JP5315472B1 - Manufacturing method of conductive material, manufacturing method of conductive composite, conductive material, conductive composite, conductive plastic material, and conductive cloth - Google Patents

Manufacturing method of conductive material, manufacturing method of conductive composite, conductive material, conductive composite, conductive plastic material, and conductive cloth Download PDF

Info

Publication number
JP5315472B1
JP5315472B1 JP2013076527A JP2013076527A JP5315472B1 JP 5315472 B1 JP5315472 B1 JP 5315472B1 JP 2013076527 A JP2013076527 A JP 2013076527A JP 2013076527 A JP2013076527 A JP 2013076527A JP 5315472 B1 JP5315472 B1 JP 5315472B1
Authority
JP
Japan
Prior art keywords
conductive
natural
fibers
natural fibers
porous non
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013076527A
Other languages
Japanese (ja)
Other versions
JP2014201843A (en
Inventor
裕久 横倉
公三 篠崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IREX INC.
Junsei Chemical Co Ltd
Original Assignee
IREX INC.
Junsei Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IREX INC., Junsei Chemical Co Ltd filed Critical IREX INC.
Priority to JP2013076527A priority Critical patent/JP5315472B1/en
Application granted granted Critical
Publication of JP5315472B1 publication Critical patent/JP5315472B1/en
Priority to PCT/JP2014/059150 priority patent/WO2014163005A1/en
Priority to TW103111976A priority patent/TW201443919A/en
Publication of JP2014201843A publication Critical patent/JP2014201843A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers
    • H01B1/127Intrinsically conductive polymers comprising five-membered aromatic rings in the main chain, e.g. polypyrroles, polythiophenes

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Paper (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

【課題】基材として利用する繊維、糸、あるいは粉体の表面積が十分に大きく、しかも簡便な方法で表面に金属コーティングが可能である導電性素材を提供する。
【解決手段】基材として天然素材の繊維、天然素材の繊維を引き揃えて撚りをかけて繊維を長く線状に連続させた糸、又は天然素材の粉体もしくは多孔質非導電性無機素材(導電性複合体の芯10)の表面に、導電性有機化合物とパラジウム該とから成るパラジウム核吸着層12が形成され、更にこのパラジウム吸着層にニッケル膜14がメッキされている。
【選択図】図1
An object of the present invention is to provide a conductive material having a sufficiently large surface area of fibers, yarns or powders used as a base material and capable of metal coating on the surface by a simple method.
SOLUTION: Natural fibers as a base material, yarns obtained by aligning and twisting natural fibers, and making the fibers long and continuous, or natural powder or porous non-conductive inorganic material ( A palladium core adsorbing layer 12 comprising a conductive organic compound and palladium is formed on the surface of the core 10) of the conductive composite, and a nickel film 14 is plated on the palladium adsorbing layer.
[Selection] Figure 1

Description

この発明は、天然素材の繊維、糸、粉体あるいは多孔質非導電性無機素材の表面に導電性有機化合物を付着させた導電性素材、導電性素材にパラジウム核を吸着させ更に当該パラジウム核に金属をメッキして形成される導電性複合体に関する。及び導電性素材あるいは導電性複合体を利用して形成される導電性可塑性素材、導電性布に関する。また、導電性複合体の製造方法に関する。   The present invention relates to a conductive material in which a conductive organic compound is attached to the surface of a natural material such as fiber, thread, powder, or porous non-conductive inorganic material. The present invention relates to a conductive composite formed by plating metal. Further, the present invention relates to a conductive plastic material and a conductive cloth formed using a conductive material or a conductive composite. The present invention also relates to a method for producing a conductive composite.

高い放熱性あるいは導電性が求められる用途には金属や炭素素材が用いられてきた。例えば、パワーデバイスあるいは発光デバイスといった発熱デバイスから発生する熱を発熱デバイス外に放散させる放熱機構を構成する材料に導電性素材が求められている。   Metals and carbon materials have been used for applications that require high heat dissipation or conductivity. For example, a conductive material is required as a material constituting a heat dissipation mechanism that dissipates heat generated from a heat generating device such as a power device or a light emitting device to the outside of the heat generating device.

発熱デバイスは、自己が発生する熱によって過熱されて自己の温度が上昇することにより、電気的特性の低下あるいは光学的特性の低下等の性能の劣化が起こる。従って、発熱デバイスの性能を維持するためには、発熱デバイスから発生する熱を効率よく放散して、発熱デバイスの温度上昇を抑える必要がある。   The heat generating device is overheated by the heat generated by itself and the temperature of the heat generating device rises, resulting in deterioration of performance such as a decrease in electrical characteristics or a decrease in optical characteristics. Therefore, in order to maintain the performance of the heat generating device, it is necessary to efficiently dissipate the heat generated from the heat generating device and suppress the temperature increase of the heat generating device.

そこでこの課題を解決する手法として、一般に発熱デバイスと、放熱機構を構成するヒートシンクとの間の接触熱抵抗を低減するため、放熱シートを介在させる手段がとられてきた(例えば、特許文献1〜5参照)。   Therefore, as a method for solving this problem, in general, means for interposing a heat dissipation sheet has been taken in order to reduce the contact thermal resistance between the heat generating device and the heat sink constituting the heat dissipation mechanism (for example, Patent Documents 1 to 3). 5).

また、上述のシート状の導電性素材とはその形状を異にする、非導電性粒子(絶縁性粒子)の表面層金属被覆層を形成してなる金属被覆粒子が開示されている(例えば、特許文献6〜8参照)。特に、表面に毛羽立ちがなく、成形歪みが生ぜず、また寸法安定性に優れた木質様成形体の成形に好適な材料となるセルロース系微粉粒が開示されている(特許文献9参照)。また、樹脂粉体表面を親水化するためのエッチング処理を必要とせず、且つ、貴金属触媒の担持も必要としない樹脂粉体の金属被覆方法が開示されている(特許文献10参照)。更に、種々の樹脂が適用可能であり、メッキ液の汚染がない金属被覆粉体及びその製造方法が開示されている(特許文献11参照)。   In addition, metal-coated particles formed by forming a surface layer metal coating layer of non-conductive particles (insulating particles) that have a different shape from the above-described sheet-like conductive material are disclosed (for example, (See Patent Documents 6 to 8). In particular, cellulose-based fine particles that are suitable for molding a wood-like molded article having no fuzz on the surface, no molding distortion, and excellent dimensional stability are disclosed (see Patent Document 9). In addition, a metal coating method for resin powder that does not require etching treatment for hydrophilizing the surface of the resin powder and does not require loading of a noble metal catalyst is disclosed (see Patent Document 10). Furthermore, a metal-coated powder that can be applied with various resins and has no contamination of the plating solution and a method for producing the same are disclosed (see Patent Document 11).

特開平11−240706号公報JP-A-11-240706 特開2003−168882号公報JP 2003-168882 A 特開2005−229100号公報JP 2005-229100 A 特開2008−78380号公報JP 2008-78380 A 特許第4202409号公報Japanese Patent No. 4202409 特開2011-168631号公報JP 2011-168631 A 特開2005-200507号公報Japanese Patent Laid-Open No. 2005-200507 特表2002-528852号公報(特許第4822377号)Japanese translation of PCT publication No. 2002-528852 (Patent No. 4822377) 特開平6-256528号公報(特許第3122275号)JP-A-6-256528 (Patent No. 3122275) 特開平6-248088号公報(特許第3168761号)JP-A-6-248088 (Patent No. 3168761) 特開平5-179303号公報JP-A-5-179303

しかしながら、上述の特許文献1〜11に開示された導電性素材は、その形状が粒子状であって、天然素材の繊維、あるいは天然素材の繊維を引き揃えて撚りをかけて繊維を長く線状に連続させた糸に対して、それぞれ導電性を付加した導電性素材は開示されていない。ここで、天然素材とは、天然に存在する素材そのものを指す他、天然に入手可能な素材であって熱処理等によって不純物の除去等の前処理を施した素材も含むが、天然に存在する素材に対して化学処理を施して化学反応に基づく形質の変換を行った素材を含まない。   However, the conductive materials disclosed in the above-mentioned Patent Documents 1 to 11 are in the form of particles, the fibers of the natural material, or the fibers of the natural material are aligned and twisted to make the fibers long and linear. There is no disclosure of a conductive material in which conductivity is added to each of the continuous yarns. Here, natural materials refer to materials that exist in nature, as well as materials that are naturally available and include materials that have been subjected to pretreatment such as removal of impurities by heat treatment, etc. It does not include materials that have been subjected to chemical treatment and transformed into traits based on chemical reactions.

繊維あるいは糸の基材となる部分が高分子有機化合物等の非導電性素材であって、その基材の表面に導電性有機化合物(導電性重合体)を付着させた導電性素材、もしくは更に金属を吸着させて導電性複合体として形成できれば、これらの導電性素材や導電性複合体を非導電性の素材に練り込んで導電性の可塑性素材が実現される。また、これらの導電性素材や導電性複合体を非導電性の布に織り込めば、導電性を有する布が実現される。ここで、非導電性とは絶縁性を意味する。   The conductive base material of the fiber or yarn is a non-conductive material such as a polymer organic compound, and a conductive organic compound (conductive polymer) is attached to the surface of the base material, or further If a metal can be adsorbed and formed as a conductive composite, these conductive materials or conductive composites are kneaded into a non-conductive material to realize a conductive plastic material. In addition, if these conductive materials or conductive composites are woven into a non-conductive cloth, a conductive cloth is realized. Here, non-conductive means insulative.

例えば、繊維状あるいは糸状の導電性素材もしくは導電性複合体は、ゴム等の非導電性素材中に練り込んで、非導電性素材に導電性を持たせることができる。導電性を付与されたこれらの素材は、その導電性を生かすことにより広い用途が見込まれる。   For example, a fibrous or thread-like conductive material or conductive composite can be kneaded into a non-conductive material such as rubber to impart conductivity to the non-conductive material. These materials imparted with conductivity are expected to be widely used by taking advantage of their conductivity.

また、帯電防止用作業服等に利用する布として、上述の天然素材の繊維、又は天然素材の繊維を引き揃えて撚りをかけて繊維を長く線状に連続させた糸に導電性素材を織り込めば布に導電性を付与することができ、帯電防止機能を実現できる。また、導電性が求められる非導電性素材を主材料として製造されるマット等の製品であっても、上述の繊維状あるいは粒状の導電性素材もしくは導電性複合体を練りこむことによって導電性を付与することができる。   In addition, as a fabric used for anti-static work clothes, etc., a conductive material is woven into the above-mentioned natural material fibers, or yarns that are made by aligning and twisting the natural material fibers to make the fibers continuous in a linear shape. If included, the cloth can be provided with conductivity, and an antistatic function can be realized. Even if the product is made of a non-conductive material that requires conductivity, such as a mat, the conductivity can be improved by kneading the fibrous or granular conductive material or conductive composite described above. Can be granted.

更に、ノイズシールド等を目的とする製品にあっては、高い導電率を必要とするので、この導電率を実現させるために金属製の素材が利用される。しかしながら、金属製の素材はその重量が大きいという問題がある。そこで、金属製の素材の代わりに上述の天然素材の繊維、天然素材の繊維を引き揃えて撚りをかけて繊維を長く線状に連続させた糸、又は天然素材の粉体に金属が吸着した導電性複合体を利用すれば、その重量の軽減が可能となる。   Furthermore, a product intended for noise shielding or the like requires high electrical conductivity, and therefore a metal material is used to realize this electrical conductivity. However, a metal material has a problem that its weight is large. Therefore, instead of the metal material, the metal adsorbed to the above-mentioned natural material fiber, the natural material fiber is twisted and twisted to make the fiber continuous in a linear shape, or the natural material powder. If a conductive composite is used, the weight can be reduced.

上述の特許文献6〜11に開示された金属被覆粒子あるいは金属被覆粉体の基材となる高分子有機化合物から成る粒子等は、その形状が球体等の滑らかな表面を持っており、球体の体積に対するその表面積の割合が小さい。高分子材料等の非絶縁性素材の表面を金属でコーティングして形成される導電性素材をゴム等の非導電性素材中に練り込んで、あるいは非導電性の布に織り込まれて非導電性素材に導電性を持たせた導電性複合体は、基材となる絶縁性素材の体積に対してその表面積が広いほど、その導電性を大きくできる。   The metal-coated particles disclosed in the above-mentioned Patent Documents 6 to 11 or the particles made of a polymer organic compound that is a base material of the metal-coated powder have a smooth surface such as a sphere. The ratio of its surface area to volume is small. Conductive material formed by coating the surface of non-insulating material such as polymer material with metal is kneaded into non-conductive material such as rubber or woven into non-conductive cloth to make non-conductive The conductivity of the conductive composite in which the material is made conductive can be increased as the surface area is larger with respect to the volume of the insulating material serving as the base material.

そこで、この出願の発明者は、非導電性素材に導電性重合体によって導電性を付与した導電性素材、更にこの導電性素材の表面に金属コーティングを施して導電性複合体を形成するに当たり、基材となる非導電性素材に、天然素材の繊維、天然素材の繊維を引き揃えて撚りをかけて繊維を長く線状に連続させた糸、天然素材の粉体あるいは多孔質非導電性無機素材を利用することに思い至った。具体的には非導電性素材としては、天然の高分子有機化合物等を利用することを検討した結果、繊維、糸、あるいは粉体として、その体積に対してその表面積が大きい材料が容易に入手できることが判明した。更に、天然素材の多孔質非導電性無機素材も利用できることが判明した。そして、鋭意研究を重ね試作を行い、これら繊維、糸、粉体あるいは多孔質非導電性無機素材に、酸化的触媒を付着させ、気相反応を利用して非導電性天然素材の表面に重合体を付着させるという手法(気相反応による手法)によるか、あるいは、非導電性天然素材と酸化的触媒を溶媒に縣濁させ(スラリー化させ)、このスラリー液にモノマーのエタノール液で希釈した液を滴下させることによって、非導電性天然素材の表面に重合体を付着させるという手法(スラリー化反応による手法)によって導電性を付与し、更に金属コーティングを施す方法を見出した。 Therefore, the inventor of this application, in forming a conductive composite by applying a metal coating on the surface of the conductive material, further imparting conductivity to the non-conductive material by a conductive polymer, Non-conductive material used as a base material, natural fiber, natural material fiber is twisted and twisted to make the fiber continuous in a linear shape, natural material powder or porous non-conductive inorganic I came up with the use of materials. Specifically, as a result of studying the use of natural macromolecular organic compounds as non-conductive materials, materials with a large surface area relative to their volume are readily available as fibers, yarns, or powders. It turns out that you can. It has also been found that natural porous non-conductive inorganic materials can be used. After intensive research and trial production, an oxidative catalyst is attached to these fibers, yarns, powders, or porous non-conductive inorganic materials, and the vapor-phase reaction is applied to the surface of the non-conductive natural materials. Either by adhering the coalescence (method by gas phase reaction), or by suspending a non-conductive natural material and an oxidative catalyst in a solvent (slurry) and diluting the slurry liquid with the monomer ethanol solution The inventors have found a method of imparting conductivity and applying a metal coating to the surface of the non-conductive natural material by dripping the liquid to provide conductivity (a method using a slurrying reaction) .

そこで、この発明の目的は、基材として利用する繊維、糸、粉体、あるいは多孔質非導電性無機素材の表面積が十分に大きく、しかも導電性重合体によって導電性を付与した導電性素材、更に簡便な方法で表面に金属コーティングした導電性複合体を提供することにある。また、導電性素材の製造方法、この方法で作成された導電性素材あるいは導電性複合体を可塑性素材に練り込んで、あるいは非導電性の布に織り込まれて形成される導電性可塑性素材、導電性布を提供することにある。 Accordingly, an object of the present invention is to provide a conductive material having a sufficiently large surface area of fibers, yarns, powders, or porous non-conductive inorganic materials used as a base material, and having conductivity imparted by a conductive polymer, It is another object of the present invention to provide a conductive composite whose surface is metal-coated by a simple method. Also, a method for producing a conductive material, a conductive plastic material formed by kneading a conductive material or a conductive composite created by this method into a plastic material, or being woven into a non-conductive cloth, conductive To provide sex cloth.

