KR20060066018A - 직교 주파수 분할 다중화(ofdm) 수신기에서 인접 채널간섭 감소를 위한 방법 및 장치 - Google Patents

직교 주파수 분할 다중화(ofdm) 수신기에서 인접 채널간섭 감소를 위한 방법 및 장치 Download PDF

Info

Publication number
KR20060066018A
KR20060066018A KR1020047021100A KR20047021100A KR20060066018A KR 20060066018 A KR20060066018 A KR 20060066018A KR 1020047021100 A KR1020047021100 A KR 1020047021100A KR 20047021100 A KR20047021100 A KR 20047021100A KR 20060066018 A KR20060066018 A KR 20060066018A
Authority
KR
South Korea
Prior art keywords
input signal
ofdm
receiver
adjacent channel
fft
Prior art date
Application number
KR1020047021100A
Other languages
English (en)
Other versions
KR100938602B1 (ko
Inventor
막심 비. 벨로트세르코프스키
주니어 루이스 로버트 리트윈
Original Assignee
톰슨 라이센싱
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 톰슨 라이센싱 filed Critical 톰슨 라이센싱
Publication of KR20060066018A publication Critical patent/KR20060066018A/ko
Application granted granted Critical
Publication of KR100938602B1 publication Critical patent/KR100938602B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03159Arrangements for removing intersymbol interference operating in the frequency domain
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/0335Arrangements for removing intersymbol interference characterised by the type of transmission
    • H04L2025/03375Passband transmission
    • H04L2025/03414Multicarrier
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/03433Arrangements for removing intersymbol interference characterised by equaliser structure
    • H04L2025/03439Fixed structures
    • H04L2025/03522Frequency domain
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/03592Adaptation methods
    • H04L2025/03598Algorithms
    • H04L2025/03611Iterative algorithms
    • H04L2025/03636Algorithms using least mean square [LMS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2657Carrier synchronisation
    • H04L27/266Fine or fractional frequency offset determination and synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2668Details of algorithms
    • H04L27/2673Details of algorithms characterised by synchronisation parameters
    • H04L27/2676Blind, i.e. without using known symbols
    • H04L27/2679Decision-aided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2689Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation
    • H04L27/2691Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation involving interference determination or cancellation

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Noise Elimination (AREA)

Abstract

개시된 실시예들은 OFDM 수신기에서 인접 채널 간섭을 감소시키는 것에 관한 것이다. 에러 측정기준이 모니터링되며, 원하는 채널의 반송파 주파수는 이 에러 측정기준에 반응하여 느리게 조정된다. 이런 방식으로, 인접 간섭 채널에 의해 오염된 원하는 신호를 포함하는 수신된 OFDM 신호는, 인접 채널의 제로 교차점들이 FFT 빈들에 대해 정렬될 때까지 이동될 수 있다. 이 경우 멀티-탭 등화기는, 원하는 채널 내의 주파수 오프셋으로부터 초래된 의도적으로 추가된 인터빈 간섭(inter-bin interference)을 제거하기 위하여 사용될 수 있다.

Description

직교 주파수 분할 다중화(OFDM) 수신기에서 인접 채널 간섭 감소를 위한 방법 및 장치{METHOD AND APPARATUS FOR ADJACENT CHANNEL INTERFERENCE REDUCTION IN AN ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING(OFDM) RECEIVER}
본 발명은 직교 주파수 분할 다중화된(OFDM) 신호의 프로세싱에 관한 것이다.
본 절은 아래에 기술된 및/또는 청구된 본 발명의 여러 양상들에 관련될 수 있는 기술 분야의 여러 양상들에 대해 독자들에게 소개하려는 것이다. 본 논의는 본 발명의 다양한 양상들을 더 잘 이해하기 쉽도록 하기 위하여 배경 정보를 독자들에게 제공하는데 도움이 될 것이라 믿어진다. 따라서, 이들 진술들은 이런 면에서 해석될 것이지 종래 기술의 승인으로서 해석될 것이 아니라는 것이 이해되어야 한다.
무선랜(WLAN: wireless LAN)은 빌딩 또는 캠퍼스 내의 유선랜에 대한 대안 또는 확장으로서 구현되는 유연한 데이터 통신 시스템이다. 전자기파를 사용하여, WLAN은 공중을 통해 데이터를 송신 및 수신하여, 유선 연결에 대한 필요를 최소화시킨다. 따라서, WLAN은 데이터 연결성과 사용자 이동성을 결합하고, 단순화된 구성을 통해, 이동랜(movable LAN)을 가능하게 한다. 실시간 정보를 송신 및 수신하 기 위하여 휴대용 단말(예컨대, 노트북 컴퓨터)을 사용함으로써 생산성이 증가되는 몇몇 산업분야에는, 디지털 홈 네트워킹, 의료업, 소매업, 제조업, 및 창고업 분야가 있다.
WLAN의 제조자들은 WLAN을 설계할 때 선택할 일정한 범위의 송신 기술을 가진다. 몇가지 예시적인 기술에는, 다중반송파 시스템, 확산 스펙트럼 시스템, 협대역 시스템, 및 적외선 시스템이 있다. 비록 각각의 시스템이 각자 나름의 장점과 단점을 가지지만, 한가지 특정 타입의 다중반송파 송신 시스템, 즉 직교 주파수 분할 다중화(OFDM: orthogonal frequency division multiplexing)는 WLAN 통신에 특별히 유용한 것으로 증명되어 있다.
OFDM은 채널을 통해 효율적으로 데이터를 송신하는데 있어 면역성이 강한(robust) 기술이다. 이 기술은 데이터를 송신하기 위하여 하나의 채널 대역폭 내에서 복수의 서브-반송파 주파수(서브-반송파)를 사용한다. 이들 서브-반송파는, 서브-반송파 주파수 스펙트럼을 분리하고 격리하고 그럼으로써 반송파-간 간섭(ICI: inter-carrier interference)을 회피하기 위하여 채널 대역폭의 부분들을 낭비할 수 있는 종래의 주파수 분할 다중화(FDM)에 비해, 최적의 대역폭 효율을 위해 배열된다. 대조적으로, 비록 OFDM 서브-반송파들의 주파수 스펙트럼이 OFDM 채널 대역폭 안에서 상당히 중첩되기는 하지만, 그럼에도 불구하고 OFDM은 각각의 서브-반송파 상으로 변조되어 있는 정보를 분해하고 복구할 수 있게 한다.
OFDM 신호들에 의한 하나의 채널을 통한 데이터 송신은 또한, 더 종래의 송신 기술들보다 뛰어난 몇가지 다른 장점들도 제공한다. 이들 장점들 중 몇가지에 는, 다중경로 지연 확산 및 주파수 선택 페이딩(fading)에 대한 내성, 유효한 스펙트럼 용도, 단순화된 서브-채널 등화, 및 양호한 간섭성이 있다.
이들 장점들에도 불구하고, 여러 사용자들로부터의 여러 신호들을 프로세싱하도록 적응된 시스템에서의 OFDM 데이터 전송에는 몇가지 문제점이 존재한다. 이러한 문제점의 한가지 예는 인접 채널 간섭(종종 채널간 간섭이라고 지칭되는)이다. 인접 채널 간섭에 대한 주요 원인들 중 하나는, 모든 OFDM 수신기에서 일반적인 신호의 고속 푸리에 변환(FFT: Fast Fourier Transform) 프로세싱의 고유한 일부분으로서 발생하는 윈도우화(windowing)이다. FFT 알고리즘을 사용하여 신호를 프로세싱하는데 있어서, 각각의 OFDM 서브-대역의 톤(tone)은, 주파수 영역에서 주기적으로 이격되어 있는 제로 교차점(예컨대, 사각 윈도우의 경우 sinc 함수)을 가지고 여러 FFT 빈(bin)들에 걸쳐 확산될 수 있다. 이러한 주파수 영역 구조는, 제로 교차점들의 정렬 때문에 인접하는 채널들이 인접 채널 간섭없이 샘플링율의 배수에서 배치될 수 있도록 한다. 따라서, 심지어 원하는 채널에 대한 주파수 범위 안에서 임의의 인접하는 채널로부터의 에너지가 비-제로(non-zero)일지라도, 두 신호의 직교 성질 때문에 인접 채널 간섭이 존재하지 않는다.
그러나 반송파 주파수 오프셋이 존재할 때, 인접하는 채널 신호들 간의 직교성은 유지되지 않고, 인접 채널 간섭이 발생한다. OFDM 수신기에서 인접 채널 간섭을 감소시키는 방법이 바람직하다.
개시된 실시예들은 OFDM 수신기에서 인접 채널 간섭을 감소시키는 것에 관한 것이다. 에러 측정기준(metric: 메트릭)이 모니터링되며, 원하는 채널의 반송파 주파수는 이 에러 측정기준에 반응하여 느리게 조정된다. 이런 방식으로, 인접 간섭 채널에 의해 오염된 원하는 신호를 포함하는 수신된 OFDM 신호는, 인접 채널의 제로 교차점들이 FFT 빈들에 대해 정렬될 때까지 이동될 수 있다. 이 경우 멀티-탭 등화기는, 원하는 채널 내의 주파수 오프셋으로부터 기인하는 의도적으로 추가된 인터빈 간섭(inter-bin interference)을 제거하기 위하여 사용될 수 있다.
도 1은 예시적인 OFDM 수신기의 블록도.
도 2는 OFDM 심볼 프레임에서의 트레이닝 시퀀스, 사용자 데이터, 및 파일롯 신호의 배치를 예시하는 도면.
도 3은 본 발명에 따른 인접 채널 간섭을 감소하기 위한 회로의 블록도.
도 4는 본 발명과 관련하여 사용될 수 있는 멀티-탭 등화기의 블록도.
도 5는 본 발명의 예시적인 일 실시예의 동작을 예시하는 프로세스 흐름도.
본 발명의 특징과 장점은, 예시로서 주어지는, 아래의 상세한 설명으로부터 더욱 명확하게 될 것이다.
도 1을 참조하면, 일반적인 OFDM 수신기(10)의 제 1 소자는 RF 수신기(12)이다. RF 수신기(12)의 많은 변형들이 존재하며 해당 기술분야에서 잘 알려져 있으나, 일반적으로, RF 수신기(12)는 안테나(14), 저잡은 증폭기(LNA: low noise amplifier)(16), RF 대역 통과 필터(18), 자동 이득 제어(AGC: automatic gain control) 회로(20), RF 믹서(22), RF 반송파 주파수 국부 발진기(24), 및 IF 대역 통과 필터(26)를 포함한다.
안테나(14)를 통해, RF 수신기(12)는 RF OFDM 변조된 반송파가 채널을 통해 전달된 후 이 반송파에 커플링된다. 그후, RF 수신기(12)는, 이 반송파를 RF 국부 발진기(24)에 의해 생성된 주파수 fcr의 수신기 반송파와 믹싱함으로써, RF OFDM-변조된 반송파를 다운변환하여, 수신된 IF OFDM 신호를 얻는다. 수신기 반송파와 송신기 반송파 사이의 주파수 차이는 반송파 주파수 오프셋, 즉
Figure 112004061197248-PCT00001
fc에 기여한다.
이 수신된 IF OFDM 신호는 믹서(28)와 믹서(30)에 커플링되어, 각각 동위상 IF 신호와 90°위상-이동된 (직교) IF 신호에 믹싱되고, 각각 동위상 OFDM 신호와 직교 OFDM 신호를 생성한다. 믹서(28)에 공급되는 동위상 IF 신호는 IF 국부 발진기(32)에 의해 생성된다. 믹서(30)에 공급되는 90°위상-이동된 IF 신호는 IF 국부 발진기(32)의 동위상 IF 신호로부터, 상기 동위상 IF 신호를 믹서(30)에 제공하기 전에 90°위상 편이기(34)에 통과시킴으로써, 유도된다.
그후 동위상 OFDM 신호 및 직교 OFDM 신호는 각각 아날로그-디지털 변환기(ADC)(36 및 38)에 전달되고, 여기서 상기 신호들은 클록 회로(40)에 의해 결정되는 샘플링율 fck_r로 디지털화된다. ADC(36, 38)는 각각 동위상 이산-시간 OFDM 신호 및 직교 위상 이산-시간 OFDM 신호를 형성하는 디지털 샘플들을 생성한다. 수신기의 샘플링율과 송신기의 샘플링율 사이의 차이는 샘플링율 오프셋, 즉
Figure 112004061197248-PCT00002
fck = fck_r - fck_t이다.
그후 ADC(36, 38)로부터의 필터링되지 않은 동위상 및 직교 이산-시간 OFDM 신호는 각각 디지털 저역-통과 필터(42, 44)를 통과한다. 저역 통과 디지털 필터(42, 44)의 출력은 각각 상기 수신된 OFDM 신호의 필터링된 동위상 샘플 및 직교 샘플이다. 이런 방식으로, 상기 수신된 OFDM 신호는 각각, 복소수-값 OFDM 신호의 실수-값 성분 및 허수-값 성분을 나타내는 동위상(qi) 샘플 및 직교위상(pi) 샘플로 변환된다(ri = qi + jpi). 그후, 상기 수신된 OFDM 신호의 동위상 및 직교위상(실수-값 및 허수-값) 샘플은 FFT(46)로 전달된다. 수신기(10)의 몇몇 종래 구현예에서는, 아날로그-디지털 변환은 IF 믹싱 프로세스 이전에 행해진다는 점을 주목하라. 이러한 구현예에 있어서, 믹싱 프로세스는 디지털 믹서와 디지털 주파수 합성기의 사용을 수반한다. 또한 수신기(10)의 많은 종래의 구현예에서는, 디지털-아날로그 변환이 필터링 이후에 수행된다는 점도 주목하라.
FFT(46)는 각각의 OFDM 심볼 간격 동안 서브-반송파를 변조하는데 사용되었던 주파수-영역 서브-심볼의 시퀀스들을 복구하기 위하여 상기 수신된 OFDM 신호의 고속 푸리에 변환(FFT)을 수행한다. 그후 FFT(46)는 이들 서브-심볼의 시퀀스를 디코더(48)에 전달한다.
디코더(48)는 FFT(46)으로부터 자신에게 전달된 주파수 영역 서브-심볼의 시퀀스로부터 송신된 데이터 비트를 복구한다. 이러한 복구는, 이상적으로는 OFDM 송신기로 공급되었던 데이터 비트 스트림과 일치하는 데이터 비트 스트림을 얻기 위 하여 이 주파수-영역 서브-심불들을 디코딩함으로써 수행된다. 이러한 디코딩 프로세스는, 예컨대, 블록 및/또는 콘볼루션 인코딩된 서브-심볼로부터 데이터를 복구하기 위해, 소프트 비터비 디코딩 및/또는 리드-솔로몬 디코딩을 포함할 수 있다.
도 2를 참조하면, 본 발명의 예시적인 OFDM 심볼 프레임(50)이 도시된다. 심볼 프레임(50)은, OFDM 심볼 내의 각각의 서브-반송파에 대해서 알려진 송신 값들을 포함하는 하나의 트레이닝 시퀀스 또는 심볼(52)과, 미리결정된 갯수의 사이클릭 프리픽스(54) 및 사용자 데이터(56) 쌍들을 포함한다. 예컨대, 본 명세서에 참고문헌으로서 포함되어 있는, 제안된 ETSI-BRAN HIPERLAN/2 (유럽) 및 IEEE 802.11a (미국) 무선랜 표준은, 64개의 알려진 값 또는 서브-심볼(즉 52개의 비-제로 값 및 12개의 제로 값)을 하나의 트레이닝 시퀀스(예컨대, 상기 제안된 ETSI 표준의 "트레이닝 심볼 C" 및 상기 제안된 IEEE 표준의 "긴 OFDM 트레이닝 심볼" )의 선택된 트레이닝 심볼들에게 할당한다. 사용자 데이터(56)는 미리결정된 갯수의 파일롯(58)을 가지며, 또한 미리 결정된 서브-반송파 상에 내장된, 알려진 송신 값들을 포함한다. 예컨대, 상기 제안된 ETSI 표준 및 IEEE 표준은 빈 또는 서브-반송파 ±7 및 ±21에 배치된 4개의 파일롯을 가진다. 비록 본 발명이 상기 제안된 ETSI-BRAN HIPERLAN/2 (유럽) 및 IEEE 802.11a (미국) 무선랜 표준에 따르는 수신기에서의 동작으로서 기술되었으나, 다른 OFDM 시스템에서 본 발명의 교시를 구현하는 것도 당업자의 지식에 속하는 것으로서 생각된다.
도 3은 본 발명에 따른 인접 채널 간섭을 감소시키기 위한 회로의 블록도이다. 인접 채널 간섭 감소 회로는 전체적으로 참조 번호 60으로 참조되어 있다. 입 력 신호(62)는 FFT 모듈(46)에 의해 프로세싱되기 전에 반송파 주파수 조정 모듈(64)에 전달된다. 아래에서 설명되는 바와 같이, 반송파 주파수 조정 모듈(64)은 에러 측정기준 계산 모듈(72)로부터의 피드백에 기초하여 주파수 조정값을 생성한다.
입력 신호(62)는, 인접 채널 간섭 신호의 말단(tail)에 의해 오염되었던 수신된 OFDM 신호를 포함한다. 에러 측정기준 계산 모듈(72)의 출력에 반응하여, 반송파 주파수 조정 모듈(64)은 주파수 오프셋을 변화시킨다. 주파수 오프셋에서의 이러한 변화는 입력 신호(62) 내로 인터빈 간섭을 추가하는 효과를 가진다. 주파수 오프셋의 조정 속도는, 연관된 등화기 수렴 시간을 제공하기 위하여 연관된 등화기(도 4를 참조하여 아래에서 기술되는)의 적응 속도보다 충분히 더 느려야만 한다. 주파수 조정은 열린 루프 또는 닫힌 루프 방식 중 어느 하나로 행해질 수 있다.
반송파 조정 주파수 모듈(64)의 출력은 FFT 모듈(46)에 의해 프로세싱된다. FFT 모듈(46)의 출력은 등화기 모듈(68)로 전달된다. 등화기 모듈(68)의 출력(70)은 추가 프로세싱을 위해 이용가능하다. 또한, 등화기 모듈(68)의 출력(70)은 에러 측정기준 계산 모듈(72)로 전달되며, 차례로 상기 모듈(72)의 출력은 반송파 조정 주파수 모듈(64)로 다시 전달된다.
에러 측정기준 계산 모듈(72)에 의해 생성된 에러 측정기준은 FFT 모듈(46)의 등화된 출력에 기초하여 계산된다. 에러 측정기준은 입력 신호(62) 내의 인접 채널 간섭에 비례하며, 따라서 에러 측정기준의 값은 인접 채널 간섭이 그 최소값일 때 최소화된다. 사용될 수 있는 에러 측정기준의 일 예는, 안정 상태 결정-지향 최소 제곱 평균(LMS: least mean square) 에러의 표준적인 편차이다. 이 LMS 에러는 등화기 출력 샘플과 대응하는 강한 결정(hard decision)(심볼 결정 디바이스의 출력) 사이의 차이로서 정의된다. 또한 트레이닝된 LMS 에러는, 데이터 스트림 안에 삽입된 파일롯 서브-반송파 또는 서브-대역을 가지는 시스템에도 사용될 수 있다. 다른 에러 측정기준들도, 해당 에러 측정기준이 입력 신호(62) 내의 인접 채널 간섭의 정도에 비례한다는 조건으로, 사용될 수 있다.
원하는 채널 옆 중 어느 하나에 채널이 존재하는 시스템에서, 인접 채널 간섭의 제거는 그 어느 하나의 채널에 대해 수행될 수 있다. 만약 두 개의 인접 채널이 존재한다면, 인접 채널 간섭은 여러 인접 채널들 중 더 강한 채널에 대해서 최소화될 수 있다.
도 4는 본 발명에 관련하여 사용될 수 있는 멀티-탭 등화기의 블록도이다. 등화기 모듈(68)은 반송파 주파수 조정 모듈(64)에 의해 추가되었던 인터빈 간섭을 제거한다. 인터빈 간섭의 제거에 따라 상기 신호와 연관된 인접 채널 간섭이 감소된다. FFT 모듈(46)의 출력은 3개의 서브-대역, 서브-대역 n, 서브-대역 n-1, 및 서브-대역 n+1로 분할된다. 서브-대역의 수는 주어진 애플리케이션의 동작 특성 때문에 변할 수 있다. FFT 모듈(46)의 출력이 분할되어질 서브-대역의 정확한 수가 본 발명의 중요한 양상은 아니다.
3개의 서브-대역 n, n-1, n+1 각각은 별개의 배율기 회로로 전달되며, 이 배율기 회로에서 각각의 서브 대역은 대응하는 등화기 계수에 의해 배증된다. 등화기를 위한 계수는 알려진 반송파 주파수 오프셋에 기초하여 선택될 수 있다. 구체적 인 계수 결정 방법이 본 발명의 중요한 양상은 아니다. 서브-대역 n-1, n, n+1은 각각 배율기(76, 78, 80)으로 전달된다. 서브대역 값을 획득하는 한가지 방법은, 점선(63)(도 3 참조)으로 표시된 바와 같이, 입력 신호(62)로부터 서브대역 값을 유도하는 것일 수 있다.
배율기(76, 78, 80)의 출력은 합산 회로(82)에 전달되며, 이 합산 회로(82)는 서브-대역 n에 대한 등화된 출력(84)을 출력한다. 배율기(76, 78, 80)와 합산 회로(82)는 등화기 모듈(68)을 구성한다.
위에서 언급된 바와 같이, 멀티-탭 등화기(68)는 반송파 주파수 조정 모듈(64)로부터의 반송파 주파수 오프셋에 의해 추가되는 인터빈 간섭을 소멸시킨다. 비록 반송파 주파수 조정 모듈에 의해 제공된 주파수 오프셋의 의도적인 추가가 인접 채널의 간섭을 감소시킬 수 있다고 하더라도, 이 오프셋은 또한, 원하는 채널의 서브-대역들이 더 이상 FFT 빈들과 정렬되지 않기 때문에, 입력 신호 안에 원하지 않는 인터빈 간섭을 추가시킬 수 있다. 멀티-탭 등화기(68)는 이러한 인터빈 간섭을 제거함으로서 인접 채널 간섭의 감소가 성취되도록 한다.
도 5는 본 발명의 예시적인 일 실시예의 동작을 도시하는 프로세스 흐름도이다. 이 프로세스는 전체적으로 참조 번호 86으로 참조되어 있다. 당업자라면 도 5에 도시된 기능과 동작이 회로(하드웨어), 소프트웨어, 또는 하드웨어와 소프트웨어의 조합을 사용하여 달성될 수 있으리라는 것을 이해할 것이다.
단계(88)에서, 프로세스가 시작된다. 단계(90)에서, 반송파 주파수 조정이 에러 측정기준에 기초하여 수행된다. 에러 측정기준의 계산은 도 3을 참조하여 위 에서 기술된 바와 같이 수행될 수 있다. 에러 측정기준 계산 모듈의 출력에 기초하여 변화되었던 주파수 오프셋에 의해 입력 신호를 조정한 후, 단계(92)에서 신호의 FFT가 취해진다.
FFT 동작에 의해 초래된 신호는, 단계(94)에서, 도 4를 참조하여 기술된 바와 같은 멀티-탭 등화기를 사용하여 등화된다. 이렇게 하여, 입력 신호(62)는 반송파 주파수 조정 모듈(64)에 의해 인접 채널 간섭이 감소되도록 프로세싱된다. 자기-유도된 인터빈 간섭은 등화기 모듈(68)에 의해 제거된다. 단계(96)에서 프로세스가 종료된다.
비록 본 발명이 여러가지 수정과 대안적인 형태를 용인할 수 있기는 하지만, 구체적인 실시예들이 도면에서 예시적으로 도시되었고 본 명세서에서 상세하게 기술되었다. 그러나, 본 발명이 개시된 구체적인 형태로 국한되는 것으로 의도되지 않는다는 점이 이해되어야 할 것이다. 오히려 본 발명은 아래에 첨부된 청구범위에 의해 한정되는 본 발명의 정신 및 범위 안에 포함되는 모든 수정과 등가물 및 대안들을 포괄하는 것이다.
본 발명은 직교 주파수 분할 다중화된 신호의 프로세싱 등에 이용할 수 있다.

Claims (20)

  1. 복수의 채널을 수신하도록 적응된 수신기에서 인접 채널 간섭을 감소시키기 위한 방법으로서, 상기 복수의 채널 각각은 입력 신호를 수신하도록 적응되며, 상기 방법은:
    에러 측정기준(error metric)을 생성시키는 작용과;
    상기 에러 측정기준에 반응하여 상기 입력 신호들 중 하나에 인터빈 간섭(interbin interference)을 추가시킴에 의해 조정된 입력 신호를 생성시키는 작용(90)과;
    상기 조정된 입력 신호에 대해 고속 푸리에 변환(FFT: Fast Fourier Transform)을 수행하여 FFT-변환된 조정된 입력 신호를 생성시키는 작용(92); 및
    상기 FFT-변환된 조정된 입력 신호로부터 상기 인터빈 간섭을 소멸시키는 작용(94)을
    포함하는, 복수의 채널을 수신하도록 적응된 수신기에서 인접 채널 간섭을 감소시키기 위한 방법.
  2. 제 1 항에 있어서, 상기 조정된 입력 신호를 생성시키는 작용(90)은 상기 입력 신호에 대해 반송파 주파수 조정을 수행하는 작용을 포함하는, 복수의 채널을 수신하도록 적응된 수신기에서 인접 채널 간섭을 감소시키기 위한 방법.
  3. 제 1 항에 있어서, 상기 인터빈 간섭을 소멸시키는 작용(94)은 상기 FFT-변환된 조정된 입력 신호를 등화시키는 작용을 포함하는, 복수의 채널을 수신하도록 적응된 수신기에서 인접 채널 간섭을 감소시키기 위한 방법.
  4. 제 3 항에 있어서, 상기 FFT-변환된 조정된 입력 신호를 등화시키는 작용은 멀티-탭 등화기에 의해 수행되는, 복수의 채널을 수신하도록 적응된 수신기에서 인접 채널 간섭을 감소시키기 위한 방법.
  5. 제 1 항에 있어서, 상기 에러 측정기준은 상기 입력 신호 내의 인접 채널 간섭의 정도에 비례하는, 복수의 채널을 수신하도록 적응된 수신기에서 인접 채널 간섭을 감소시키기 위한 방법.
  6. 제 5 항에 있어서, 상기 에러 측정기준은 결정-지향 최소 제곱 평균(LMS: least mean square) 에러의 표준 편차로부터 유도되는, 복수의 채널을 수신하도록 적응된 수신기에서 인접 채널 간섭을 감소시키기 위한 방법.
  7. 제 1 항에 있어서, 상기 입력 신호는 직교 주파수 분할 다중화(OFDM: Orthogonal Frequency Division Multiplexed) 신호인, 복수의 채널을 수신하도록 적응된 수신기에서 인접 채널 간섭을 감소시키기 위한 방법.
  8. 제 1 항에 있어서, 상기 언급된 작용들은 상기 언급된 순서로 수행되는, 복수의 채널을 수신하도록 적응된 수신기에서 인접 채널 간섭을 감소시키기 위한 방법.
  9. 복수의 채널을 수신하도록 적응된 수신기에서 인접 채널 간섭을 감소시키는 디바이스로서, 상기 복수의 채널 각각은 입력 신호를 수신하도록 적응되며, 상기 디바이스는:
    에러 측정기준을 생성시키는 회로(72)와;
    상기 에러 측정기준에 반응하여 상기 입력 신호들 중 하나에 인터빈 간섭을 추가시킴에 의해 조정된 입력 신호를 생성시키는 회로(64)와;
    상기 조정된 입력 신호에 대해 고속 푸리에 변환(FFT)을 수행하여 FFT-변환된 조정된 입력 신호를 생성시키는 회로(46); 및
    상기 FFT-변환된 조정된 입력 신호로부터 상기 인터빈 간섭을 소멸시키는 회로(68)를
    포함하는, 복수의 채널을 수신하도록 적응된 수신기에서 인접 채널 간섭을 감소시키는 디바이스.
  10. 제 9 항에 있어서, 상기 조정된 입력 신호를 생성시키는 회로(64)는 상기 입력 신호에 대해 반송파 주파수 조정을 수행하는 회로를 포함하는, 복수의 채널을 수신하도록 적응된 수신기에서 인접 채널 간섭을 감소시키는 디바이스.
  11. 제 9 항에 있어서, 상기 인터빈 간섭을 소멸시키는 회로(68)는 상기 FFT-변환된 조정된 입력 신호를 등화시키는 회로(76, 78, 80, 82)를 포함하는, 복수의 채널을 수신하도록 적응된 수신기에서 인접 채널 간섭을 감소시키는 디바이스.
  12. 제 11 항에 있어서, 상기 FFT-변환된 조정된 입력 신호를 등화시키는 회로(76, 78, 80, 82)는 멀티-탭 등화기를 포함하는, 복수의 채널을 수신하도록 적응된 수신기에서 인접 채널 간섭을 감소시키는 디바이스.
  13. 제 9 항에 있어서, 상기 에러 측정기준은 상기 입력 신호 내의 인접 채널 간섭의 정도에 비례하는, 복수의 채널을 수신하도록 적응된 수신기에서 인접 채널 간섭을 감소시키는 디바이스.
  14. 제 13 항에 있어서, 상기 에러 측정기준은 결정-지향 최소 제곱 평균(LMS) 에러의 표준 편차로부터 유도되는, 복수의 채널을 수신하도록 적응된 수신기에서 인접 채널 간섭을 감소시키는 디바이스.
  15. 인접 채널 간섭을 감소시키는 직교 주파수 분할 다중화(OFDM) 수신기로서, 상기 OFDM 수신기는 복수의 채널을 수신하도록 적응되며, 상기 복수의 채널 각각은 OFDM 입력 신호를 수신하도록 적응되며, 상기 OFDM 수신기는:
    복수의 채널 상에서 OFDM 입력 신호를 수신하도록 적응된 회로(12)와;
    에러 측정기준을 생성시키는 회로(72)와;
    상기 에러 측정기준에 반응하여 상기 OFDM 입력 신호들 중 하나에 인터빈 간섭을 추가시킴에 의해 조정된 OFDM 입력 신호를 생성시키는 회로(64)와;
    상기 조정된 OFDM 입력 신호에 대해 고속 푸리에 변환(FFT)을 수행하여 FFT-변환된 조정된 OFDM 입력 신호를 생성시키는 회로(46); 및
    상기 FFT-변환된 조정된 OFDM 입력 신호로부터 상기 인터빈 간섭을 소멸시키는 회로(68)를
    포함하는, 인접 채널 간섭을 감소시키는 직교 주파수 분할 다중화(OFDM) 수신기.
  16. 제 15 항에 있어서, 상기 조정된 입력 신호를 생성시키는 회로(64)는 상기 입력 신호에 대해 반송파 주파수 조정을 수행하는 회로를 포함하는, 인접 채널 간섭을 감소시키는 직교 주파수 분할 다중화(OFDM) 수신기.
  17. 제 15 항에 있어서, 상기 인터빈 간섭을 소멸시키는 회로(68)는 상기 FFT-변환된 조정된 입력 신호를 등화시키는 회로(76, 78, 80, 82)를 포함하는, 인접 채널 간섭을 감소시키는 직교 주파수 분할 다중화(OFDM) 수신기.
  18. 제 17 항에 있어서, 상기 FFT-변환된 조정된 입력 신호를 등화시키는 회로 (76, 78, 80, 82)는 멀티-탭 등화기를 포함하는, 인접 채널 간섭을 감소시키는 직교 주파수 분할 다중화(OFDM) 수신기.
  19. 제 15 항에 있어서, 상기 에러 측정기준은 상기 입력 신호 내의 인접 채널 간섭의 정도에 비례하는, 인접 채널 간섭을 감소시키는 직교 주파수 분할 다중화(OFDM) 수신기.
  20. 제 19 항에 있어서, 상기 에러 측정기준은 결정-지향 최소 제곱 평균(LMS) 에러의 표준 편차로부터 유도되는, 인접 채널 간섭을 감소시키는 직교 주파수 분할 다중화(OFDM) 수신기.
KR1020047021100A 2002-06-27 2003-06-25 직교 주파수 분할 다중화(ofdm) 수신기에서 인접 채널 간섭 감소를 위한 방법 및 장치 KR100938602B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/185,572 US7227835B2 (en) 2002-06-27 2002-06-27 Method and apparatus for adjacent channel interference reduction in an orthogonal frequency division multiplexing (OFDM) receiver
US10/185,572 2002-06-27

Publications (2)

Publication Number Publication Date
KR20060066018A true KR20060066018A (ko) 2006-06-15
KR100938602B1 KR100938602B1 (ko) 2010-01-22

Family

ID=29779669

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020047021100A KR100938602B1 (ko) 2002-06-27 2003-06-25 직교 주파수 분할 다중화(ofdm) 수신기에서 인접 채널 간섭 감소를 위한 방법 및 장치

Country Status (10)

Country Link
US (1) US7227835B2 (ko)
EP (1) EP1527559A4 (ko)
JP (1) JP4459049B2 (ko)
KR (1) KR100938602B1 (ko)
CN (1) CN100384164C (ko)
AU (1) AU2003251608A1 (ko)
BR (1) BR0312008A (ko)
MX (1) MXPA04012759A (ko)
MY (1) MY134326A (ko)
WO (1) WO2004004232A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101023563B1 (ko) * 2009-03-26 2011-03-21 성균관대학교산학협력단 반복되는 훈련 심벌을 이용한 오에프디엠 주파수 옵셋 추정정확도 분석방법

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7039131B2 (en) * 2002-08-02 2006-05-02 Agere Systems Inc. Carrier frequency offset estimation in a wireless communication system
US7002897B2 (en) * 2003-04-28 2006-02-21 Solarflare Communications, Inc. Multiple channel interference cancellation
US8363535B2 (en) * 2003-04-28 2013-01-29 Marvell International Ltd. Frequency domain echo and next cancellation
EP2993851B1 (en) * 2004-06-24 2019-04-24 Apple Inc. Preambles in ofdma system
US7944995B2 (en) * 2005-11-14 2011-05-17 Telefonaktiebolaget Lm Ericsson (Publ) Variable bandwidth receiver
US7808407B2 (en) 2007-06-15 2010-10-05 Solarflare Communications, Inc. Sub-channel distortion mitigation in parallel digital systems
US7948862B2 (en) 2007-09-26 2011-05-24 Solarflare Communications, Inc. Crosstalk cancellation using sliding filters
KR101359628B1 (ko) 2007-10-25 2014-02-06 삼성전자주식회사 인터캐리어 간섭 상쇄 방법, 상기 인터캐리어 간섭 상쇄방법을 이용한 등화방법, 장치, 및 ofdm 수신기
US7970067B1 (en) 2007-10-31 2011-06-28 Samsung Electronics Co., Ltd. OFDM receiver and method for enhancing channel estimation performance in communication environment where high doppler frequency exists
CN102281220B (zh) 2010-06-12 2015-04-29 华为技术有限公司 数据流处理方法、设备及系统
US8532504B2 (en) * 2010-10-28 2013-09-10 Opnext Subsystems, Inc. Coherent optical receiver with adaptive equalizer initialization system
KR20140093099A (ko) * 2013-01-17 2014-07-25 한국전자통신연구원 광망 종단장치 및 광회선단말을 포함하는 직교 주파수 분할 다중접속 수동형 광가입자망
US9049069B2 (en) * 2013-03-21 2015-06-02 Broadcom Corporation Sparse equalizer system
CN103763037B (zh) * 2013-12-17 2017-02-22 记忆科技(深圳)有限公司 一种动态补偿接收器及动态补偿接收方法
US9350483B2 (en) * 2014-01-15 2016-05-24 Qualcomm Incorporated Mitigate adjacent channel interference and non-Wi-Fi interference
SG10201506538RA (en) * 2015-08-19 2017-03-30 Huawei Internat Pte Ltd Method and device for reducing adjacent channel interference in wlan system
KR102548249B1 (ko) 2017-05-15 2023-06-27 삼성전자주식회사 무선 수신기에서 타이밍 동기화를 갖는 캐리어 오프셋을 추정하는 방법 및 장치
TWI670944B (zh) * 2017-08-28 2019-09-01 瑞昱半導體股份有限公司 通訊裝置及通訊方法
US10547489B2 (en) 2018-03-13 2020-01-28 University Of South Florida OFDM reception under high adjacent channel interference while preserving frame structure

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2609228B1 (fr) * 1986-12-24 1989-12-01 France Etat Procede de diffusion numerique dans des canaux de television
KR100186803B1 (ko) * 1990-03-30 1999-05-01 마틴 호워드 스토크스 악영향을 주는 간섭을 개선한 송.수신
KR0153909B1 (ko) * 1995-10-30 1998-11-16 양승택 주파수 이동기를 이용한 의사등간격 다채널 주파수 발생장치
EP0822682A1 (en) * 1996-07-05 1998-02-04 Deutsche Thomson-Brandt Gmbh Method for the frequency correction of multicarrier signals and related apparatus
FI103235B1 (fi) * 1997-06-26 1999-05-14 Nokia Telecommunications Oy Häiriönpoistomenetelmä OFDM-radiovastaanottimessa
US6445693B1 (en) * 1999-09-15 2002-09-03 Lucent Technologies Inc. Method and apparatus for estimating power of first adjacent analog FM interference in an in-band on-channel (IBOC) communication system
US6628735B1 (en) 1999-12-22 2003-09-30 Thomson Licensing S.A. Correction of a sampling frequency offset in an orthogonal frequency division multiplexing system
TW583853B (en) * 2002-08-16 2004-04-11 Realtek Semiconductor Corp Compensation method for synchronization of sampling frequency and carrier frequency in multi-carrier communication system and apparatus thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101023563B1 (ko) * 2009-03-26 2011-03-21 성균관대학교산학협력단 반복되는 훈련 심벌을 이용한 오에프디엠 주파수 옵셋 추정정확도 분석방법

Also Published As

Publication number Publication date
MY134326A (en) 2007-12-31
US20040001427A1 (en) 2004-01-01
WO2004004232A1 (en) 2004-01-08
MXPA04012759A (es) 2005-03-23
CN1666466A (zh) 2005-09-07
BR0312008A (pt) 2005-03-29
KR100938602B1 (ko) 2010-01-22
AU2003251608A1 (en) 2004-01-19
EP1527559A4 (en) 2011-03-09
JP2005531259A (ja) 2005-10-13
US7227835B2 (en) 2007-06-05
CN100384164C (zh) 2008-04-23
JP4459049B2 (ja) 2010-04-28
EP1527559A1 (en) 2005-05-04

Similar Documents

Publication Publication Date Title
KR100938602B1 (ko) 직교 주파수 분할 다중화(ofdm) 수신기에서 인접 채널 간섭 감소를 위한 방법 및 장치
EP0929172B1 (en) Multicarrier modulation system, with variable symbol rates
KR100802973B1 (ko) 반송파 주파수 오프셋의 보상을 위한 방법 및 시스템
JP4008035B2 (ja) マルチキャリア伝送システムにおける復調を簡素化するための方法
Dinis et al. A multiple access scheme for the uplink of broadband wireless systems
US6628735B1 (en) Correction of a sampling frequency offset in an orthogonal frequency division multiplexing system
US7342974B2 (en) Channel estimation in OFDM systems
US7457366B2 (en) System and method for adaptive phase compensation of OFDM signals
KR20020011096A (ko) 직교 주파수 분할 다중화된 신호를 처리하기 위한 방법 및시스템
KR101468514B1 (ko) 통신 시스템에서의 잔류 주파수 에러를 추정하는 방법 및 장치
US20080118012A1 (en) Method and apparatus for interference cancellation in a wireless communication system
US8971463B2 (en) Channel estimation in a communications system
US7697410B2 (en) Centralized buffer architecture for an orthogonal frequency division multiplexing (OFDM) receiver
JP2018007056A (ja) 無線通信システム、無線送信装置および無線受信装置
JP4511536B2 (ja) 適応的直交性訂正のための装置及び方法
US7760616B2 (en) Extracting the phase of an OFDM signal sample
US8068536B2 (en) Orthogonal frequency division multiplexing (OFDM) digital radio frequency (RF) transceiver
KR100881904B1 (ko) Ofdm 신호 샘플의 위상을 추출하는 방법 및 장치
Oswald Digital feedforward sampling frequency synchronization based on new timing error detection for OFDM Systems
Sestok et al. Frequency-Domain ICI Estimation, Shortening, and Cancellation in OFDM Receivers
WO2004014005A1 (en) Extracting the phase of an ofdm signal sample
KR20050053667A (ko) 직접 변환 수신기 및 수신 방법

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121220

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20131219

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20141231

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20151217

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20161220

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20171219

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20190102

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20200107

Year of fee payment: 11