacctaa ccagaaagcc acggctaact acgtgccagc agccgcggta 480 atacgtaggt ggcaagcgtt gtccggaatt attgggcgta aagggctcgc aggcggtttc 540 ttaagtctga tgtgaaagcc cccggctcaa ccgggagggt cattggaaac tggggaactt 600 gagtgcagaa gaggagagtg gaattccacg tgtagcggtg aaatgcgtaa agatgtggag 660 gaacaccagt ggcgaagcga ctctctggtc tgtaactgac gctga 705 <210> 2 <211> 715 <212> DNA <213> Bacillus sp. F-3 <400> 2 acatgcaagt cgagcggaca gatgggagct tgctccctga tgttagcggc ggacgggtga 60 gtaacacgtg ggtaacctgc ctgtaagact gggataactc cgggaaaccg gggctaatac 120 cggatggttg tttgaaccgc atggttcaaa cataaaaggt ggcttcggct accacttaca 180 gatggacccg cggcgcatta gctagttggt gaggtaacgg ctcaccaagg cgacgatgcg 240 tagccgacct gagagggtga tcggccacac tgggactgag acacggccca nactcctacg 300 ggaggcagca gtagggaatc ttccgcaatg gacgaaagtc tgacggagca acgcccgcgt 360 gagtgatgaa ggttttcgga tcgtaaagct ctgttgttag ggaagaacaa gtaccgttcg 420 aatagggcgg tnccttgacg gtacctaacc agaaagccac ggctaactac gtgccagcag 480 ccgcggtaat acgtaggtgg caagcgttgt ccggaattat tgggcgtaaa gggctcgcag 540 gcggtttctt aagtctgatg tgaaagcccc cggctcaacc ggggagggtc attggaaact 600 ggggaacttg agtgcagaag aggagagtgg aattccacgt gtagcggtga aatgcgtaaa 660 gatgtggagg aacaccagtg gcgaaggcga ctctctggtc tgtaactgac gctga 715

Claims (5)

바실러스속(Bacillus sp.) F-1(KCTC-10342BP). Bacillus sp. F-1 (KCTC-10342BP). 삭제delete 0~20%의 유기용매를 포함하는 pH 6.0~10.0의 완충용액 내에서 25~45℃의 온도에서 바실러스속(Bacillus sp.) F-1(KCTC-10342BP)을 조 나프탈렌 디메틸카르복실산(crude Naphthalene dicarboxylic acid)과 반응시켜 상기 조 나프탈렌 디메틸카르복실산 내의 2-포밀-6-나프토산(2-Formyl-6-naphthoic acid)을 분해하는 단계를 포함하는 2,6-나프탈렌디카르복실산의 정제방법. Bacillus sp. F-1 (KCTC-10342BP) was treated with crude naphthalene dimethylcarboxylic acid (crude) at a temperature of 25-45 ° C. in a buffer solution of pH 6.0-10.0 containing 0-20% organic solvent. Naphthalene dicarboxylic acid) to decompose the 2-formyl-6-naphthoic acid in the crude naphthalene dimethylcarboxylic acid (2,6-naphthalenedicarboxylic acid) Purification method. 제 3항에 있어서, 상기 유기용매가 디메틸설폭사이드, 디메틸포름아미드, 디메틸아세트아미드 및 테트라하이드로퓨란으로 구성된 군에서 선택되는 1종인 것을 특징으로 하는 방법.4. The method according to claim 3, wherein the organic solvent is one selected from the group consisting of dimethyl sulfoxide, dimethylformamide, dimethylacetamide and tetrahydrofuran. 제 3항에 있어서, 상기 완충용액이 탄산나트륨 완충용액(Na2CO3 / NaHCO3), 글리신 완충용액(Glycine / NaOH), 인산칼륨 완충용액(KH2PO4 / KOH), 인산나트륨 완충용액(Na2HPO4 / NaH2PO4), 숙신산 완충용액(Succinic acid / NaOH), 아세트산나트륨 완충용액(Sodium acetate / Acetic acid), 시트르산 완충용액(Citric acid / Sodium citrate), 피로인산나트륨 완충용액(Na4P2O7 / HCl), 붕산 완충용액(Boric acid/ NaOH) 및 붕산나트륨 완충용액(Sodium borate / HCl)으로 구성된 군에서 선택되는 1종인 것을 특징으로 하는 방법.The method of claim 3, wherein the buffer solution is sodium carbonate buffer (Na 2 CO 3 / NaHCO 3 ), glycine buffer (Glycine / NaOH), potassium phosphate buffer (KH 2 PO 4 / KOH), sodium phosphate buffer ( Na 2 HPO 4 / NaH 2 PO 4 ), succinic acid buffer (Succinic acid / NaOH), sodium acetate buffer (Sodium acetate / Acetic acid), citric acid buffer (Citric acid / Sodium citrate), sodium pyrophosphate buffer ( Na 4 P 2 O 7 / HCl), boric acid buffer (Boric acid / NaOH) and sodium borate buffer (Sodium borate / HCl) method characterized in that one selected from the group consisting of.
KR10-2002-0087819A 2002-12-31 2002-12-31 Novel bacillus strains and method for purifying 2,6-naphthalene dicarboxylic acid thereby KR100475007B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2002-0087819A KR100475007B1 (en) 2002-12-31 2002-12-31 Novel bacillus strains and method for purifying 2,6-naphthalene dicarboxylic acid thereby

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0087819A KR100475007B1 (en) 2002-12-31 2002-12-31 Novel bacillus strains and method for purifying 2,6-naphthalene dicarboxylic acid thereby

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR10-2004-0099162A Division KR100474967B1 (en) 2004-11-30 2004-11-30 26- novel bacillus strains and method for purifying 26-naphthalene dicarboxylic acid thereby

Publications (2)

Publication Number Publication Date
KR20040061548A KR20040061548A (en) 2004-07-07
KR100475007B1 true KR100475007B1 (en) 2005-03-10

Family

ID=37353083

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0087819A KR100475007B1 (en) 2002-12-31 2002-12-31 Novel bacillus strains and method for purifying 2,6-naphthalene dicarboxylic acid thereby

Country Status (1)

Country Link
KR (1) KR100475007B1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100731377B1 (en) * 2003-12-31 2007-06-21 주식회사 효성 Microorganism producing 2,6-Naphthalene dicarboxylic acid, preparing method thereof and method for preparing 2,6-Naphthalene dicarboxylic acid using the same
KR100770516B1 (en) * 2004-12-30 2007-10-25 주식회사 효성 26- Method for preparing Transformants expressing Benzaldehyde dehydrogenase and Method for Purification of 2 6-naphthalene dicarboxylic acid using the Transformants
KR100811380B1 (en) * 2004-12-31 2008-03-07 주식회사 효성 26- method for preparing transformants expressing xanthine dehydrogenase and method for purification of 26-naphthalene dicarboxylic acid using the transformants
KR100702317B1 (en) * 2005-10-14 2007-03-30 주식회사 효성 26- an aldehyde dehydrogenase from bacillus subtilis preparation method of the same and preparation method of 26-naphthalene dicarboxylic acid using the same
KR100655030B1 (en) 2005-11-24 2006-12-06 주식회사 효성 -72 26- Pseudomonas sp. HN-72 and Purification method of 26-naphthalene dicarboxylic acid using the same
KR100792104B1 (en) * 2005-12-12 2008-01-04 주식회사 효성 26- Purification method of crude naphthalene dicarboxylic acid using microorganism and 26-naphthalene dicarboxylic acid in crystalline form obtained by using the same
KR100850161B1 (en) * 2006-10-11 2008-08-04 주식회사 효성 26- Purification method of crude naphthalene dicarboxylic acid using microorganism and 26-naphthalene dicarboxylic acid in crystalline form obtained by using the same

Also Published As

Publication number Publication date
KR20040061548A (en) 2004-07-07

Similar Documents

Publication Publication Date Title
KR100832339B1 (en) Novel sinorhizobium sp. yb-58 strain converting fructose into psicose, and method for producing psicose using the same strain
EP1716240B1 (en) Microbial production of vitamin c
KR930010705B1 (en) Tricyclo compound and preparation thereof
EP1543136B1 (en) Microbial production of vitamin c
KR100475007B1 (en) Novel bacillus strains and method for purifying 2,6-naphthalene dicarboxylic acid thereby
KR20050007216A (en) Novel bacillus strains and method for purifying 2,6-naphthalene dicarboxylic acid thereby
US8202714B2 (en) Pseudomonas SP. HN-72 and purification method of 2,6-naphthalene dicarboxylic acid using the same
KR100471112B1 (en) A refining process of 2,6-Naphtalene Dicarboxylic Acid using a microorganism
US20100063318A1 (en) Purification Method of Crude Naphthalene Dicarboxylic Acid Using Microorganism and 2,6-Naphthalene Dicarboxylic Acid in Crystalline Form Obtained by Using the Same
EP0263403B1 (en) Novel microorganism and method for producing oxygenous compounds with said microorganism
JPH07102128B2 (en) Biologically pure culture of Streptomyces thunderensis
KR100731377B1 (en) Microorganism producing 2,6-Naphthalene dicarboxylic acid, preparing method thereof and method for preparing 2,6-Naphthalene dicarboxylic acid using the same
Mathur et al. Utilization of the Pollutant Di‐2‐Ethylhexyl Phthalate by a Bacterium
EP0380373A1 (en) Polycyclic compounds and their production
JP2012131765A (en) 4-keto-d-arabonic acid, 4-keto-d-arabinose, and production method of the same
EP0360407A1 (en) Cis-4,5-dihydro-4,5-dihydroxyphthalic acid and its salts, and process for producing the same
CA2008628C (en) Substance uct-1003 and process for producing the same
KR100823411B1 (en) Purification method of crude naphthalene dicarboxylic acid using microorganism
KR100850161B1 (en) 26- Purification method of crude naphthalene dicarboxylic acid using microorganism and 26-naphthalene dicarboxylic acid in crystalline form obtained by using the same
JPH0728750B2 (en) Method for producing hydroxide of pyrazinic acid by microorganism
KR0161149B1 (en) Novel n-acetyl-ñô-d-glucosamidase inhibitor and process for the preparation thereof
JP2018134027A (en) Method for producing phosphor
JPH09107983A (en) Production of hydroxymethylnaphthalenes and production of hydroxymethylmethylnaphthalenes and/or dihydroxymethylnaphthalenes
JPH09234089A (en) Production of hydroxybiphenyls
JP2002255969A (en) New physiologically active substance fo-7711cd4 and/or cd6 and method for producing the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
A107 Divisional application of patent
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20110111

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee