KR20060055910A - Composition of the electrolyte for lead-acid battery - Google Patents

Composition of the electrolyte for lead-acid battery Download PDF

Info

Publication number
KR20060055910A
KR20060055910A KR1020040095099A KR20040095099A KR20060055910A KR 20060055910 A KR20060055910 A KR 20060055910A KR 1020040095099 A KR1020040095099 A KR 1020040095099A KR 20040095099 A KR20040095099 A KR 20040095099A KR 20060055910 A KR20060055910 A KR 20060055910A
Authority
KR
South Korea
Prior art keywords
lead
electrolyte
sulfuric acid
acid battery
weight
Prior art date
Application number
KR1020040095099A
Other languages
Korean (ko)
Other versions
KR100627037B1 (en
Inventor
김광석
남창우
Original Assignee
주식회사 아트라스비엑스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 아트라스비엑스 filed Critical 주식회사 아트라스비엑스
Priority to KR1020040095099A priority Critical patent/KR100627037B1/en
Publication of KR20060055910A publication Critical patent/KR20060055910A/en
Application granted granted Critical
Publication of KR100627037B1 publication Critical patent/KR100627037B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • H01M10/08Selection of materials as electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes
    • H01M2300/0005Acid electrolytes
    • H01M2300/0011Sulfuric acid-based
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

납축전지의 전해액은 물과 황산으로 구성되어 있는 바, 본 발명은 전해액의 구성물질을 물과 황산 외에, 과붕산나트륨(NaBO3)을 첨가하여 구성시킴으로서, 극판의 활물질의 연화와 황산납의 발생을 방지하여 납축전지의 성능과 수명을 향상시킬 수 있게 한 것임.Since the electrolyte of lead acid battery is composed of water and sulfuric acid, the present invention comprises the composition of the electrolyte by adding sodium perborate (NaBO 3 ) in addition to water and sulfuric acid, thereby softening the active material of the plate and generating lead sulfate. To improve the performance and life of lead acid battery.

Description

납축전지의 전해액 조성물{Composition of the Electrolyte for Lead-acid battery} Electrolytic solution composition of lead acid battery {{Composition of the Electrolyte for Lead-acid battery}             

도 1 은 종래품과 본 발명의 물품을 사용한 납축전지의 수명시험 결과인 표 2를 그 이해의 편의를 위하여 도시한 그래프1 is a graph showing Table 2, which is a result of a life test of a lead acid battery using a conventional product and an article of the present invention, for the convenience of understanding thereof.

본 발명은 납축전지의 전해액 조성물에 관한 것이다.The present invention relates to an electrolyte composition of a lead acid battery.

일반적으로 자동차 등에 사용되는 납축전지는 충전과 방전이 가능한 2차 전지이다. 이는 전해액으로서 희황산(H2SO4)이 사용되고, 극판의 활물질로서 양극(+)에 이산화납(PbO2)을, 음극(-)에 해면상(海綿狀)납(Pb)을 도포하여, 외부회로에 연결하면 전기가 흐르면서 그 양극(+)과 음극(-)의 활물질이 황산납(PbSO4)으로 변화(방전)되고, 반대로 외부에서 전류를 흘려주면 그 황산납이 다시 이산화연(+)과 해면상납(-)으로 변화(충전)되는 원리를 이용한 것이다. 이 중 전해액으로 사용되는 희황산은 증류수 62.6중량%와 황산 37.4중량%로 이루어진 것으로서 완전 충전시의 비중은 25℃에서 1.280을 나타낸다.In general, lead acid batteries used in automobiles and the like are secondary batteries capable of charging and discharging. As the electrolyte, dilute sulfuric acid (H 2 SO 4 ) is used, and lead dioxide (PbO 2 ) is coated on the positive electrode (+) and sea sponge (Pb) is applied on the negative electrode (-) as an active material of the electrode plate. When connected to electricity, the active material of the positive electrode (+) and the negative electrode (-) is changed (discharged) into lead sulfate (PbSO 4 ), and if the current is flowed from the outside, the lead sulfate is again converted into lead dioxide (+) and It is based on the principle of changing (charging) sea sponges (-). Among them, the dilute sulfuric acid used as the electrolyte consists of 62.6% by weight of distilled water and 37.4% by weight of sulfuric acid.

종래의 납축전지는 일반적으로 활물질이 도포된 양극판과 음극판이 여러 장 교호로 중첩되고 각 극판 간에 전기적 단락을 방지하기 위하여 비전도성 격리판을 설치하여, 양극판과 음극판 및 격리판이 극판군(群)을 이루도록 구성되어 있다. 극판군은 축전지 용량에 따라 여러 개가 직렬로 접속되어 전조 안에 수용된다.In the conventional lead acid battery, the positive electrode plate and the negative electrode plate coated with the active material are alternately overlapped with each other, and non-conductive separators are installed to prevent electrical short circuits between the positive electrode plates. It is configured to achieve. According to the capacity of a battery, several electrode plates are connected in series to be housed in a roll.

상기 수용된 극판군은 처음으로 전기적인 성질을 가지게 하기 위하여 희황산을 이에 첨가하여 초충전을 한다. 이 때 사용되는 희황산을 1차 전해액이라 부르며, 비중은 25℃에서 1.030에서 1.250까지 다양하게 사용된다. 초충전이 끝난 제품 은 1차 전해액을 따라서 버리고 제품 비중이 25℃에서 1.280이 나올 수 있게 희황산을 다시 투입하게 되는데 이 때의 전해액을 2차 전해액이라 칭하고, 비로소 시장에서 사용될 수 있는 제품으로 만들어지게 된다. The accommodated plate group is supercharged by adding dilute sulfuric acid to it for the first time to have electrical properties. The dilute sulfuric acid used at this time is called a primary electrolyte, and its specific gravity is variously used from 1.030 to 1.250 at 25 ° C. Supercharged products are discarded along the primary electrolyte and dilute sulfuric acid is added again so that the product specific gravity is 1.280 at 25 ° C. At this time, the electrolyte is called secondary electrolyte, and is made into a product that can be used in the market. do.

이와 같은 과정을 거쳐 만들어진 종래의 납축전지는 충, 방전의 횟수가 증가함에 따라 납과 황산의 반응에 의해서 활물질이 기판에서 떨어지게 되며, 황산납을 생성하게 되어 전자이온들의 내부저항을 증가시키게 되므로, 결국 납축전지의 성능을 저하시켜 납축전지의 수명을 통상 1~2년에 불과하게 만들었다.In the conventional lead acid battery made through such a process, as the number of charges and discharges increases, the active material falls off the substrate by the reaction of lead and sulfuric acid, and leads to the formation of lead sulfate, thereby increasing the internal resistance of electron ions. As a result, the performance of lead-acid batteries has been reduced, leading to a lifespan of lead-acid batteries typically only one to two years.

상기 제품의 수명을 단축시키는 주요인을 다시 살펴보면, 기전력을 가지고 있는 양극판과 음극판의 활물질인 납분말(분말크기 10㎛이하)이 황산의 출입으로 황산납을 형성하여 상기 양, 음극판에 피막을 형성하게 되고, 결국 양, 음극판에서 피막이 떨어짐으로써 기전력의 약화 및 전기적인 내부저항의 증가와 더불어 수명을 단축시키게 되는 것이다. Looking at the main factors that shorten the life of the product, the lead powder (electron size of less than 10㎛) active material of the positive electrode plate and the negative electrode plate having electromotive force to form lead sulfate by the access of sulfuric acid to form a film on the positive electrode plate As a result, the film falls off from the positive and negative plates, thereby shortening the electromotive force and increasing the electrical internal resistance and shortening the lifespan.

또한, 전해액은 온도변화에 따라 기전력이 달라지는 결점이 있어, 약 25℃의 상온에서는 화학반응이 100% 진행되어 제품의 영향이 없으나, 기온이 하강함에 따라 화학반응의 속도가 저하됨에 따라 전기발전용량이 감소하게 된다. 이는 동절기에 있어서, 약 -10℃이하의 추운 날씨 지역에서 자동차들이 시동 불량한 예를 보아도 알 수 있다.In addition, the electrolytic solution has a drawback in that the electromotive force varies according to temperature change, and the chemical reaction proceeds 100% at room temperature of about 25 ° C., and thus there is no effect of the product. This decreases. This can be seen in the winter, when cars are poorly started in cold weather areas of about -10 ° C or less.

상기한 종래 기술의 여러 가지 문제점을 감안에서 본 발명이 있기까지 연구 를 거듭한 결과, 종래 전해액의 주성분인 증류수와 황산에 과붕산나트륨을 일정비율 첨가함으로써 기후 및 온도의 변화에 관계없이 전해액의 화학반응을 원활하게 하면서 활물질의 연화 및 황산납의 발생을 억제, 예방하여 충, 방전이 양호하게 이루어지게 하고, 부식성을 억제하는 역할을 하는 전해액 첨가물을 얻을 수 있는 것을 발견하고, 확인시험을 거쳐 본 발명을 완성하기에 이른 것이다.
In view of the above-mentioned problems of the prior art, studies have been conducted until the present invention. As a result, a certain ratio of sodium perborate is added to the distilled water and sulfuric acid, which are the main components of the conventional electrolyte, so that the chemistry of the electrolyte can be changed regardless of climate and temperature. While smoothing the reaction, the softening of the active material and the generation of lead sulfate are suppressed and prevented, so that the charge and discharge can be made satisfactorily, and an electrolyte solution additive can be obtained which serves to suppress the corrosiveness. It is time to complete.

본 발명의 전해액 첨가물은, 증류수와 황산으로 이루어진 일반적인 납축전지의 전해액에 있어서, 증류수 60∼65중량%에 황산(H2SO4)을 35∼40중량% 혼합하고, 여기에 과붕산나트륨(NaBO3)을 0.1~5중량% 첨가하여 구성시킨다. 가장 바람직한 조성비는 증류수 62.6중량%, 황산 36.9% 그리고 과붕산나트륨 첨가량은 0.5중량%이다. The electrolyte solution additive of the present invention is an electrolyte solution of a general lead acid battery composed of distilled water and sulfuric acid, wherein 35 to 40 % by weight of sulfuric acid (H 2 SO 4 ) is mixed with 60 to 65% by weight of distilled water, and sodium perborate (NaBO) is added thereto. 3 ) 0.1 to 5% by weight of the composition is added. The most preferable composition ratio is 62.6% by weight of distilled water, 36.9% of sulfuric acid and 0.5% by weight of sodium perborate.

상기 과붕산나트륨의 구성 성분 중 나트륨(Na)은 강산인 황산과의 일부 중화로 황산의 산화를 억제, 즉 황산납의 생성을 지연하고, 전해액 속에서 황산납 용해도를 증가시킬 뿐만 아니라 극판의 기공도를 증가시켜 전해액의 활동도를 증가시키는 것을 알았다. 그리고, 과붕산(BO3) 성분은 나트륨(Na)성분과 유사하게 황산납을 용해시킬 수 있는 능력을 보유하고 있음을 알았다. 따라서 과붕산나트륨은 납축전지가 납과 황산의 반응에 의해 발생한 황산납의 생성속도의 지연 및 황산납의 용해도를 증가시켜 양·음극판의 산화를 방지 내지 환원시키게 되어 황산납으로의 변질 을 방지하는 안정제 역할을 하게 된다. Among the components of sodium perborate, sodium (Na) inhibits oxidation of sulfuric acid by partial neutralization with sulfuric acid, which is a strong acid, that is, delays the production of lead sulfate, increases lead solubility in the electrolyte solution, as well as porosity of the electrode plate. It was found that increasing the activity of the electrolyte by increasing the. The perboric acid (BO 3 ) component was found to have the ability to dissolve lead sulfate similarly to the sodium (Na) component. Therefore, sodium perborate acts as a stabilizer to prevent lead-acid batteries from being deteriorated to lead sulfate by preventing or reducing the oxidation of the positive and negative electrode plates by increasing the rate of lead sulfate generation and the solubility of lead sulfate caused by the reaction of lead and sulfuric acid. Will be

본 발명의 전해액 첨가물을 사용하여 만든 제품을 초기성능시험과 수명시험을 진행하여 다음과 같은 결과를 얻었다. 다음의 표1 및 표2에서 보는 종래품은 이건 출원인 회사 제품(상품명: AR80)을 말하는 것이며, 실시예1과 실시예2는 본 발명의 상술한 바람직한 조성비의 실시예인 바, 동일 규격의 제품이라 하더라도 예컨대, 부직포로 된 격리판의 밀도 등이 각 제품마다 동일할 수 없어 각 제품이 동일한 작용과 효과를 낼 수 없으므로, 본 발명의 위 바람직한 실시예에 의하여 제조된 제품 2개를 선정하고 이를 각 실시예1 및 실시예2라 칭하여 아래와 같이 시험하고 그 결과를 아래의 표1과 표2로 작성한 것이다. The product made using the electrolyte additive of the present invention was subjected to the initial performance test and life test to obtain the following results. The conventional products shown in the following Tables 1 and 2 refer to the applicant's product (trade name: AR80), and Examples 1 and 2 are examples of the above-mentioned preferred composition ratio of the present invention, even if the products of the same standard For example, the density of the non-woven separator and the like can not be the same for each product, each product can not produce the same action and effect, so select the two products manufactured according to the preferred embodiment of the present invention and each implementation Example 1 and Example 2 were tested as follows, and the results were prepared in Tables 1 and 2 below.

초기성능시험결과Initial performance test result 구분division 요구되는 기준Standard required 종래품Conventional 실시예 1Example 1 실시예 2Example 2 비 고Remarks RCRC 130 분130 minutes 130.44130.44 131.21131.21 130.82130.82 100.3%100.3% 100.9%100.9% 100.6%100.6% CCACCA 7.2V 630A7.2V 630A 7.117.11 7.247.24 7.267.26 621621 634634 636636 기존대비 2.0%상승2.0% higher than before 98.6%98.6% 100.6%100.6% 100.9%100.9% C20C20 75AH75AH 75.5275.52 78.2278.22 78.3778.37 100.7%100.7% 104.3%104.3% 104.5%104.5%

1) 보유용량 (RC : Reserve Capacity)1) Reserve Capacity (RC)

보유용량 RC는 만충전 완료 후 1시간 이상 방치한 다음 25℃에서 25A의 방전전류로 방전종지전압 10.5V 도달 시까지의 방전가능지속시간을 측정하는 것으로, 예를 들면 이는 차량에 있어서 시동이 정지된 상태 등에서 부하를 작동시키는데 어 느 시간까지 최소한의 기능을 발휘할 수 있는가에 대한 척도가 된다.The holding capacity RC is measured for one hour or more after completion of the full charge, and then measures the dischargeable duration of time until the discharge end voltage reaches 10.5V with a discharge current of 25A at 25 ° C. It is a measure of how long the minimum function can be achieved in order to activate the load, for example in a state.

시험결과, 표 1에서 보는 바와 같이, 본 발명에 따른 과붕산나트륨을 첨가한 전해액을 보유하였을 경우 보유용량(RC)은 130~132분으로, 대체로 기존의 전해액을 보유한 제품과 비슷하거나 약간 향상 되었다. 따라서 과붕산나트륨의 첨가에 따른 보유용량에 대한 영향은 없었다.As a result of the test, as shown in Table 1, when the electrolyte solution containing sodium perborate according to the present invention was retained, the retention capacity (RC) was 130 to 132 minutes, which was about the same as or slightly improved with the existing electrolyte solution. . Therefore, there was no effect on the retention capacity by the addition of sodium perborate.

2) 저온시동전류(CCA : Cold Cranking Ampere)2) Cold Cranking Ampere (CCA)

일반적으로 축전지의 급속방전 특성은 -10℃이하에서 급속히 저하되는데, 저온시동전류(CCA)는 저온에서의 자동차 시동능력을 평가하기 위한 고율방전시험으로서, 만충전 완료 후 -18℃에서 630A로 30초 방전시의 전압을 측정한다. 이 시험에 있어서는 30초 때의 전압이 7.2V이상 요구되며, 높을수록 성능이 우수한 것으로 평가된다. 본 발명에서는 (30초 전압ㆇ6-0.2)ㅧ630의 보정식을 사용하여 CCA를 계산하였다.In general, the rapid discharge characteristics of the battery rapidly decrease below -10 ℃. The low temperature starting current (CCA) is a high rate discharge test for evaluating the starting ability of the vehicle at low temperature. Measure the voltage at the time of the second discharge. In this test, the voltage at 30 seconds is required to be 7.2V or higher, and the higher the value, the better the performance. In the present invention, the CCA was calculated using a correction formula of (30 seconds voltage # 6-0.2) # 630.

시험결과, 표 1에서 보는 바와 같이, 30초 전압은 7.24V~7.26V, 환산 CCA는 634A~656A로, 기존 전해액 대비 약 2.0% 상승하였다.As a result, as shown in Table 1, the 30-second voltage was 7.24V to 7.26V, and the equivalent CCA was 634A to 656A, which was about 2.0% higher than the conventional electrolyte.

3) 20간율 용량(AH)3) 20-rate capacity (AH)

이는 저율방전 특성을 알아보기 위한 것으로, 축전지 용량에 대해 비교적 적은 전류인 3.75A로 연속 방전시켜, 전압이 10.5V에 도달할 때까지의 방전용량(AH)을 측정하는 것이다. 시험 결과, 78AH~79AH로 기존의 전해액을 사용한 제품과 거의 동일한 시험 결과를 보였다.This is to find out the low-rate discharge characteristics, to continuously discharge at 3.75A, which is a relatively small current with respect to the battery capacity, and to measure the discharge capacity (AH) until the voltage reaches 10.5V. As a result of the test, 78AH ~ 79AH showed almost the same test result as the product using the existing electrolyte solution.

따라서, 과붕산나트륨의 첨가에 따른 20시간율 용량에 대한 영향은 없었다.Therefore, there was no effect on the 20 hour rate capacity with the addition of sodium perborate.

수명시험 결과 (SAE J240 at 75℃)Life test result (SAE J240 at 75 ℃) 충방전회수 [Cycles]Charge / discharge recovery [Cycles] 30초 전압 [V]30 sec voltage [V] 비고Remarks 종래품 1Conventional product 1 종래품 2Conventional product 2 실시예 1Example 1 실시예 2Example 2 480480 8.908.90 9.139.13 8.818.81 9.059.05 960960 8.658.65 8.988.98 8.818.81 8.858.85 14401440 7.907.90 8.278.27 8.418.41 8.328.32 19201920 2.752.75 2.762.76 7.877.87 7.467.46 24402440 6.596.59 6.036.03 수명판정Life judgment 1,9201,920 1,9201,920 2,4002,400 2,4002,400 25%상승25% increase

수명시험은 만충전 상태에서 25A로 4분간 방전시킨 후, 10분 14.8V 최대 25A로 충전하는 과정을 1주 480회 반복하고, 그 후 56시간 정치 후, 630A로 고율방전하여 30초 전압을 측정함으로써 수명을 판정한다. 이 시험에서 30초 전압이 7.2V 이상이면 다시 1주 반복하고, 7.2V 미만이면 수명종지로 판정한다. 이와 같은 시험결과의 이해 편의를 위하여 표2의 결과를 첨부된 도면 도 1 로서 그래프로 도시하였다. In the life test, after 4 minutes of discharge at 25A for 4 minutes in a fully charged state, the process of charging 14.8V at maximum 25A for 10 minutes is repeated 480 times a week. The life is judged by doing so. In this test, if the 30-second voltage is 7.2V or more, repeat for another week, and if it is less than 7.2V, determine the end of life. For convenience of understanding the test results, the results of Table 2 are shown graphically as shown in FIG. 1.

시험결과를 표2 및 도 1의 그래프에서 보는 바와 같이, 본 발명의 전해액을 사용한 납축전지는 충방전 2,400(Cycles)회에 수명이 종지되어, 기존 전해액을 사용한 납축전지에 비하여 25%의 수명연장 효과를 보였다.As shown in the test results in Table 2 and the graph of FIG. 1, the lead acid battery using the electrolyte solution of the present invention is terminated at 2,400 cycles of charge and discharge, and thus has a lifespan of 25% compared to the lead acid battery using the existing electrolyte solution. It showed an effect.

따라서 과붕산나트륨을 전해액에 첨가함으로 인하여 기존의 성능을 유지하면서, 황산납의 발생을 지연시키고, 황산납의 용해를 증가시켜 제품의 수명 연장에 큰 효과가 있는 것이다.Therefore, by adding sodium perborate to the electrolyte solution, while maintaining the existing performance, delay the generation of lead sulfate, increase the dissolution of lead sulfate has a great effect in extending the life of the product.

이상의 시험 결과 설명에서 보는 바와 같이, 본 발명에 따른 전해액을 충전시킨 납축전지에 있어서는, 과붕산나트륨의 성분들이 황산납의 생성을 지연시킬 뿐만 아니라, 전해액속에서의 용해성을 증가시켜 납축전지의 성능 향상 및 그 수명을 연장시키는 효과가 있는 것이다.











As described in the test results described above, in the lead acid battery filled with the electrolyte according to the present invention, the components of sodium perborate not only delay the generation of lead sulfate, but also increase the solubility in the electrolyte to improve the performance of the lead acid battery. And an effect of extending the life thereof.











Claims (3)

증류수와 황산으로 구성되는 납축전지의 전해액에 있어서, 이에 과붕산나트륨을 첨가한 것을 특징으로 하는 납축전지의 전해액 조성물.An electrolyte solution of a lead acid battery composed of distilled water and sulfuric acid, wherein sodium perborate is added thereto. 제1항에 있어서, 그 구성성분의 혼합비는, 증류수가 60∼65중량%, 황산(H2SO4)이 34∼40중량%이며, 과산나트륨(NaBO3)이 0.1~5중량%인 것을 특징으로 하는 납축전지의 전해액 조성물.The method of claim 1, wherein the mixing ratio of the components is 60 to 65% by weight of distilled water, 34 to 40% by weight of sulfuric acid (H 2 SO 4 ), 0.1 to 5% by weight of sodium peroxide (NaBO 3 ) An electrolyte solution composition of a lead acid battery. 제1항에 있어서, 그 구성성분의 혼합비는, 증류수가 62.6중량%, 황산(H2SO4)이 36.9중량%이며, 과산나트륨(NaBO3)이 0.5중량%인 것을 특징으로 하는 납축전지의 전해액 조성물.The lead-acid battery according to claim 1, wherein the mixing ratio of the components is 62.6% by weight of distilled water, 36.9% by weight of sulfuric acid (H 2 SO 4 ), and 0.5% by weight of sodium peroxide (NaBO 3 ). Electrolytic solution composition.
KR1020040095099A 2004-11-19 2004-11-19 Composition of the Electrolyte for Lead-acid battery KR100627037B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020040095099A KR100627037B1 (en) 2004-11-19 2004-11-19 Composition of the Electrolyte for Lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040095099A KR100627037B1 (en) 2004-11-19 2004-11-19 Composition of the Electrolyte for Lead-acid battery

Publications (2)

Publication Number Publication Date
KR20060055910A true KR20060055910A (en) 2006-05-24
KR100627037B1 KR100627037B1 (en) 2006-09-25

Family

ID=37151827

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040095099A KR100627037B1 (en) 2004-11-19 2004-11-19 Composition of the Electrolyte for Lead-acid battery

Country Status (1)

Country Link
KR (1) KR100627037B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112259732A (en) * 2020-07-22 2021-01-22 骆驼集团蓄电池研究院有限公司 Positive lead paste for rich-solution storage battery and preparation method thereof

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103413936B (en) * 2013-07-12 2016-03-02 超威电源有限公司 A kind of formula of lead-acid storage battery positive pole diachylon
KR101786393B1 (en) 2016-10-14 2017-10-17 현대자동차주식회사 Electrolyte composition of lead storage battery and lead storage battery using the same
KR102483419B1 (en) 2020-08-18 2022-12-30 한국앤컴퍼니 주식회사 Stratification prevention structure used in the battery
KR102483426B1 (en) 2020-08-18 2022-12-30 한국앤컴퍼니 주식회사 Manufacturing method of manufacturing AGM storage battery crack prevention case
KR102483430B1 (en) 2020-08-20 2022-12-30 한국앤컴퍼니 주식회사 Lead-acid battery lower case with improved impact resistance
KR102523079B1 (en) 2020-09-11 2023-04-18 한국앤컴퍼니 주식회사 A method of strengthening the hermeticity of lead acid batteries using a corner bulkhead structure
KR102523084B1 (en) 2020-09-28 2023-04-18 한국앤컴퍼니 주식회사 How to strengthen the fusion strength of lead acid battery case and cover
KR102483437B1 (en) 2020-09-28 2022-12-30 한국앤컴퍼니 주식회사 Structure to prevent evaporation and stratification of electrolyte injected into lead acid battery
KR102580198B1 (en) 2021-09-13 2023-09-20 한국앤컴퍼니 주식회사 Electrolyte stratification prevention structure using sodium bicarbonate
KR20230044877A (en) 2021-09-27 2023-04-04 한국앤컴퍼니 주식회사 Circulator for electrolyte circulation
KR102651295B1 (en) 2021-09-30 2024-03-26 한국앤컴퍼니 주식회사 Lead acid battery leakage prevention valve cap
KR20230159011A (en) 2022-05-13 2023-11-21 한국앤컴퍼니 주식회사 Method for manufacturing a case for lead-acid battery using graphene
KR20230159932A (en) 2022-05-16 2023-11-23 한국앤컴퍼니 주식회사 Electrode plate manufacturing method of lead-acid battery for improving electrolyte stratification
KR20230164331A (en) 2022-05-25 2023-12-04 한국앤컴퍼니 주식회사 Lead-acid battery precursor with broken-line rib structure plate for improved electrolyte stratification

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR860003677A (en) * 1984-10-29 1986-05-28 박춘길 Composition of Electrolyte for Storage Battery
KR20000041198A (en) * 1998-12-22 2000-07-15 석진 Electrolyte substance of a lead capacitor
KR100291699B1 (en) * 1999-10-13 2001-05-15 이강수 Composition of electrolyte of lead storage battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112259732A (en) * 2020-07-22 2021-01-22 骆驼集团蓄电池研究院有限公司 Positive lead paste for rich-solution storage battery and preparation method thereof

Also Published As

Publication number Publication date
KR100627037B1 (en) 2006-09-25

Similar Documents

Publication Publication Date Title
KR100627037B1 (en) Composition of the Electrolyte for Lead-acid battery
JP4960702B2 (en) High performance energy storage device
US6833216B2 (en) Method of manufacturing a sulfated paste for use in a lead acid cell
US20110027653A1 (en) Negative plate for lead acid battery
US9570779B2 (en) Flooded lead-acid battery
JP2003123760A (en) Negative electrode for lead-acid battery
JP2008243493A (en) Lead acid storage battery
US11936032B2 (en) Absorbent glass mat battery
KR20190048552A (en) Manufacturing method of anode plate of lead acid battery using spray coating of Graphene aqueous solution
US10355316B2 (en) High performance lead acid battery with advanced electrolyte system
JP3386801B1 (en) Lead-acid battery electrolyte composition
KR20090045483A (en) Composition of electrolyte of lead storage battery
JP2004327299A (en) Sealed lead-acid storage battery
KR102580198B1 (en) Electrolyte stratification prevention structure using sodium bicarbonate
JP3694218B2 (en) Sealed lead acid battery
JP2007213896A (en) Lead-acid storage battery
KR102424556B1 (en) Method for manufacturing a substrate for a lead acid battery with increased surface area
JP2002198085A (en) Lead storage battery
KR20060075473A (en) Active material additive for lead-acid battery
JP4923399B2 (en) Lead acid battery
JP4556250B2 (en) Lead acid battery
KR20230164331A (en) Lead-acid battery precursor with broken-line rib structure plate for improved electrolyte stratification
US4948684A (en) Alkaline zinc battery having improved shelf-life, rechargeability, charge retention and capacity retention
CN116114084A (en) Method of manufacturing lead acid battery assembly
JPH0589873A (en) Negative electrode plate for lead-acid storage battery

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120829

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20130902

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20140901

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20150901

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20160830

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20170911

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20180829

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20190826

Year of fee payment: 14