上述の理念に基づくこの発明の要旨によれば、以下の導電性素材、導電性複合体及びその製造方法が提供される。   According to the gist of the present invention based on the above philosophy, the following conductive material, conductive composite and manufacturing method thereof are provided.

第1の発明は、天然素材の繊維、天然素材の繊維を引き揃えて撚りをかけて繊維を長く線状に連続させた糸、天然素材の粉体あるいは天然素材の多孔質非導電性無機素材に導電性重合体によって導電性が付与された導電性素材、また、その導電性素材の表面にパラジウム核を吸着させた後更に金属をコーティングさせた導電性複合体である。   The first invention is a natural material fiber, a yarn in which the fibers of the natural material are aligned and twisted to make the fiber continuous in a long line, a powder of natural material or a porous non-conductive inorganic material of natural material A conductive material provided with conductivity by a conductive polymer, and a conductive composite in which palladium nuclei are adsorbed on the surface of the conductive material and further coated with a metal.

また、第2の発明は、以下の第1〜第3工程を含むことを特徴とする第1の発明の導電性複合体の製造法である。第1工程は、天然素材の繊維、天然素材の繊維を引き揃えて撚りをかけて繊維を長く線状に連続させた糸、天然素材の粉体あるいは天然素材の多孔質非導電性無機素材を用意し、導電性重合体によって導電性を付与し、導電性素材を形成する工程である。第2工程は、第1工程における処理によって導電性が付与された繊維、糸、粉体あるいは多孔質非導電性無機素材を、塩化パラジウム溶液に浸し、当該繊維、糸、粉体、多孔質非導電性無機素材の表面にパラジウム核を吸着させる工程である。第3の工程は、第2工程における処理によって表面にパラジウム核が吸着した繊維、糸、粉体、多孔質非導電性無機素材に金属をメッキし、導電性複合体を形成する工程である。   The second invention is a method for producing a conductive composite according to the first invention, characterized by including the following first to third steps. The first step consists of natural fibers, natural fibers, twisted yarns that have been continuous in a long line, natural powders or natural porous non-conductive inorganic materials. It is a step of preparing and imparting conductivity with a conductive polymer to form a conductive material. In the second step, the fiber, yarn, powder or porous non-conductive inorganic material imparted with conductivity by the treatment in the first step is immersed in a palladium chloride solution, and the fiber, yarn, powder, porous non-conductive material is immersed. This is a step of adsorbing palladium nuclei on the surface of the conductive inorganic material. The third step is a step in which a metal is plated on the fiber, thread, powder, or porous non-conductive inorganic material having palladium nuclei adsorbed on the surface by the treatment in the second step to form a conductive composite.

第3の発明は、第1の発明の導電性素材あるいは導電性複合体を非導電性の可塑性素材に練り込むことによって、あるいは非導電性の布に織り込むことによって形成される導電性可塑性素材あるいは導電性布である。   The third invention is a conductive plastic material formed by kneading the conductive material or conductive composite of the first invention into a non-conductive plastic material, or by weaving into a non-conductive cloth, It is a conductive cloth.

第1の発明によれば、繊維、糸、粉体、多孔質非導電性無機素材として天然由来の素材を利用しているので、人工的に形成されたこれらの形状の高分子有機化合物に比べその表面積が十分に大きい。また、後述するように、導電性複合体の芯に導電性を付与するために導電性重合体を付着させることによって、この導電性重合体に容易にパラジウム核を吸着させることができる。このため高分子有機化合物の表面に吸着させた金属の剥離が起こりにくく、安定して高い導電性を維持できる導電性複合体が提供できる。   According to the first invention, since naturally-derived materials are used as fibers, yarns, powders, and porous non-conductive inorganic materials, compared to artificially formed polymeric organic compounds of these shapes Its surface area is sufficiently large. Further, as will be described later, by attaching a conductive polymer in order to impart conductivity to the core of the conductive composite, palladium nuclei can be easily adsorbed to the conductive polymer. For this reason, it is possible to provide a conductive composite that is unlikely to peel off the metal adsorbed on the surface of the polymer organic compound and can stably maintain high conductivity.

第2の発明によれば、繊維、糸、粉体、多孔質非導電性無機素材などの導電性素材を、塩化パラジウム溶液に浸すだけの単純な工程(第2工程)でこれらの導電性素材にパラジウム核を吸着させることができる。そして、第3の工程では、すでに表面にパラジウム核が吸着しているので、容易に金属をメッキすることができる。すなわち意図的に電流を流してメッキする必要がなく、工業的に容易にメッキが行え、メッキ装置等に多額の費用をかける必要がない。   According to the second invention, conductive materials such as fibers, yarns, powders, porous non-conductive inorganic materials, and the like can be obtained by a simple process (second process) in which a conductive material is simply immersed in a palladium chloride solution. Can adsorb palladium nuclei. In the third step, since the palladium nuclei are already adsorbed on the surface, the metal can be easily plated. In other words, it is not necessary to intentionally flow current to plate, industrially perform plating easily, and it is not necessary to spend a large amount of money on a plating apparatus or the like.

第3の発明によれば、第1の発明の導電性素材もしくは導電性複合体が非導電性の可塑性素材に練り込まれ、あるいは非導電性の布に織り込まれた導電性可塑性素材あるいは導電性布であるので、導電性素材もしくは導電性複合体の表面積が大きいことによって、非導電性の可塑性素材とこの素材に練り込まれた導電性素材もしくは導電性複合体との接触面積、非導電性の布とこの素材に練り込まれた導電性素材もしくは導電性複合体との接触面積は広くなる。このことによって可塑性素材あるいは布の電気伝導が大きくなる。   According to the third invention, the conductive material or conductive composite of the first invention is kneaded into a non-conductive plastic material, or a conductive plastic material or conductive material woven into a non-conductive cloth. Because it is a cloth, the contact area between the non-conductive plastic material and the conductive material or conductive composite kneaded into this material due to the large surface area of the conductive material or conductive composite, non-conductive The contact area between the cloth and the conductive material or conductive composite kneaded into this material becomes wider. This increases the electrical conduction of the plastic material or cloth.

この発明における導電性複合体の断面形状を概念的に示す図である。It is a figure which shows notionally the cross-sectional shape of the electroconductive composite_body | complex in this invention. 天然素材のセルロースの粉体にポリピロールを付着後、パラジウム核が吸着され、このパラジウム核に更にニッケルがメッキされた導電性複合体の表面を電子顕微鏡で観察した画像を示す図である。It is a figure which shows the image which observed the surface of the electroconductive composite body by which the palladium nucleus was adsorb | sucked after attaching polypyrrole to the powder of a natural raw material cellulose, and this palladium nucleus was further plated with nickel with the electron microscope. 天然素材のセルロースの繊維にポリピロールを付着後、パラジウム核が吸着され、このパラジウム核に更にニッケルがメッキされた導電性複合体の表面を電子顕微鏡で観察した画像を示す図である。It is a figure which shows the image which observed the surface of the electroconductive composite body by which the palladium nucleus was adsorb | sucked after attaching polypyrrole to the cellulose fiber of a natural raw material, and this palladium nucleus was further plated with nickel with the electron microscope. 天然素材のセルロースの粉末にポリピロールを付着後、パラジウム核が吸着され、このパラジウム核に更にニッケルがメッキされた導電性複合体の断面を電子顕微鏡で観察した画像を示す図である。It is a figure which shows the image which observed the cross section of the electroconductive composite body by which the palladium nucleus was adsorb | sucked after attaching polypyrrole to the powder of the natural raw material cellulose, and this palladium nucleus was further plated with nickel with the electron microscope.

以下、この発明の実施形態につき説明するが、この発明の実施形態は単なる好適例であり、この発明はこの発明の実施の形態のみに限定されるものではない。   Hereinafter, embodiments of the present invention will be described. However, the embodiments of the present invention are merely preferred examples, and the present invention is not limited to only the embodiments of the present invention.

1.第1の発明(導電性素材、導電性複合体)
第1の発明は、導電性素材及び導電性複合体である。導電性素材は、天然素材の繊維、糸、又は粉体もしくは多孔質非導電性無機素材の表面に、後述するように導電性有機化合物を重合により付着させることで得られる。すなわち、後述する導電性複合体の製造方法の第1工程を終了した時点で導電性素材が得られる。そこで、この第1工程によって導電性素材が得られることを含め、第2〜第3工程によって導電性複合体が得られることを説明する。
1. 1st invention (conductive material, conductive composite)
The first invention is a conductive material and a conductive composite. The conductive material can be obtained by attaching a conductive organic compound to the surface of natural fiber, yarn, or powder or a porous non-conductive inorganic material by polymerization as described later. That is, the conductive material is obtained when the first step of the conductive composite manufacturing method described later is completed. Then, it demonstrates that a conductive composite is obtained by the 2nd-3rd process including that a conductive material is obtained by this 1st process.

この発明における導電性複合体は、天然素材の繊維、天然素材の繊維を引き揃えて撚りをかけて繊維を長く線状に連続させた糸、天然素材の粉体、あるいは天然素材の多孔質非導電性無機素材(導電性複合体の芯10ということもある)の表面に、導電性有機化合物を付着させこの導電性有機化合物にパラジウム核を吸着させることによって、導電性有機化合物とパラジウム核とから成るパラジウム核吸着層12が形成されている。そして、導電性複合体は、このパラジウム核吸着層12に更にニッケル膜14がメッキされている。図1はこの発明の導電性複合体の一例を示す概念図である。   The conductive composite according to the present invention includes a natural material fiber, a yarn in which the natural material fibers are aligned and twisted to make the fiber continuous in a linear shape, a natural material powder, or a porous non-natural material material. By attaching a conductive organic compound to the surface of a conductive inorganic material (sometimes referred to as the core 10 of the conductive composite) and adsorbing a palladium nucleus to the conductive organic compound, the conductive organic compound and the palladium nucleus A palladium nucleus adsorption layer 12 is formed. In the conductive composite, the palladium nucleus adsorption layer 12 is further plated with a nickel film 14. FIG. 1 is a conceptual diagram showing an example of the conductive composite of the present invention.

また、天然素材のセルロースを用いて形成される導電性複合体の一例につき、図2〜図4にその電子顕微鏡画像を示す。図2〜図4は、導電性複合体の芯10、及びパラジウム核吸着層12とニッケル膜14とからなる導電性複合体の電子顕微鏡写真である。   In addition, FIGS. 2 to 4 show an electron microscope image of an example of a conductive composite formed using natural cellulose. 2 to 4 are electron micrographs of the conductive composite core 10, and the conductive composite comprising the palladium nucleus adsorption layer 12 and the nickel film 14.

図2は、天然素材のセルロースの粉体にポリピロールを付着後、パラジウム核が吸着されこのパラジウム核に更にニッケルがメッキされた導電性複合体の表面を電子顕微鏡で観察した画像を示す図であり、(A)は100倍、(B)は1000倍の倍率で撮影された画像を示している。図3は、天然素材のセルロースの繊維にポリピロールを付着後、パラジウム核が吸着されこのパラジウム核に更にニッケルがメッキされた導電性複合体の表面を電子顕微鏡で観察した画像を示す図であり、(A)は100倍、(B)は1000倍の倍率で撮影された画像を示している。図4は、天然素材のセルロースの粉末にポリピロールを付着後、パラジウム核が吸着されこのパラジウム核に更にニッケルがメッキされた導電性複合体の断面を電子顕微鏡で観察した画像を示す図であり、(A)は100倍、(B)は1000倍の倍率で撮影された画像を示している。   FIG. 2 is a diagram showing an image obtained by observing, with an electron microscope, the surface of a conductive composite in which palladium nuclei are adsorbed and nickel is plated on the palladium nuclei after polypyrrole is attached to cellulose powder of a natural material. , (A) shows an image taken at a magnification of 100 times, and (B) shows an image taken at a magnification of 1000 times. FIG. 3 is a view showing an image obtained by observing, with an electron microscope, the surface of a conductive composite in which palladium nuclei are adsorbed and nickel is further plated on the palladium nuclei after attaching polypyrrole to cellulose fibers of natural materials, (A) shows an image taken at a magnification of 100, and (B) shows an image taken at a magnification of 1000. FIG. 4 is a diagram showing an image obtained by observing, with an electron microscope, a cross section of a conductive composite in which a palladium core is adsorbed and nickel is further plated on the palladium core after polypyrrole is attached to a cellulose powder of a natural material, (A) shows an image taken at a magnification of 100, and (B) shows an image taken at a magnification of 1000.

図2〜図4に示すように導電性複合体の芯となる天然素材のセルロースの表面は単純な球面ではなく複雑な形状をしていることが分かる。すなわち、導電性複合体の芯となる部分に天然素材のセルロースを利用しているので、人工的に形成されたこれらの形状の高分子有機化合物に比べその表面積が十分に大きいことが見てとれる。   As shown in FIGS. 2 to 4, it can be seen that the surface of the natural material cellulose that becomes the core of the conductive composite has a complicated shape rather than a simple spherical surface. In other words, since cellulose, which is a natural material, is used for the core portion of the conductive composite, it can be seen that its surface area is sufficiently large compared to artificially formed polymer organic compounds of these shapes. .

天然素材の繊維とは、例えば木材パルプあるいは非木材パルプから精製された繊維成分が代表的である。また、天然素材の糸は、木綿糸、絹糸等が代表的である。天然素材の粉体としては、木材パルプから抽出されるセルロース、植物の根等から抽出される澱粉、綿花等から収穫されるコットン等乾燥植物等を粉体に加工した天然植物性粉体等が代表的である。更に、動物性の獣毛あるいは毛髪等もこの発明における導電性素材の基材となり得る。天然素材の多孔質非導電性無機素材とは軽石、ガーネット、アルミナ、マグネシア、ジルコニア、溶岩石、ゼオライト等が代表的である。   The natural material fiber is typically a fiber component purified from, for example, wood pulp or non-wood pulp. Typical examples of natural yarn include cotton yarn and silk yarn. Examples of natural material powders include cellulose extracted from wood pulp, starch extracted from plant roots, etc., natural vegetable powders obtained by processing dry plants such as cotton harvested from cotton, etc. into powder. Representative. Furthermore, animal animal hair or hair can also serve as a base material for the conductive material in the present invention. Typical examples of natural porous non-conductive inorganic materials include pumice, garnet, alumina, magnesia, zirconia, lava stone, and zeolite.

2.第2の発明(導電性複合体の製造方法)
この発明の導電性複合体は、天然素材の繊維、繊維を引き揃えて撚りをかけて繊維を長く線状に連続させた糸、粉体、あるいは天然素材の多孔質非導電性無機素材の表面に導電性重合体を付着させ、更に金属がメッキされている。天然素材の高分子有機化合物である導電性素材の芯となる繊維、糸、粉体、天然素材の多孔質非導電性無機素材として、特に非導電性天然素材そのものを利用する。これは、上述した表面積が広いという特徴に加えて、後述するように基材そのものに導電性を持たせることが可能である上、その重量も一般に有機化合物は軽量であるためである。
2. Second invention (Method for producing conductive composite)
The conductive composite of the present invention is a natural material fiber, a yarn, a powder, or a surface of a porous non-conductive inorganic material made of natural material. A conductive polymer is attached to the substrate, and a metal is plated thereon. In particular, non-conductive natural materials themselves are used as fibers, yarns, powders, and porous non-conductive inorganic materials of natural materials, which are cores of conductive materials that are high-molecular organic compounds of natural materials. This is because, in addition to the feature that the surface area is large as described above, the base material itself can be made conductive as described later, and the weight of the organic compound is generally light.

この発明の発明者は、天然素材の繊維、糸、粉体あるいは天然素材の多孔質非導電性無機素材(導電性複合体の芯)の表面に導電性に優れる金属を吸着させるために有効な方法を鋭意検討した結果、導電性複合体の芯となる基材に導電性重合体を付着させることでこの重合体に容易にパラジウム核が吸着できることを見出した。この知見に基づいて以下に述べる第1〜第3工程を含む導電性複合体の製造方法を確立させた。   The inventor of the present invention is effective for adsorbing a metal having excellent conductivity on the surface of a natural material fiber, thread, powder, or a natural porous non-conductive inorganic material (core of a conductive composite). As a result of diligent investigation of the method, it was found that the palladium nucleus can be easily adsorbed to the polymer by adhering the conductive polymer to the base material which becomes the core of the conductive composite. Based on this knowledge, the manufacturing method of the electroconductive composite including the 1st-3rd process described below was established.

第1工程を終了した時点で得られる導電性素材はすでに導電性を有しているが、第2及び第3工程を実行することによってパラジウム核を吸着させ、金属メッキを施すことによってより導電性を増大させることができる。従って、ノイズシールド、耐熱、熱伝導率等の特性と性能を付与することがでる。   The conductive material obtained at the end of the first step is already conductive, but by conducting the second and third steps, palladium nuclei are adsorbed and metal plating is applied to make it more conductive. Can be increased. Therefore, characteristics and performance such as noise shielding, heat resistance, and thermal conductivity can be imparted.

以下、天然素材の繊維、糸、粉体あるいは天然素材の多孔質非導電性無機素材の表面に導電性重合体を付着させて導電性複合体を製造する方法について具体的に説明する。この発明の導電性複合体の製造方法は、以下の第1〜第3工程を含む。   Hereinafter, a method for producing a conductive composite by attaching a conductive polymer to the surface of a natural material fiber, thread, powder, or natural porous non-conductive inorganic material will be described in detail. The method for producing a conductive composite of the present invention includes the following first to third steps.

第1工程は、天然素材の繊維、天然素材の繊維を引き揃えて撚りをかけて繊維を長く線状に連続させた糸、天然素材の粉体、天然素材の多孔質非導電性無機素材を用意し、導電性重合体を用いて導電性を付与し導電性素材にする工程である。   The first step consists of natural fibers, natural fibers, twisted yarns that have been continuous in a long line, natural powders, natural porous non-conductive inorganic materials This is a step of preparing and providing a conductive material by using a conductive polymer.

第2工程は、第1工程で得られた導電性素材の繊維、糸、粉体、多孔質非導電性無機素材を、塩化パラジウム溶液に浸し、当該導電性素材の繊維、粉体あるいは多孔質非導電性無機素材の表面にパラジウム核を吸着させる工程である。   In the second step, the conductive material fiber, yarn, powder, porous non-conductive inorganic material obtained in the first step is immersed in a palladium chloride solution, and the conductive material fiber, powder, or porous material This is a step of adsorbing palladium nuclei on the surface of the non-conductive inorganic material.

第3の工程は、第2工程でパラジウム核が吸着した繊維、糸、又は粉体もしくは多孔質非導電性無機素材に金属をメッキし、導電性複合体を形成する工程である。   The third step is a step of forming a conductive composite by plating a metal on the fiber, thread, powder or porous non-conductive inorganic material adsorbed with the palladium nucleus in the second step.

≪第1の工程≫
天然素材の繊維、天然素材の繊維を引き揃えて撚りをかけて繊維を長く線状に連続させた糸、又は天然素材の粉体もしくは天然素材の多孔質非導電性無機素材は、非導電性高分子有機化合物である。非導電高分子有機化合物として、セルロース、澱粉、コットン、あるいは毛髪等を利用することができる。
≪First process≫
Natural material fibers, yarns made by aligning and twisting natural fibers, and continuous long fibers, or natural powder or natural porous non-conductive inorganic materials are non-conductive It is a high molecular organic compound. As the non-conductive polymer organic compound, cellulose, starch, cotton, hair, or the like can be used.

セルロースとは、植物細胞の細胞壁を作る炭水化物(多糖類の一種)を指し、化学式で(C6H10O5)nで示される高分子である。化学式(C6H10O5)nで示される高分子には、セルロースのほか澱粉もあり、セルロースがβ-グルコースが直鎖状に結合されたものであるのに対し、澱粉はα-グルコースが直鎖状に結合されたものである点が相違点である。化学的には、セルロースのほうが澱粉より加水分解しにくく安定である。 Cellulose refers to a carbohydrate (a kind of polysaccharide) that forms the cell wall of plant cells, and is a polymer represented by the chemical formula (C 6 H 10 O 5 ) n . In addition to cellulose, the polymer represented by the chemical formula (C 6 H 10 O 5 ) n includes starch as well as cellulose in which β-glucose is linearly bound, whereas starch is α-glucose. The difference is that they are bonded in a straight chain. Chemically, cellulose is more stable than starch than it is hydrolyzed.

粉体の一例であるセルロースパウダーは、例えば、木材、藁等のセルロース系材料を粗粉砕処理することによって得られる。より好ましくは、このように粗粉砕処理後に加熱乾燥処理を行い乾燥状態のセルロースパウダーを準備するのがよい。   Cellulose powder, which is an example of powder, can be obtained, for example, by roughly pulverizing a cellulose-based material such as wood or straw. More preferably, it is preferable to prepare a cellulose powder in a dry state by performing a heat drying process after the coarse pulverization process.

≪第2の工程≫
塩化パラジウムは固体の中では、各パラジウム中心の周りに4個の塩素が平面四配位型構造の形で配位し、それぞれの塩素はさらに別のパラジウム中心にも配位した架橋となっている。この架橋構造が重合体状に連続した無限構造のため、そのままの形では水に不溶である。そこで塩化パラジウムに塩化物イオンを添加させる等の手法によってパラジウムがテトラクロロパラデートイオンPdCl4 2-の形で重合体構造を分解し水に溶解するように手当てする。
≪Second process≫
Palladium chloride is a solid, in which four chlorines are coordinated around each palladium center in the form of a planar four-coordinate structure, and each chlorine is a bridge coordinated to another palladium center. Yes. Since this cross-linked structure is an infinite structure continuous in a polymer form, it is insoluble in water as it is. Therefore, care is taken so that palladium decomposes the polymer structure in the form of tetrachloroparadate ion PdCl 4 2- and dissolves in water by a technique such as adding chloride ion to palladium chloride.

天然素材の繊維、糸、又は粉体もしくは多孔質非導電性無機素材を、塩化パラジウム溶液に浸し、当該の繊維、糸、又は粉体もしくは多孔質非導電性無機素材の表面にパラジウム核を吸着させるには、既に知られたキャラクタライザー・アクセラレータ法、あるいはセンシタイザー・アクチベータ法等を利用することができる。キャラクタライザー・アクセラレータ法は、Sn2+とPd2+を混合することによってパラジウムコロイド液として、この液に繊維、糸、又は粉体もしくは多孔質非導電性無機素材を浸し、次に塩酸溶液に浸して繊維、糸、又は粉体もしくは多孔質非導電性無機素材の表面にパラジウム核を吸着させる。また、センシタイザー・アクチベータ法は、繊維、糸、又は粉体もしくは多孔質非導電性無機素材をSn2+を含む溶液に浸し、次にPd2+を含む溶液に浸して繊維、糸、又は粉体もしくは多孔質非導電性無機素材の表面にパラジウム核を吸着させる。 Immerse a natural fiber, thread, or powder or porous non-conductive inorganic material in a palladium chloride solution, and adsorb the palladium nucleus on the surface of the fiber, thread, or powder or porous non-conductive inorganic material. For this purpose, the already known characterizer / accelerator method or sensitizer / activator method can be used. In the characterization and accelerator method, Sn 2+ and Pd 2+ are mixed to form a colloidal palladium solution, in which fibers, threads, powders or porous non-conductive inorganic materials are immersed in this solution, and then in a hydrochloric acid solution. The palladium nuclei are adsorbed on the surface of the fiber, thread, or powder or porous non-conductive inorganic material by dipping. Also, the sensitizer activator method involves immersing a fiber, yarn, or powder or porous non-conductive inorganic material in a solution containing Sn 2+ and then immersing it in a solution containing Pd 2+ so that the fiber, yarn, or Palladium nuclei are adsorbed on the surface of powder or porous non-conductive inorganic material.

一般に、水溶液中にPdイオンとそれを還元する還元剤(例えば、ジメチルアミン−ボラン(DMAB)、ヒドラジン、または次亜リン酸塩)を混入させておくと、繊維、糸、又は粉体もしくは多孔質非導電性無機素材の表面にパラジウム核を析出させることができる。   In general, when Pd ions and a reducing agent (for example, dimethylamine-borane (DMAB), hydrazine, or hypophosphite) that reduce it are mixed in an aqueous solution, fibers, yarns, powders or porous Palladium nuclei can be deposited on the surface of the non-conductive inorganic material.

第1の工程及び第2の工程において重要な事項は、上述のキャラクタライザー・アクセラレータ法、あるいはセンシタイザー・アクチベータ法等とは異なり、導電性複合体の芯となる基材に導電性重合体を付着させる事によって、この導電性重合体に容易にパラジウム核が吸着できるようにした点にある。導電性複合体の芯となる天然素材の繊維、糸、粉体あるいは多孔質非導電性無機素材そのものにはパラジウム核は吸着しにくいので、芯となる天然素材に導電性重合体を付着させる工程を実行する。この導電性重合体がパラジウム核を吸着させているものと考えられる。   Unlike the above-described characterizer / accelerator method or sensitizer / activator method, the important matter in the first step and the second step is that the conductive polymer is applied to the base material that is the core of the conductive composite. By adhering, the palladium nuclei can be easily adsorbed to the conductive polymer. The process of attaching the conductive polymer to the core natural material, because the palladium core is difficult to adsorb on the fiber, thread, powder or porous non-conductive inorganic material itself that is the core of the conductive composite. Execute. This conductive polymer is considered to adsorb palladium nuclei.

≪第3の工程≫
表面にパラジウム核が吸着した繊維、糸、粉体もしくは多孔質非導電性無機素材に無電解メッキ法で金属をメッキするには、パラジウム核が吸着したこれらの高分子有機化合物を、パラジウムの標準電極電位よりも低い標準電極電位を有する金属を用いて、還元剤の存在下で金属メッキする。標準電極電位が-1.0V〜+1.0Vの金属が好適であり、具体的には、亜鉛、鉄、ニッケル、スズ、鉛、銅、クロム、銀、または金が挙げられる。特にニッケルが好ましい。
≪Third process≫
In order to plate metal by electroless plating on fibers, threads, powders or porous non-conductive inorganic materials with palladium nuclei adsorbed on their surface, these high molecular organic compounds with palladium nuclei adsorbed are standard palladium. Using a metal having a standard electrode potential lower than the electrode potential, metal plating is performed in the presence of a reducing agent. A metal having a standard electrode potential of −1.0 V to +1.0 V is suitable, and specific examples include zinc, iron, nickel, tin, lead, copper, chromium, silver, or gold. Nickel is particularly preferable.

更に、ニッケル化合物の溶液(たとえば、塩化ニッケル、硫酸ニッケルなど、好ましくは、塩化ニッケル)および還元剤(たとえば、DMAB、ヒドラジン、または次亜リン酸塩)を使用して、ニッケルメッキするのがよい。また、pHを10.5-11.0、好適には10.8にするために、アンモニアを使用してもよい。一般に、この化学メッキは、外界温度で、または外界温度近くで行われてもよく、また、約20分〜1時間、具体的には30分間行ってもよい。得られた金属(たとえば、ニッケル)コーティングは、少なくとも厚さ200Å、好ましくは300-1000Å、具体的には、約400Å以上、さらに好ましくは約600Åであると都合がよい。この金属メッキ段階においては、特に還元剤としてDMABを使用することが好ましい。この還元剤は、重合体粒子の金属コーティングに、特に良好である。また、ここでは、表面にパラジウム核が吸着した繊維、糸、粉体もしくは多孔質非導電性無機素材に無電解メッキ法で金属をメッキする方法について説明したが、電解メッキ法によって金属をメッキしてもよい。   In addition, a nickel compound solution (eg, nickel chloride, nickel sulfate, etc., preferably nickel chloride) and a reducing agent (eg, DMAB, hydrazine, or hypophosphite) may be used for nickel plating. . Ammonia may be used to adjust the pH to 10.5-11.0, preferably 10.8. In general, this chemical plating may be performed at or near ambient temperature, and may be performed for about 20 minutes to 1 hour, specifically 30 minutes. The resulting metal (eg, nickel) coating is conveniently at least 200 mm thick, preferably 300-1000 mm, specifically about 400 mm or greater, and more preferably about 600 mm thick. In this metal plating step, it is particularly preferable to use DMAB as a reducing agent. This reducing agent is particularly good for metal coatings of polymer particles. Here, the method of plating metal by electroless plating on fiber, thread, powder or porous non-conductive inorganic material with palladium nuclei adsorbed on the surface has been described here. May be.

<天然素材へ導電性重合体を付着させる方法>
次に、天然由来の高分子有機化合物である導電性素材の基材となる繊維、糸、又は粉体もしくは多孔質非導電性無機素材に対して導電性重合体を付着させて導電性を付与する方法を説明する。導電性重合体を付着させるための工程として、上述の第1の工程のサブ工程として、以下の(i)〜(vi)のいずれかの工程を実施する。なお、多孔質非導電性無機素材に導電性重合体を付着させる場合も、同様の工程を実行すればよい。
(i) 繊維、糸、又は粉体もしくは多孔質非導電性無機素材に、酸化剤である塩化第二鉄又は塩化第二銅を用いて重合されたポリピロール重合体を付着させる工程
(ii) 繊維、糸、又は粉体もしくは多孔質非導電性無機素材に、酸化剤である芳香族スルホン酸第二鉄又は塩化第二鉄を用いて重合された含硫黄π共役系導電性重合体を付着させる工程
(iii) 繊維、糸、又は粉体もしくは多孔質非導電性無機素材に、酸化剤である芳香族スルホン酸第二銅又は塩化第二銅を用いて重合された含硫黄π共役系導電性重合体を付着させる工程
(iv) 繊維、糸、又は粉体もしくは多孔質非導電性無機素材に、酸化剤である芳香族スルホン酸第二鉄を用いて重合されたピロール導電性重合体を付着させる工程
(v) 繊維、糸、又は粉体もしくは多孔質非導電性無機素材に、酸化剤である芳香族スルホン酸第二銅を用いて重合されたピロール導電性重合体を付着させる工程
(vi) 繊維、糸、又は粉体もしくは多孔質非導電性無機素材に、導電性重合体溶液を用いて導電性重合体を付着させる工程
以下、上述の(i)〜(vi)のサブ工程について説明する。なお、以下の説明では、酸化剤として、サブ工程(i)で塩化第二銅を、サブ工程(ii)で芳香族スルホン酸第二鉄を、サブ工程(iii)で芳香族スルホン酸第二銅をそれぞれ利用するが、サブ工程(i)及び(ii)で塩化第二鉄を、サブ工程(iii)で塩化第二銅を利用しても同様にこれらのサブ工程は実施できる。
<Method of attaching a conductive polymer to a natural material>
Next, conductivity is imparted by attaching a conductive polymer to the fibers, threads, or powder or porous non-conductive inorganic material that is the base material of the conductive material, which is a naturally occurring polymer organic compound. How to do it. As a step for attaching the conductive polymer, any one of the following steps (i) to (vi) is performed as a sub-step of the first step. In addition, what is necessary is just to perform the same process, when attaching a conductive polymer to a porous nonelectroconductive inorganic raw material.
(i) A step of attaching a polypyrrole polymer polymerized by using ferric chloride or cupric chloride as an oxidizing agent to fibers, yarns, powders or porous non-conductive inorganic materials.
(ii) Sulfur-containing π-conjugated conductive heavy polymerized with fiber, yarn, powder or porous non-conductive inorganic material using ferric aromatic sulfonate or ferric chloride as an oxidizing agent Process of attaching coalescing
(iii) Sulfur-containing π-conjugated conductive heavy polymerized with fiber, yarn, powder or porous non-conductive inorganic material using cupric aromatic sulfonate or cupric chloride as oxidant Process of attaching coalescing
(iv) A step of adhering a pyrrole conductive polymer polymerized using ferric aromatic sulfonate, which is an oxidizing agent, to fiber, yarn, powder or porous non-conductive inorganic material
(v) A step of attaching a pyrrole conductive polymer polymerized using an aromatic cupric sulfonate as an oxidizing agent to fiber, yarn, powder or porous non-conductive inorganic material.
(vi) a step of attaching a conductive polymer to a fiber, thread, powder or porous non-conductive inorganic material using a conductive polymer solution. Substeps (i) to (vi) described above Will be described. In the following description, as an oxidizing agent, cupric chloride is used in sub-step (i), ferric aromatic sulfonate is used in sub-step (ii), and aromatic sulfonic acid is used in sub-step (iii). Although copper is respectively used, these sub-steps can be similarly carried out by using ferric chloride in sub-steps (i) and (ii) and cupric chloride in sub-step (iii).

サブ工程(i)
このサブ工程は、繊維、糸、又は粉体もしくは多孔質非導電性無機素材に塩化第二銅を用いて重合されたポリピロール重合体を付着する工程であって、次のように実行される。例えば、繊維、糸、又は粉体もしくは多孔質非導電性無機素材を2モル/リットルの濃度の塩化第二銅の水溶液中に浸して十分に塩化第二銅を染み込ませる。引き続き実施する工程は、塩化第二銅が含侵されたこれら繊維、糸、又は粉体もしくは多孔質非導電性無機素材に気体状態のピロールを接触させる工程であって、次のように実行される。例えば、ピロールを80℃に加熱して気化させ、この気化したピロールの蒸気に、塩化第二銅を染み込ませた繊維、糸、又は粉体もしくは多孔質非導電性無機素材を10分間かざすことによってポリピロール重合体が付着された繊維、糸、又は粉体もしくは多孔質非導電性無機素材を形成する。
Sub process (i)
This sub-step is a step of attaching a polypyrrole polymer polymerized using cupric chloride to fibers, yarns, or a powder or porous non-conductive inorganic material, and is performed as follows. For example, a fiber, thread, or powder or porous non-conductive inorganic material is immersed in an aqueous solution of cupric chloride at a concentration of 2 mol / liter so that the cupric chloride is sufficiently impregnated. The subsequent step is a step of bringing gaseous pyrrole into contact with these fibers, yarns, powder or porous non-conductive inorganic material impregnated with cupric chloride, and is performed as follows. The For example, pyrrole is heated to 80 ° C. to vaporize, and the vapor, vapor, or fiber impregnated with cupric chloride, yarn, or powder or porous non-conductive inorganic material is held for 10 minutes. A fiber, thread, or powder or porous non-conductive inorganic material to which a polypyrrole polymer is attached is formed.

このサブ工程(i)によって繊維、糸、又は粉体もしくは多孔質非導電性無機素材に導電性を付与させることが可能であるが、付着しないで残るポリピロール重合体が存在し、効率よく導電化が図られない場合もある。その場合は、以下のサブ工程(i-1)あるいは(i-2)を実行させればよい。   By this sub-step (i), it is possible to impart conductivity to fibers, yarns, powders or porous non-conductive inorganic materials, but there is a polypyrrole polymer that remains without adhering, and it is efficiently conductive. May not be achieved. In that case, the following sub-step (i-1) or (i-2) may be executed.

サブ工程(i-1)
酸化的触媒である塩化第二鉄又は塩化第二銅を繊維、糸、又は粉体もしくは多孔質非導電性無機素材に付着させ、ピロール単量体(モノマー)を気化させ気相反応させてポリピロール重合体を付着させるのがよい(気相反応)。
Sub process (i-1)
Polypyrrole is made by attaching ferric chloride or cupric chloride, which is an oxidative catalyst, to fibers, yarns, powders, or porous non-conductive inorganic materials, and vaporizing pyrrole monomer (monomer) to cause a gas phase reaction. A polymer should be deposited (gas phase reaction).

サブ工程(i-2)
繊維、糸、又は粉体もしくは多孔質非導電性無機素材と酸化的触媒である塩化第二鉄又は塩化第二銅を、水あるいはエタノール等の溶媒に縣濁させ(スラリー化させ)、このスラリー液に低温のピロールモノマーのエタノール液で希釈した液を数時間かけて滴下させて、ポリピロール重合体を付着させてもよい(スラリー化反応)。
Sub process (i-2)
Fiber, thread, or powder or porous non-conductive inorganic material and ferric chloride or cupric chloride, which are oxidative catalysts, are suspended (slurried) in a solvent such as water or ethanol. A liquid diluted with an ethanol solution of a low-temperature pyrrole monomer may be dropped into the liquid over several hours to adhere the polypyrrole polymer (slurry reaction).

サブ工程(ii)
このサブ工程は、繊維、糸、又は粉体もしくは多孔質非導電性無機素材に酸化剤である芳香族スルホン酸第二鉄を用いて重合された含硫黄π共役系導電性重合体を付着する工程である。
Sub process (ii)
This sub-process attaches a sulfur-containing π-conjugated conductive polymer polymerized with ferric sulfonate aromatic oxidant to fiber, yarn, or powder or porous non-conductive inorganic material. It is a process.

酸化剤である芳香族スルホン酸第二鉄としては、パラトルエンスルホン酸第二鉄、ベンゼンスルホン酸第二鉄、メトキシベンゼンスルホン酸第二鉄、ドデシルベンゼンスルホン酸第二鉄、ナフタレンスルホン酸第二鉄、アントラセンスルホン酸第二鉄、アントラキノンスルホン酸第二鉄、テトラリンスルホン酸第二鉄またはフェノールスルホン酸第二鉄の何れか一種を利用することが可能であるが、ここではパラトルエンスルホン酸第二鉄を利用する場合を取り上げて説明する。なお、以下の説明に基づいて、パラトルエンスルホン酸第二鉄以外の物質であっても、酸化剤として上述した物質の何れをも同様に利用可能である。   The ferric aromatic sulfonic acid ferric oxidizer includes ferric paratoluene sulfonate, ferric benzene sulfonate, ferric methoxybenzene sulfonate, ferric dodecyl benzene sulfonate, and ferric naphthalene sulfonate. Any one of iron, ferric anthracene sulfonate, ferric anthraquinone sulfonate, ferric tetralin sulfonate or ferric phenol sulfonate can be used. The case of using ferrous iron will be explained. In addition, based on the following description, even if it is a substance other than ferric paratoluenesulfonate, any of the above-described substances can be similarly used as the oxidizing agent.

また、含硫黄π共役系導電性重合体を形成するための単量体としては、3,4-エチレンジオキシチオフェン、チオフェン誘導体、チオフェン、3-アルキルチオフェン、3-アルコキシチオフェン、3,4-ジアルキルチオフェン、3,4-ジアルコキシチオフェンの何れか一種を利用することが可能であるが、ここでは3,4-エチレンジオキシチオフェンを利用する場合を取り上げて説明する。なお、以下の説明に基づいて、3,4-エチレンジオキシチオフェン以外の単量体であっても、上述の単量体の何れをも同様に利用可能である。   Examples of the monomer for forming the sulfur-containing π-conjugated conductive polymer include 3,4-ethylenedioxythiophene, thiophene derivatives, thiophene, 3-alkylthiophene, 3-alkoxythiophene, 3,4- Any one of dialkylthiophene and 3,4-dialkoxythiophene can be used. Here, the case where 3,4-ethylenedioxythiophene is used will be described. In addition, based on the following description, even if it is a monomer other than 3,4-ethylenedioxythiophene, any of the above-mentioned monomers can be used similarly.

酸化剤であるパラトルエンスルホン酸第二鉄を、第1溶媒で希釈した溶液を第1基材(繊維、糸、又は粉体もしくは多孔質非導電性無機素材)に付着させて第2基材(第1基材に第1溶媒で希釈した溶液に浸したもの)を生成する酸化剤付着工程は以下のとおりに行った。   A solution obtained by diluting ferric paratoluenesulfonate, which is an oxidizing agent, with a first solvent is attached to a first substrate (fiber, yarn, powder, or porous non-conductive inorganic material) to form a second substrate. The oxidant adhesion process for producing (a first substrate immersed in a solution diluted with the first solvent) was performed as follows.

第1溶媒には、純度99.8%エチルアルコールを利用した。また、エチルアルコールで希釈された50%濃度のパラトルエンスルホン酸第二鉄溶液6gと第1溶媒である純度99.8%エチルアルコール4gを容器内で混合し調合した30%濃度のパラトルエンスルホン酸第二鉄溶液に第1基材としてセルロース基材を5分浸して第2基材を生成した。   As the first solvent, 99.8% ethyl alcohol was used. In addition, 6 g of 50% strength para-toluenesulfonic acid ferric acid solution diluted with ethyl alcohol and 4 g of 99.8% purity ethyl alcohol as the first solvent were mixed in a container to prepare 30% strength para-toluenesulfonic acid A cellulose substrate as a first substrate was immersed in a diiron solution for 5 minutes to form a second substrate.

第2基材から第1溶媒であるエチルアルコールを蒸発させた後に、この第2基材を、含硫黄π共役系導電性重合体形成物質を第2溶媒で希釈した溶液に浸して0〜80℃の温度範囲で重合反応させて第3基材を生成する重合反応工程を以下のとおりに行った。   After evaporating ethyl alcohol, which is the first solvent, from the second base material, the second base material is immersed in a solution obtained by diluting the sulfur-containing π-conjugated conductive polymer forming substance with the second solvent. A polymerization reaction step for producing a third substrate by performing a polymerization reaction in a temperature range of ° C. was performed as follows.

パラトルエンスルホン酸第二鉄が付着した第2基材を含硫黄π共役系導電性重合体形成物質である50%濃度の3,4-エチレンジオキシチオフェン溶液に浸し、室温大気中で放置することで化学重合反応を起こさせて、含硫黄π共役系導電性重合体であるポリ(3,4-エチレンジオキシチオフェン)が第2基材に付着された第3基材を生成した。3,4-エチレンジオキシチオフェンの溶媒である第2溶媒はエチルアルコールである。化学重合反応が終了した後第2溶媒を蒸発させる溶媒除去工程を実行する。   Immerse the second substrate with ferric paratoluenesulfonate attached in a 50% strength 3,4-ethylenedioxythiophene solution, a sulfur-containing π-conjugated conductive polymer-forming substance, and leave it in the air at room temperature. This caused a chemical polymerization reaction to produce a third base material in which poly (3,4-ethylenedioxythiophene), which is a sulfur-containing π-conjugated conductive polymer, was adhered to the second base material. The second solvent which is a solvent for 3,4-ethylenedioxythiophene is ethyl alcohol. After the chemical polymerization reaction is completed, a solvent removal step of evaporating the second solvent is performed.

ここで、重合反応工程は、上述のように室温で行ったが、この温度に限定されることはなく、0℃〜80℃の範囲で適宜実施することが可能である。以下、説明する同種の重合反応工程においても同様に、室温で行うことに限定されることはなく、0℃〜80℃の範囲で適宜実施することが可能である。   Here, although the polymerization reaction step was performed at room temperature as described above, the polymerization reaction step is not limited to this temperature, and can be appropriately performed in the range of 0 ° C to 80 ° C. Similarly, the same kind of polymerization reaction step described below is not limited to being performed at room temperature, and can be appropriately performed in the range of 0 ° C to 80 ° C.

溶媒除去工程に引き続いて、この第3基材を重合反応で生成された重合体以外の残渣を除去するため、蒸留水あるいはエチルアルコールで洗浄し室温大気中で放置乾燥することで、この蒸留水あるいはエチルアルコールを除去して、含硫黄π共役系導電性重合体であるポリ(3,4-エチレンジオキシチオフェン)が基材に付着された導電性重合体付着基材を形成した。   Subsequent to the solvent removal step, the third substrate is washed with distilled water or ethyl alcohol and dried in the air at room temperature to remove residues other than the polymer produced by the polymerization reaction. Alternatively, ethyl alcohol was removed to form a conductive polymer-attached base material in which poly (3,4-ethylenedioxythiophene), which is a sulfur-containing π-conjugated conductive polymer, was attached to the base material.

第3基材は、既に含硫黄π共役系導電性重合体付着基材として利用可能な状態であるが、さらに導電性を高めるために、上述の酸化剤付着工程、重合反応工程及び溶媒除去工程を経て、蒸留水あるいはエチルアルコールで洗浄するまでの工程を3回繰り返し実行した。こうして含硫黄π共役系導電性重合体付着基材を完成させた。   The third substrate is already available as a sulfur-containing π-conjugated conductive polymer adhering substrate, but in order to further increase the conductivity, the above-described oxidizing agent attaching step, polymerization reaction step and solvent removal step Then, the process until washing with distilled water or ethyl alcohol was repeated three times. Thus, a sulfur-containing π-conjugated conductive polymer-adhered substrate was completed.

上述のサブ工程(ii)によって繊維、糸、又は粉体もしくは多孔質非導電性無機素材に導電性を付与させることが可能であるが、付着しないで残る含硫黄π共役系導電性重合体が存在し、効率よく導電化が図られない場合もある。その場合は、以下のサブ工程(ii-1)あるいは(ii-2)を実行させればよい。   It is possible to impart conductivity to the fiber, yarn, or powder or porous non-conductive inorganic material by the above-mentioned sub-step (ii), but the sulfur-containing π-conjugated conductive polymer remaining without adhering is obtained. In some cases, it cannot be efficiently conducted. In that case, the following sub-step (ii-1) or (ii-2) may be executed.

サブ工程(ii-1)
酸化的触媒である芳香族スルホン酸第二鉄を繊維、糸、又は粉体もしくは多孔質非導電性無機素材に付着させ、含硫黄π共役系導電性単量体を気化させ気相反応させて含硫黄π共役系導電性重合体を付着させるのがよい(気相反応)。
Sub process (ii-1)
Aromatic ferric sulfonic acid ferric sulfonate is attached to fiber, thread, powder or porous non-conductive inorganic material, and sulfur-containing π-conjugated conductive monomer is vaporized and subjected to gas phase reaction. A sulfur-containing π-conjugated conductive polymer is preferably attached (gas phase reaction).

サブ工程(ii-2)
繊維、糸、又は粉体もしくは多孔質非導電性無機素材と酸化的触媒である芳香族スルホン酸第二鉄を、水あるいはエタノール等の溶媒に縣濁させ(スラリー化させ)、このスラリー液に低温の含硫黄π共役系導電性単量体のエタノール液で希釈した液を数時間かけて滴下させて、含硫黄π共役系導電性重合体を付着させてもよい(スラリー化反応)。
Sub process (ii-2)
Fiber, thread, or powder or porous non-conductive inorganic material and ferric aromatic sulfonate, which is an oxidative catalyst, are suspended (slurried) in a solvent such as water or ethanol. A solution diluted with an ethanol solution of a low-temperature sulfur-containing π-conjugated conductive monomer may be dropped over several hours to adhere the sulfur-containing π-conjugated conductive polymer (slurry reaction).

サブ工程(iii)
このサブ工程は、繊維、糸、又は粉体もしくは多孔質非導電性無機素材に、酸化剤である芳香族スルホン酸第二銅を用いて重合された含硫黄π共役系導電性重合体を付着する工程である。
Sub process (iii)
In this sub-process, a sulfur-containing π-conjugated conductive polymer polymerized using an aromatic cupric aromatic sulfonate is attached to a fiber, thread, or powder or porous non-conductive inorganic material. It is a process to do.

酸化剤である芳香族スルホン酸第二銅としては、パラトルエンスルホン酸第二銅、ベンゼンスルホン酸第二銅、メトキシベンゼンスルホン酸第二銅、ドデシルベンゼンスルホン酸第二銅、ナフタレンスルホン酸第二銅、アントラセンスルホン酸第二銅、アントラキノンスルホン酸第二銅、テトラリンスルホン酸第二銅またはフェノールスルホン酸第二銅の何れか一種を利用することが可能であるが、ここではパラトルエンスルホン酸第二銅を利用する場合を取り上げて説明する。なお、以下の説明に基づいて、パラトルエンスルホン酸第二銅以外の物質であっても、酸化剤として上述した物質の何れをも同様に利用可能である。   The cupric aromatic sulfonates that are oxidizing agents include cuprous p-toluenesulfonate, cupric benzenesulfonate, cupric methoxybenzenesulfonate, cupric dodecylbenzenesulfonate, and cupric naphthalenesulfonate. Any one of copper, cupric anthracene sulfonate, cupric anthraquinone sulfonate, cupric tetralin sulfonate and cupric phenol sulfonate can be used. The case of using a double copper will be described. In addition, based on the following description, even if it is substances other than a cupric paratoluenesulfonate, any of the substances mentioned above as an oxidizing agent can be used similarly.

また、含硫黄π共役系導電性重合体を形成するための単量体としては、3,4-エチレンジオキシチオフェン、チオフェン誘導体、チオフェン、3-アルキルチオフェン、3-アルコキシチオフェン、3,4-ジアルキルチオフェン、3,4-ジアルコキシチオフェンの何れか一種を利用することが可能であるが、ここでは3,4-エチレンジオキシチオフェンを利用する場合を取り上げて説明する。なお、以下の説明に基づいて、3,4-エチレンジオキシチオフェン以外の単量体であっても、上述の単量体の何れをも同様に利用可能である。   Examples of the monomer for forming the sulfur-containing π-conjugated conductive polymer include 3,4-ethylenedioxythiophene, thiophene derivatives, thiophene, 3-alkylthiophene, 3-alkoxythiophene, 3,4- Any one of dialkylthiophene and 3,4-dialkoxythiophene can be used. Here, the case where 3,4-ethylenedioxythiophene is used will be described. In addition, based on the following description, even if it is a monomer other than 3,4-ethylenedioxythiophene, any of the above-mentioned monomers can be used similarly.

酸化剤であるパラトルエンスルホン酸第二銅を、第1溶媒で希釈した溶液を第1基材に付着させて第2基材を生成する酸化剤付着工程は以下のとおりに行った。   The oxidizing agent attaching step for attaching the solution obtained by diluting cuprous paratoluenesulfonate as the oxidizing agent with the first solvent to the first substrate to form the second substrate was performed as follows.

第1溶媒には、純度99.8%エチルアルコールを利用した。また、エチルアルコールで希釈された50%濃度のパラトルエンスルホン酸第二銅溶液6gと第1溶媒である純度99.8%エチルアルコール4gを容器内で混合して調合した30%濃度のパラトルエンスルホン酸第二銅溶液に第1基材としてセルロース基材を5分浸し付着させて第2基材を生成した。   As the first solvent, 99.8% ethyl alcohol was used. 30% para-toluenesulfonic acid prepared by mixing 6 g of 50% strength para-toluenesulfonic acid cupric solution diluted with ethyl alcohol and 4 g of 99.8% purity ethyl alcohol as the first solvent in a container. A cellulose base material was immersed in the cupric solution as a first base material for 5 minutes to adhere to the second base material.

第2基材から第1溶媒であるエチルアルコールを蒸発させた後に、この第2基材を、含硫黄π共役系導電性重合体形成物質を第2溶媒で希釈した溶液に浸して0〜80℃の温度範囲で重合反応させて第3基材を生成する重合反応工程を以下のとおりに行った。   After evaporating ethyl alcohol, which is the first solvent, from the second base material, the second base material is immersed in a solution obtained by diluting the sulfur-containing π-conjugated conductive polymer forming substance with the second solvent. A polymerization reaction step for producing a third substrate by performing a polymerization reaction in a temperature range of ° C. was performed as follows.

パラトルエンスルホン酸第二銅が付着した第2基材を、含硫黄π共役系導電性重合体形成物質である50%濃度の3,4-エチレンジオキシチオフェン溶液に浸し、室温大気中で放置することで化学重合反応を起こさせて、含硫黄π共役系導電性重合体であるポリ(3,4-エチレンジオキシチオフェン)が第2基材に付着された第3基材を生成した。3,4-エチレンジオキシチオフェンの溶媒である第2溶媒はエチルアルコールである。化学重合反応が終了した後第2溶媒を蒸発させる溶媒除去工程を実行する。   Immerse the second substrate with cupric paratoluene sulfonate attached in a 50% strength 3,4-ethylenedioxythiophene solution, a sulfur-containing π-conjugated conductive polymer-forming substance, and leave it in the air at room temperature. As a result, a chemical polymerization reaction was caused to produce a third base material in which poly (3,4-ethylenedioxythiophene), which is a sulfur-containing π-conjugated conductive polymer, was adhered to the second base material. The second solvent which is a solvent for 3,4-ethylenedioxythiophene is ethyl alcohol. After the chemical polymerization reaction is completed, a solvent removal step of evaporating the second solvent is performed.

溶媒除去工程に引き続いて、この第3基材を重合反応で生成された重合体以外の残渣を除去するため、蒸留水あるいはエチルアルコールで洗浄し室温大気中で放置乾燥することで、この蒸留水あるいはエチルアルコールを除去して、含硫黄π共役系導電性重合体であるポリ(3,4-エチレンジオキシチオフェン)が基材に付着された導電性重合体付着基材を形成した。   Subsequent to the solvent removal step, the third substrate is washed with distilled water or ethyl alcohol and dried in the air at room temperature to remove residues other than the polymer produced by the polymerization reaction. Alternatively, ethyl alcohol was removed to form a conductive polymer-attached base material in which poly (3,4-ethylenedioxythiophene), which is a sulfur-containing π-conjugated conductive polymer, was attached to the base material.

第3状基材は、既に含硫黄π共役系導電性重合体付着基材として利用可能な状態であるが、さらに導電性を高めるために、上述の酸化剤付着工程、重合反応工程及び溶媒除去工程を経て、蒸留水あるいはエチルアルコールで洗浄するまでの工程を3回繰り返し実行した。こうして含硫黄π共役系導電性重合体付着基材を完成させた。   The third substrate is already available as a sulfur-containing π-conjugated conductive polymer adhering substrate, but in order to further increase the conductivity, the above-mentioned oxidizing agent attaching step, polymerization reaction step and solvent removal Through the process, the process until washing with distilled water or ethyl alcohol was repeated three times. Thus, a sulfur-containing π-conjugated conductive polymer-adhered substrate was completed.

上述のサブ工程(iii)によって繊維、糸、又は粉体もしくは多孔質非導電性無機素材に導電性を付与させることが可能であるが、付着しないで残る含硫黄π共役系導電性重合体が存在し、効率よく導電化が図られない場合もある。その場合は、以下のサブ工程(iii-1)あるいは(iii-2)を実行させればよい。   It is possible to impart conductivity to the fiber, yarn, or powder or porous non-conductive inorganic material by the above-mentioned sub-step (iii), but the sulfur-containing π-conjugated conductive polymer remaining without adhering is obtained. In some cases, it cannot be efficiently conducted. In that case, the following sub-step (iii-1) or (iii-2) may be executed.

サブ工程(iii-1)
酸化的触媒である芳香族スルホン酸第二銅を繊維、糸、又は粉体もしくは多孔質非導電性無機素材に付着させ、含硫黄π共役系導電性単量体を気化させ気相反応させて含硫黄π共役系導電性重合体を付着させるのがよい(気相反応)。
Sub process (iii-1)
A cupric aromatic sulfonate, an oxidative catalyst, is attached to fiber, thread, powder or porous non-conductive inorganic material, and sulfur-containing π-conjugated conductive monomer is vaporized and subjected to gas phase reaction. A sulfur-containing π-conjugated conductive polymer is preferably attached (gas phase reaction).

サブ工程(iii-2)
繊維、糸、又は粉体もしくは多孔質非導電性無機素材と酸化的触媒である芳香族スルホン酸第二銅を、水あるいはエタノール等の溶媒に縣濁させ(スラリー化させ)、このスラリー液に低温の含硫黄π共役系導電性単量体のエタノール液で希釈した液を数時間かけて滴下させて、含硫黄π共役系導電性重合体を付着させてもよい(スラリー化反応)。
Sub process (iii-2)
Fiber, thread, or powder or porous non-conductive inorganic material and cupric aromatic sulfonate, which is an oxidative catalyst, are suspended (slurried) in a solvent such as water or ethanol. A solution diluted with an ethanol solution of a low-temperature sulfur-containing π-conjugated conductive monomer may be dropped over several hours to adhere the sulfur-containing π-conjugated conductive polymer (slurry reaction).

サブ工程(iv)
このサブ工程は、繊維、糸、粉体あるいは多孔質非導電性無機素材に、酸化剤である芳香族スルホン酸第二鉄を用いて重合されたピロール導電性重合体を付着する工程である。
Sub process (iv)
This sub-process is a process of attaching a pyrrole conductive polymer polymerized using an aromatic ferric sulfonate as an oxidizing agent to fibers, yarns, powders or porous non-conductive inorganic materials.

酸化剤である芳香族スルホン酸第二鉄としては、パラトルエンスルホン酸第二鉄、ベンゼンスルホン酸第二鉄、メトキシベンゼンスルホン酸第二鉄、ドデシルベンゼンスルホン酸第二鉄、ナフタレンスルホン酸第二鉄、アントラセンスルホン酸第二鉄、アントラキノンスルホン酸第二鉄、テトラリンスルホン酸第二鉄またはフェノールスルホン酸第二鉄の何れか一種を利用することが可能であるが、ここではパラトルエンスルホン酸第二鉄を利用する場合を取り上げて説明する。なお、以下の説明に基づいて、パラトルエンスルホン酸第二鉄以外の物質であっても、酸化剤として上述した物質の何れをも同様に利用可能である。   The ferric aromatic sulfonic acid ferric oxidizer includes ferric paratoluene sulfonate, ferric benzene sulfonate, ferric methoxybenzene sulfonate, ferric dodecyl benzene sulfonate, and ferric naphthalene sulfonate. Any one of iron, ferric anthracene sulfonate, ferric anthraquinone sulfonate, ferric tetralin sulfonate or ferric phenol sulfonate can be used. The case of using ferrous iron will be explained. In addition, based on the following description, even if it is a substance other than ferric paratoluenesulfonate, any of the above-described substances can be similarly used as the oxidizing agent.

酸化剤であるパラトルエンスルホン酸第二鉄を、第1溶媒で希釈した溶液を第1基材に付着させて第2基材を生成する酸化剤付着工程は以下のとおりに行った。   The oxidizing agent attaching step for attaching the solution obtained by diluting ferric paratoluenesulfonate, which is an oxidizing agent, with the first solvent to the first substrate to form the second substrate was performed as follows.

第1溶媒には、純度99.8%エチルアルコールを利用した。また、エチルアルコールで希釈された50%濃度のパラトルエンスルホン酸第二鉄溶液6gと第1溶媒である純度99.8%エチルアルコール4gを容器内で混合して調合した30%濃度のパラトルエンスルホン酸第二鉄溶液に第1基材としてセルロース基材を5分浸して第2基材を生成した。   As the first solvent, 99.8% ethyl alcohol was used. Also, 30% paratoluenesulfonic acid prepared by mixing 6 g of 50% strength paratoluenesulfonic acid ferric acid solution diluted with ethyl alcohol and 4 g of purity 99.8% ethyl alcohol as the first solvent in a container. A cellulose substrate as a first substrate was immersed in the ferric solution for 5 minutes to form a second substrate.

第2基材から第1溶媒であるエチルアルコールを蒸発させた後に、この第2基材を、ピロール導電性重合体形成物質を第2溶媒で希釈した溶液に浸して0〜80℃の温度範囲で重合反応させて第3基材を生成する重合反応工程を以下のとおりに行った。ここで、ピロール導電性重合体形成物質を希釈した第2溶媒は、エチルアルコールである。   After evaporating ethyl alcohol as the first solvent from the second base material, the second base material is immersed in a solution obtained by diluting the pyrrole conductive polymer forming substance with the second solvent, and a temperature range of 0 to 80 ° C. The polymerization reaction step of producing a third substrate by polymerization reaction was performed as follows. Here, the second solvent in which the pyrrole conductive polymer forming material is diluted is ethyl alcohol.

パラトルエンスルホン酸第二鉄が付着した第2基材を、純度99.8%のエチルアルコール5gと100%濃度のピロール5gを混合して調合した50%濃度のピロール溶液に浸し、室温大気中で放置することで化学重合反応を起こさせて、ピロール導電性重合体が第2基材に付着された第3基材を生成した。化学重合反応が終了した後第2溶媒を蒸発させる溶媒除去工程を実行する。   Immerse the second substrate with ferric paratoluenesulfonate in a 50% pyrrole solution prepared by mixing 5g of 99.8% ethyl alcohol and 5g of 100% pyrrole, and leave it in the air at room temperature. Thus, a chemical polymerization reaction was caused to generate a third base material in which the pyrrole conductive polymer was adhered to the second base material. After the chemical polymerization reaction is completed, a solvent removal step of evaporating the second solvent is performed.

溶媒除去工程に引き続いて、この第3基材を重合反応で生成された重合体以外の残渣を除去するため、蒸留水あるいはエチルアルコールで洗浄し室温大気中で放置乾燥することで、この蒸留水あるいはエチルアルコールを除去して、ピロール導電性重合体が基材に付着された導電性重合体付着基材を形成した。   Subsequent to the solvent removal step, the third substrate is washed with distilled water or ethyl alcohol and dried in the air at room temperature to remove residues other than the polymer produced by the polymerization reaction. Or ethyl alcohol was removed and the conductive polymer adhesion base material in which the pyrrole conductive polymer was adhered to the base material was formed.

第3基材は、既にピロール導電性重合体付着基材として利用可能な状態であるが、さらに導電性を高めるために、上述の酸化剤付着工程、重合反応工程及び溶媒除去工程を経て、蒸留水あるいはエチルアルコールで洗浄するまでの工程を3回繰り返し実行した。こうしてピロール導電性重合体付着基材を完成させた。   The third substrate is already available as a pyrrole conductive polymer adhesion substrate, but in order to further increase the conductivity, the oxidant adhesion step, the polymerization reaction step and the solvent removal step described above are used for distillation. The process until washing with water or ethyl alcohol was repeated three times. Thus, a pyrrole conductive polymer-adhered substrate was completed.

上述のサブ工程(iv)によって繊維、糸、又は粉体もしくは多孔質非導電性無機素材に導電性を付与させることが可能であるが、付着しないで残るピロール導電性重合体が存在し、効率よく導電化が図られない場合もある。その場合は、以下のサブ工程(iv-1)あるいは(iv-2)を実行させればよい。   It is possible to impart conductivity to the fiber, yarn, or powder or porous non-conductive inorganic material by the above-mentioned sub-step (iv), but there is a pyrrole conductive polymer that remains without adhering to the efficiency. There is a case where the electrical conductivity is not well achieved. In that case, the following sub-step (iv-1) or (iv-2) may be executed.

サブ工程(iv-1)
酸化的触媒である芳香族スルホン酸第二鉄を繊維、糸、又は粉体もしくは多孔質非導電性無機素材に付着させ、ピロール導電性単量体を気化させ気相反応させてピロール導電性重合体を付着させるのがよい(気相反応)。
Sub process (iv-1)
Ferric sulfonate, an oxidative catalyst, is attached to fibers, yarns, powders or porous non-conductive inorganic materials, and pyrrole conductive monomers are vaporized and subjected to gas phase reaction to conduct pyrrole conductive heavy. A coalescence should be deposited (gas phase reaction).

サブ工程(iv-2)
繊維、糸、又は粉体もしくは多孔質非導電性無機素材と酸化的触媒である芳香族スルホン酸第二鉄を、水あるいはエタノール等の溶媒に縣濁させ(スラリー化させ)、このスラリー液に低温のピロール導電性単量体のエタノール液で希釈した液を数時間かけて滴下させて、ピロール導電性重合体を付着させてもよい(スラリー化反応)。
Sub process (iv-2)
Fiber, thread, or powder or porous non-conductive inorganic material and ferric aromatic sulfonate, which is an oxidative catalyst, are suspended (slurried) in a solvent such as water or ethanol. A solution diluted with an ethanol solution of a low-temperature pyrrole conductive monomer may be dropped over several hours to adhere the pyrrole conductive polymer (slurry reaction).

サブ工程(v)
このサブ工程は、繊維、糸、又は粉体もしくは多孔質非導電性無機素材に、酸化剤である芳香族スルホン酸第二銅を用いて重合されたピロール導電性重合体を付着する工程である。
Sub process (v)
This sub-process is a process in which a pyrrole conductive polymer polymerized using an aromatic cupric aromatic sulfonate is attached to a fiber, yarn, or powder or porous non-conductive inorganic material. .

酸化剤である芳香族スルホン酸第二銅としては、パラトルエンスルホン酸第二銅、ベンゼンスルホン酸第二銅、メトキシベンゼンスルホン酸第二銅、ドデシルベンゼンスルホン酸第二銅、ナフタレンスルホン酸第二銅、アントラセンスルホン酸第二銅、アントラキノンスルホン酸第二銅、テトラリンスルホン酸第二銅またはフェノールスルホン酸第二銅の何れか一種を利用することが可能であるが、ここではパラトルエンスルホン酸第二銅を利用する場合を取り上げて説明する。なお、以下の説明に基づいて、パラトルエンスルホン酸第二銅以外の物質であっても、酸化剤として上述した物質の何れをも同様に利用可能である。   The cupric aromatic sulfonates that are oxidizing agents include cuprous p-toluenesulfonate, cupric benzenesulfonate, cupric methoxybenzenesulfonate, cupric dodecylbenzenesulfonate, and cupric naphthalenesulfonate. Any one of copper, cupric anthracene sulfonate, cupric anthraquinone sulfonate, cupric tetralin sulfonate and cupric phenol sulfonate can be used. The case of using a double copper will be described. In addition, based on the following description, even if it is substances other than a cupric paratoluenesulfonate, any of the substances mentioned above as an oxidizing agent can be used similarly.

酸化剤であるパラトルエンスルホン酸第二銅を、第1溶媒で希釈した溶液を第1基材に付着させて第2基材を生成する酸化剤付着工程は以下のとおりに行った。   The oxidizing agent attaching step for attaching the solution obtained by diluting cuprous paratoluenesulfonate as the oxidizing agent with the first solvent to the first substrate to form the second substrate was performed as follows.

第1溶媒には、純度99.8%エチルアルコールを利用した。また、エチルアルコールで希釈された50%濃度のパラトルエンスルホン酸第二銅溶液6gと第1溶媒である純度99.8%エチルアルコール4gを容器内で混合し調合した30%濃度のパラトルエンスルホン酸第二銅溶液に第1基材としてセルロース基材を5分浸して第2基材を生成した。   As the first solvent, 99.8% ethyl alcohol was used. In addition, 6 g of 50% strength para-toluenesulfonic acid cupric acid solution diluted with ethyl alcohol and 4 g of 99.8% purity ethyl alcohol as the first solvent were mixed in a container to prepare a 30% strength para-toluenesulfonic acid second solution. A cellulose substrate as a first substrate was immersed in a dicopper solution for 5 minutes to form a second substrate.

第2基材から第1溶媒であるエチルアルコールを蒸発させた後に、この第2基材を、ピロール導電性重合体形成物質を第2溶媒で希釈した溶液に浸して0〜80℃の温度範囲で重合反応させて第3基材を生成する重合反応工程を以下のとおりに行った。ここで、ピロール導電性重合体形成物質を希釈した第2溶媒は、エチルアルコールである。   After evaporating ethyl alcohol as the first solvent from the second base material, the second base material is immersed in a solution obtained by diluting the pyrrole conductive polymer forming substance with the second solvent, and a temperature range of 0 to 80 ° C. The polymerization reaction step of producing a third substrate by polymerization reaction was performed as follows. Here, the second solvent in which the pyrrole conductive polymer forming material is diluted is ethyl alcohol.

パラトルエンスルホン酸第二銅が付着した第2基材を、純度99.8%のエチルアルコール5gと100%濃度のピロール5gを混合して調合した50%濃度のピロール溶液に浸し、室温大気中で放置することで化学重合反応を起こさせて、ピロール導電性重合体が第2基材に付着された第3基材を生成した。化学重合反応が終了した後第2溶媒を蒸発させる溶媒除去工程を実行する。   Immerse the second substrate with cupric paratoluenesulfonate adhering to a 50% pyrrole solution prepared by mixing 5g of 99.8% ethyl alcohol and 5g of 100% pyrrole, and leave it in the air at room temperature. Thus, a chemical polymerization reaction was caused to generate a third base material in which the pyrrole conductive polymer was adhered to the second base material. After the chemical polymerization reaction is completed, a solvent removal step of evaporating the second solvent is performed.

溶媒除去工程に引き続いて、この第3基材を重合反応で生成された重合体以外の残渣を除去するため、蒸留水あるいはエチルアルコールで洗浄し室温大気中で放置乾燥することで、この蒸留水あるいはエチルアルコールを除去して、ピロール導電性重合体が基材に付着された導電性重合体付着基材を形成した。   Subsequent to the solvent removal step, the third substrate is washed with distilled water or ethyl alcohol and dried in the air at room temperature to remove residues other than the polymer produced by the polymerization reaction. Or ethyl alcohol was removed and the conductive polymer adhesion base material in which the pyrrole conductive polymer was adhered to the base material was formed.

第3基材は、既にピロール導電性重合体付着基材として利用可能な状態であるが、さらに導電性を高めるために、上述の酸化剤付着工程、重合反応工程及び溶媒除去工程を経て、蒸留水あるいはエチルアルコールで洗浄するまでの工程を3回繰り返し実行した。こうしてピロール導電性重合体付着基材を完成させた。   The third substrate is already available as a pyrrole conductive polymer adhesion substrate, but in order to further increase the conductivity, the oxidant adhesion step, the polymerization reaction step and the solvent removal step described above are used for distillation. The process until washing with water or ethyl alcohol was repeated three times. Thus, a pyrrole conductive polymer-adhered substrate was completed.

上述のサブ工程(v)によって繊維、糸、又は粉体もしくは多孔質非導電性無機素材に導電性を付与させることが可能であるが、付着しないで残るピロール導電性重合体が存在し、効率よく導電化が図られない場合もある。その場合は、以下のサブ工程(v-1)あるいは(v-2)を実行させればよい。   It is possible to impart conductivity to the fiber, thread, or powder or porous non-conductive inorganic material by the above-mentioned sub-step (v), but there is a pyrrole conductive polymer that remains without being attached, and efficiency. There is a case where the electrical conductivity is not well achieved. In that case, the following sub-step (v-1) or (v-2) may be executed.

サブ工程(v-1)
酸化的触媒である芳香族スルホン酸第二銅を繊維、糸、又は粉体もしくは多孔質非導電性無機素材に付着させ、ピロール導電性単量体を気化させ気相反応させてピロール導電性重合体を付着させるのがよい(気相反応)。
Sub process (v-1)
An oxidative catalyst, cupric aromatic sulfonate, is attached to fiber, thread, powder or porous non-conductive inorganic material, and pyrrole conductive monomer is vaporized and vapor-phase reacted to conduct pyrrole conductive heavy. A coalescence should be deposited (gas phase reaction).

サブ工程(v-2)
繊維、糸、又は粉体もしくは多孔質非導電性無機素材と酸化的触媒である芳香族スルホン酸第二銅を、水あるいはエタノール等の溶媒に縣濁させ(スラリー化させ)、このスラリー液に低温のピロール導電性単量体のエタノール液で希釈した液を数時間かけて滴下させて、ピロール導電性重合体を付着させてもよい(スラリー化反応)。
Sub process (v-2)
Fiber, thread, or powder or porous non-conductive inorganic material and cupric aromatic sulfonate, which is an oxidative catalyst, are suspended (slurried) in a solvent such as water or ethanol. A solution diluted with an ethanol solution of a low-temperature pyrrole conductive monomer may be dropped over several hours to adhere the pyrrole conductive polymer (slurry reaction).

サブ工程(vi)
このサブ工程は、繊維、糸、又は粉体もしくは多孔質非導電性無機素材に、導電性重合体溶液を用いて導電性重合体を付着する工程である。
Sub process (vi)
This sub-process is a process of attaching a conductive polymer to a fiber, thread, powder or porous non-conductive inorganic material using a conductive polymer solution.

導電性重合体溶液としては、導電性ポリ(3,4-エチレンジオキシチオフェン)のポリスチレンスルホン酸系水分散液、導電性ポリ(3,4-エチレンジオキシチオフェン)の有機溶媒分散液、導電性ポリアニリン系水分散液、メタノールを分散媒とする高導電性ポリアニリン系有機溶媒分散液、メチルエチルケトンを分散媒とする高導電性ポリアニリン系有機溶媒分散液、メチルエチルケトンを分散媒とする高導電性ポリピロール有機溶媒分散液からなる群から選択される何れか一種を利用できる。   Examples of the conductive polymer solution include conductive poly (3,4-ethylenedioxythiophene) polystyrene sulfonate aqueous dispersion, conductive poly (3,4-ethylenedioxythiophene) organic solvent dispersion, conductive Conductive polyaniline aqueous dispersion, highly conductive polyaniline organic solvent dispersion using methanol as a dispersion medium, highly conductive polyaniline organic solvent dispersion using methyl ethyl ketone as a dispersion medium, and highly conductive polypyrrole organic using methyl ethyl ketone as a dispersion medium Any one selected from the group consisting of solvent dispersions can be used.

例えば、導電性重合体溶液として、導電性ポリ(3,4-エチレンジオキシチオフェン)のポリスチレンスルホン酸系水分散液5g、純度99.8%エチルアルコール5gとエチレングリコール5体積%を混合した溶液を使用する。この導電性ポリ(3,4-エチレンジオキシチオフェン)のポリスチレンスルホン酸系水分散液に、繊維、糸、又は粉体もしくは多孔質非導電性無機素材を5分浸すことによって導電性重合体を付着させる。この導電性重合体が付着した基材から分散媒を蒸発させる分散媒除去工程を実行することにより、導電性重合体付着基材を完成させる。   For example, as a conductive polymer solution, use is made of a mixture of 5 g of polystyrene sulfonic acid aqueous dispersion of conductive poly (3,4-ethylenedioxythiophene), 59.8% purity of 99.8% ethyl alcohol and 5% by volume of ethylene glycol. To do. A conductive polymer is obtained by immersing fibers, yarns, or a powder or porous non-conductive inorganic material for 5 minutes in a polystyrene sulfonic acid aqueous dispersion of this conductive poly (3,4-ethylenedioxythiophene). Adhere. By carrying out a dispersion medium removing step of evaporating the dispersion medium from the substrate to which the conductive polymer is adhered, the conductive polymer-attached substrate is completed.

3.第3の発明
第3の発明は、上述の導電性素材又は導電性複合体を非導電性の可塑性素材中に練り込んで、あるいは非導電性の布に織り込んで、これらに導電性を持たせたものである。
3. Third invention The third invention is that the conductive material or conductive composite described above is kneaded into a non-conductive plastic material or woven into a non-conductive cloth to give them conductivity. It is a thing.

特許文献(特開2003-176327号公報)に説明されているように、近年、環境問題、エネルギー問題の観点から燃料電池が、水素と酸素を使用して水の電気分解の逆反応で発電し、水以外の排出物がなくクリーンな発電装置として注目されているが、ここで導電性硬化性樹脂組成物は大きな役割を担うことができる。中でも固体高分子型燃料電池は、低温で作動するため、自動車や民生用として最も有望である。燃料電池は、高分子固体電解質、ガス拡散電極、触媒、セパレータから構成された単セルを積層することによって高出力の発電が達成できる。   As described in the patent document (Japanese Patent Laid-Open No. 2003-176327), in recent years, fuel cells have generated electricity through the reverse reaction of water electrolysis using hydrogen and oxygen from the viewpoint of environmental issues and energy issues. The electroconductive curable resin composition can play a big role here, although it has been attracting attention as a clean power generator without any discharge other than water. Among them, polymer electrolyte fuel cells are most promising for automobiles and consumer use because they operate at low temperatures. A fuel cell can achieve high power generation by stacking single cells composed of a polymer solid electrolyte, a gas diffusion electrode, a catalyst, and a separator.

この単セルを仕切るために用いられるセパレータは、通常、燃料ガスと酸化剤ガスが供給される溝があり、これらのガスを完全に分離できる高い気体不透過性が要求され、また、内部抵抗を小さくするために高い導電性が要求される。さらには、熱伝導性、耐久性、強度などに優れていることが要求される。また、燃料電池等に使用されているニッケル電極板においては、電極板の反応面積が広いことが求められる。この発明の導電性複合体をニッケル電極表面に溶射(Thermal spraying)等で付着させることで電極板の反応面積を大きくできる。従って、この発明の導電性複合体によれば、同一サイズの電極より高出力で高効率の良い電極板が得られるため燃料電池の小型化や高出力化、高効率化に寄与する。   The separator used for partitioning this single cell usually has a groove to which fuel gas and oxidant gas are supplied, requires high gas impermeability to completely separate these gases, and has an internal resistance. High electrical conductivity is required to reduce the size. Furthermore, it is required to have excellent thermal conductivity, durability, strength, and the like. In addition, nickel electrode plates used in fuel cells and the like are required to have a wide reaction area of the electrode plates. The reaction area of the electrode plate can be increased by attaching the conductive composite of the present invention to the surface of the nickel electrode by thermal spraying or the like. Therefore, according to the conductive composite of the present invention, an electrode plate having higher output and higher efficiency than that of the same size electrode can be obtained, which contributes to miniaturization, higher output and higher efficiency of the fuel cell.

また、この発明の繊維、糸、又は粉体もしくは多孔質非導電性無機素材に導電性を付与して得られる導電性素材は、バインダー樹脂や接着剤等と混合、混練することにより、例えば、異方導電性ペースト、異方導電性インク、異方導電性接着剤、異方導電性フィルム、異方導電性シート等の異方導電性材料として用いて好適である。特許文献(特開2009-174042号公報)に記載されているように、これらの異方導電性材料は液晶ディスプレイパネルのITO(Indium Tin Oxide)電極と駆動用LSI(large-scale integration)との接続、LSIチップと回路基板との接続、微細パターン電極間の接続など電子機器類の微小部位間の電気的接続に利用可能である。   In addition, the conductive material obtained by imparting conductivity to the fiber, thread, or powder or porous non-conductive inorganic material of the present invention is mixed and kneaded with a binder resin or an adhesive, for example, It is suitable for use as an anisotropic conductive material such as anisotropic conductive paste, anisotropic conductive ink, anisotropic conductive adhesive, anisotropic conductive film, anisotropic conductive sheet and the like. As described in the patent document (Japanese Patent Laid-Open No. 2009-174042), these anisotropic conductive materials are composed of an ITO (Indium Tin Oxide) electrode of a liquid crystal display panel and a driving LSI (large-scale integration). It can be used for electrical connection between minute parts of electronic equipment such as connection, connection between an LSI chip and a circuit board, connection between fine pattern electrodes and the like.

この発明の繊維、糸、又は粉体もしくは多孔質非導電性無機素材を、熱硬化性、熱可塑性などの非導電性樹脂を主成分とするバインダーに混練してペースト状またはシート状にすることにより、導電性無電解メッキ粉体を導電性フィラーとする異方導電性材料または導電性材料を得ることができる。異方導電性材料または導電性材料としては、例えば、対向する接続回路を導通接着するための異方導電性膜、異方導電性接着剤、異方導電性ペースト、異方導電性インク、異方導電性粘着剤層、異方導電性フィルム、異方導電性シート等の異方導電性材料、並びに、導電性膜、導電性接着剤、導電性ペースト、導電性インク、導電性粘着剤層、導電性フィルム、導電性シート等の導電性材料が挙げられる。バインダーとして使用される非導電性樹脂としては、エポキシ系樹脂、ポリエステル系樹脂、フェノール樹脂、キシレン樹脂、アミノ樹脂、アルキッド樹脂、ポリウレタン樹脂、アクリル系樹脂、ポリイミド樹脂、スチレン系樹脂、塩化ビニル樹脂、シリコーン樹脂などから選ばれた1種以上が挙げられる。また、異方導電性材料または導電性材料には、必要に応じて架橋剤、粘着付与剤、酸化防止剤、劣化防止剤、各種カップリング剤、増量剤、軟化材、可塑剤、熱安定剤、光安定剤、紫外線吸収剤、着色剤、難燃剤、有機溶媒等の各種添加剤を添加してもよい。   The fiber, yarn, or powder or porous non-conductive inorganic material of the present invention is kneaded with a binder mainly composed of a non-conductive resin such as thermosetting or thermoplastic to be a paste or a sheet. Thus, an anisotropic conductive material or conductive material using conductive electroless plating powder as a conductive filler can be obtained. Examples of the anisotropic conductive material or conductive material include anisotropic conductive films, anisotropic conductive adhesives, anisotropic conductive pastes, anisotropic conductive inks, different conductive films for conductively bonding opposing connection circuits. Anisotropic conductive material such as anisotropic conductive adhesive layer, anisotropic conductive film, anisotropic conductive sheet, and conductive film, conductive adhesive, conductive paste, conductive ink, conductive adhesive layer And conductive materials such as a conductive film and a conductive sheet. Non-conductive resins used as binders include epoxy resins, polyester resins, phenol resins, xylene resins, amino resins, alkyd resins, polyurethane resins, acrylic resins, polyimide resins, styrene resins, vinyl chloride resins, One or more selected from silicone resins and the like can be mentioned. In addition, for anisotropic conductive materials or conductive materials, cross-linking agents, tackifiers, antioxidants, deterioration inhibitors, various coupling agents, extenders, softeners, plasticizers, heat stabilizers are included as necessary. Various additives such as a light stabilizer, an ultraviolet absorber, a colorant, a flame retardant, and an organic solvent may be added.

この発明の導電性素材あるいは導電性複合体をゴム等の非導電性素材中に練り込んで、あるいは非導電性素材の布に織り込んで、導電性を持たせたゴム、あるいは布を製造するには、ゴム状の弾力性を有する工業用材料であるエラストマー(elastomer)を準備する。エラストマーには、熱硬化性エラストマー、及び熱可塑性エラストマーがある。熱硬化性エラストマーはゴムと呼ばれる素材で天然ゴム、合成ゴムが知られている。一方、熱可塑性エラストマーは熱を加えると軟化して流動性を示し、冷却すればゴム状弾性体に戻る性質を持つエラストマーである。   To manufacture a conductive rubber or cloth by kneading the conductive material or conductive composite of the present invention into a non-conductive material such as rubber or by weaving it into a cloth made of a non-conductive material. Prepares an elastomer (elastomer) which is an industrial material having rubber-like elasticity. The elastomer includes a thermosetting elastomer and a thermoplastic elastomer. Thermosetting elastomer is a material called rubber, and natural rubber and synthetic rubber are known. On the other hand, a thermoplastic elastomer is an elastomer that softens and exhibits fluidity when heated, and returns to a rubber-like elastic body when cooled.

これらエラストマーが可塑性を有している状態で、この発明の導電性素材あるいは導電性複合体を練り込む工程を実行し、それぞれのエラストマーの性質に応じて硬化する工程を実行すればよい。   In a state where these elastomers have plasticity, a step of kneading the conductive material or conductive composite of the present invention may be performed, and a step of curing according to the properties of each elastomer may be performed.

また、この発明の繊維あるいは糸状の導電性素材を非導電性素材の布に織り込むには、非導電性繊維にこの発明の糸状の導電性素材を混ぜ合わせて紡績工程を実行するか、あるいは非導電性の布を織る際に、繊維あるいは糸状の導電性素材を非導電性の糸に加えて機織工程を実行すればよい。この発明の導電性素材あるいは導電性複合体をゴム等の非導電性素材中に練り込んで、あるいは非導電性素材の布に織り込んで、非導電性素材に導電性を持たせた導電性可塑性素材あるいは導電性布は、ノイズシールドとして利用することが可能である。   Further, in order to weave the fiber or thread-like conductive material of the present invention into the cloth of the non-conductive material, the spinning process is carried out by mixing the thread-shaped conductive material of the present invention with the non-conductive fiber, or non- When weaving a conductive cloth, a weaving process may be performed by adding a fiber or thread-like conductive material to a non-conductive thread. Conductive plastics in which the conductive material or conductive composite of the present invention is kneaded into a non-conductive material such as rubber or woven into a non-conductive material cloth to make the non-conductive material conductive. The material or the conductive cloth can be used as a noise shield.

因みに、導電性素材の芯となる基材としてセルロースパウダーを用い、パラジウム核とニッケル膜とからなる金属膜を吸着させたこの発明の導電性複合体の重量及びその電気伝導度を計測したところ、重量はニッケル粒子の約1/5であり、電気伝導度はニッケル金属の電気伝導度と同程度であった。この測定結果から、上述のノイズシールドとして利用すれば、十分なシールド効果が得られる上、その重量は非常に軽いものとすることができる。   Incidentally, when cellulose powder was used as the base material for the core of the conductive material, and the weight of the conductive composite of the present invention in which the metal film composed of the palladium core and the nickel film was adsorbed and its electrical conductivity was measured, The weight was about 1/5 of the nickel particles, and the electrical conductivity was comparable to that of nickel metal. From this measurement result, if it is used as the above-mentioned noise shield, a sufficient shielding effect can be obtained and the weight can be very light.

10:導電性複合体の芯
12:パラジウム核吸着層
14:ニッケル膜
10: Conductive composite core
12: Palladium nuclear adsorption layer
14: Nickel film

Claims (26)

天然素材の繊維、天然素材の繊維を引き揃えて撚りをかけて繊維を長く線状に連続させた糸、又は天然素材の粉体もしくは多孔質非導電性無機素材に、酸化的触媒である塩化第二鉄又は塩化第二銅を付着させる工程と、
ピロール単量体を気化させ気相反応させてポリピロール重合体を付着させる工程と
を順に行うことを特徴とする導電性素材の製造方法。
Chlorine, which is an oxidative catalyst, is applied to natural fibers, yarns in which natural fibers are aligned and twisted, and the fibers are long and continuous, or natural powders or porous non-conductive inorganic materials. Attaching ferric or cupric chloride;
A method for producing a conductive material, comprising sequentially performing a step of vaporizing a pyrrole monomer and causing a gas phase reaction to adhere a polypyrrole polymer.
天然素材の繊維、天然素材の繊維を引き揃えて撚りをかけて繊維を長く線状に連続させた糸、又は天然素材の粉体もしくは多孔質非導電性無機素材と、酸化的触媒である塩化第二鉄又は塩化第二銅を溶媒に懸濁させてスラリー液とする工程と、
前記スラリー液に、ピロールモノマーをエタノールで希釈した液を滴下させてポリピロール重合体を付着させる工程と
を順に行うことを特徴とする導電性素材の製造方法。
Natural fibers, natural yarns that are twisted together and twisted to make the fibers continuous in a long line, or natural powders or porous non-conductive inorganic materials and chlorination as an oxidative catalyst A step of suspending ferric or cupric chloride in a solvent to form a slurry,
A method for producing a conductive material, comprising sequentially performing a step of dripping a solution obtained by diluting a pyrrole monomer with ethanol and attaching a polypyrrole polymer to the slurry solution.
天然素材の繊維、天然素材の繊維を引き揃えて撚りをかけて繊維を長く線状に連続させた糸、又は天然素材の粉体もしくは多孔質非導電性無機素材に、酸化的触媒である芳香族スルホン酸第二鉄を付着させる工程と、
含硫黄π共役系導電性単量体を気化させ気相反応させて含硫黄π共役系導電性重合体を付着させる工程と
を順に行うことを特徴とする導電性素材の製造方法。
Fragrance that is an oxidative catalyst for natural fibers, yarns that are made by aligning and twisting natural fibers, or a long continuous linear fiber, or natural powder or porous non-conductive inorganic material Attaching a ferric iron group sulfonate;
A method for producing a conductive material, comprising sequentially performing a step of vaporizing a sulfur-containing π-conjugated conductive monomer and causing a vapor-phase reaction to adhere a sulfur-containing π-conjugated conductive polymer.
天然素材の繊維、天然素材の繊維を引き揃えて撚りをかけて繊維を長く線状に連続させた糸、又は天然素材の粉体もしくは多孔質非導電性無機素材と、酸化的触媒である芳香族スルホン酸第二鉄を溶媒に縣濁させてスラリー液とする工程と、
前記スラリー液に含硫黄π共役系導電性単量体のエタノールで希釈した液を滴下させて、含硫黄π共役系導電性重合体を付着させる工程と
を順に行うことを特徴とする導電性素材の製造方法。
Natural fibers, yarns made by arranging and twisting natural fibers, or long continuous fibers, or natural powders or porous non-conductive inorganic materials and fragrances that are oxidative catalysts A step of suspending the ferric group sulfonate in a solvent to form a slurry liquid;
A step of dropping a liquid diluted with a sulfur-containing π-conjugated conductive monomer ethanol into the slurry liquid and attaching a sulfur-containing π-conjugated conductive polymer in order. Manufacturing method.
天然素材の繊維、天然素材の繊維を引き揃えて撚りをかけて繊維を長く線状に連続させた糸、又は天然素材の粉体もしくは多孔質非導電性無機素材に、酸化的触媒である芳香族スルホン酸第二銅を付着させる工程と、
含硫黄π共役系導電性単量体を気化させ気相反応させて含硫黄π共役系導電性重合体を付着させる工程と
を順に行うことを特徴とする導電性素材の製造方法。
Fragrance that is an oxidative catalyst for natural fibers, yarns that are made by aligning and twisting natural fibers, or a long continuous linear fiber, or natural powder or porous non-conductive inorganic material Attaching a cupric sulfonic acid cuprate,
A method for producing a conductive material, comprising sequentially performing a step of vaporizing a sulfur-containing π-conjugated conductive monomer and causing a vapor-phase reaction to adhere a sulfur-containing π-conjugated conductive polymer.
天然素材の繊維、天然素材の繊維を引き揃えて撚りをかけて繊維を長く線状に連続させた糸、又は天然素材の粉体もしくは多孔質非導電性無機素材と、酸化的触媒である芳香族スルホン酸第二銅を溶媒に縣濁させてスラリー液とする工程と、
前記スラリー液に含硫黄π共役系導電性単量体のエタノールで希釈した液を滴下させて、含硫黄π共役系導電性重合体を付着させる工程と
を順に行うことを特徴とする導電性素材の製造方法。
Natural fibers, yarns made by arranging and twisting natural fibers, or long continuous fibers, or natural powders or porous non-conductive inorganic materials and fragrances that are oxidative catalysts A step of suspending the cupric sulfonate in a solvent to form a slurry liquid;
A step of dropping a liquid diluted with a sulfur-containing π-conjugated conductive monomer ethanol into the slurry liquid and attaching a sulfur-containing π-conjugated conductive polymer in order. Manufacturing method.
天然素材の繊維、天然素材の繊維を引き揃えて撚りをかけて繊維を長く線状に連続させた糸、又は天然素材の粉体もしくは多孔質非導電性無機素材に、酸化的触媒である芳香族スルホン酸第二鉄を付着させる工程と、
ピロール導電性単量体を気化させ気相反応させてピロール導電性重合体を付着させる工程と
を順に行うことを特徴とする導電性素材の製造方法。
Fragrance that is an oxidative catalyst for natural fibers, yarns that are made by aligning and twisting natural fibers, or a long continuous linear fiber, or natural powder or porous non-conductive inorganic material Attaching a ferric iron group sulfonate;
A process for producing a conductive material, comprising sequentially vaporizing a pyrrole conductive monomer and causing a gas phase reaction to attach a pyrrole conductive polymer.
天然素材の繊維、天然素材の繊維を引き揃えて撚りをかけて繊維を長く線状に連続させた糸、又は天然素材の粉体もしくは多孔質非導電性無機素材と、酸化的触媒である芳香族スルホン酸第二鉄を溶媒に縣濁させてスラリー液とする工程と、
前記スラリー液にピロール導電性単量体のエタノールで希釈した液を滴下させて、ピロール導電性重合体を付着させる工程と
を順に行うことを特徴とする導電性素材の製造方法。
Natural fibers, yarns made by arranging and twisting natural fibers, or long continuous fibers, or natural powders or porous non-conductive inorganic materials and fragrances that are oxidative catalysts A step of suspending the ferric group sulfonate in a solvent to form a slurry liquid;
A method for producing a conductive material, comprising sequentially dropping a solution diluted with ethanol of a pyrrole conductive monomer into the slurry liquid and attaching a pyrrole conductive polymer.
天然素材の繊維、天然素材の繊維を引き揃えて撚りをかけて繊維を長く線状に連続させた糸、又は天然素材の粉体もしくは多孔質非導電性無機素材に、酸化的触媒である芳香族スルホン酸第二銅を付着させる工程と、
ピロール導電性単量体を気化させ気相反応させてピロール導電性重合体を付着させる工程と
を順に行うことを特徴とする導電性素材の製造方法。
Fragrance that is an oxidative catalyst for natural fibers, yarns that are made by aligning and twisting natural fibers, or a long continuous linear fiber, or natural powder or porous non-conductive inorganic material Attaching a cupric sulfonic acid cuprate,
A process for producing a conductive material, comprising sequentially vaporizing a pyrrole conductive monomer and causing a gas phase reaction to attach a pyrrole conductive polymer.
天然素材の繊維、天然素材の繊維を引き揃えて撚りをかけて繊維を長く線状に連続させた糸、又は天然素材の粉体もしくは多孔質非導電性無機素材と、酸化的触媒である芳香族スルホン酸第二銅を溶媒に縣濁させてスラリー液とする工程と、
前記スラリー液にピロール導電性単量体のエタノールで希釈した液を滴下させて、ピロール導電性重合体を付着させる工程と
を順に行うことを特徴とする導電性素材の製造方法。
Natural fibers, yarns made by arranging and twisting natural fibers, or long continuous fibers, or natural powders or porous non-conductive inorganic materials and fragrances that are oxidative catalysts A step of suspending the cupric sulfonate in a solvent to form a slurry liquid;
A method for producing a conductive material, comprising sequentially dropping a solution diluted with ethanol of a pyrrole conductive monomer into the slurry liquid and attaching a pyrrole conductive polymer.
天然素材の繊維、天然素材の繊維を引き揃えて撚りをかけて繊維を長く線状に連続させた糸、天然素材の粉体もしくは多孔質非導電性無機素材を用意し、導電性有機化合物によって導電性を付与する第1工程と、
導電性が付与された前記繊維、前記糸、前記粉体もしくは多孔質非導電性無機素材を、塩化パラジウム溶液に浸し、当該繊維、糸、粉体もしくは多孔質非導電性無機素材の表面にパラジウム核を吸着させる第2工程と、
表面にパラジウム核が吸着した前記繊維、前記糸、前記粉体もしくは多孔質非導電性無機素材に金属をメッキし、導電性複合体を形成する第3工程と、を含み、
前記第1工程として、請求項1〜10のいずれか一項に記載の導電性素材の製造方法を実施する
ことを特徴とする導電性複合体の製造方法。
We prepare natural fibers, natural fibers, twisted yarns, and continuous long filaments, natural powders or porous non-conductive inorganic materials. A first step of imparting electrical conductivity;
The fiber, the thread, the powder, or the porous non-conductive inorganic material to which conductivity is imparted are immersed in a palladium chloride solution, and the surface of the fiber, thread, powder, or porous non-conductive inorganic material is palladium. A second step of adsorbing nuclei;
It said fibers, said yarn palladium nuclei has been adsorbed on the surface, and plating the metal on the powder or the porous non-conductive inorganic material, seen including a third step, the forming a conductive composite,
The method for manufacturing a conductive composite according to any one of claims 1 to 10, wherein the method for manufacturing a conductive material according to any one of claims 1 to 10 is performed as the first step .
天然素材の繊維、天然素材の繊維を引き揃えて撚りをかけて繊維を長く線状に連続させた糸、又は天然素材の粉体もしくは多孔質非導電性無機素材に、酸化的触媒である塩化第二鉄又は塩化第二銅を付着させた後、ピロール単量体を気化させ気相反応させてポリピロール重合体を付着させることによって導電性が付与されている
ことを特徴とする導電性素材。
Chlorine, which is an oxidative catalyst, is applied to natural fibers, yarns in which natural fibers are aligned and twisted, and the fibers are long and continuous, or natural powders or porous non-conductive inorganic materials. A conductive material provided with conductivity by adhering ferric iron or cupric chloride and then vaporizing a pyrrole monomer to cause a gas phase reaction to adhere a polypyrrole polymer.
天然素材の繊維、天然素材の繊維を引き揃えて撚りをかけて繊維を長く線状に連続させた糸、又は天然素材の粉体もしくは多孔質非導電性無機素材と、酸化的触媒である塩化第二鉄又は塩化第二銅とを溶媒に懸濁させたスラリー液に、ピロールモノマーをエタノール液で希釈した液を滴下させて、ポリピロール重合体を付着させることによって導電性が付与されている
ことを特徴とする導電性素材。
Natural fibers, natural yarns that are twisted together and twisted to make the fibers continuous in a long line, or natural powders or porous non-conductive inorganic materials and chlorination as an oxidative catalyst Conductivity is imparted by adding a polypyrrole polymer by dropping a solution obtained by diluting a pyrrole monomer with an ethanol solution into a slurry obtained by suspending ferric or cupric chloride in a solvent. Conductive material characterized by
天然素材の繊維、天然素材の繊維を引き揃えて撚りをかけて繊維を長く線状に連続させた糸、又は天然素材の粉体もしくは多孔質非導電性無機素材に、酸化的触媒である芳香族スルホン酸第二鉄を付着させた後、含硫黄π共役系導電性単量体を気化させ気相反応させて含硫黄π共役系導電性重合体を付着させることによって導電性が付与されている
ことを特徴とする導電性素材。
Fragrance that is an oxidative catalyst for natural fibers, yarns that are made by aligning and twisting natural fibers, or a long continuous linear fiber, or natural powder or porous non-conductive inorganic material After attaching the ferric group sulfonic acid, conductivity is imparted by vaporizing the sulfur-containing π-conjugated conductive monomer and causing the vapor-phase reaction to attach the sulfur-containing π-conjugated conductive polymer. A conductive material characterized by
天然素材の繊維、天然素材の繊維を引き揃えて撚りをかけて繊維を長く線状に連続させた糸、又は天然素材の粉体もしくは多孔質非導電性無機素材と、酸化的触媒である芳香族スルホン酸第二鉄を溶媒に縣濁させたスラリー液に、含硫黄π共役系導電性単量体のエタノールで希釈した液を滴下させて、含硫黄π共役系導電性重合体を付着させることによって導電性が付与されている
ことを特徴とする導電性素材。
Natural fibers, yarns made by arranging and twisting natural fibers, or long continuous fibers, or natural powders or porous non-conductive inorganic materials and fragrances that are oxidative catalysts A solution diluted with ethanol, a sulfur-containing π-conjugated conductive monomer, is added dropwise to a slurry obtained by suspending ferric group sulfonate in a solvent, thereby attaching a sulfur-containing π-conjugated conductive polymer. The electroconductive material characterized by being provided with electroconductivity.
天然素材の繊維、天然素材の繊維を引き揃えて撚りをかけて繊維を長く線状に連続させた糸、又は天然素材の粉体もしくは多孔質非導電性無機素材に、酸化的触媒である芳香族スルホン酸第二銅を付着させた後、含硫黄π共役系導電性単量体を気化させ気相反応させて含硫黄π共役系導電性重合体を付着させることによって導電性が付与されている
ことを特徴とする導電性素材。
Fragrance that is an oxidative catalyst for natural fibers, yarns that are made by aligning and twisting natural fibers, or a long continuous linear fiber, or natural powder or porous non-conductive inorganic material After attaching the cupric sulfonic acid cupric acid, the sulfur-containing π-conjugated conductive monomer is vaporized and subjected to a gas phase reaction to attach the sulfur-containing π-conjugated conductive polymer. A conductive material characterized by
天然素材の繊維、天然素材の繊維を引き揃えて撚りをかけて繊維を長く線状に連続させた糸、又は天然素材の粉体もしくは多孔質非導電性無機素材と、酸化的触媒である芳香族スルホン酸第二銅を溶媒に縣濁させたスラリー液に、含硫黄π共役系導電性単量体のエタノールで希釈した液を滴下させて、含硫黄π共役系導電性重合体を付着させることによって導電性が付与されている
ことを特徴とする導電性素材。
Natural fibers, yarns made by arranging and twisting natural fibers, or long continuous fibers, or natural powders or porous non-conductive inorganic materials and fragrances that are oxidative catalysts A slurry diluted with ethanol of a sulfur-containing π-conjugated conductive monomer is added dropwise to a slurry obtained by suspending cupric sulfonic acid cupric acid in a solvent, thereby attaching a sulfur-containing π-conjugated conductive polymer. The electroconductive material characterized by being provided with electroconductivity.
天然素材の繊維、天然素材の繊維を引き揃えて撚りをかけて繊維を長く線状に連続させた糸、又は天然素材の粉体もしくは多孔質非導電性無機素材に、酸化的触媒である芳香族スルホン酸第二鉄を付着させた後、ピロール導電性単量体を気化させ気相反応させてピロール導電性重合体を付着させることによって導電性が付与されている
ことを特徴とする導電性素材。
Fragrance that is an oxidative catalyst for natural fibers, yarns that are made by aligning and twisting natural fibers, or a long continuous linear fiber, or natural powder or porous non-conductive inorganic material Conductivity is imparted by attaching a pyrrole conductive polymer after vaporizing a pyrrole conductive monomer after adhering ferric group sulfonic acid and vaporizing the pyrrole conductive monomer. Material.
天然素材の繊維、天然素材の繊維を引き揃えて撚りをかけて繊維を長く線状に連続させた糸、又は天然素材の粉体もしくは多孔質非導電性無機素材と、酸化的触媒である芳香族スルホン酸第二鉄を溶媒に縣濁させたスラリー液に、ピロール導電性単量体のエタノールで希釈した液を滴下させて、ピロール導電性重合体を付着させることによって導電性が付与されている
ことを特徴とする導電性素材。
Natural fibers, yarns made by arranging and twisting natural fibers, or long continuous fibers, or natural powders or porous non-conductive inorganic materials and fragrances that are oxidative catalysts Conductivity is imparted by dropping a liquid diluted with ethanol of a pyrrole conductive monomer into a slurry liquid in which ferric group sulfonate is suspended in a solvent, and attaching a pyrrole conductive polymer. A conductive material characterized by
天然素材の繊維、天然素材の繊維を引き揃えて撚りをかけて繊維を長く線状に連続させた糸、又は天然素材の粉体もしくは多孔質非導電性無機素材に、酸化的触媒である芳香族スルホン酸第二銅を付着させた後、
ピロール導電性単量体を気化させ気相反応させてピロール導電性重合体を付着させることによって導電性が付与されている
ことを特徴とする導電性素材。
Fragrance that is an oxidative catalyst for natural fibers, yarns that are made by aligning and twisting natural fibers, or a long continuous linear fiber, or natural powder or porous non-conductive inorganic material After attaching the cupric sulfonate,
A conductive material characterized in that conductivity is imparted by vaporizing a pyrrole conductive monomer and causing a vapor phase reaction to adhere a pyrrole conductive polymer.
天然素材の繊維、天然素材の繊維を引き揃えて撚りをかけて繊維を長く線状に連続させた糸、又は天然素材の粉体もしくは多孔質非導電性無機素材と、酸化的触媒である芳香族スルホン酸第二銅を溶媒に縣濁させたスラリー液に、ピロール導電性単量体のエタノールで希釈した液を滴下させて、ピロール導電性重合体を付着させることによって導電性が付与されている
ことを特徴とする導電性素材。
Natural fibers, yarns made by arranging and twisting natural fibers, or long continuous fibers, or natural powders or porous non-conductive inorganic materials and fragrances that are oxidative catalysts Conductivity is imparted by dropping a liquid diluted with ethanol of the pyrrole conductive monomer to a slurry liquid in which a cupric sulfonic acid cupric acid is suspended in a solvent, and attaching a pyrrole conductive polymer. A conductive material characterized by
請求項12〜21のいずれか一項に記載の導電性素材の表面にパラジウム核が吸着されており、更に当該パラジウム核に金属がメッキされていることを特徴とする導電性複合体。 A conductive composite, wherein a palladium nucleus is adsorbed on a surface of the conductive material according to any one of claims 12 to 21 , and a metal is plated on the palladium nucleus. 請求項14〜21のいずれか一項に記載の導電性素材が、非導電性の可塑性素材に練り込まれていることを特徴とする導電性可塑性素材。 The conductive plastic material according to any one of claims 14 to 21 , wherein the conductive plastic material is kneaded into a non-conductive plastic material. 請求項22に記載の導電性複合体が、非導電性の可塑性素材に練り込まれていることを特徴とする導電性可塑性素材。 23. A conductive plastic material, wherein the conductive composite according to claim 22 is kneaded into a non-conductive plastic material. 請求項14〜21のいずれか一項に記載の導電性素材が、非導電性の布に織り込まれていることを特徴とする導電性布。 The electroconductive cloth as described in any one of Claims 14-21 is woven in the nonelectroconductive cloth, The electroconductive cloth characterized by the above-mentioned. 請求項22に記載の導電性複合体が、非導電性の布に織り込まれていることを特徴とする導電性布。 23. A conductive cloth, wherein the conductive composite according to claim 22 is woven into a non-conductive cloth.
JP2013076527A 2013-04-02 2013-04-02 Manufacturing method of conductive material, manufacturing method of conductive composite, conductive material, conductive composite, conductive plastic material, and conductive cloth Expired - Fee Related JP5315472B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013076527A JP5315472B1 (en) 2013-04-02 2013-04-02 Manufacturing method of conductive material, manufacturing method of conductive composite, conductive material, conductive composite, conductive plastic material, and conductive cloth
PCT/JP2014/059150 WO2014163005A1 (en) 2013-04-02 2014-03-28 Process for manufacturing conductive material, process for manufacturing conductive composite, conductive material, conductive composite, conductive plastic material, and conductive fabric
TW103111976A TW201443919A (en) 2013-04-02 2014-03-31 Method for producing conductive raw material, method for producing conductive complex, conductive raw material, conductive complex, conductive plastic raw material, and conductive cloth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013076527A JP5315472B1 (en) 2013-04-02 2013-04-02 Manufacturing method of conductive material, manufacturing method of conductive composite, conductive material, conductive composite, conductive plastic material, and conductive cloth

Publications (2)

Publication Number Publication Date
JP5315472B1 true JP5315472B1 (en) 2013-10-16
JP2014201843A JP2014201843A (en) 2014-10-27

Family

ID=49595754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013076527A Expired - Fee Related JP5315472B1 (en) 2013-04-02 2013-04-02 Manufacturing method of conductive material, manufacturing method of conductive composite, conductive material, conductive composite, conductive plastic material, and conductive cloth

Country Status (3)

Country Link
JP (1) JP5315472B1 (en)
TW (1) TW201443919A (en)
WO (1) WO2014163005A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016043194A1 (en) * 2014-09-16 2016-03-24 有限会社アイレックス Conductive structure and conductive fused body, methods for manufacturing conductive structure and conductive fused body, and conductive plastic material

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6413116B2 (en) * 2014-10-31 2018-10-31 北川工業株式会社 Sliding resistant conductive cloth
KR101816761B1 (en) * 2016-11-04 2018-02-21 아주대학교산학협력단 Oxidation resistant hybrid structure including metal thin film coated on conductive polymer structure, and method of preparing the same
CN106498707A (en) * 2016-11-30 2017-03-15 浙江理工大学 A kind of preparation method of simple conductive silk fiber
JP2019075265A (en) * 2017-10-16 2019-05-16 信越ポリマー株式会社 Conductive particle and method for producing the same, and conductive resin composition
JP6476480B1 (en) * 2018-03-30 2019-03-06 エーアイシルク株式会社 Conductive polymer conductor and manufacturing method thereof
JP6653854B1 (en) * 2019-07-10 2020-02-26 宮川ローラー株式会社 Conductive rubber

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0874193A (en) * 1994-09-05 1996-03-19 Achilles Corp Electrically conductive paper
JP2009102770A (en) * 2007-10-23 2009-05-14 Kurabo Ind Ltd Natural fiber sliver subjected to electroconductive finishing, method for producing the same, electroconductive spun yarn obtained from the sliver, and fiber product using the electroconductive spun yarn
WO2013031846A1 (en) * 2011-08-31 2013-03-07 ナガセケムテックス株式会社 Method for producing plated article, and plated article

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0618083B2 (en) * 1985-11-05 1994-03-09 アキレス株式会社 Method for producing conductive composite
JP3284705B2 (en) * 1992-10-23 2002-05-20 アキレス株式会社 Flock for electrostatic flocking
US7510745B2 (en) * 2005-09-09 2009-03-31 The Hong Kong Polytechnic University Methods for coating conducting polymer
JP4564586B1 (en) * 2010-01-26 2010-10-20 有限会社アイレックス Radiation sheet and method for producing the radiation sheet
JP5666224B2 (en) * 2010-09-16 2015-02-12 テイカ株式会社 Conductive yarn and manufacturing method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0874193A (en) * 1994-09-05 1996-03-19 Achilles Corp Electrically conductive paper
JP2009102770A (en) * 2007-10-23 2009-05-14 Kurabo Ind Ltd Natural fiber sliver subjected to electroconductive finishing, method for producing the same, electroconductive spun yarn obtained from the sliver, and fiber product using the electroconductive spun yarn
WO2013031846A1 (en) * 2011-08-31 2013-03-07 ナガセケムテックス株式会社 Method for producing plated article, and plated article

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016043194A1 (en) * 2014-09-16 2016-03-24 有限会社アイレックス Conductive structure and conductive fused body, methods for manufacturing conductive structure and conductive fused body, and conductive plastic material

Also Published As

Publication number Publication date
WO2014163005A1 (en) 2014-10-09
JP2014201843A (en) 2014-10-27
TW201443919A (en) 2014-11-16

Similar Documents

Publication Publication Date Title
JP5315472B1 (en) Manufacturing method of conductive material, manufacturing method of conductive composite, conductive material, conductive composite, conductive plastic material, and conductive cloth
Gopakumar et al. Cellulose nanofiber-based polyaniline flexible papers as sustainable microwave absorbers in the X-band
Ji et al. Lightweight and flexible electrospun polymer nanofiber/metal nanoparticle hybrid membrane for high-performance electromagnetic interference shielding
Ruan et al. High-conductivity nickel shells encapsulated wood-derived porous carbon for improved electromagnetic interference shielding
Zhang et al. Tunable electromagnetic interference shielding ability in a one-dimensional bagasse fiber/polyaniline heterostructure
Li et al. Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites
Arthisree et al. Optically active polymer nanocomposite composed of polyaniline, polyacrylonitrile and green-synthesized graphene quantum dot for supercapacitor application
Wang et al. Surface silverized meta-aramid fibers prepared by bio-inspired poly (dopamine) functionalization
Du et al. Ultrahigh‐Strength Ultrahigh Molecular Weight Polyethylene (UHMWPE)‐Based Fiber Electrode for High Performance Flexible Supercapacitors
Shao et al. Fabrication of polyaniline/graphene/polyester textile electrode materials for flexible supercapacitors with high capacitance and cycling stability
Zou et al. The optimization of nanocomposite coating with polyaniline coated carbon nanotubes on fabrics for exceptional electromagnetic interference shielding
KR101009442B1 (en) Method for fabrication of conductive film using conductive frame and conductive film
Liu et al. Absorption and reflection contributions to the high performance of electromagnetic waves shielding materials fabricated by compositing leather matrix with metal nanoparticles
JPWO2015045418A1 (en) Carbon nanotube and dispersion thereof, and carbon nanotube-containing film and composite material
Schrage et al. Flexible and transparent SWCNT electrodes for alternating current electroluminescence devices
CN102810406A (en) Super capacitor taking polyaniline/aligned carbon nanotube compound film as electrode and manufacturing method thereof
Yang et al. Superhydrophobic and corrosion-resistant electrospun hybrid membrane for high-efficiency electromagnetic interference shielding
Ding et al. Layered cotton/rGO/NiWP fabric prepared by electroless plating for excellent electromagnetic shielding performance
CN104004355A (en) Thermoplastic resin composition with EMI shielding properties
CN105658043A (en) Electromagnetic shielding film material and preparation method thereof
He et al. Surface functionalization of Ag/polypyrrole-coated cotton fabric by in situ polymerization and magnetron sputtering
Maiti et al. Flexible non-metallic electro-conductive textiles
Liu et al. Synchronous dual roles of copper sulfide on the insulating PET fabric for high-performance portable flexible supercapacitors
Jia et al. Carboxylate-decorated multiwalled carbon nanotube/aramid nanofiber film for tunable electromagnetic interference shielding performance and rapid electric heating capacity
Shen et al. Nanopaper Electronics

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130708

R150 Certificate of patent or registration of utility model

Ref document number: 5315472

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees