KR20060075234A - Composition for electromagnetic interference shielding using carbon nanotube - Google Patents

Composition for electromagnetic interference shielding using carbon nanotube Download PDF

Info

Publication number
KR20060075234A
KR20060075234A KR1020040113990A KR20040113990A KR20060075234A KR 20060075234 A KR20060075234 A KR 20060075234A KR 1020040113990 A KR1020040113990 A KR 1020040113990A KR 20040113990 A KR20040113990 A KR 20040113990A KR 20060075234 A KR20060075234 A KR 20060075234A
Authority
KR
South Korea
Prior art keywords
composition
carbon nanotubes
shielding
electromagnetic
electromagnetic shielding
Prior art date
Application number
KR1020040113990A
Other languages
Korean (ko)
Other versions
KR100642427B1 (en
Inventor
신동일
김현돈
정해룡
Original Assignee
제일모직주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제일모직주식회사 filed Critical 제일모직주식회사
Priority to KR1020040113990A priority Critical patent/KR100642427B1/en
Publication of KR20060075234A publication Critical patent/KR20060075234A/en
Application granted granted Critical
Publication of KR100642427B1 publication Critical patent/KR100642427B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/70Additives characterised by shape, e.g. fibres, flakes or microspheres
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/06Polyurethanes from polyesters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/20Diluents or solvents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/65Additives macromolecular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Conductive Materials (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Paints Or Removers (AREA)

Abstract

본 발명은 탄소 나노튜브, 금속 분말, 수분산 폴리우레탄 디스펄젼, 용매, 및 레올로지 조절제를 포함하는 탄소 나노튜브를 이용한 전자파차폐용 조성물에 관한 것으로, 본 발명의 전도성 조성물은 가격이 저렴하고 도전성 박막 형성시 낮은 도막 두께에서도 전도성, 부착성 및 차폐효율이 우수하고, 열 및 염수에 안정한 현저한 이점을 제공하므로 각종 전자기기의 회로 내부간 전자파 장애로 인한 간섭 현상 뿐만 아니라 외부로 방출되는 전자파를 효율적으로 차단할 수 있다.The present invention relates to a composition for shielding electromagnetic waves using carbon nanotubes, including carbon nanotubes, metal powders, water dispersion polyurethane dispersions, solvents, and rheology modifiers. When forming a thin film, it has excellent conductivity, adhesion and shielding efficiency even at low film thickness, and provides remarkable advantages that are stable to heat and salt water. Therefore, it is effective in preventing electromagnetic waves emitted from outside as well as interference caused by electromagnetic interference between circuits of various electronic devices. Can be blocked by

전자파차폐, 탄소 나노튜브, 전도성, 정전기방지, 수분산 폴리우레탄 디스펄젼, 용매, 레올로지 조절제Electromagnetic Shielding, Carbon Nanotubes, Conductive, Anti-Static, Water Dispersed Polyurethane Dispersion, Solvents, Rheology Modifiers

Description

탄소 나노튜브를 이용한 전자파차폐용 조성물{COMPOSITION FOR ELECTROMAGNETIC INTERFERENCE SHIELDING USING CARBON NANOTUBE} Electromagnetic shielding composition using carbon nanotubes {COMPOSITION FOR ELECTROMAGNETIC INTERFERENCE SHIELDING USING CARBON NANOTUBE}             

도 1은 본 발명의 실시예에서 사용된 본 발명의 전자파차폐용 조성물의 물성을 평가하기 위한 시편의 구조도이다. 1 is a structural diagram of a specimen for evaluating the physical properties of the composition for electromagnetic shielding of the present invention used in the embodiment of the present invention.

본 발명은 탄소 나노튜브를 이용한 전자파차폐용 조성물에 관한 것으로, 더욱 상세하세는 탄소 나노튜브를 이용함으로써 금속분말의 함량을 줄이고 전기전도성 특성을 향상시킨 전자파차폐용 조성물에 관한 것이다.The present invention relates to a composition for shielding electromagnetic waves using carbon nanotubes, and more particularly, to a composition for shielding electromagnetic waves by reducing the content of metal powder and improving the electrical conductivity properties by using carbon nanotubes.

이동동신 단말기, 노트북 컴퓨터, 사무기기, 의료기기 등의 각종 전자기기의 내부 소자로부터 발생되는 전자파의 인체에 대한 유해성 논란이 가중되고 있다. 또한 전자제품의 경량화 추세에 의해 소자의 집적도가 증가하면서 각 구성소자로부터 발생되는 불요전자파(electromagnetic noise)는 주변 소자의 오작동을 일으켜 기기장애의 원인이 되기도 한다. 따라서 최근에는 컴퓨터, 무선전화기, 자동차, 의료기기, 멀티미디어 플레이어 등의 가정용, 사무용, 산업용 전자제품으로부터 발생되는 전자파에 대한 차폐규격의 강화와 더불어 EMI(Electromagnetic Interference) 및 RFI (Radio Frequency Interference) 방출에 대한 규제도 강화되고 있어 각종 전자기기 및 부품의 전자파 차폐 대책이 중요한 과제로 대두되고 있다. There is a growing controversy over the harmful effects on the human body of electromagnetic waves generated from internal devices of various electronic devices such as mobile communication terminals, notebook computers, office equipment, and medical devices. In addition, as the integration of devices increases due to the light weight of electronic products, electromagnetic noise generated from each component may cause peripheral devices to malfunction, causing device failure. Therefore, in recent years, in addition to strengthening shielding standards for electromagnetic waves generated from home, office, and industrial electronic products such as computers, wireless telephones, automobiles, medical devices, and multimedia players, EMI (Electromagnetic Interference) and RFI (Radio Frequency Interference) emissions have been strengthened. As regulations on Korea have been tightened, electromagnetic wave shielding measures for various electronic devices and components have emerged as important issues.

이러한 불필요한 전자파를 차단하기 위해서 회로적인 측면에서 칩의 배열과 설계를 변경하는 시도가 진행되고 있으나, 이는 한계가 있다. 직접 전자파의 방출원인인 칩 전체를 금속 케비넷으로 감싸는 방식이 개발되었으나, 이러한 방식은 휴대용 전자기기의 무게를 증가시키고 두께를 증가시키는 문제점이 있어 많이 사용되고 있지 않다. Attempts have been made to change the arrangement and design of the chip in terms of circuitry in order to block such unwanted electromagnetic waves, but this is limited. A method of enveloping the entire chip, which is a direct source of electromagnetic radiation, with a metal cabinet has been developed, but this method is not widely used because of the problem of increasing the weight and thickness of portable electronic devices.

다른 전자파 차폐 방법으로 금속 입자를 진공증착법이나 무전해도금법에 의해 도장하는 방법이 시도되었으나, 이러한 방법에 사용되는 설비가 고가이고, 가혹조건에서의 신뢰성을 만족할 수 없고, 유해물질이 배출되므로 환경친화적이지 못한 단점이 있다. Other methods of shielding metal particles by vacuum evaporation or electroless plating have been attempted as an electromagnetic shielding method. However, since the equipment used in such a method is expensive, reliability under severe conditions cannot be satisfied, and harmful substances are emitted, it is environmentally friendly. This is not a disadvantage.

이러한 문제점을 극복하기 위해, 금속분말과 수용성 우레탄 분산액을 함유한 전자파 차폐용 전도성 코팅액이 개발되었으나 이는 금속 함량이 높아 원재료 비용이 상승하고 플라스틱 기질과의 접착력이 좋지 않아 장시간 사용 시에는 전자파차폐 능력이 저하되는 문제점을 갖는다.In order to overcome this problem, conductive coating liquids for shielding electromagnetic waves containing metal powder and water-soluble urethane dispersions have been developed. However, since the metal content is high, the raw material cost is increased and the adhesion to the plastic substrate is poor. It has a problem of deterioration.

유한 자원인 금속을 이용한 전자파 차폐 재료에서 비용을 저감시키고, 접착력의 향상 및 친환경성, 우수한 내구성을 확보하기 위하여 탄소 나노 튜브를 활용 한 연구가 많이 진행되고 있다. 그러나 아직까지 금속의 성능을 능가할 만한 전도성 재료의 개발이 이루어지지 못하고 있다. In order to reduce the cost, improve adhesion, eco-friendliness, and excellent durability in the electromagnetic shielding material using a finite resource of metal, many researches using carbon nanotubes have been conducted. However, the development of a conductive material that can exceed the performance of metals has not been made yet.

전도성 도료를 이용하여 전자기기의 전자파를 차폐하는 방법으로는 금 및 구리 등과 같은 금속과 같은 전도성 물질을 포함하느 도료를 전자기기 하우징 내부에 코팅시키는 방법이 널리 이용되고 있다. 그러나 전자기기의 플라스틱 사출물의 내부는 구동칩간 간섭을 방지하기 위해 격벽(Rib 또는 Wall)을 두고 있으며, 입체적 구조를 가지고 있기 때문에 금속 단독으로만 이루어진 전도성 도료는 금속 자체의 밀도가 높기 때문에 사용시 그 자체의 중량에 의해 흘러내려 격벽으로 인한 전도성의 감소가 나타나는 문제점이 발생하고 있다. 따라서 도막 두께가 증가하게 되고 비용이 상승하는 문제점이 발생한다.As a method of shielding electromagnetic waves of an electronic device using a conductive paint, a method of coating a paint containing an electrically conductive material such as a metal such as gold and copper into an electronic device housing is widely used. However, the plastic injection parts of electronic devices have ribs or walls to prevent interference between driving chips, and since they have a three-dimensional structure, conductive paints made of only metal have high density of the metal itself. There is a problem that a decrease in the conductivity caused by the partition wall flows down by the weight of. Therefore, a problem arises in that the thickness of the coating film is increased and the cost is increased.

본 발명은 상술한 바와 같은 종래 기술의 문제점을 극복하기 위한 것으로, 본 발명의 목적은 밀도가 작고, 입체 사출물 구조에서도 자중에 의한 흘러내림 현상이 없어 낮은 도포량에서도 전도성이 우수하고, 부착력 및 내마모성 등이 우수하면서 기존의 전도성 도료에 비하여 향상된 전기전도성을 나타내는 탄소 나노튜브를 이용한 전자파 차폐용 코팅액 조성물을 제공하는 것이다. The present invention is to overcome the problems of the prior art as described above, the object of the present invention is low density, even in the three-dimensional injection molding structure there is no flow phenomenon due to its own weight, excellent conductivity even at low coating amount, adhesion and wear resistance, etc. It is to provide a coating liquid composition for shielding electromagnetic waves using carbon nanotubes that exhibits excellent electrical conductivity compared to the existing conductive paints.

상술한 목적을 달성하기 위한 본 발명의 하나의 양상은 탄소 나노튜브, 금속분말, 수분산 폴리우레탄 디스펄젼, 용매 및 레올로지 조절제를 포함하는 탄소 나노튜브를 이용한 전자파차폐용 조성물에 관계한다. One aspect of the present invention for achieving the above object relates to a composition for shielding electromagnetic waves using carbon nanotubes, including carbon nanotubes, metal powder, water dispersion polyurethane dispersion, solvent and rheology modifier.                         

본 발명의 다른 양상은 본 발명의 코팅액 조성물을 이용하여 제조된 도전성 박막에 관계한다.Another aspect of the present invention relates to a conductive thin film produced using the coating liquid composition of the present invention.

본 발명의 또 다른 양상은 본 발명의 도전막을 포함하는 전자파 차폐용 기재에 관계한다.
Another aspect of the present invention relates to a substrate for electromagnetic shielding, comprising the conductive film of the present invention.

이하에서 첨부 도면을 참고하여 본 발명에 관하여 더욱 상세하게 설명한다. 본 발명에 의한 전자파차폐용 조성물은 탄소 나노튜브, 금속 분말, 수분산 폴리우레탄 디스펄젼, 용매, 및 레올로지 조절제를 포함한다. Hereinafter, with reference to the accompanying drawings will be described in more detail with respect to the present invention. The composition for shielding electromagnetic waves according to the present invention includes carbon nanotubes, metal powders, water dispersion polyurethane dispersions, solvents, and rheology modifiers.

본 발명에서 특징적으로 사용되는 탄소 나노튜브는 구조의 비등방성이 크며 직경이 수십에서 수백 나노미터이고, 길이는 수십에서 수백 마이크로미터이다. 단일벽 또는 다중벽 등 다양한 구조가 있으며, 또한 감긴 형태에 따라 도체, 반도체의 성질을 띤다. 또한 탄소 나노튜브는 길이에 비해 직경이 작으므로 전기장이 인가되었을 때 튜브 끝에서 전기장이 증폭된다. 탄소 나노튜브의 제조 방법은 현재까지 전기방전법, 레이저증착법, 플라즈마 화상기상법, 기상합성법, 전기분해법 등 많은 방법이 알려져 있다, 1998년 Frank는 SPM(Scanning probing microscopy)을 이용하여 탄소 나노섬유를 수은 액체상에 담지하여 전도성을 측정하였고, 그 결과 탄소 나노튜브가 양자 거동을 보이면서 획기적인 전도성 (ballistic conductance)을 가진다고 보고하였다. MWNT (Multiwall Nanotube: MWNT)의 전도 성은 각 나노튜브가 수은 액체상에 첨가될 때마다 1 Go만큼 증가하였다. 이 때 Go의 값은 1/12.9 ㏀-1이다. 1999년 Sanvito 등은 스캐터링 (scattering) 기법을 이용하여 다중벽 나노튜브 의 전도성을 측정하였으며 Frank의 결과를 재확인하였고 MWNT내의 양자전도성 채널이 내벽 (interwall) 반응에 의해 감소됨을 관찰하였다. 이 반응에 의해 각 탄소 나노튜브의 전자흐름이 재배치됨을 관찰하였고, Thess 등은 로프 형태의 금속성 단중벽 나노튜브 (Single Wall Nanotube: SWNT)의 저항을 4점 (four-point) 기법을 이용하여, 300 K에서 약 10-4 Ω-cm임을 관찰하였으며, 이 값은 현재 알려진 고전도성 탄소 나노섬유 보다 더 높은 값을 가진 것으로 나타났다. Frank 등과 Avouris 등은 각각 107 A/㎠ 이상, 1013 A/㎠ 이상의 안정된 전류밀도가 나타남을 관찰하였다.Carbon nanotubes, which are characteristically used in the present invention, have large anisotropy in structure, tens to hundreds of nanometers in diameter, and tens to hundreds of micrometers in length. There are various structures such as single-walled or multi-walled, and it has the characteristics of conductor and semiconductor depending on the wound shape. In addition, carbon nanotubes are smaller in diameter compared to their length, so when the electric field is applied, the electric field is amplified at the end of the tube. Many methods for producing carbon nanotubes have been known so far, such as electric discharge, laser deposition, plasma imaging, vapor phase synthesis, and electrolysis. In 1998, Frank used scanning probing microscopy (SPM) to convert carbon nanofibers to mercury. The conductivity was measured by supporting the liquid phase, and as a result, the carbon nanotubes reported quantum behavior and had a ballistic conductance. The conductivity of MWNTs (MWNTs) increased by 1 G o as each nanotube was added to the mercury liquid phase. At this time, the value of G o is 1 / 12.9 ㏀ −1 . In 1999, Sanvito et al. Measured the conductivity of multi-walled nanotubes using scattering techniques, reaffirmed Frank's results, and observed that the quantum conductive channels in the MWNTs were reduced by the interwall reaction. It was observed that the electron flow of each carbon nanotube was rearranged by this reaction.Thess et al. Used a four-point technique to measure the resistance of rope-type metallic single wall nanotubes (SWNTs). It was observed that it was about 10 −4 μm-cm at 300 K, which was found to have a higher value than the currently known high conductivity carbon nanofibers. Frank et al. Avouris et al observed that stable current densities of 107 A / cm 2 or more and 1013 A / cm 2 or more were observed.

본 발명은 현재 많이 개발되고 있고 전기적 특성이 우수한 단일벽 또는 이중벽의 탄소 나노튜브를 활용하여 기존의 금속을 포함하고 있는 전자파 차폐 재료를 혼합하여 우수한 전자파 차폐특성 및 전기 전도성의 전자파 차폐용 조성물을 얻고자 한다.The present invention is being developed a lot and using a single-walled or double-walled carbon nanotubes having excellent electrical properties by mixing the electromagnetic shielding material containing an existing metal to obtain a composition for electromagnetic shielding of excellent electromagnetic shielding properties and electrical conductivity Let's do it.

본 발명의 코팅액 조성물에서 전도성을 부여하기 위한 성분들 중의 하나인 탄소 타노 튜브의 크기는 길이가 50 ㎛ 이하이고, 폭이 20 ㎚ 이하의 탄소 나노튜브를 사용하며, 그 함량을 0.3 내지 20중량%로 포함한다.One of the components for imparting conductivity in the coating liquid composition of the present invention has a carbon nanotube having a length of 50 μm or less and a width of 20 nm or less, and the content of 0.3 to 20 wt% It includes.

본 발명의 전도성 조성물에 사용가능한 금속분말은 은 분말, 동 분말 또는 은이 코팅된 동 분말을 단독으로 사용하거나 이들을 혼합하여 사용할 수 있다. 본 발명에서 사용되는 금속분말의 사용량은 5 중량% ∼ 60중량%이다. 금속분말이 5 중량% 미만일 경우 도전성이 부족할 수 있고 60 중량%를 초과하는 경우에는 제조원가가 상승하는 단점이 있다. 본 발명에서 금속 분말의 평균입도 분포는 1 내지 60 ㎛이며, 그 형상은 플레이크형, 구형, 가지형인 것이 바람직하다.The metal powder usable in the conductive composition of the present invention may be used alone or in combination of silver powder, copper powder or silver coated copper powder. The amount of the metal powder used in the present invention is 5% by weight to 60% by weight. If the metal powder is less than 5% by weight, the conductivity may be insufficient, and when the metal powder is more than 60% by weight, the manufacturing cost increases. In the present invention, the average particle size distribution of the metal powder is 1 to 60 µm, and the shape thereof is preferably flake, spherical or branched.

본 발명에서 적용된 수분산 폴리우레탄 디스펄젼은 방향족 관능기를 갖는 수분산 폴리우레탄 디스펄젼으로서, 플라스틱 기질에 코팅시 스프레이가 가능하도록 하며, 건조 후 우수한 소지 부착성과 내마모성을 가질 수 있다. 본 발명에서 사용된 우레탄 디스펄젼은 알리파틱계와 아로마틱계의 다가산을 이용한 폴리올을 적용하여 합성한 디스펄젼이며, 그 함량은 0.2 wt% 내지 60 wt% 바람직하게는 5wt% 내지 40wt%(제품무게기준)이다. 수분산 우레탄 디스펄젼의 함량이 0.2 중량% 미만일 경우 소자의 부착성과 내마모성이 불량해질 수 있고, 60 중량%를 초과하는 경우 저항이 상승할 우려가 있다. The water-dispersed polyurethane dispersion applied in the present invention is a water-dispersed polyurethane dispersion having an aromatic functional group, which enables spraying upon coating on a plastic substrate, and may have excellent body adhesion and wear resistance after drying. Urethane dispulsation used in the present invention is a disulsion synthesized by applying a polyol using an aliphatic and aromatic polyhydric acid, the content is 0.2 wt% to 60 wt%, preferably 5wt% to 40wt% (product Weight basis). If the content of the water-dispersed urethane dispersion is less than 0.2% by weight, the adhesion and abrasion resistance of the device may be poor, and if it exceeds 60% by weight, the resistance may increase.

본 발명의 조성물에 사용되는 용매로는 알콜계 용매가 사용되며, 좀 더 구체적으로 메탄올, 에탈올, 이소프로판올, 노말부탄올, 이소부탄올 등을 각각 단독으로 또는 2종 이상 혼합하여 사용할 수 있으며 그 함량은 10 내지 60중량%이다. Alcohol solvent is used as the solvent used in the composition of the present invention, and more specifically, methanol, ethanol, isopropanol, normal butanol, isobutanol and the like can be used alone or in combination of two or more thereof. 10 to 60% by weight.

또한 본 발명의 조성물에서는 코팅액의 점도를 조절하기 위해 레올로지 조절제가 첨가된다. 본 발명에서 사용가능한 바람직한 레올로지 조절제는 가교 폴리아크릴레이트 중합체, 셀룰로오스, 우레탄, 아크릴에멀젼타입 및 벤토나이트를 포함한다. 가교 폴리아크릴레이트 중합체 타입이 특히 바람직한데, 이는 알콜계 용매에 용해가 잘되며 도전성에 영향을 미치지 않고 금속의 침강방지 및 스프레이 작업성 향상에 효과가 있기 때문이다. 이러한 레올로지 조절제의 구체적인 예는 노벤(Noveon)사에서 제조되는 카보폴(Carbo-pol) EZ-2를 들 수 있다. 본 발명서에서 레올로지 조절제의 함량은 0.01 ~ 5 중량%이다. 레올로지 조절제의 양이 0.01 중량% 미만일 경우에는 증점 효과가 떨어져 금속의 침강이 일어날 수 있고, 5 중량%를 초과하는 경우에는 수지와의 강한 상호작용으로 인해 저장성이 불량해져 저항 값 상승의 원인이 될 수 있다.In addition, in the composition of the present invention, a rheology modifier is added to adjust the viscosity of the coating liquid. Preferred rheology modifiers usable in the present invention include crosslinked polyacrylate polymers, celluloses, urethanes, acrylic emulsion types and bentonite. The crosslinked polyacrylate polymer type is particularly preferred because it is well soluble in alcoholic solvents and is effective in preventing sedimentation of the metal and improving spray workability without affecting conductivity. Specific examples of such rheology modifiers include Carbo-pol EZ-2 manufactured by Noven. In the present invention, the content of the rheology control agent is 0.01 to 5% by weight. If the amount of rheology modifier is less than 0.01% by weight, the thickening effect may be reduced and sedimentation of the metal may occur. If the amount of the rheology control agent is greater than 5% by weight, the strong interaction with the resin may result in poor storage properties, leading to an increase in the resistance value. Can be.

본 발명에 따른 전도성 조성물은 상기 필수 구성 성분 이외에 각종 첨가제를 본 발명의 목적을 저해하지 않는 범위 내에서 추가로 포함할 수 있다.The conductive composition according to the present invention may further include various additives in addition to the essential components within a range not impairing the object of the present invention.

본 발명에 의한 전도성 조성물은 당업계에서 통상적으로 사용되는 코팅 방법에 의해 기판 위에 코팅되어 도전성 박막으로 형성될 수 있다. 바람직한 코팅 방법의 예들은 스핀 코팅(spin coating), 딥 코팅(dip coating), 분무 코팅(spray coating), 흐름 코팅(flow coating), 및 스크린 인쇄(screen printing)를 포함하나, 이에 제한되지는 않는다. 편의성 및 균일성의 측면에서 가장 바람직한 도포방법은 스핀 코팅이다.The conductive composition according to the present invention may be coated on a substrate by a coating method commonly used in the art to form a conductive thin film. Examples of preferred coating methods include, but are not limited to, spin coating, dip coating, spray coating, flow coating, and screen printing. . The most preferred application method in terms of convenience and uniformity is spin coating.

본 발명에 의한 전도성 조성물은 폴리카보네이트나 폴리카보네이트 얼로이, 아크릴로부타디엔스타이렌/폴리카보네트, 폴리페닐설파이트 등의 고분자로 이루어진 플라스틱 기판 위에 도포될 수 있다.The conductive composition according to the present invention may be applied onto a plastic substrate made of a polymer such as polycarbonate or polycarbonate alloy, acrylobutadiene styrene / polycarbonate, polyphenylsulfite, or the like.

본 발명에 의한 전도성 조성물은 탄소 나노 튜브를 이용함으로써 금속분말의 함량을 줄일 수 있고 탄소 나노튜브가 그물망 구조를 형성함으로써 접촉저항을 줄여 코팅액 조성물의 전기전도성이 우수하여 도전성 박막으로 제조되는 경우에 이동 통신 기기, 노트북, 휴대용 전자기기, 의료기기 등 전자기기 내부에서 발생되는 노이즈를 차단하여 전자파 간섭 문제를 해결할 수 있고, 유해전자파가 외부로 방출되지 않도록 차단할 수 있다. The conductive composition according to the present invention can reduce the content of metal powder by using carbon nanotubes, and when the carbon nanotubes are formed into a network structure to reduce contact resistance and thus have excellent electrical conductivity of the coating liquid composition, they are moved when the conductive thin film is manufactured. It can solve the electromagnetic interference problem by blocking the noise generated inside the electronic devices such as communication devices, laptops, portable electronic devices, medical devices, and can prevent harmful electromagnetic waves from being emitted to the outside.

이하에서 실시예를 들어 본 발명을 더욱 상세하게 설명할 것이나. 이러한 실시예들은 단지 설명의 목적을 위한 것으로 본 발명의 보호범위를 제한하고자 하는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples. These embodiments are merely for illustrative purposes and are not intended to limit the protection scope of the present invention.

실시예 1Example 1

수분산 폴리우레탄 디스펄젼 30g을 교반기를 이용하여 2000rpm에서 30분간 교반하면서 탄소 나노튜브를 조금씩 첨가시켰다. 이 때 사용된 탄소나노 튜브는 통상의 방법으로 수득한 탄소 나노 튜브로 단일벽으로 길이 20㎛, 폭이 10nm이고, 함량을 0.5g으로 하였다. 여기에 시판되는 은분말(SF-70A, Ferro사)을 25g 첨가하여 2000rpm에서 20분간 교반하였다. 여기에 에탄올 41g 첨가한 뒤 500rpm에서 15분간 교반하였다. 여기에 점도조절제로 통상의 시판되는 폴리아크릴레이트 폴리머를 3중량% 첨가하여 1000prm에서 30분간 교반하였다. 균일한 분산을 위하여 교반기의 온도를 10℃ 이하로 유지하여 전도성 조성물을 제조하였다. 이렇게 해서 제조된 전자파차폐용 조성물을 에탄올 100부피%로 희석하여 스프레이 코팅액을 제조한 뒤 폴리카보네이트 시트에 스프레이 코팅하였다. 이 때, 시편의 크기는 가로 15cm, 세로 6cm이고 도 1과 같이 한가운데 두께 5mm, 폭 5mm의 격벽이 3개 있 는 것을 사용하였다. 에탄올 용매가 건조된 후 시트에 도포된 도막 두께가 12㎛ 전후가 되도록 스프레이 노즐을 조정하여 시편을 제조하였다. 제조된 시편의 물성을 아래의 방법에 의해 평가하여 그 결과를 하기 표 1에 나타내었다. Carbon nanotubes were added little by little while stirring 30 g of water-dispersed polyurethane dispersion at 2000 rpm for 30 minutes using a stirrer. The carbon nanotubes used at this time were carbon nanotubes obtained by a conventional method, having a single wall of 20 μm in length and a width of 10 nm, and having a content of 0.5 g. 25g of commercially available silver powder (SF-70A, Ferro) was added, and it stirred at 2000 rpm for 20 minutes. 41g of ethanol was added thereto and stirred at 500 rpm for 15 minutes. 3 weight% of commercially available polyacrylate polymers were added here as a viscosity modifier, and it stirred at 1000 prm for 30 minutes. The conductive composition was prepared by maintaining the temperature of the stirrer at 10 ° C. or lower for uniform dispersion. The electromagnetic shielding composition thus prepared was diluted with 100% by volume of ethanol to prepare a spray coating solution, and then spray coated onto a polycarbonate sheet. At this time, the size of the specimen was 15cm in width, 6cm in length and used as three partitions having a thickness of 5mm, width 5mm in the middle as shown in FIG. After the ethanol solvent was dried, a specimen was prepared by adjusting the spray nozzle so that the coating thickness applied to the sheet was about 12 μm. The physical properties of the prepared specimens were evaluated by the following method, and the results are shown in Table 1 below.

[물성 평가 방법][Property evaluation method]

*저항 : 멀테미터를 이용하여 단위 면적당 표면저항을 측정하였다.* Resistance: The surface resistance per unit area was measured using a multimeter.

*접착력: ASTM D3359로 평가하였다. Adhesion: evaluated according to ASTM D3359.

*차폐효율: 네트워크 어낼라이저를 이용하여 30 MHz에서 10 GHz까지 측정하였고 범위에서의 평균값으로 하였다. * Shielding efficiency: Measured from 30 MHz to 10 GHz using a network analyzer and set as the average value in the range.

*열안정성: 50 ℃ 온도에서 10일간 방치한 후의 저항을 측정하였다. * Thermal stability: The resistance after standing at 50 ° C. for 10 days was measured.

*내염수성 :5 중량% NaCl 용액에 3일간 침지한 후의 저항을 측정하였다. Salt resistance: The resistance after immersion in 5 wt% NaCl solution for 3 days was measured.

실시예 2Example 2

탄소 나노 튜브의 함량을 5g으로 증가시키고 은 분말 함량을 12.5g으로 변화시킨 것을 제외하고는 실시예 1과 동일한 방법으로 실시하여 시편을 제조하고 그 물성을 평가하여 하기 표 1에 함께 나타내었다. Except that the carbon nanotube content was increased to 5g and the silver powder content was changed to 12.5g, the specimens were prepared in the same manner as in Example 1, and the physical properties thereof were shown in Table 1 below.

실시예 3Example 3

탄소 나노 튜브의 크기를 길이 50㎛, 폭 20nm로 증가시킨 것을 제외하고는 실시예 1과 동일한 방법으로 실시하여 시편을 제조하고 그 물성을 평가하여 하기 표 1에 함께 나타내었다. Except for increasing the size of the carbon nanotubes to 50㎛ length, 20nm in width was carried out in the same manner as in Example 1 to prepare a specimen and the physical properties thereof are shown in Table 1 below.

실시예 4Example 4

탄소 나노 튜브의 함량을 0.1 g으로 하고, 은분말(SF-70A, Ferro사)의 함량을 30g으로 하고, 에탄올 함량을 35.4g으로 변화시킨 것을 제외하고는 실시예 1과 동일한 방법으로 실시하여 시편을 제조하고 그 물성을 평가하여 하기 표 1에 함께 나타내었다. The specimen was carried out in the same manner as in Example 1 except that the carbon nanotube content was 0.1 g, the silver powder (SF-70A, Ferro) was 30 g, and the ethanol content was changed to 35.4 g. To prepare and evaluate the physical properties are shown in Table 1 below.

비교예 1Comparative Example 1

수분산 폴리우레탄 디스펄젼 30g, 길이가 20㎛이고 폭이 10nm인 5g의 탄소 나노튜브, 시판되는 은분말(SF-70A, Ferro사) 10g, 에탄올 51.5g, 폴리아크릴레이트 폴리머 3.5g을 포함하는 전도성 조성물을 포함하는 전도성 조성물을 제조한 후 실시예 1과 동일한 방법으로 시편을 제조하고 그 물성을 평가하여 그 결과를 하기 표 1에 함께 나타내었다.30 g of water-dispersed polyurethane dispersion, 5 g of carbon nanotubes having a length of 20 μm and a width of 10 nm, 10 g of commercially available silver powder (SF-70A, Ferro), 5 g of ethanol, 3.5 g of polyacrylate polymer After preparing a conductive composition including a conductive composition, a specimen was prepared in the same manner as in Example 1 and the physical properties thereof were evaluated and the results are shown in Table 1 together.

비교예 2Comparative Example 2

탄소 나노튜브 함량을 0.05g으로 하고, 은분말(SF-70A, Ferro사)을 30g, 에탄올 함량을 36.45g 첨가한 것을 제외하고는 실시예 1과 동일한 방법으로 실시하여 시편을 제조하고 그 물성을 평가하여 하기 표 1에 함께 나타내었다. A specimen was prepared in the same manner as in Example 1 except that the carbon nanotube content was 0.05 g, the silver powder (SF-70A, Ferro Co.) was added 30 g, and the ethanol content was 36.45 g. The evaluation is shown in Table 1 together.

비교예 3Comparative Example 3

탄소 나노튜브의 크기를 길이 60㎛, 폭 30nm로 한 것을 제외하고는 실시예 1 과 동일한 방법으로 실시하여 시편을 제조하고 그 물성을 평가하여 하기 표1에 함께 나타내었다.The carbon nanotubes were prepared in the same manner as in Example 1 except that the size of the carbon nanotubes was 60 μm in length and 30 nm in width, and the physical properties thereof were shown in Table 1 below.

비교예 4Comparative Example 4

수분산 폴리우레탄 분산액 20g, 탄소 나노튜브를 포함시키지 않고 은분말 50g, 에탄올 26.5g, 폴리아크릴레이트 폴리머를 3.5g 첨가한 것을 제외하고는 실시예 1과 동일한 방법으로 실시하여 시편을 제조하고 그 물성을 평가하여 하기 표 1에 함께 나타내었다. A specimen was prepared in the same manner as in Example 1 except that 20 g of water-dispersed polyurethane dispersion, 50 g of silver powder, 26.5 g of ethanol, and 3.5 g of polyacrylate polymer were added without including carbon nanotubes, and the physical properties thereof were prepared. To evaluate the results are shown in Table 1 together.

구분division 도막두께 (㎛)Coating thickness (㎛) 초기저항 (ohm/□)Initial resistance (ohm / □) 접착력Adhesion 차폐효율 (dB)Shielding Efficiency (dB) 열안정성 테스트후 저항Resistance after thermal stability test 내염수성 테스트후 저항Resistance after saline resistance test 실시예 1 Example 1 12.312.3 0.150.15 5B5B 8585 0.170.17 0.150.15 실시예 2 Example 2 12.212.2 0.070.07 5B5B 9292 0.10.1 0.080.08 실시예 3 Example 3 12.412.4 0.20.2 5B5B 9393 0.230.23 0.210.21 실시예 4 Example 4 12.112.1 0.170.17 5B5B 8787 0.190.19 0.150.15 비교예 1 Comparative Example 1 12.012.0 0.70.7 5B5B 7575 1.01.0 2.12.1 비교예 2 Comparative Example 2 12.612.6 1.31.3 5B5B 8585 3.33.3 3.53.5 비교예 3 Comparative Example 3 12.212.2 1.751.75 4B4B 8585 2.52.5 2.92.9 비교예 4 Comparative Example 4 12.012.0 2.152.15 5B5B 8383 3.43.4 3.63.6

본 발명에 따른 탄소 나노튜브를 이용한 전자파차폐용 조성물은 금속분말의 함량을 줄여 가격 경쟁력이 있고 밀도가 작고 입체 사출물 구조에서도 자중에 의한 흘러내림 현상이 없으며 탄소 나노튜브가 그물망 구조를 형성함으로써 접촉저항을 줄여 전기전도성이 기존의 전도성 도료에 비해 월등히 우수하며, 낮은 도막 두께에 서도 전도성, 부착성 및 차폐효율이 우수하고, 열 및 염수에 안정한 이점을 갖는다. 따라서 소형화 및 박형화되는 휴대용 전자기기의 회로 내부간 전자파 장애로 인한 간섭 현상 뿐만 아니라 외부로 방출되는 전자파를 차단하고 통신기기의 방사특성을 높일 수 있는 효과를 제공할 수 있다.The composition for shielding electromagnetic waves using carbon nanotubes according to the present invention is cost competitive by reducing the content of metal powder, and has a low density and no drift due to its own weight even in a three-dimensional injection molded structure. Its electrical conductivity is significantly superior to that of conventional conductive paints, and its conductivity, adhesion and shielding efficiency are excellent, even at low film thicknesses, and it has the advantages of being stable against heat and brine. Therefore, it is possible to provide the effect of blocking the electromagnetic waves emitted to the outside as well as the interference caused by the electromagnetic interference between circuits of the miniaturized and thinned portable electronic devices and to improve the radiation characteristics of the communication device.

Claims (10)

탄소 나노튜브, 금속분말, 수분산 폴리우레탄 디스펄젼, 용매, 및 레올로지 조절제를 포함하는 탄소 나노튜브를 이용한 전자파차폐용 조성물.A composition for shielding electromagnetic waves using carbon nanotubes, including carbon nanotubes, metal powders, water dispersion polyurethane dispersions, solvents, and rheology modifiers. 제 1항에 있어서, 상기 조성물이 The composition of claim 1, wherein said composition is 탄소 나노튜브 0.3 ∼ 20중량%;0.3-20 wt% of carbon nanotubes; 금속분말 5 ∼ 40중량%;Metal powder 5 to 40% by weight; 수분산 폴리우레탄 디스펄젼 5 ∼ 40중량%;Water dispersion polyurethane dispersion 5-40 wt%; 용매 10 ∼ 60중량%; 및 10 to 60% by weight solvent; And 레올로지 조절제 0.01 ∼ 5중량%를 포함하는 것을 특징으로 하는 전자파차폐용 조성물.A composition for electromagnetic shielding comprising 0.01 to 5% by weight of a rheology modifier. 제 1항 또는 제 2항에 있어서, 상기 탄소 나노튜브의 길이가 50 ㎛ 이하이고 폭이 20 ㎚ 이하인 것을 특징으로 하는 전자파차폐용 조성물.The composition for shielding electromagnetic waves according to claim 1 or 2, wherein the carbon nanotubes have a length of 50 µm or less and a width of 20 nm or less. 제 1항 또는 제 2항에 있어서, 상기 수분산 폴리 우레탄 디스펄젼은 알리파틱계와 아로마틱계의 다가산을 이용한 폴리올을 적용하여 합성한 것임을 특징으로 하는 전자파차폐용 조성물.The composition for electromagnetic shielding according to claim 1 or 2, wherein the water-dispersed polyurethane dispersion is synthesized by applying a polyol using an aliphatic and aromatic polyhydric acid. 제 1항 또는 제 2항에 있어서, 상기 수분산 폴리 우레탄 디스펄젼은 폴리우레탄 수지의 고형분이 1 ~ 10% 인 것을 특징으로 하는 전자파차폐용 조성물.The electromagnetic shielding composition of claim 1 or 2, wherein the water-dispersed polyurethane dispersion has a solid content of 1 to 10% of the polyurethane resin. 제 1항 또는 제 2항에 있어서, 상기 금속분말은 은, 동, 또는 은 코팅된 동 분말로서 평균입경이 1 내지 60 ㎛이며, 그 형상은 플레이크형, 구형 또는 가지형인 것을 특징으로 하는 전자파 차폐용 조성물.3. The electromagnetic shielding according to claim 1 or 2, wherein the metal powder is silver, copper, or silver coated copper powder having an average particle diameter of 1 to 60 µm, and the shape of which is flake, spherical or branched. Composition. 제 1항에 있어서, 상기 용매는 메탄올, 에탈올, 이소프로판올, 노말부탄올, 이소부탄올로 구성되는 그룹으로부터 선택되는 알콜계 용매임을 특징으로 하는 전자파차폐용 조성물.The composition of claim 1, wherein the solvent is an alcohol solvent selected from the group consisting of methanol, ethanol, isopropanol, normal butanol, and isobutanol. 제 1항에 있어서, 상기 레올로지 콘트롤제가 가교 폴리아크릴레이트 중합체, 셀룰로오스, 우레탄, 아크릴에멀젼 타입 및 벤토나이트로 구성되는 그룹으로터 선택되는 것임을 특징으로 하는 전자파차폐용 조성물. The composition of claim 1, wherein the rheology control agent is selected from the group consisting of a crosslinked polyacrylate polymer, cellulose, urethane, acrylic emulsion type and bentonite. 제 2항의 전도성 조성물에 의해 제조된 전자파 차폐용 도전막. Electromagnetic shielding conductive film prepared by the conductive composition of claim 2. 제 9항의 도전막을 포함하는 전자파 차폐용 기재.An electromagnetic shielding substrate comprising the conductive film of claim 9.
KR1020040113990A 2004-12-28 2004-12-28 Composition for electromagnetic interference shielding using carbon nanotube KR100642427B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020040113990A KR100642427B1 (en) 2004-12-28 2004-12-28 Composition for electromagnetic interference shielding using carbon nanotube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040113990A KR100642427B1 (en) 2004-12-28 2004-12-28 Composition for electromagnetic interference shielding using carbon nanotube

Publications (2)

Publication Number Publication Date
KR20060075234A true KR20060075234A (en) 2006-07-04
KR100642427B1 KR100642427B1 (en) 2006-11-08

Family

ID=37167789

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040113990A KR100642427B1 (en) 2004-12-28 2004-12-28 Composition for electromagnetic interference shielding using carbon nanotube

Country Status (1)

Country Link
KR (1) KR100642427B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008075839A1 (en) * 2006-12-19 2008-06-26 Ja Eun Gu Electromagnetic wave shield with vacuum deposited metal using water dispersed polyurethane
WO2010102763A1 (en) * 2009-03-13 2010-09-16 Bayer Materialscience Ag Polyurethane compounds having carbon nanotubes
KR101248385B1 (en) * 2012-09-26 2013-04-02 (주)켐스 Hybrid composition with enhanced emi shielding and heat-releasing, and ink, sheet, and composition for injection using same
WO2013137654A1 (en) * 2012-03-15 2013-09-19 주식회사 동진쎄미켐 Metal-plate graphene powder, and electromagnetic interference shielding coating composition containing same
KR101458133B1 (en) * 2012-02-13 2014-11-05 주식회사 에스지테크 Film for interception electromagneticwaves and manufacturing method thereby
US20220112609A1 (en) * 2019-06-11 2022-04-14 Hewlett-Packard Development Company, L.P. Coated metal alloy substrates and process of production thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101068940B1 (en) * 2009-04-08 2011-09-29 한국과학기술연구원 Carbon nanotube/metal composite paste for counter electrode of dye-sensitized solar cell and carbon nanotube/metal composite counter electrode using the same
KR101109089B1 (en) 2010-02-10 2012-02-29 인제대학교 산학협력단 Electromagnetic wave absorption sheet mixed with conductive materials and manufacturing method thereof
KR101616061B1 (en) 2015-05-29 2016-05-11 광운대학교 산학협력단 Fiber electrode manufacturing apparatus using a conductive mixture solution and method therefor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0182196B1 (en) * 1996-11-23 1999-04-01 김예석 Disperse liquid of polyurethanes and processes for producing thereof
JP2004168966A (en) 2002-11-22 2004-06-17 Hitachi Chem Co Ltd Conductive resin composition and electronic part by using the same
KR100505117B1 (en) * 2002-12-20 2005-07-29 제일모직주식회사 A Conductive Paints Composition
JP2004256702A (en) 2003-02-26 2004-09-16 Toyobo Co Ltd Conductive coating

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008075839A1 (en) * 2006-12-19 2008-06-26 Ja Eun Gu Electromagnetic wave shield with vacuum deposited metal using water dispersed polyurethane
WO2010102763A1 (en) * 2009-03-13 2010-09-16 Bayer Materialscience Ag Polyurethane compounds having carbon nanotubes
KR101458133B1 (en) * 2012-02-13 2014-11-05 주식회사 에스지테크 Film for interception electromagneticwaves and manufacturing method thereby
WO2013137654A1 (en) * 2012-03-15 2013-09-19 주식회사 동진쎄미켐 Metal-plate graphene powder, and electromagnetic interference shielding coating composition containing same
KR20130104848A (en) * 2012-03-15 2013-09-25 주식회사 동진쎄미켐 Metal-graphene powder and coating composition for shielding electromagnetic wave comprising the same
KR101248385B1 (en) * 2012-09-26 2013-04-02 (주)켐스 Hybrid composition with enhanced emi shielding and heat-releasing, and ink, sheet, and composition for injection using same
US20220112609A1 (en) * 2019-06-11 2022-04-14 Hewlett-Packard Development Company, L.P. Coated metal alloy substrates and process of production thereof
US11952665B2 (en) * 2019-06-11 2024-04-09 Hewlett-Packard Development Company, L.P. Coated metal alloy substrates and process of production thereof

Also Published As

Publication number Publication date
KR100642427B1 (en) 2006-11-08

Similar Documents

Publication Publication Date Title
Imai et al. Highly strong and conductive carbon nanotube/cellulose composite paper
KR101982010B1 (en) Metal-graphene powder and coating composition for shielding electromagnetic wave comprising the same
EP2602288B1 (en) Liquid composition, and resistor film, resistor element and circuit board using same
Drakakis et al. A study of the electromagnetic shielding mechanisms in the GHz frequency range of graphene based composite layers
KR100671000B1 (en) Coating materials for electromagnetic interference shielding and manufacturing method thereof
Sawai et al. Synthesized reduce graphene oxide (rGO) filled polyetherimide based nanocomposites for EMI shielding applications
KR20130104869A (en) Coating composition for shielding electromagnetic wave comprising graphene
CA2750633A1 (en) Nanomaterial composites and methods of making
KR100642427B1 (en) Composition for electromagnetic interference shielding using carbon nanotube
KR100638393B1 (en) Paint for electromagnetic interference shielding and manufacturing method for the same
KR20140107119A (en) Thermoplastic Resin Composition Having Excellent EMI Shielding Property
Huang et al. The manufacture and investigation of multi-walled carbon nanotube/polypyrrole/EVA nano-polymeric composites for electromagnetic interference shielding
JP5315472B1 (en) Manufacturing method of conductive material, manufacturing method of conductive composite, conductive material, conductive composite, conductive plastic material, and conductive cloth
EP3029119B1 (en) Electroconductive-film-forming composition and method for producing electroconductive film
CN106128556A (en) A kind of preparation method of high dispersive type oil system carbon nanotube conducting slurry
RU2570003C1 (en) Radar-absorbing material
JP5858200B1 (en) Copper powder and conductive paste, conductive paint, conductive sheet, antistatic paint using the same
KR101938341B1 (en) Lacquer Paint Composition for Shielding Electromagnetic Waves and the Fabrication Method Thereof
KR100455338B1 (en) Conductive paint composition for shielding a substrate against EMI/RFI
Xu et al. A high performance electromagnetic interference shielding epoxy composite with multiple conductive networks in the matrix
KR100871603B1 (en) Conductive paste with copper filler for emi shielding use
Koo et al. Polymer‐Based EMI Shielding Materials
WO2020116114A1 (en) Rfid ink composition and method for producing conductive rfid pattern using rfid ink composition
KR100505117B1 (en) A Conductive Paints Composition
Bheema et al. The influence of hybrid decorated structures on the EMI shielding properties of epoxy composites over the X-Band

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121026

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20131021

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20141022

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20151002

Year of fee payment: 10

LAPS Lapse due to unpaid annual fee