KR20060002984A - Electrolyte composition and cell - Google Patents

Electrolyte composition and cell Download PDF

Info

Publication number
KR20060002984A
KR20060002984A KR1020057019410A KR20057019410A KR20060002984A KR 20060002984 A KR20060002984 A KR 20060002984A KR 1020057019410 A KR1020057019410 A KR 1020057019410A KR 20057019410 A KR20057019410 A KR 20057019410A KR 20060002984 A KR20060002984 A KR 20060002984A
Authority
KR
South Korea
Prior art keywords
electrolyte composition
polymer
compound
group
ether
Prior art date
Application number
KR1020057019410A
Other languages
Korean (ko)
Inventor
쇼우헤이 마츠이
요시히코 와다
가츠히토 미우라
마사토 다부치
미유키 데라도
Original Assignee
다이소 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 다이소 가부시키가이샤 filed Critical 다이소 가부시키가이샤
Publication of KR20060002984A publication Critical patent/KR20060002984A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Secondary Cells (AREA)
  • Conductive Materials (AREA)
  • Primary Cells (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

An electrolyte composition characterized by comprising: (1) a polymer having an ether bond as an optional ingredient; (2) an additive comprising an ether compound having ethylene oxide units as an optional ingredient; (3) a lithium salt compound; and (4) a cyclic carbonate having an unsaturated group. The electrolyte composition is excellent in processability, moldability, mechanical strength, flexibility, heat resistance, etc. and has significantly improved electrochemical properties with respect to action on lithium metal.

Description

전해질 조성물 및 전지{ELECTROLYTE COMPOSITION AND CELL}ELECTROLYTE COMPOSITION AND CELL

본 발명은 리튬염 화합물과 불포화기를 갖는 고리형 카보네이트를 함유하여 이루어지는 전해질 조성물에 관한 것으로, 특히, 전지, 커패시터, 센서 등의 전기 화학 디바이스용 재료로서 바람직한 전해질 조성물에 관한 것이다.The present invention relates to an electrolyte composition containing a lithium salt compound and a cyclic carbonate having an unsaturated group, and more particularly, to an electrolyte composition suitable as a material for electrochemical devices such as batteries, capacitors, and sensors.

종래, 전지, 커패시터, 센서 등의 전기 화학 디바이스를 구성하는 전해질은 이온 전도성 면에서 전해액 또는 전해액을 함유시켜 겔상으로 한 폴리머 전해질이 사용되고 있는데, 전해액의 액누설에 의한 기기 손상의 우려가 있는 점, 또한 전해액이 정극(正極)이나 부극(負極)과 반응하여, 전기 화학적 특성이 저하되는 등의 문제점이 지적되고 있다. 이에 비하여 무기 결정성 물질, 무기 유리, 유기 고분자계 물질 등의 고체 전해질이 제안되어 있다. 유기 고분자계 물질은 일반적으로 가공성, 성형성이 우수하고, 얻어지는 고체 전해질이 유연성, 굽힘 가공성을 갖고, 응용되는 디바이스의 설계 자유도가 높아지는 등의 점에서 그 진전이 기대되고 있다. 그러나, 이온 전도성 면에서는 다른 재질보다 열등한 것이 현 상황이다.Conventionally, as the electrolyte constituting an electrochemical device such as a battery, a capacitor, a sensor, and the like, a polymer electrolyte containing an electrolyte solution or an electrolyte solution in the form of a gel is used in terms of ion conductivity, which may cause damage to the device due to leakage of the electrolyte solution, In addition, a problem has been pointed out such that an electrolytic solution reacts with a positive electrode or a negative electrode, and the electrochemical properties thereof are lowered. In contrast, solid electrolytes such as inorganic crystalline materials, inorganic glass, and organic high molecular materials have been proposed. Organic polymer-based materials are generally excellent in workability and formability, and progress is expected in view of the fact that the resulting solid electrolyte has flexibility and bending workability and the design freedom of the device to be applied is increased. However, the present situation is inferior to other materials in terms of ion conductivity.

에틸렌옥사이드의 단독 중합체와 알칼리금속 이온계에서의 이온 전도성의 발견을 통해, 고분자 고체 전해질의 연구는 활발히 행해지게 되었다. 그 결과, 폴리머 매트릭스로서는, 그 높은 운동성 및 금속 양이온의 용해성 면에서 폴리에틸렌옥사이드 등의 폴리에테르가 가장 유망하다고 생각되고 있다. 이온의 이동은 폴리머의 결정부가 아니라 비결정질 부분에서 일어나는 것으로 예측되고 있다. 그 이후, 폴리에틸렌옥사이드의 결정성을 저하시키기 위해서, 여러 에폭사이드와의 공중합이 행해져 오고 있다. 미국특허 USP 4,818,644호에는 에틸렌옥사이드와 메틸글리시딜에테르의 공중합체로 이루어지는 고체 전해질이 개시되어 있다. 그러나, 모두 이온 전도도가 만족스럽다고는 할 수 없는 것이었다.Through the discovery of ionic conductivity in homopolymers and alkali metal ion systems of ethylene oxide, research into polymer solid electrolytes has been actively conducted. As a result, the polymer matrix is considered to be the most promising polyether such as polyethylene oxide in view of its high mobility and solubility of metal cations. The movement of ions is expected to occur in the amorphous part, not in the crystalline part of the polymer. Since then, copolymerization with various epoxides has been performed in order to reduce the crystallinity of polyethylene oxide. US Pat. No. 4,818,644 discloses a solid electrolyte consisting of a copolymer of ethylene oxide and methylglycidyl ether. However, not all were satisfactory in ion conductivity.

이 때문에, 디에틸렌글리콜메틸글리시딜에테르-에틸렌옥사이드 가교체에 특정 알칼리금속염을 함유시켜 고분자 고체 전해질에 응용하는 시도가 일본 공개특허공보 평9-324114호에 제안되어 있지만, 실용적으로 충분한 전도도의 값은 얻어져 있지 않다. 이 이온 전도도를 더욱 향상시키기 위해서, 비프로톤성 유기 용매 또는 분지형 폴리에틸렌글리콜의 유도체 등을 함유하는 고분자 고체 전해질도 본 출원인을 포함하는 WO98/07772호에 제안되어 있다. 그러나, 이들의 전해질은 전극에 리튬금속을 사용한 경우, 리튬금속과 반응 또는 리튬금속의 표면에 덴드라이드가 석출되어, 전기 화학적 특성이 현저히 저하된다.For this reason, although an attempt to apply a specific alkali metal salt to a diethylene glycol methylglycidyl ether-ethylene oxide crosslinked body and apply it to a polymer solid electrolyte is disclosed in Japanese Patent Laid-Open No. 9-324114, practically sufficient conductivity The value is not obtained. In order to further improve this ion conductivity, a polymer solid electrolyte containing an aprotic organic solvent, a derivative of branched polyethylene glycol, or the like is also proposed in WO98 / 07772 including the present applicant. However, these electrolytes react with lithium metal or dendrides precipitate on the surface of lithium metal when lithium metal is used for the electrode, and the electrochemical properties are significantly reduced.

발명의 개시Disclosure of the Invention

(발명이 해결하고자 하는 기술적 과제)(Technical problem to be solved)

본 발명의 목적은 이온 전도성 및 전기 화학 특성이 우수한 전해질 조성물, 특히 폴리머 전해질을 제공하는 데에 있다.It is an object of the present invention to provide an electrolyte composition, in particular a polymer electrolyte, having excellent ion conductivity and electrochemical properties.

(과제를 해결하기 위한 수단)(Means to solve the task)

본 발명은The present invention

(1) 필요에 따라 존재하는 에테르 결합을 갖는 폴리머와, (1) a polymer having an ether bond present as needed;

(2) 필요에 따라 존재하는 에틸렌옥사이드 단위를 갖는 에테르 화합물로 이루어지는 첨가제와, (2) an additive consisting of an ether compound having an ethylene oxide unit present as necessary;

(3) 리튬염 화합물과, (3) a lithium salt compound,

(4) 불포화기를 갖는 고리형 카보네이트 (4) cyclic carbonates having unsaturated groups

로 이루어지고, 성분 (1) 및 (2) 의 적어도 일방이 존재하는 것을 특징으로 하는 전해질 조성물을 제공한다.An electrolyte composition, comprising at least one of the components (1) and (2), is provided.

더불어, 본 발명은 상기 전해질 조성물을 사용한 전지도 제공한다.In addition, the present invention also provides a battery using the electrolyte composition.

본 발명의 전해질 조성물을 사용하면, 리튬금속에 안정적인 고성능의 전지가 얻어지는 것도 발견하였다.When the electrolyte composition of this invention is used, it also discovered that the high performance battery which is stable to lithium metal is obtained.

(종래 기술보다 유리한 효과)(Beneficial effect over conventional technology)

본 발명의 고체 전해질 조성물은 가공성, 성형성, 기계적 강도, 유연성이나 내열성 등이 우수하고, 또한 그 리튬금속에 대한 전기 화학적 특성은 현저히 개선되어 있다. 따라서 고체 전지 (특히, 2차 전지) 를 비롯하여, 대용량 콘덴서, 표시 소자, 예를 들어 일렉트로크로믹 디스플레이 등 전자 기기에 응용할 수 있다.The solid electrolyte composition of the present invention is excellent in processability, moldability, mechanical strength, flexibility and heat resistance, and the electrochemical properties of the lithium metal are remarkably improved. Therefore, it can be applied to electronic devices, such as a large capacity battery (especially a secondary battery), a large capacity capacitor, a display element, for example, an electrochromic display.

발명의 바람직한 태양Preferred Aspects of the Invention

본 발명의 전해질 조성물은 폴리머 (1) 및 첨가제 (2) 의 적어도 일방을 함유한다. 전해질 조성물은 폴리머 (1) 와 첨가제 (2) 의 양방을 함유해도 된다.The electrolyte composition of the present invention contains at least one of the polymer (1) and the additive (2). The electrolyte composition may contain both the polymer (1) and the additive (2).

에테르 결합을 갖는 폴리머 (1) 는 하기 식 (i) 으로 표현되는 구성 단위와, 하기 식 (ii) 으로 표현되는 구성 단위를 갖고 이루어지는 공중합체, 또는 구성 단위 (i), 구성 단위 (ii), 및 하기 식 (iii) 으로 표현되는 가교가능한 구성 단위를 갖고 이루어지는 공중합체인 것이 바람직하다. 또 랜덤 공중합체가 바람직하다.The polymer (1) having an ether bond is a copolymer having a structural unit represented by the following formula (i) and a structural unit represented by the following formula (ii), or a structural unit (i), a structural unit (ii), And it is preferable that it is a copolymer which has a crosslinkable structural unit represented by following formula (iii). Moreover, a random copolymer is preferable.

Figure 112005057767685-PCT00001
Figure 112005057767685-PCT00001

Figure 112005057767685-PCT00002
Figure 112005057767685-PCT00002

[식 중, R1 은 탄소수 1∼6 의 알킬기, 페닐기 또는 -CH2O-R2 를 나타내고, R2 는 탄소수 1∼6 의 알킬기 또는 페닐기 또는 -(-CH2-CH2-O-)a-R2' 또는 -CH[CH2-O-(-CH2-CH2-O-)b-R2']2 를 나타내고, R2' 는 탄소수 1∼6 의 알킬기, a 및 b 는 0∼12 의 정수이다.][Wherein, R 1 is an alkyl group, a phenyl group or a -CH 2 OR 2, R 2 is an alkyl group or a phenyl group having 1 to 6 carbon atoms or having a carbon number of 1~6 - (- CH 2 -CH 2 -O-) a - R 2 ′ or —CH [CH 2 —O — (— CH 2 —CH 2 —O—) b —R 2 ′ ] 2 , R 2 ′ is an alkyl group having 1 to 6 carbon atoms, and a and b are 0 to Is an integer of 12.]

Figure 112005057767685-PCT00003
Figure 112005057767685-PCT00003

[식 중, R3 은 (a) 반응성 규소기, (b) 메틸에폭시기, (c) 에틸렌성 불포화기 또는 (d) 할로겐원자를 갖는 반응성 기를 나타낸다][Wherein, R 3 represents a reactive group having (a) a reactive silicon group, (b) a methylepoxy group, (c) an ethylenically unsaturated group or (d) a halogen atom]

폴리머 (1) 에 있어서의 구성 단위 (i) 를 구성하는 단량체는 에틸렌옥사이드이다.The monomer which comprises the structural unit (i) in the polymer (1) is ethylene oxide.

폴리머 (1) 에 있어서의 구성 단위 (ii) 를 구성하는 옥시란 화합물에는 치환기를 갖고 있어도 되는 알킬렌옥사이드, 글리시딜에테르 화합물 등이 있다. 구체적으로는 프로필렌옥사이드, 메틸글리시딜에테르, 부틸글리시딜에테르, 스티렌옥사이드, 페닐글리시딜에테르, 1,2-에폭시헥산 등의 옥시란 화합물, 에틸렌글리콜메틸글리시딜에테르, 디에틸렌글리콜메틸글리시딜에테르, 트리에틸렌글리콜메틸글리시딜에테르, 1,3-비스(2-메톡시에톡시)프로판2-글리시딜에테르, 1,3-비스[2-(2-메톡시에톡시)에톡시]프로판2-글리시딜에테르를 들 수 있다.The oxirane compound constituting the structural unit (ii) in the polymer (1) includes an alkylene oxide and a glycidyl ether compound which may have a substituent. Specifically, oxirane compounds such as propylene oxide, methylglycidyl ether, butylglycidyl ether, styrene oxide, phenylglycidyl ether, and 1,2-epoxyhexane, ethylene glycol methyl glycidyl ether, and diethylene glycol Methylglycidyl ether, triethylene glycol methylglycidyl ether, 1,3-bis (2-methoxyethoxy) propane2-glycidyl ether, 1,3-bis [2- (2-methoxyether Methoxy) ethoxy] propane 2-glycidyl ether.

폴리머 (1) 에 있어서의 가교가능한 구성 단위 (iii) 를 형성하는 옥시란 화합물의 반응성 관능기는 (a) 반응성 규소기, (b) 메틸에폭시기, (c) 에틸렌성 불포화기, 또는 (d) 할로겐원자이다.The reactive functional group of the oxirane compound forming the crosslinkable structural unit (iii) in the polymer (1) is (a) a reactive silicon group, (b) a methylepoxy group, (c) an ethylenically unsaturated group, or (d) halogen It is an atom.

반응성 규소기 (a) 를 갖는 옥시란 화합물에는 2-글리시독시에틸트리메톡시실란, 3-글리시독시프로필메틸디메톡시실란 3-글리시독시프로필트리메톡시실란, 4-글리시독시부틸메틸트리메톡시실란, 3-(1,2-에폭시)프로필트리메톡시실란, 4-(1,2-에폭시)부틸트리메톡시실란, 5-(1,2-에폭시)펜틸트리메톡시실란, 1-(3,4-에폭시시클로헥실)메틸메틸디메톡시실란, 2-(3,4-에폭시시클로헥실)에틸트리메톡시실란 등을 들 수 있다. 이들 중에서, 3-글리시독시프로필트리메톡시실란 및 3-글리시독시프로필메틸디메톡시실란이 특히 바람직하다.The oxirane compound having the reactive silicon group (a) includes 2-glycidoxyethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane 3-glycidoxypropyltrimethoxysilane, and 4-glycidoxybutyl Methyltrimethoxysilane, 3- (1,2-epoxy) propyltrimethoxysilane, 4- (1,2-epoxy) butyltrimethoxysilane, 5- (1,2-epoxy) pentyltrimethoxysilane And 1- (3,4-epoxycyclohexyl) methylmethyldimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, and the like. Among them, 3-glycidoxypropyltrimethoxysilane and 3-glycidoxypropylmethyldimethoxysilane are particularly preferred.

메틸에폭시기 (b) 를 갖는 옥시란 화합물에는 2,3-에폭시프로필-2',3'-에폭시-2'-메틸프로필에테르, 에틸렌글리콜-2,3-에폭시프로필-2',3'-에폭시-2'-메틸프로필에테르, 및 디에틸렌글리콜-2,3-에폭시프로필-2',3'-에폭시-2'-메틸프로필에테르, 2-메틸-1,2,3,4-디에폭시부탄, 2-메틸-1,2,4,5-디에폭시펜탄, 2-메틸-1,2,5,6-디에폭시헥산, 히드로퀴논-2,3-에폭시프로필-2',3'-에폭시-2'-메틸프로필에테르, 카테콜-2,3-에폭시프로필-2',3'-에폭시-2'-메틸프로필에테르 등을 들 수 있다.Examples of oxirane compounds having a methyl epoxy group (b) include 2,3-epoxypropyl-2 ', 3'-epoxy-2'-methylpropyl ether and ethylene glycol-2,3-epoxypropyl-2', 3'-epoxy. -2'-methylpropyl ether, and diethylene glycol-2,3-epoxypropyl-2 ', 3'-epoxy-2'-methylpropyl ether, 2-methyl-1,2,3,4-diepoxybutane , 2-methyl-1,2,4,5-diepoxypentane, 2-methyl-1,2,5,6-diepoxyhexane, hydroquinone-2,3-epoxypropyl-2 ', 3'-epoxy- 2'-methylpropyl ether, catechol-2,3-epoxypropyl-2 ', 3'-epoxy-2'-methylpropyl ether, etc. are mentioned.

그중에서도, 특히 2,3-에폭시프로필-2',3'-에폭시-2'-메틸프로필에테르, 및 에틸렌글리콜-2,3-에폭시프로필-2',3'-에폭시-2'-메틸프로필에테르가 바람직하다.Among them, in particular, 2,3-epoxypropyl-2 ', 3'-epoxy-2'-methylpropyl ether, and ethylene glycol-2,3-epoxypropyl-2', 3'-epoxy-2'-methylpropyl ether Is preferred.

에틸렌성 불포화기 (c) 를 갖는 옥시란 화합물에는 알릴글리시딜에테르, 4-비닐시클로헥실글리시딜에테르, α-테르피닐글리시딜에테르, 시클로헥세닐메틸글리시딜에테르, p-비닐벤질글리시딜에테르, 알릴페닐글리시딜에테르, 비닐글리시딜에테르, 3,4-에폭시-1-부텐, 3,4-에폭시-1-펜텐, 4,5-에폭시-2-펜텐, 1,2-에폭시-5,9-시클로도데카디엔, 3,4-에폭시-1-비닐시클로헥센, 1,2-에폭시-5-시클로옥텐, 아크릴산글리시딜, 메타크릴산글리시딜, 소르브산글리시딜, 신남산글리시딜, 크로톤산글리시딜, 글리시딜-4-헥세노에이트가 사용된다.Examples of the oxirane compounds having an ethylenically unsaturated group (c) include allylglycidyl ether, 4-vinylcyclohexyl glycidyl ether, α-terpinylglycidyl ether, cyclohexenylmethylglycidyl ether, and p-vinyl Benzylglycidyl ether, allylphenylglycidyl ether, vinylglycidyl ether, 3,4-epoxy-1-butene, 3,4-epoxy-1-pentene, 4,5-epoxy-2-pentene, 1 , 2-epoxy-5,9-cyclododecadiene, 3,4-epoxy-1-vinylcyclohexene, 1,2-epoxy-5-cyclooctene, glycidyl acrylate, glycidyl methacrylate, sorb B-glycidyl, cinnamic acid glycidyl, crotonic acid glycidyl, glycidyl-4-hexenoate are used.

바람직하게는 알릴글리시딜에테르, 아크릴산글리시딜, 메타크릴산글리시딜을 들 수 있다.Preferably, allyl glycidyl ether, glycidyl acrylate, and glycidyl methacrylate are mentioned.

할로겐원자 (d) 를 갖는 옥시란 화합물에는 에피브로모히드린, 에피요오도히드린, 에피클로로히드린 등을 들 수 있다.Examples of the oxirane compounds having a halogen atom (d) include epibromohydrin, epiiodohydrin, epichlorohydrin and the like.

에테르 결합을 갖는 폴리머의 중합법은 에틸렌옥사이드 부분의 개환 반응에 의해 다원 공중합체를 얻는 중합법이고, 일본 공개특허공보 소63-154736호 및 일본 공개특허공보 소62-169823호에 기재된 방법과 동일하게 하여 행해진다.The polymerization method of the polymer having an ether bond is a polymerization method of obtaining a multi-component copolymer by ring-opening reaction of an ethylene oxide moiety, and is the same as the method described in JP-A-63-154736 and JP-A-62-169823. Is done.

중합 반응은 다음과 같이 하여 행할 수 있다. 개환 중합용 촉매로서 유기 알루미늄을 주체로 하는 촉매계, 유기 아연을 주체로 하는 촉매계, 유기 주석-인산에스테르 축합물 촉매계 등을 사용하여, 각 모노머를 용매의 존재 하 또는 비존재 하, 반응 온도 10∼80℃, 교반 하에서 반응시킴으로써 폴리에테르 공중합체가 얻어진다. 그중에서도, 중합도, 또는 만들어지는 공중합체의 성질 등의 점에서, 유기 주석-인산에스테르 축합물 촉매계가 특히 바람직하다. 중합 반응에 있어서 반응성 관능기는 반응하지 않고, 반응성 관능기를 갖는 폴리머 (1) 가 얻어진다.The polymerization reaction can be carried out as follows. As the catalyst for ring-opening polymerization, a catalyst system mainly composed of organic aluminum, a catalyst system mainly composed of organic zinc, an organic tin-phosphate ester condensate catalyst system, and the like are used, and each monomer is used in the presence or absence of a solvent. A polyether copolymer is obtained by making it react at 80 degreeC and stirring. Among them, the organic tin-phosphate ester condensate catalyst system is particularly preferable in view of the degree of polymerization or the properties of the copolymer to be produced. In a polymerization reaction, the reactive functional group does not react, and the polymer (1) which has a reactive functional group is obtained.

본 발명의 전해질 조성물에 사용되는 에테르 결합을 갖는 폴리머 (1) 에 대하여, 구성 단위 (i) 를 구성하는 에틸렌옥사이드의 비율은 10∼95중량%, 바람직하게는 20∼90중량%, 구성 단위 (ii) 를 구성하는 옥시란 화합물의 양은 90∼5중량%, 바람직하게는 80∼10중량%, 가교가능한 구성 단위 (iii) 를 구성하는 옥시란 화합물은 0∼30중량%, 바람직하게는 0∼20중량%, 특히 0.1∼20중량% 이다.With respect to the polymer (1) having an ether bond used in the electrolyte composition of the present invention, the proportion of ethylene oxide constituting the structural unit (i) is 10 to 95% by weight, preferably 20 to 90% by weight, and the structural unit ( The amount of the oxirane compound constituting ii) is 90 to 5% by weight, preferably 80 to 10% by weight, and the oxirane compound constituting the crosslinkable structural unit (iii) is 0 to 30% by weight, preferably 0 to 20% by weight, in particular 0.1-20% by weight.

가교가능한 구성 단위 (iii) 를 구성하는 옥시란 화합물의 양이 30중량% 이하인 경우에, 가교된 폴리머는 이온 전도도가 양호하다.When the amount of the oxirane compound constituting the crosslinkable structural unit (iii) is 30% by weight or less, the crosslinked polymer has good ionic conductivity.

구성 단위 (i) 를 구성하는 에틸렌옥사이드의 양이 10중량% 이상인 경우에, 저온에서도 리튬염 화합물이 녹기 쉽기 때문에, 이온 전도도가 높다.In the case where the amount of ethylene oxide constituting the structural unit (i) is 10% by weight or more, the lithium salt compound is easy to melt even at low temperatures, and thus has high ion conductivity.

일반적으로 유리 전이 온도를 낮춤으로써 이온 전도성이 향상되는 것은 알려져 있지만, 본 발명의 폴리머 전해질 조성물의 경우에는 이온 전도성의 향상 효과가 현격히 큰 것을 알 수 있었다.In general, it is known that the ion conductivity is improved by lowering the glass transition temperature. However, in the polymer electrolyte composition of the present invention, it was found that the effect of improving the ion conductivity is remarkably large.

폴리머 전해질 조성물에 사용되는 폴리머의 분자량은 양호한 가공성, 성형성, 기계적 강도, 유연성을 얻기 위해서, 중량 평균 분자량 104∼108 의 범위 내, 바람직하게는 105∼107 의 범위 내의 것이 적합하다.The molecular weight of the polymer used in the polymer electrolyte composition is preferably within the range of the weight average molecular weight of 10 4 to 10 8 , preferably within the range of 10 5 to 10 7 in order to obtain good processability, moldability, mechanical strength and flexibility. .

반응성 관능기가 반응성 규소기 (a) 인 폴리머 (1) 의 가교 방법으로서는 반응성 규소기와 물의 반응에 의해서 가교할 수 있다. 반응성을 높이기 위해서는 디부틸주석디라우레이트, 디부틸주석말레이트 등의 주석 화합물, 테크라부틸티타네이트, 테트라프로필티타네이트 등의 티탄 화합물, 알루미늄트리스아세틸아세토네이트, 알루미늄트리스에틸아세토아세테이트 등의 알루미늄 등의 알루미늄 화합물 등의 유기 금속 화합물, 또는 부틸아민, 옥틸아민 등의 아민계 화합물 등을 촉매로서 사용해도 된다.As a crosslinking method of the polymer (1) whose reactive functional group is a reactive silicon group (a), it can bridge | crosslink by reaction of a reactive silicon group and water. In order to increase the reactivity, tin compounds such as dibutyltin dilaurate and dibutyltin maleate, titanium compounds such as techlabutyl titanate and tetrapropyl titanate, aluminum trisacetylacetonate and aluminum trisethylacetoacetate You may use organometallic compounds, such as aluminum compounds, such as these, or amine compounds, such as butylamine and octylamine, as a catalyst.

반응성 관능기가 메틸에폭시기 (b) 인 폴리머 (1) 의 가교 방법에 있어서는 폴리아민류, 산무수물류 등이 사용된다.Polyamines, acid anhydrides, etc. are used in the crosslinking method of the polymer (1) whose reactive functional group is a methyl epoxy group (b).

폴리아민류로서는 디에틸렌트리아민, 디프로필렌트리아민 등의 지방족 폴리아민, 4,4'-디아미노디페닐에테르, 디아미노디페닐술폰, m-페닐렌디아민, 자일릴렌디아민 등의 방향족 폴리아민 등을 들 수 있다. 폴리아민의 첨가량은 폴리아민의 종류에 따라 달라지지만, 통상, 가소제 (즉, 첨가제 (2)) 를 제외한 폴리머 전해질 조성물 100중량부에 대하여 0.1∼10중량부의 범위이다. Examples of the polyamines include aliphatic polyamines such as diethylenetriamine and dipropylenetriamine, aromatic polyamines such as 4,4'-diaminodiphenyl ether, diaminodiphenyl sulfone, m-phenylenediamine and xylylenediamine. Can be. The amount of the polyamine added varies depending on the type of polyamine, but is usually in the range of 0.1 to 10 parts by weight based on 100 parts by weight of the polymer electrolyte composition excluding the plasticizer (ie, additive (2)).

산무수물류로서는 무수말레산, 무수프탈산, 메틸헥사히드로무수프탈산, 테트라메틸렌무수말레산, 테트라히드로무수프탈산 등을 들 수 있다. 산무수물류의 첨가량은 산무수물의 종류에 따라 달라지지만, 통상, 가소제를 제외한 폴리머 전해질 조성물 100중량부에 대하여 0.1∼10중량부의 범위이다. 이들의 가교에는 촉진제를 사용해도 되고, 폴리아민류의 가교 반응에는 페놀, 크레졸, 레졸신 등이 있고, 산무수물류의 가교 반응에는 벤질디메틸아민, 2-(디메틸아미노에틸)페놀, 디메틸아닐린 등이 있다. 촉진제의 첨가량은 촉진제에 따라 달라지지만, 통상, 가교제 100중량부에 대하여 0.1∼10중량부의 범위이다.Examples of the acid anhydrides include maleic anhydride, phthalic anhydride, methylhexahydrophthalic anhydride, tetramethylene maleic anhydride, tetrahydrophthalic anhydride and the like. Although the addition amount of an acid anhydride changes with kinds of acid anhydride, it is the range of 0.1-10 weight part normally with respect to 100 weight part of polymer electrolyte compositions except a plasticizer. An accelerator may be used for these crosslinking, and phenol, cresol, resorcin, etc. may be used for the crosslinking reaction of polyamines, and benzyldimethylamine, 2- (dimethylaminoethyl) phenol, dimethylaniline, etc. have. The amount of the accelerator added varies depending on the accelerator, but is usually in the range of 0.1 to 10 parts by weight based on 100 parts by weight of the crosslinking agent.

반응성 관능기가 에틸렌성 불포화기 (c) 인 폴리머 (1) 의 가교 방법으로서는 유기 과산화물, 아조 화합물 등에서 선택되는 라디칼 개시제, 자외선, 전자선 등의 활성 에너지선이 사용된다. 또, 수소화규소를 갖는 가교제를 사용할 수도 있다.As a crosslinking method of the polymer (1) whose reactive functional group is an ethylenically unsaturated group (c), active energy rays, such as a radical initiator selected from an organic peroxide, an azo compound, etc., an ultraviolet-ray, an electron beam, are used. Moreover, the crosslinking agent which has silicon hydride can also be used.

유기 과산화물로서는 케톤퍼옥사이드, 퍼옥시케탈, 하이드로퍼옥사이드, 디알킬퍼옥사이드, 디아실퍼옥사이드, 퍼옥시에스테르 등, 통상 가교 용도에 사용되고 있는 것이 사용되고, 1,1-비스(t-부틸퍼옥시)-3,3,5-트리메틸시클로헥산, 디-t-부틸퍼옥사이드, t-부틸쿠밀퍼옥사이드, 디쿠밀퍼옥사이드, 2,5-디메틸-2,5-디(t-부틸퍼옥시)헥산, 벤조일퍼옥사이드 등을 들 수 있다. 유기 과산화물의 첨가량은 유기 과산화물의 종류에 따라 달라지지만, 통상, 가소제를 제외한 폴리머 전해질 조성물 100중량부에 대하여 0.1∼10중량부의 범위 내이다.As the organic peroxide, those commonly used for crosslinking applications such as ketone peroxide, peroxy ketal, hydroperoxide, dialkyl peroxide, diacyl peroxide and peroxy ester are used, and 1,1-bis (t-butylperoxy) is used. -3,3,5-trimethylcyclohexane, di-t-butylperoxide, t-butylcumylperoxide, dicumylperoxide, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane, Benzoyl peroxide, and the like. Although the addition amount of an organic peroxide changes with kinds of organic peroxide, Usually, it exists in the range of 0.1-10 weight part with respect to 100 weight part of polymer electrolyte compositions except a plasticizer.

아조 화합물로서는 아조니트릴 화합물, 아조아미드 화합물, 아조아미딘 화합물 등, 통상 가교 용도에 사용되고 있는 것을 사용할 수 있고, 2,2'-아조비스이소부티로니트릴, 2,2'-아조비스(2-메틸부티로니트릴), 2,2'-아조비스(4-메톡시-2,4-디메틸발레로니트릴), 2,2-아조비스(2-메틸-N-페닐프로피온아미딘)2염산염, 2,2'-아조비스[2-(2-이미다졸린-2-일)프로판], 2,2'-아조비스[2-메틸-N-(2-히드록시에틸)프로피온아미드], 2,2'-아조비스(2-메틸프로판), 2,2'-아조비스[2-(히드록시메틸)프로피오니트릴] 등을 들 수 있다. 아조 화합물의 첨가량은 아조 화합물의 종류에 따라 달라지지만, 통상, 가소제를 제외한 폴리머 전해질 조성물 100중량부에 대하여 0.1∼10중량부의 범위 내이다.As an azo compound, what is normally used for crosslinking uses, such as an azonitrile compound, an azoamide compound, and an azoamidine compound, can be used, A 2,2'- azobisisobutyronitrile, 2,2'- azobis (2- Methylbutyronitrile), 2,2'-azobis (4-methoxy-2,4-dimethylvaleronitrile), 2,2-azobis (2-methyl-N-phenylpropionamidine) dihydrochloride, 2,2'-azobis [2- (2-imidazolin-2-yl) propane], 2,2'-azobis [2-methyl-N- (2-hydroxyethyl) propionamide], 2 , 2'-azobis (2-methylpropane), 2,2'-azobis [2- (hydroxymethyl) propionitrile] and the like. Although the addition amount of an azo compound changes with kinds of azo compounds, it is normally in the range of 0.1-10 weight part with respect to 100 weight part of polymer electrolyte compositions except a plasticizer.

자외선 등의 활성 에너지선 조사에 의한 가교에 있어서는 아크릴산글리시딜에테르, 메타크릴산글리시딜에테르, 신남산글리시딜에테르가 특히 바람직하다. 또한, 증감 보조제로서 디에톡시아세토페논, 2-히드록시-2-메틸-1-페닐프로판-1-온, 페닐케톤 등의 아세토페논류, 벤조인, 벤조인메틸에테르 등의 벤조인에테르류, 벤조페논, 4-페닐벤조페논 등의 벤조페논류, 2-이소프로필티옥산톤, 2,4-디메틸티옥산톤 등의 티옥산톤류, 3-술포닐아지드벤조산, 4-술포닐아지드벤조산 등의 아지드류 등을 임의로 사용할 수 있다.In crosslinking by active energy ray irradiation such as ultraviolet rays, glycidyl acrylate, glycidyl methacrylate, and glycidyl ether cinnamic acid are particularly preferable. Moreover, benzoin ethers, such as acetophenones, such as diethoxy acetophenone, 2-hydroxy-2-methyl-1-phenyl propane- 1-one, and phenyl ketone, benzoin, benzoin methyl ether, as a sensitizing auxiliary agent, Benzophenones such as benzophenone and 4-phenylbenzophenone, thioxanthones such as 2-isopropyl thioxanthone and 2,4-dimethyl thioxanthone, 3-sulfonyl azide benzoic acid, 4-sulfonyl azide benzoic acid and the like Azides and the like can be used arbitrarily.

가교 보조제로서 에틸렌글리콜디아크릴레이트, 에틸렌글리콜디메타크릴레이트, 올리고에틸렌글리콜디아크릴레이트, 올리고에틸렌글리콜디메타크릴레이트, 알릴메타크릴레이트, 알릴아크릴레이트, 디알릴말레이트, 트리알릴이소시아누레이트, 비스페닐말레이미드, 무수말레산 등을 임의로 사용할 수 있다.Ethylene glycol diacrylate, ethylene glycol dimethacrylate, oligoethylene glycol diacrylate, oligoethylene glycol dimethacrylate, allyl methacrylate, allyl acrylate, diallyl maleate, triallyl isocyanur as crosslinking aids Elate, bisphenyl maleimide, maleic anhydride, etc. can be used arbitrarily.

에틸렌성 불포화기 (c) 를 가교하는 수소화규소를 갖는 화합물로서는 적어도 2개의 수소화규소를 갖는 화합물이 사용된다. 특히 폴리실록산 화합물 또는 폴리실란 화합물이 좋다.As a compound which has silicon hydride which crosslinks an ethylenically unsaturated group (c), the compound which has at least 2 silicon hydride is used. In particular, a polysiloxane compound or a polysilane compound is preferable.

히드로실릴화 반응의 촉매의 예로서는 팔라듐, 백금 등의 천이금속 또는 그들의 화합물, 착물을 들 수 있다. 또한, 과산화물, 아민, 포스핀도 사용된다. 가장 일반적인 촉매는 디클로로비스(아세토니트릴)팔라듐 (II), 클로로트리스(트리페닐포스핀)로듐 (I), 염화백금산을 들 수 있다.Examples of the catalyst of the hydrosilylation reaction include transition metals such as palladium and platinum, compounds thereof, and complexes. Peroxides, amines and phosphines are also used. The most common catalysts include dichlorobis (acetonitrile) palladium (II), chlorotris (triphenylphosphine) rhodium (I) and chloroplatinic acid.

반응성 관능기가 할로겐원자 (d) 인 에테르 결합을 갖는 폴리머 (1) 의 가교 방법으로서는 폴리아민류, 메르캅토이미다졸린류, 메르캅토피리미딘류, 티오우레아류, 폴리메르캅탄류 등의 가교제가 사용된다. 폴리아민류로서는 트리에틸렌테트라민, 헥사메틸렌디아민 등을 들 수 있다. 메르캅토이미다졸린류로서는 2-메르캅토이미다졸린, 4-메틸-2-메르캅토이미다졸린 등을 들 수 있다. 메르캅토피리미딘류로서는 2-메르캅토피리미딘, 4,6-디메틸-2-메르캅토피리미딘 등을 들 수 있다. 티오우레아류로서는 에틸렌티오우레아, 디부틸티오우레아 등을 들 수 있다. 폴리메르캅탄류로서는 2-디부틸아미노-4,6-디메틸캅토-s-트리아진, 2-페닐아미노-4,6-디메르캅토트리아진 등을 들 수 있다. 가교제의 첨가량은 가교제의 종류에 따라 달라지지만, 통상, 가소제를 제외한 폴리머 전해질 조성물 100중량부에 대하여 0.1∼30중량부의 범위이다.As a crosslinking method of the polymer (1) which has an ether bond whose reactive functional group is a halogen atom (d), crosslinking agents, such as polyamine, mercaptoimidazoline, mercaptopyrimidines, thiourea, and polymercaptan, are used. do. Examples of the polyamines include triethylenetetramine, hexamethylenediamine, and the like. As mercaptoimidazoline, 2-mercaptoimidazoline, 4-methyl-2- mercaptoimidazoline, etc. are mentioned. Examples of mercaptopyrimidines include 2-mercaptopyrimidine, 4,6-dimethyl-2-mercaptopyrimidine, and the like. Examples of thioureas include ethylene thiourea, dibutyl thiourea, and the like. Examples of the polymercaptans include 2-dibutylamino-4,6-dimethylcapto-s-triazine, 2-phenylamino-4,6-dimercaptotriazine and the like. Although the addition amount of a crosslinking agent changes with kinds of crosslinking agent, it is the range of 0.1-30 weight part normally with respect to 100 weight part of polymer electrolyte compositions except a plasticizer.

또한, 고분자 고체 전해질에 추가로 수산제(受酸劑)가 되는 금속 화합물을 첨가하는 것은 할로겐 함유 폴리머의 열안정성의 견지에서 유효하다. 이러한 수산제가 되는 금속산화물로서는 주기율표 제 II 족 금속의 산화물, 수산화물, 탄산염, 카르복실산염, 규산염, 붕산염, 아인산염, 주기율표 VIa 족 금속의 산화물, 염기성 탄산염, 염기성 카르복실산염, 염기성 아인산염, 염기성 아황산염, 3염기성 황산염 등이 있다. 구체적인 예로서는 마그네시아, 수산화마그네슘, 탄산마그네슘, 규산칼슘, 스테아르산칼슘, 사산화삼납, 스테아르산주석, 등을 들 수 있다. 상기 산수산제가 되는 금속 화합물의 배합량은 종류에 따라 달라지지만, 통상, 가소제를 제외한 폴리머 전해질 조성물 100중량부에 대하여 0.1∼30중량부의 범위이다.In addition, the addition of a metal compound serving as a hydroxyl agent to the polymer solid electrolyte is effective in view of the thermal stability of the halogen-containing polymer. Examples of the metal oxide to be used as an oxidizing agent include oxides, hydroxides, carbonates, carboxylates, silicates, borates, phosphates of the periodic table Group II metals, oxides of the Group VIa metals of the periodic table, basic carbonates, basic carboxylates, basic phosphites, and basic Sulfite, tribasic sulfate, and the like. Specific examples include magnesia, magnesium hydroxide, magnesium carbonate, calcium silicate, calcium stearate, triad tetraoxide, tin stearate, and the like. Although the compounding quantity of the metal compound used as said acid-and-acid-acid agent changes with kinds, Usually, it is the range of 0.1-30 weight part with respect to 100 weight part of polymer electrolyte compositions except a plasticizer.

에틸렌옥사이드 단위를 갖는 에테르 화합물을 함유하는 첨가제 (2) 는 가소제로서 기능한다. 폴리머 전해질 조성물에 에틸렌옥사이드 단위를 갖는 에테르 화합물을 함유하는 첨가제 (2) 를 넣으면, 폴리머의 결정화가 억제되어 유리 전이 온도가 저하되어, 저온에서도 무정형상이 많이 형성되기 때문에 이온 전도도가 높아진다.The additive (2) containing an ether compound having ethylene oxide units functions as a plasticizer. When the additive (2) containing an ether compound having an ethylene oxide unit is added to the polymer electrolyte composition, crystallization of the polymer is suppressed, the glass transition temperature is lowered, and many amorphous forms are formed at low temperatures, thereby increasing the ionic conductivity.

에틸렌옥사이드 단위를 갖는 에테르 화합물을 함유하는 첨가제 (2) 의 예는 하기 식 (iv)∼(vii) 의 어느 하나로 표현되는 첨가제가 바람직하다.As an example of the additive (2) containing the ether compound which has an ethylene oxide unit, the additive represented by either of following formula (iv)-(vii) is preferable.

Figure 112005057767685-PCT00004
Figure 112005057767685-PCT00004

Figure 112005057767685-PCT00005
Figure 112005057767685-PCT00005

Figure 112005057767685-PCT00006
Figure 112005057767685-PCT00006

Figure 112005057767685-PCT00007
Figure 112005057767685-PCT00007

[식 중, R4∼R18 은 탄소수 1∼6 의 알킬기, c∼r 은 0∼12 의 수이다.][In formula, R <4> -R <18> is a C1-C6 alkyl group and c-r is a number of 0-12.]

첨가제 (2) 의 배합 비율은 임의적이지만, 폴리머 (1) 및 첨가제 (2) 의 합계가 100중량부이다.Although the compounding ratio of the additive (2) is arbitrary, the sum total of the polymer (1) and the additive (2) is 100 weight part.

본 발명에 있어서 사용되는 리튬염 화합물 (3) 은 폴리머 (1), 첨가제 (2) 로 이루어지는 혼합물 및 고리형 카보네이트 (4) 에 가용인 것이 바람직하다. 본 발명에 있어서는 이하에 드는 리튬염 화합물이 바람직하게 사용된다.It is preferable that the lithium salt compound (3) used in this invention is soluble in the polymer (1), the mixture which consists of an additive (2), and cyclic carbonate (4). In the present invention, the following lithium salt compounds are preferably used.

양이온의 리튬이온과, 염소이온, 브롬이온, 요오드이온, 과염소산이온, 티오시안산이온, 테트라플루오로붕소산이온, 질산이온, AsF6 -, PF6 -, 스테아릴술폰산이온, 옥틸술폰산이온, 도데실벤젠술폰산이온, 나프탈렌술폰산이온, 도데실나프탈렌술폰산이온, 7,7,8,8-테트라시아노-p-퀴노디메탄이온, X1S03 -, [(X1SO2)(X2SO2)N]-, [(X1SO2)(X2SO2)(X3SO2)C]-, 및 [(X1SO2)(X2SO2)YC]- 에서 선택된 음이온으로 이루어지는 화합물을 들 수 있다. 단, X1, X2, X3 및 Y 는 전자 흡인성 기이다. 바람직하게는 X1, X2, 및 X3 은 각각 독립하여 탄소수가 1 내지 6 까지의 퍼플루오로알킬기 또는 퍼플루오로아릴기이고, Y 는 니트로기, 니트로소기, 카르보닐기, 카르복실기 또는 시아노기이다. X1, X2 및 X3 은 각각 동일해도 되고, 상이해도 된다.Li-ion of the cation and chloride ion, bromine ion, iodine ion, perchlorate ion, thiocyanate ion, boric acid ion tetrafluoroborate, nitrate ion, AsF 6 -, PF 6 - , stearyl acid ion, octyl acid ion, dodecylbenzenesulfonic acid ion, naphthalenesulfonic acid ion, dodecyl naphthalenesulfonate ion, 7,7,8,8- tetrahydro-dicyano -p- quinolyl nodi methane ion, X 1 S0 3 -, [ (X 1 SO 2) (X 2 SO 2 ) N] - , [(X 1 SO 2 ) (X 2 SO 2 ) (X 3 SO 2 ) C] - , and [(X 1 SO 2 ) (X 2 SO 2 ) YC] - The compound which consists of an anions is mentioned. Provided that X 1 , X 2 , X 3 and Y are electron withdrawing groups. Preferably, X 1 , X 2 , and X 3 are each independently a perfluoroalkyl group or a perfluoroaryl group having 1 to 6 carbon atoms, and Y is a nitro group, nitroso group, carbonyl group, carboxyl group or cyano group . X 1 , X 2 and X 3 may be the same or different.

본 발명에 있어서, 리튬염 화합물 (3) 의 사용량은 폴리머 (1) 및 첨가제 (2) 의 합계 100중량부에 대하여, 0.1∼1000중량부, 바람직하게는 1∼500중량부의 범위이어도 된다. 이 값이 1000중량부 이하에 있으면, 가공성, 성형성 및 얻어진 고체 전해질의 기계적 강도나 유연성이 높고, 또 이온 전도성도 높다.In the present invention, the amount of the lithium salt compound (3) used may be 0.1 to 1000 parts by weight, preferably 1 to 500 parts by weight based on 100 parts by weight of the total of the polymer (1) and the additive (2). When this value is 1000 parts by weight or less, the workability, moldability, mechanical strength and flexibility of the obtained solid electrolyte are high, and ion conductivity is also high.

전해질 조성물을 사용할 때에 난연성이 필요한 경우에는 난연제를 사용할 수 있다. 난연제로서, 브롬화에폭시 화합물, 테트라브롬비스페놀 A, 염소화파라핀 등의 할로겐화물, 3산화안티몬, 5산화안티몬, 수산화알루미늄, 수산화마그네슘, 인산에스테르, 폴리인산염, 및 붕산아연으로부터 선택하여 유효량 (예를 들어, 폴리머 (1) 및 첨가제 (2) 의 합계 100중량부에 대하여 10중량부 이하) 을 첨가한다.When flame retardancy is necessary when using an electrolyte composition, a flame retardant can be used. As a flame retardant, an effective amount (e.g., selected from halides such as epoxy bromide compounds, tetrabrombisphenol A, chlorinated paraffin, antimony trioxide, antimony pentoxide, aluminum hydroxide, magnesium hydroxide, phosphate esters, polyphosphates, and zinc borate) And 10 parts by weight or less based on 100 parts by weight of the total of the polymer (1) and the additive (2).

불포화기를 갖는 고리형 카보네이트 (4) 에 있어서, 불포화기는 일반적으로, 탄소-탄소 2중 결합이다.In the cyclic carbonate (4) having an unsaturated group, the unsaturated group is generally a carbon-carbon double bond.

리튬금속 전지의 경우, 고리형 카보네이트 (4) 는 부극의 금속리튬과 반응하여 안정된 피막을 형성하고, 전해질과 금속리튬의 반응 및 덴드라이드의 성장을 억제한다.In the case of a lithium metal battery, the cyclic carbonate 4 reacts with the metal lithium of the negative electrode to form a stable film, and inhibits the reaction between the electrolyte and the metal lithium and the growth of the dendride.

고리형 카보네이트 (4) 는 비닐렌카보네이트 또는 그 유도체, 또는 불포화기를 갖는 에틸렌카보네이트인 것이 바람직하다.The cyclic carbonate (4) is preferably vinylene carbonate or a derivative thereof or ethylene carbonate having an unsaturated group.

본 발명에 있어서, 비닐렌카보네이트 또는 그 유도체의 예는 하기 식 (viii-1) 으로 표현되는 화합물인 것이 바람직하다.In this invention, it is preferable that an example of vinylene carbonate or its derivative (s) is a compound represented by following formula (viii-1).

Figure 112005057767685-PCT00008
Figure 112005057767685-PCT00008

[식 중, R19 및 R20 은 수소 또는 탄소수가 1∼6 인 알킬기이다.][Wherein, R 19 and R 20 are hydrogen or an alkyl group having 1 to 6 carbon atoms.]

본 발명에 있어서, 불포화기를 갖는 에틸렌카보네이트의 예는 하기 식 (viii-2) 으로 표현되는 화합물인 것이 바람직하다.In this invention, it is preferable that the example of ethylene carbonate which has an unsaturated group is a compound represented by following formula (viii-2).

Figure 112005057767685-PCT00009
Figure 112005057767685-PCT00009

[식 중, R21 은 H 또는 탄소수가 1∼6 인 알킬기, R22 는 탄소수가 1∼6 인 알케닐기 또는 -CH2OR22' 이고, R22' 는 탄소수가 1∼6 인 알케닐기이다.][Wherein, R 21 is H or an alkyl group having 1 to 6 carbon atoms, R 22 is an alkenyl group having 1 to 6 carbon atoms or -CH 2 OR 22 ' , and R 22' is an alkenyl group having 1 to 6 carbon atoms .]

고리형 카보네이트 (4) 의 사용량은 성분 (1) 및 (2) 의 합계 100중량부에 대하여, 1∼100중량부, 바람직하게는 5∼80중량부의 범위가 좋다. 최적량은 금속리튬의 표면이 고리형 카보네이트와 반응하여, 안정된 피막을 형성할 수 있는 양이면 된다. 과잉된 고리형 카보네이트가 폴리머 전해질 조성물 중에 존재하면, 전기 화학적 성질이 저하된다.The usage-amount of the cyclic carbonate 4 is 1-100 weight part with respect to a total of 100 weight part of components (1) and (2), Preferably the range is 5-80 weight part. The optimum amount may be an amount such that the surface of the metal lithium can react with the cyclic carbonate to form a stable film. If excess cyclic carbonate is present in the polymer electrolyte composition, the electrochemical properties are degraded.

고리형 카보네이트 (4) 의 함유 방법은 성분 (1), (2) 및 (3) 으로 이루어지는 전해질 화합물을 가교하지 않는 경우에는 특별히 제약받지 않는다.The method of containing the cyclic carbonate (4) is not particularly limited when the electrolyte compound composed of the components (1), (2) and (3) is not crosslinked.

그러나, 성분 (1), (2) 및 (3) 으로 이루어지는 전해질 화합물을 가교하여 사용하는 경우에는, 고리형 카보네이트 (4) 는 성분 (1), (2) 및 (3) 으로 이루어지는 전해질 화합물을 가교한 후에, 함침할 필요가 있다. 성분 (1), (2) 및 (3) 으로 이루어지는 전해질 화합물의 가교 전에, 고리형 카보네이트 (4) 를 함유 후, 가교한 경우, 전기 화학적 특성이 개선되지 않는다. 이것은 가교에 의해서, 고리형 카보네이트 (4) 의 에틸렌성 불포화기가 소실되어 있기 때문인 것으로 생각된다.However, in the case of crosslinking and using the electrolyte compounds composed of the components (1), (2) and (3), the cyclic carbonate (4) is composed of the electrolyte compounds composed of the components (1), (2) and (3). After crosslinking, it is necessary to impregnate. In the case of crosslinking after containing the cyclic carbonate (4) before the crosslinking of the electrolyte compound composed of the components (1), (2) and (3), the electrochemical properties are not improved. This is considered to be because the ethylenically unsaturated group of the cyclic carbonate 4 is lost by crosslinking.

성분 (1), (2) 및 (3) 으로 이루어지는 전해질 화합물을 가교하여 사용하는 경우에는 고리형 카보네이트 (4) 를 함침하는 방법은 특별히 제약받지 않지만, 성분 (1), (2) 및 (3) 으로 이루어지는 전해질 화합물의 가교체에 고리형 카보네이트 (4) 를 직접 함침하는 방법, 첨가제 (2) 와 혼합한 것을 함침하는 방법, 유기 용매와 혼합한 것을 함침하는 방법, 또는 이들 중에 성분 (1), (2) 및 (3) 으로 이루어지는 전해질 화합물을 혼합한 것을 함침하는 방법 등이 있다.In the case where the electrolyte compound composed of the components (1), (2) and (3) is used by crosslinking, the method of impregnating the cyclic carbonate (4) is not particularly limited, but the components (1), (2) and (3). Method for impregnating the crosslinked product of the electrolyte compound consisting of directly with the cyclic carbonate (4), impregnating the mixture with the additive (2), impregnating the mixture with the organic solvent, or component (1) And a method of impregnating a mixture of electrolyte compounds composed of (2) and (3).

본 발명의 폴리머 전해질 조성물의 제조 방법은 특별한 제약은 없지만, 통상 각각의 성분을 기계적으로 혼합하면 된다. 가교를 필요로 하는 폴리머 (1) 의 경우에는 각각의 성분을 기계적으로 혼합한 후, 가교시키는 등의 방법에 의해서 제조되지만, 가교 후에 첨가제에 장시간 침지하여 함침시켜도 된다. 기계적으로 혼합하는 수단으로서는 각종 니더류, 오픈 롤, 압출기 등을 임의로 사용할 수 있다.Although there is no restriction | limiting in particular in the manufacturing method of the polymer electrolyte composition of this invention, what is necessary is just to mix each component mechanically. In the case of the polymer (1) requiring crosslinking, the components are prepared by mechanically mixing the components and then crosslinking, but may be impregnated with the additive for a long time after crosslinking. As means for mechanically mixing, various kneaders, open rolls, extruders and the like can be arbitrarily used.

반응성 관능기가 반응성 규소기인 경우에, 가교 반응에 사용되는 물의 양은, 분위기 중의 습기에 의해서도 용이하게 발생되므로 특별히 제한되지 않는다. 단시간 냉수 또는 온수욕에 통과시키거나, 또는 스팀 분위기에 노출시킴으로써 가교할 수도 있다.In the case where the reactive functional group is a reactive silicon group, the amount of water used in the crosslinking reaction is not particularly limited because it is easily generated by moisture in the atmosphere. It may also be crosslinked by passing it through a cold water or hot water bath for a short time or by exposure to a steam atmosphere.

반응성 관능기가 에틸렌성 불포화기인 경우에, 라디칼 개시제를 이용하면, 10℃∼200℃ 의 온도 조건 하 1분∼20시간으로 가교 반응이 종료된다. 또한, 자외선 등의 에너지선을 이용하는 경우, 일반적으로는 증감제가 사용된다. 통상, 10℃∼150℃ 의 온도 조건 하 0.1초∼1시간으로 가교 반응이 종료된다. 수소화규소를 갖는 가교제에서는 10℃∼180℃ 의 온도 조건 하 10분∼10시간으로 가교 반응이 종료된다.When a reactive functional group is an ethylenically unsaturated group, when a radical initiator is used, a crosslinking reaction will complete | finish in 1 minute-20 hours under the temperature conditions of 10 degreeC-200 degreeC. In addition, when using energy rays, such as an ultraviolet-ray, a sensitizer is generally used. Usually, a crosslinking reaction is complete | finished in 0.1 second-1 hour on 10 degreeC-150 degreeC temperature conditions. In the crosslinking agent which has silicon hydride, a crosslinking reaction is complete | finished in 10 minutes-10 hours under the temperature conditions of 10 degreeC-180 degreeC.

리튬염 화합물 (3) 및 첨가제 (2) 를 폴리머 (1) (즉, 폴리에테르 다원 공중합체) 에 혼합하는 방법은 특별히 제약받지 않지만, 필요에 따라 유기 용매를 사용할 수 있다. 유기 용매를 사용하여 제조하는 경우에는, 각종 극성 용매, 예를 들어 테트라히드로푸란, 아세톤, 아세토니트릴, 디메틸포름아미드, 디메틸술폭사이드, 디옥산, 메틸에틸케톤, 메틸이소부틸케톤 등을 단독, 또는 혼합하여 사용할 수 있다.Although the method of mixing a lithium salt compound (3) and an additive (2) with the polymer (1) (namely, a polyether polyone copolymer) is not restrict | limited, An organic solvent can be used as needed. When prepared using an organic solvent, various polar solvents such as tetrahydrofuran, acetone, acetonitrile, dimethylformamide, dimethyl sulfoxide, dioxane, methyl ethyl ketone, methyl isobutyl ketone, and the like are used alone or It can be mixed and used.

본 발명에서 언급된 폴리머 전해질 조성물은 기계적 강도와 유연성이 우수하고, 그 성질을 이용하여 대면적 박막 형상의 고체 전해질로 하는 것이 용이하게 얻어진다. 예를 들어 본 발명의 폴리머 전해질 조성물을 사용한 전지의 제작이 가능하다. 이 경우, 정극 재료로서는 리튬-망간 복합산화물, 코발트산리튬, 5산화바나듐, 올리빈형 인산철, 폴리아세틸렌, 폴리피렌, 폴리아닐린, 폴리페닐렌, 폴리페닐렌설파이드, 폴리페닐렌옥사이드, 폴리피롤, 폴리푸란, 폴리아줄렌 등이 있다. 부극 재료로서는 리튬이 그래파이트 또는 카본의 층 사이에 흡장된 층간 화합물, 리튬금속, 리튬-납 합금 등이 있다. 또한 높은 이온 전도성을 이용하여 알칼리금속 이온, Cu 이온, Ca 이온, 및 Mg 이온 등의 양이온의 이온 전극의 격막으로서의 이용도 생각된다. 본 발명의 폴리머 전해질 조성물은 특히 전지, 커패시터, 센서 등의 전기 화학 디바이스용 재료로서 바람직하다.The polymer electrolyte composition mentioned in the present invention is excellent in mechanical strength and flexibility, and it is easy to obtain a solid electrolyte having a large area thin film shape using its properties. For example, the production of a battery using the polymer electrolyte composition of the present invention is possible. In this case, as the positive electrode material, lithium-manganese composite oxide, lithium cobalt oxide, vanadium pentoxide, olivine-type iron phosphate, polyacetylene, polypyrene, polyaniline, polyphenylene, polyphenylene sulfide, polyphenylene oxide, polypyrrole, poly Furan, polyazulene and the like. Examples of the negative electrode material include an interlayer compound in which lithium is occluded between layers of graphite or carbon, a lithium metal, a lithium-lead alloy, and the like. In addition, use of a high ion conductivity as a diaphragm of ion electrodes of cations such as alkali metal ions, Cu ions, Ca ions, and Mg ions is also considered. The polymer electrolyte composition of the present invention is particularly preferable as a material for electrochemical devices such as batteries, capacitors and sensors.

이하, 실시예를 나타내고, 본 발명을 구체적으로 설명한다.Hereinafter, an Example is shown and this invention is demonstrated concretely.

폴리에테르 공중합체의 모노머 환산 조성은 1H NMR 스펙트럼에 의해 구하였다. 폴리에테르 공중합체의 분자량 측정에는 겔 투과 크로마토그래피 측정을 하여, 표준 폴리스티렌 환산에 의해 분자량을 산출하였다. 겔 투과 크로마토 그래피 측정은 (주) 시마즈 제작소의 측정 장치 RID-6A, 쇼와전공 (주) 제 칼럼의 쇼덱스 KD-807, KD-806, KD-806M 및 KD-803, 및 용매 디메틸포름아미드 (DMF) 를 사용하여 60℃ 에서 행하였다. 유리 전이 온도는 세이코-전자 공업 (주) 제 DSC 220 을 사용하고, 융해 열량은 퍼킨엘마사 제 시차 주사 열량계 DSC7 을 사용하여, 질소 분위기 중, 온도 범위 -100∼80℃, 승온 속도 10℃/min 으로 측정하였다. 도전율 σ 을 측정하기 위해서 샘플 필름을 사전에 30℃ 에서 12시간 진공 건조시켰다. 도전율은 10℃ 에서 측정하고, 필름을 SUS 제 전극 사이에 끼우고, 전압 30mV, 주파수 범위 10Hz∼10MHz 의 교류법을 사용하여, 복소 임피던스법에 의해 산출하였다.The monomer conversion composition of the polyether copolymer was determined by 1 H NMR spectrum. The molecular weight of the polyether copolymer was measured by gel permeation chromatography, and the molecular weight was calculated in terms of standard polystyrene. Gel permeation chromatography measurement was carried out by measuring apparatus RID-6A of Shimadzu Corporation, Shodex KD-807, KD-806, KD-806M and KD-803, and solvent dimethylformamide It carried out at 60 degreeC using (DMF). The glass transition temperature uses the DSC 220 made from Seiko Electronics Co., Ltd., and the calorific value of the melting | fusing heat uses the differential scanning calorimeter DSC7 by a Perkin Elma company. In nitrogen atmosphere, in a temperature range of -100-80 degreeC and a temperature increase rate of 10 degreeC / measured in min. In order to measure the conductivity σ, the sample film was vacuum dried at 30 ° C. for 12 hours in advance. Electrical conductivity was measured at 10 degreeC, the film was sandwiched between electrodes made of SUS, and it calculated by the complex impedance method using the alternating current method of the voltage of 30 mV and a frequency range of 10 Hz-10 MHz.

전지계에서의 리튬금속과의 안정성 평가에는 리튬 석출 용해 효율 시험에 의해 구하였다. 리튬 석출 용해 효율 시험에는 (주) 나가노 제 충방전 시험기 BTS-2004W 를 사용하였다. 동박(銅箔)과 대극에 금속리튬을 사용하고, 양극 사이에 폴리머 전해질 조성물을 끼워 시험 셀을 제작하였다. 실온 하에서 전류 밀도 0.1mA/㎠ 로 10시간 Li 를 석출 후, 전류 밀도 0.1 mA/㎠ 로 종지 전압 2.0V 까지 Li 의 용해를 행하였다. 리튬 석출 용해 효율은 이하의 식으로 구하였다.The stability evaluation with lithium metal in a battery system was calculated | required by the lithium precipitation dissolution efficiency test. Nagano Corporation charge-discharge tester BTS-2004W was used for the lithium precipitation dissolution efficiency test. Metal lithium was used for the copper foil and the counter electrode, and a test cell was prepared by sandwiching the polymer electrolyte composition between the positive electrodes. After Li precipitated for 10 hours at a current density of 0.1 mA / cm 2 at room temperature, Li was dissolved to a final voltage of 2.0 V at a current density of 0.1 mA / cm 2. Lithium precipitation dissolution efficiency was calculated | required with the following formula | equation.

리튬 석출 용해 효율 (%) = (n 사이클째의 용해에 요한 시간 / n 사이클째의 석출에 요한 시간) × 100Lithium Precipitation Dissolution Efficiency (%) = (Time required for dissolution of nth cycle / Time required for precipitation of nth cycle) × 100

합성예 (촉매의 제조)Synthesis Example (Preparation of Catalyst)

교반기, 온도계 및 증류 장치를 구비한 3구 플라스크에 트리부틸주석클로라이드 10g 및 트리부틸포스페이트 35g 을 넣고, 질소 기류 하에서 교반하면서 250℃ 에서 20분간 가열하여 유출물을 증류 제거시켜 잔류물로서 고체상의 축합 물질을 얻었다. 이후 이것을 중합용 촉매로서 사용하였다.10 g of tributyltin chloride and 35 g of tributyl phosphate were added to a three-necked flask equipped with a stirrer, a thermometer, and a distillation apparatus. Material was obtained. This was then used as catalyst for polymerization.

중합예 1 (폴리머의 제조)Polymerization Example 1 (Preparation of Polymer)

내용량 3L 의 유리제 4구 플라스크의 내부를 질소 치환하고, 이것에 촉매로서 촉매의 제조예에서 나타낸 축합 물질 2g 과 수분 10ppm 이하로 조정한 메틸글리시딜에테르 100g, 및 용매로서 n-헥산 1,000g 을 투입하고, 에틸렌옥사이드 200g 은 메틸글리시딜에테르의 중합률을 가스 크로마토그래피로 추적하면서, 순차적으로 첨가하였다. 중합 반응은 메탄올로 정지시켰다. 데칸테이션에 의해 폴리머를 꺼낸 후, 상압 하 40℃ 에서 24시간, 다시 감압 하 45℃ 에서 10시간 건조시켜 폴리머 275g 을 얻었다. 이 공중합체의 유리 전이 온도는 -65℃, 중량 평균 분자량은 110만, 융해 열량은 7J/g 이었다. 1H NMR 스펙트럼에 의한 이 공중합체의 모노머 환산 조성 분석 결과는 에틸렌옥사이드 67wt%, 메틸글리시딜에테르 33wt% 이었다.Nitrogen-substituted the inside of the glass 4-necked flask having a content of 3 L, and as a catalyst, 2 g of the condensation material shown in the preparation example of the catalyst, 100 g of methylglycidyl ether adjusted to 10 ppm or less of water, and 1,000 g of n-hexane as a solvent were used. In addition, 200 g of ethylene oxide was added sequentially, tracking the polymerization rate of methylglycidyl ether by gas chromatography. The polymerization reaction was stopped with methanol. The polymer was removed by decantation, then dried at 40 ° C. for 24 hours at normal pressure, and further dried at 45 ° C. under reduced pressure for 10 hours to obtain 275 g of polymer. The glass transition temperature of this copolymer was -65 degreeC, the weight average molecular weight was 1.1 million, and the heat of fusion was 7 J / g. 1 in terms of monomer composition analysis result of the copolymer according to the H NMR spectrum of ethylene oxide was 67wt%, 33wt% methyl glycidyl ether.

중합예 2 (폴리머의 제조)Polymerization Example 2 (Preparation of Polymer)

내용량 3L 의 유리제 4구 플라스크의 내부를 질소 치환하고, 이것에 촉매로서 촉매의 제조예에서 나타낸 축합 물질 2g 과 수분 10ppm 이하로 조정한 프로필렌옥사이드 100g, 메타크릴산글리시딜 10g 및 용매로서 n-헥산 1,000g 을 투입하고, 에틸렌옥사이드 200g 은 프로필렌옥사이드의 중합률을 가스 크로마토그래피로 추적하면서, 순차적으로 첨가하였다. 중합 반응은 메탄올로 정지시켰다. 데칸테이션에 의해 폴리머를 꺼낸 후, 상압 하 40℃ 에서 24시간, 다시 감압 하 45℃ 에서 10시간 건조시켜 폴리머 283g 을 얻었다. 이 공중합체의 유리 전이 온도는 -68℃, 중량 평균 분자량은 170만, 융해 열량은 7J/g 이었다. 1H NMR 스펙트럼에 의한 이 공중합체의 모노머 환산 조성 분석 결과는 에틸렌옥사이드 67wt%, 프로필렌옥사이드 30wt%, 메타크릴산글리시딜 3wt% 이었다.Nitrogen-substituted the inside of the glass 4-necked flask having a content of 3L, and as a catalyst, 100 g of propylene oxide, 10 g of methacrylate and 10 g of methacrylate, and a solvent, 1,000 g of hexane was added, and 200 g of ethylene oxide was added sequentially while tracking the polymerization rate of propylene oxide by gas chromatography. The polymerization reaction was stopped with methanol. The polymer was removed by decantation, then dried at 40 ° C. for 24 hours at normal pressure, and further dried at 45 ° C. under reduced pressure for 10 hours to obtain polymer 283 g. The glass transition temperature of this copolymer was -68 degreeC, the weight average molecular weight was 1.7 million, and the heat of fusion was 7 J / g. 1 in terms of monomer composition analysis result of the copolymer according to the H NMR spectrum was 67wt% ethylene oxide, propylene oxide 30wt%, glycidyl methacrylate 3wt%.

중합예 3 (폴리머의 제조)Polymerization Example 3 (Preparation of Polymer)

내용량 3L 의 유리제 4구 플라스크의 내부를 질소 치환하고, 이것에 촉매로서 촉매의 제조예에서 나타낸 축합 물질 2g 과 수분 10ppm 이하로 조정한 하기 식 (ix) 의 옥시란 화합물 (EM) 180g, 알릴글리시딜에테르 20g 및 용매로서 n-헥산 1,000g 을 투입하고, 에틸렌옥사이드 120g 은 EM 의 중합률을 가스 크로마토그래피로 추적하면서, 순차적으로 첨가하였다. 중합 반응은 메탄올로 정지시켰다. 데칸테이션에 의해 폴리머를 꺼낸 후, 상압 하 40℃ 에서 24시간, 다시 감압 하 45℃ 에서 10시간 건조시켜 폴리머 298g 을 얻었다. 이 공중합체의 유리 전이 온도는 -72℃, 중량 평균 분자량은 130만, 융해 열량은 3J/g 이었다. 1H MNR 스펙트럼에 의한 이 공중합체의 모노머 환산 조성 분석 결과는 에틸렌옥사이드 37wt%, EM 57wt%, 알릴글리시딜에테르 6wt% 이었다.180 g of oxirane compound (EM) of the formula (ix) of the following formula (ix) adjusted to 2 g of condensation substance shown in the manufacture example of a catalyst, and 10 ppm or less of water as a catalyst by nitrogen-substituting the inside of the glass 4-necked flask of 3 L of contents 20 g of cyl ether and 1,000 g of n-hexane were added as a solvent, and 120 g of ethylene oxide was added sequentially, tracking the polymerization rate of EM by gas chromatography. The polymerization reaction was stopped with methanol. The polymer was removed by decantation, then dried at 40 ° C. for 24 hours at normal pressure, and further dried at 45 ° C. under reduced pressure for 10 hours to obtain 298 g of a polymer. The glass transition temperature of this copolymer was -72 degreeC, the weight average molecular weight was 1.3 million, and the heat of fusion was 3J / g. 1 in terms of monomer composition analysis result of the copolymer according to the H MNR spectra was a 37wt% ethylene oxide, EM 57wt%, allyl glycidyl ether 6wt%.

Figure 112005057767685-PCT00010
Figure 112005057767685-PCT00010

중합예 4 (폴리머의 제조)Polymerization Example 4 (Preparation of Polymer)

내용량 3L 의 유리제 4구 플라스크의 내부를 질소 치환하고, 이것에 촉매로 서 촉매의 제조예에서 나타낸 축합 물질 2g 과 수분 10ppm 이하로 조정한 하기 식 (x) 의 옥시란 화합물 (GM) 100g, 알릴글리시딜에테르 10g 및 용매로서 n-헥산 1,000g 을 투입하고, 에틸렌옥사이드 120g 은 GM 의 중합률을 가스 크로마토그래피로 추적하면서, 순차적으로 첨가하였다. 중합 반응은 메탄올로 정지시켰다. 데칸테이션에 의해 폴리머를 꺼낸 후, 상압 하 40℃ 에서 24시간, 다시 감압 하 45℃ 에서 10시간 건조시켜 폴리머 205g 을 얻었다. 이 공중합체의 유리 전이 온도는 -74℃, 중량 평균 분자량은 115만, 융해 열량은 3J/g 이었다. 1H NMR 스펙트럼에 의한 이 공중합체의 모노머 환산 조성 분석 결과는 에틸렌옥사이드 53wt%, GM 43wt%, 알릴글리시딜에테르 4wt% 이었다.100 g of the oxirane compound (GM) of the following formula (x) which adjusted to 2 g of condensation substance shown by the manufacture example of a catalyst, and 10 ppm or less of water as a catalyst by nitrogen-substituting the inside of the glass 4-necked flask of 3L of contents, and allyl 10 g of glycidyl ether and 1,000 g of n-hexane were added as a solvent, and 120 g of ethylene oxide was added sequentially while tracking the polymerization rate of GM by gas chromatography. The polymerization reaction was stopped with methanol. The polymer was removed by decantation, then dried at 40 ° C. for 24 hours at normal pressure, and further dried at 45 ° C. under reduced pressure for 10 hours to obtain 205 g of a polymer. The glass transition temperature of this copolymer was -74 degreeC, the weight average molecular weight was 1.15 million, and the heat of fusion was 3 J / g. 1 in terms of monomer composition analysis result of the copolymer according to the H NMR spectrum was 53wt% ethylene oxide, GM 43wt%, allyl glycidyl ether 4wt%.

Figure 112005057767685-PCT00011
Figure 112005057767685-PCT00011

실시예 1Example 1

중합예 1 에서 얻어진 중량 평균 분자량이 110만인 에틸렌옥사이드/메틸글리시딜에테르 2원 공중합체 1g, 하기 식 (iv-1) 의 에틸렌옥사이드 단위를 갖는 에테르 화합물을 함유하는 첨가제 2g, 리튬염 화합물로서 리튬비스(트리플루오로메틸술포닐)이미드 (LiTFSI) 0.7g 을 아세토니트릴 50g 속에서 균일해질 때까지 혼합시키고, 두께 20μm 의 다공질막에 양면 도공한 후, 30℃ 에서 12시간 감압 건조시켜, 다공질막을 포함하는 60μm 의 전해질 필름을 얻었다.1 g of ethylene oxide / methylglycidyl ether binary copolymer having a weight average molecular weight obtained in Polymerization Example 1 and an ether compound having an ethylene oxide unit of formula (iv-1) below, as a lithium salt compound 0.7 g of lithium bis (trifluoromethylsulfonyl) imide (LiTFSI) was mixed in 50 g of acetonitrile until uniform, mixed on both surfaces of a 20 μm porous membrane, and dried under reduced pressure at 30 ° C. for 12 hours, A 60 µm electrolyte film containing a porous membrane was obtained.

Figure 112005057767685-PCT00012
Figure 112005057767685-PCT00012

실시예 2Example 2

중합예 2 에서 얻어진 중량 평균 분자량이 170만인 에틸렌옥사이드/프로필렌옥사이드/메타크릴산글리시딜 3원 공중합체 1g, 상기 식 (iv-1) 의 에틸렌옥사이드 단위를 갖는 에테르 화합물을 함유하는 첨가제 2g, 리튬염 화합물로서 리튬비스(트리플루오로메틸술포닐)이미드 (LiTFSI) 0.7g, 개시제로서 과산화벤조일 0.015g, 가교 보조제로서 에틸렌글리콜디아크릴레이트 0.3g 을 아세토니트릴 50g 속에서 균일해질 때까지 혼합시킨 후, PET 필름에 균일하게 도포하였다. 그 후, 30℃ 에서 12시간 감압 건조시키고, 다시, 100℃, 3시간, 질소 분위기 하에서 가열을 행하여, 50μm 의 전해질 가교 필름을 얻었다.1 g of ethylene oxide / propylene oxide / glycidyl methacrylate terpolymer having a weight average molecular weight of 1.7 million obtained in Polymerization Example 2, an additive containing 2 g of an ether compound having an ethylene oxide unit of formula (iv-1), 0.7 g of lithium bis (trifluoromethylsulfonyl) imide (LiTFSI) as a lithium salt compound, 0.015 g of benzoyl peroxide as an initiator, and 0.3 g of ethylene glycol diacrylate as a crosslinking assistant were mixed until uniform in 50 g of acetonitrile. After the application, the coating was uniformly applied to the PET film. Then, it dried under reduced pressure at 30 degreeC for 12 hours, and also heated in 100 degreeC and 3 hours and nitrogen atmosphere, and obtained 50 micrometers electrolyte crosslinked film.

실시예 3Example 3

중합예 3 에서 얻어진 중량 평균 분자량이 130만인 에틸렌옥사이드/EM/알릴글리시딜에테르 3원 공중합체 1g, 하기 식 (vii-1) 의 에틸렌옥사이드 단위를 갖는 에테르 화합물을 함유하는 첨가제 2g, 리튬염 화합물로서 리튬비스(퍼플루오로에틸술포닐)이미드 (LiBETI) 0.8g, 개시제로서 과산화벤조일 0.015g, 가교 보조제로서 에틸렌글리콜디아크릴레이트 0.3g 을 아세토니트릴 50g 속에서 균일해질 때까지 혼 합시킨 후, PET 필름에 균일하게 도포하였다. 그 후, 30℃ 에서 12시간 감압 건조시키고, 다시, 100℃, 3시간, 질소 분위기 하에서 가열을 행하여, 50μm 의 전해질 가교 필름을 얻었다.1 g of an ethylene oxide / EM / allyglycidyl ether terpolymer having a weight average molecular weight of 1.3 million obtained in the polymerization example 3 and an ether compound containing an ethylene oxide unit having the ethylene oxide unit of formula (vii-1) below, a lithium salt 0.8 g of lithium bis (perfluoroethylsulfonyl) imide (LiBETI) as a compound, 0.015 g of benzoyl peroxide as an initiator, and 0.3 g of ethylene glycol diacrylate as a crosslinking aid were mixed until uniform in 50 g of acetonitrile. Then, it was uniformly applied to the PET film. Then, it dried under reduced pressure at 30 degreeC for 12 hours, and also heated in 100 degreeC and 3 hours and nitrogen atmosphere, and obtained 50 micrometers electrolyte crosslinked film.

Figure 112005057767685-PCT00013
Figure 112005057767685-PCT00013

실시예 4Example 4

중합예 4 에서 얻어진 중량 평균 분자량이 130만인 에틸렌옥사이드/GM/알릴글리시딜에테르 3원 공중합체 1g, 상기 식 (vii-1) 의 에틸렌옥사이드 단위를 갖는 에테르 화합물을 함유하는 첨가제 2g, 리튬염 화합물로서 리튬비스(퍼플루오로에틸술포닐)이미드 (LiBETI) 0.8g, 개시제로서 과산화벤조일 0.015g, 가교 보조제로서 에틸렌글리콜디아크릴레이트 0.3g 을 아세토니트릴 50g 속에서 균일해질 때까지 혼합시킨 후, PET 필름에 균일하게 도포하였다. 그 후, 30℃ 에서 12시간 감압 건조시키고, 다시, 100℃, 3시간, 질소 분위기 하에서 가열을 행하여, 50μm 의 전해질 가교 필름을 얻었다.1 g of an ethylene oxide / GM / allylglycidyl ether terpolymer having a weight average molecular weight obtained in the polymerization example 4, an ether compound having an ethylene oxide unit of formula (vii-1) and a lithium salt 0.8 g of lithium bis (perfluoroethylsulfonyl) imide (LiBETI) as a compound, 0.015 g of benzoyl peroxide as an initiator and 0.3 g of ethylene glycol diacrylate as a crosslinking aid were mixed until uniform in 50 g of acetonitrile. It was apply | coated uniformly to PET film. Then, it dried under reduced pressure at 30 degreeC for 12 hours, and also heated in 100 degreeC and 3 hours and nitrogen atmosphere, and obtained 50 micrometers electrolyte crosslinked film.

실시예 5Example 5

실시예 1 의 전해질 필름 0.01g 에 대하여 5wt% 의 비닐렌카보네이트를 함유하는 상기 식 (iv-1) 의 에틸렌옥사이드 단위를 갖는 에테르 화합물 0.02g 을 함침한 전해질 조성물의 리튬 석출 용해 효율의 평균치는 83% 이었다. 그 결과를 표 1 에 나타낸다.The average value of the lithium precipitation dissolution efficiency of the electrolyte composition impregnated with 0.02 g of the ether compound having the ethylene oxide unit of formula (iv-1) containing 5 wt% of vinylene carbonate relative to 0.01 g of the electrolyte film of Example 1 was 83. Was%. The results are shown in Table 1.

실시예 6Example 6

실시예 2 의 전해질 가교 필름 0.01g 에 대하여 10wt% 의 비닐렌카보네이트와 1M 의 리튬비스(트리플루오로메틸술포닐)이미드 (LiTFSI) 를 포함하는 상기 식 (vii-1) 의 에틸렌옥사이드 단위를 갖는 에테르 화합물 0.02g 을 함침한 전해질 조성물의 리튬 석출 용해 효율의 평균치는 84% 이었다. 그 결과를 표 1 에 나타낸다.Ethylene oxide units of formula (vii-1) comprising 10 wt% of vinylene carbonate and 1 M of lithium bis (trifluoromethylsulfonyl) imide (LiTFSI) based on 0.01 g of the electrolyte crosslinked film of Example 2 The average value of the lithium precipitation dissolution efficiency of the electrolyte composition impregnated with an ether compound having 0.02 g was 84%. The results are shown in Table 1.

실시예 7Example 7

실시예 3 의 전해질 가교 필름 0.01g 에 대하여 20wt% 의 비닐렌카보네이트를 함유하는 상기 식 (vii-1) 의 에틸렌옥사이드 단위를 갖는 에테르 화합물 0.02g 을 함침한 전해질 조성물의 리튬 석출 용해 효율의 평균치는 92% 이었다. 그 결과를 표 1 에 나타낸다.The average value of the lithium precipitation dissolution efficiency of the electrolyte composition impregnated with 0.02 g of an ether compound having an ethylene oxide unit of formula (vii-1) containing 20 wt% of vinylene carbonate relative to 0.01 g of the electrolyte crosslinked film of Example 3 was obtained. 92%. The results are shown in Table 1.

실시예 8Example 8

실시예 3 의 전해질 가교 필름 0.01g 에 대하여 40wt% 의 비닐렌카보네이트를 함유하는 상기 식 (vii-1) 의 에틸렌옥사이드 단위를 갖는 에테르 화합물 0.02g 을 함침한 전해질 조성물의 리튬 석출 용해 효율의 평균치는 91% 이었다. 그 결과를 표 1 에 나타낸다.The average value of the lithium precipitation dissolution efficiency of the electrolyte composition impregnated with 0.02 g of an ether compound having an ethylene oxide unit of formula (vii-1) containing 40 wt% of vinylene carbonate relative to 0.01 g of the electrolyte crosslinked film of Example 3 91%. The results are shown in Table 1.

실시예 9Example 9

실시예 4 의 전해질 가교 필름 0.01g 에 대하여 60wt% 의 비닐렌카보네이트를 함유하는 상기 식 (vii-1) 의 에틸렌옥사이드 단위를 갖는 에테르 화합물 0.02g 을 함침한 전해질 조성물의 리튬 석출 용해 효율의 평균치는 91% 이었다. 그 결과를 표 1 에 나타낸다.The average value of the lithium precipitation dissolution efficiency of the electrolyte composition impregnated with 0.02 g of an ether compound having an ethylene oxide unit of formula (vii-1) containing 60 wt% of vinylene carbonate relative to 0.01 g of the electrolyte crosslinked film of Example 4 91%. The results are shown in Table 1.

비교예 1Comparative Example 1

실시예 2 의 전해질 필름 0.01g 에 대하여 비닐렌카보네이트를 함유하지 않는 상기 식 (vii-1) 의 에틸렌옥사이드 단위를 갖는 에테르 화합물 0.02g 을 함침한 전해질 조성물의 리튬 석출 용해 효율의 평균치는 62% 이었다. 그 결과를 표 1 에 나타낸다.The average value of the lithium precipitation dissolution efficiency of the electrolyte composition impregnated with 0.02 g of the ether compound having the ethylene oxide unit of formula (vii-1) containing no vinylene carbonate relative to 0.01 g of the electrolyte film of Example 2 was 62%. . The results are shown in Table 1.

비교예 2Comparative Example 2

중합예 3 에서 얻어진 중량 평균 분자량이 130만인 에틸렌옥사이드/EM/알릴글리시딜에테르 3원 공중합체 1g, 상기 식 (iv-1) 의 에틸렌옥사이드 단위를 갖는 에테르 화합물을 함유하는 첨가제 2g, 리튬염 화합물로서 리튬비스(트리플루오로메틸술포닐)이미드 (LiTFSI) 0.7g, 개시제로서 과산화벤조일 0.015g, 가교 보조제로서 에틸렌글리콜디아크릴레이트 0.3g 및 전해질에 대하여 20wt% 의 비닐렌카보네이트를 아세토니트릴 50g 속에서 균일해질 때까지 혼합시킨 후, PET 필름에 균일하게 도포하였다. 그 후, 30℃ 에서 12시간 감압 건조시키고, 다시, 100℃, 3시간, 질소 분위기 하에서 가열을 행하여, 50μm 의 전해질 가교 조성물을 얻었다. 이 전해질 가교 조성물의 리튬 석출 효율의 평균치는 60% 이었다. 그 결과를 표 1 에 나타낸다.1 g of an ethylene oxide / EM / allylglycidyl ether terpolymer having a weight average molecular weight of 1.3 million obtained in the polymerization example 3 and an ether compound having an ethylene oxide unit of the formula (iv-1), a lithium salt 0.7 g of lithium bis (trifluoromethylsulfonyl) imide (LiTFSI) as a compound, 0.015 g of benzoyl peroxide as an initiator, 0.3 g of ethylene glycol diacrylate as a crosslinking aid and 20 wt% of vinylene carbonate to an electrolyte are acetonitrile After mixing until uniform in 50g, it was evenly applied to the PET film. Then, it dried under reduced pressure at 30 degreeC for 12 hours, and also heated in 100 degreeC and 3 hours and nitrogen atmosphere, and obtained 50 micrometers electrolyte crosslinking composition. The average value of the lithium precipitation efficiency of this electrolyte crosslinking composition was 60%. The results are shown in Table 1.

비교예 3Comparative Example 3

중합예 4 에서 얻어진 중량 평균 분자량이 130만인 에틸렌옥사이드/GM/알릴글리시딜에테르 3원 공중합체 1g, 상기 식 (vii-1) 의 에틸렌옥사이드 단위를 갖는 에테르 화합물을 함유하는 첨가제 2g, 리튬염 화합물로서 리튬비스(퍼플루오로에틸술포닐)이미드 (LiBETI) 0.8g, 개시제로서 과산화벤조일 0.015g, 가교 보조제로서 에틸렌글리콜디아크릴레이트 0.3g 및 전해질에 대하여 50wt% 의 비닐렌카보네이트를 아세토니트릴 50g 속에서 균일해질 때까지 혼합시킨 후, PET 필름에 균일하게 도포하였다. 그 후, 30℃ 에서 12시간 감압 건조시키고, 다시, 100℃, 3시간, 질소 분위기 하에서 가열을 행하여, 55μm 의 전해질 가교 필름을 얻었다. 이 전해질 가교 조성물의 리튬 석출 효율의 평균치는 67% 이었다. 그 결과를 표 1 에 나타낸다.1 g of an ethylene oxide / GM / allylglycidyl ether terpolymer having a weight average molecular weight obtained in the polymerization example 4, an ether compound having an ethylene oxide unit of formula (vii-1) and a lithium salt 0.8 g of lithium bis (perfluoroethylsulfonyl) imide (LiBETI) as a compound, 0.015 g of benzoyl peroxide as an initiator, 0.3 g of ethylene glycol diacrylate as a crosslinking aid and 50 wt% of vinylene carbonate to an electrolyte After mixing until uniform in 50g, it was evenly applied to the PET film. Then, it dried under reduced pressure at 30 degreeC for 12 hours, and also heated in 100 degreeC and 3 hours and nitrogen atmosphere, and obtained the 55 micrometers electrolyte crosslinked film. The average value of the lithium precipitation efficiency of this electrolyte crosslinking composition was 67%. The results are shown in Table 1.

비교예 4Comparative Example 4

실시예 2 의 전해질 가교 필름 0.01g 에 대하여 120wt% 의 비닐렌카보네이트를 함유하는 상기 식 (vii-1) 의 에틸렌옥사이드 단위를 갖는 에테르 화합물 0.02g 을 함침한 전해질 조성물의 리튬 석출 효율의 평균치는 71% 이었다. 그 결과를 표 1 에 나타낸다.The average value of the lithium deposition efficiency of the electrolyte composition impregnated with 0.02 g of an ether compound having an ethylene oxide unit of formula (vii-1) containing 120 wt% of vinylene carbonate relative to 0.01 g of the electrolyte crosslinked film of Example 2 was 71 Was%. The results are shown in Table 1.

비닐렌카보네이트 첨가량 (wt%)Vinylene carbonate added amount (wt%) 리튬 석출 용해 효율Lithium precipitation dissolution efficiency 초회치 (%)Initial value (%) 최고치 (%)Peak (%) 평균치 (%)Average value (%) 실시예 5 실시예 6 실시예 7 실시예 8 실시예 9 비교예 1 비교예 2 비교예 3 비교예 4Example 5 Example 6 Example 7 Example 8 Example 9 Comparative Example 1 Comparative Example 2 Comparative Example 3 Comparative Example 4 5 10 20 40 60 0 20 50 1205 10 20 40 60 0 20 50 120 80 83 91 90 90 46 49 50 3680 83 91 90 90 46 49 50 36 85 86 93 93 92 65 63 71 7985 86 93 93 92 65 63 71 79 83 84 92 91 91 62 60 67 7183 84 92 91 91 62 60 67 71

평균치는 20 사이클째까지의 리튬 석출 용해 효율의 값을 평균하여 구하였다 The average value was obtained by averaging the values of lithium precipitation dissolution efficiency up to the 20th cycle.

실시예 10Example 10

실시예 6 에서 얻어진 전해질 조성물, 부극으로서 리튬금속박, 및 정극 활물질로서 코발트산리튬 (LiCoO2) 을 사용하여 2차 전지를 구성하였다.Example 6 The electrolyte composition obtained, a lithium metal foil, and the positive electrode active material as a negative electrode using lithium cobalt oxide (LiCoO 2) was composed of the secondary battery.

코발트산리튬은 소정량의 탄산리튬 및 탄산코발트 분체를 혼합한 후 900℃ 에서 5시간 소성함으로써 조제하였다. 다음으로 이것을 분쇄하여, 얻어진 코발트산리튬 85중량부에 대하여 아세틸렌블랙 5중량부와 중합예 2 에서 얻어진 폴리머 10중량부, 리튬비스(트리플루오로메틸술포닐)이미드 (LiTFSI) 5중량부를 첨가하여 롤로 혼합한 후, 30MPa 의 압력으로 프레스 성형하여 전지의 정극으로 하였다.Lithium cobalt acid was prepared by mixing a predetermined amount of lithium carbonate and cobalt carbonate powder and baking at 900 ° C for 5 hours. Next, 5 parts by weight of acetylene black, 10 parts by weight of the polymer obtained in Polymerization Example 2, and 5 parts by weight of lithium bis (trifluoromethylsulfonyl) imide (LiTFSI) were added to 85 parts by weight of the obtained lithium cobaltate. After mixing with a roll, it press-molded at the pressure of 30 Mpa, and it was set as the positive electrode of the battery.

실시예 6 에서 얻어진 전해질 조성물을 리튬금속박과 정극판 사이에 끼우고, 계면이 밀착하도록 1MPa 의 압력을 가하면서 실온에서 전지의 충방전 특성을 조사하였다. 충전은 4.2V 까지의 정전류 정전압으로 행하고, 방전은 정전류로 행하였다. 방전 전류는 0.1mA/㎠ 이고, 0.1mA/㎠ 로 충전을 행하였다. 100사이클의 충방전 후의 방전 용량은 초기 용량의 90% 를 나타내었다.The electrolyte composition obtained in Example 6 was sandwiched between the lithium metal foil and the positive electrode plate, and the charge and discharge characteristics of the battery were examined at room temperature while applying a pressure of 1 MPa so that the interface was in close contact. Charging was performed at a constant current constant voltage up to 4.2 V, and discharge was performed at a constant current. The discharge current was 0.1 mA / cm 2, and charging was performed at 0.1 mA / cm 2. The discharge capacity after 100 cycles of charge and discharge represented 90% of the initial capacity.

실시예 11Example 11

실시예 7 에서 얻어진 전해질 조성물, 부극으로서 리튬금속박, 및 실시예 10 에서 제작한 정극을 사용하여 2차 전지를 제작하고, 마찬가지로 충방전 특성을 조사하였다. 100 사이클의 충방전 후의 방전 용량은 초기 용량의 91% 를 나타내었다.The secondary battery was produced using the electrolyte composition obtained in Example 7, the lithium metal foil as a negative electrode, and the positive electrode produced in Example 10, and similarly the charge / discharge characteristic was investigated. The discharge capacity after 100 cycles of charge and discharge represented 91% of the initial capacity.

비교예 5Comparative Example 5

비교예 1 에서 얻어진 전해질 조성물, 부극으로서 리튬금속박, 및 실시예 10 에서 제작한 정극을 사용하여 2차 전지를 제작하고, 마찬가지로 충방전 특성을 조사하였다. 100 사이클의 충방전 후의 방전 용량은 초기 용량의 80% 를 나타내었다.The secondary battery was produced using the electrolyte composition obtained by the comparative example 1, the lithium metal foil as a negative electrode, and the positive electrode produced in Example 10, and similarly the charge / discharge characteristic was investigated. The discharge capacity after 100 cycles of charge and discharge represented 80% of the initial capacity.

비교예 6Comparative Example 6

비교예 3 에서 얻어진 전해질 조성물, 부극으로서 리튬금속박, 및 실시예 10 에서 제작한 정극을 사용하여 2차 전지를 제작하고, 마찬가지로 충방전 특성을 조사하였다. 100 사이클의 충방전 후의 방전 용량은 초기 용량의 78% 를 나타내었다.The secondary battery was produced using the electrolyte composition obtained by the comparative example 3, the lithium metal foil as a negative electrode, and the positive electrode produced in Example 10, and similarly the charge / discharge characteristic was investigated. The discharge capacity after 100 cycles of charge and discharge represented 78% of the initial capacity.

실시예 12Example 12

비닐렌카보네이트 0.004g (3wt%) 과 하기 식 (iv-1) 의 에틸렌옥사이드 단위를 갖는 에테르 화합물 0.116g (97wt%) 과, 리튬비스(퍼플루오로에틸술포닐)이미드 (LiBETI) 0.08g 을 함유하는 전해질의 리튬 석출 용해 효율의 평균치는 86% 이었다. 그 결과를 표 2 에 나타낸다.0.004 g (3 wt%) of vinylene carbonate, 0.116 g (97 wt%) of an ether compound having an ethylene oxide unit of formula (iv-1), and 0.08 g of lithium bis (perfluoroethylsulfonyl) imide (LiBETI) The average value of the lithium precipitation dissolution efficiency of the electrolyte containing was 86%. The results are shown in Table 2.

Figure 112005057767685-PCT00014
Figure 112005057767685-PCT00014

실시예 13Example 13

비닐렌카보네이트 0.006g (5wt%) 과 상기 식 (iv-1) 의 에틸렌옥사이드 단위를 갖는 에테르 화합물 0.114g (95wt%) 을 사용하고, 그 이외에는 실시예 12 와 동일한 전해질의 리튬 석출 용해 효율의 평균치는 91% 이었다. 그 결과를 표 2 에 나타낸다.0.006 g (5 wt%) of vinylene carbonate and 0.114 g (95 wt%) of an ether compound having an ethylene oxide unit of the formula (iv-1) were used, except that the average value of the lithium precipitation dissolution efficiency of the same electrolyte as in Example 12 was used. Was 91%. The results are shown in Table 2.

실시예 14Example 14

비닐렌카보네이트 0.012g (10wt%) 과 상기 식 (iv-1) 의 에틸렌옥사이드 단위를 갖는 에테르 화합물 0.108g (90wt%) 을 사용하고, 그 이외에는 실시예 12 와 동일한 전해질의 리튬 석출 용해 효율의 평균치는 92% 이었다. 그 결과를 표 2 에 나타낸다.0.012 g (10 wt%) of vinylene carbonate and 0.108 g (90 wt%) of an ether compound having an ethylene oxide unit of formula (iv-1) were used, except that the average value of the lithium precipitation dissolution efficiency of the same electrolyte as in Example 12 was used. Was 92%. The results are shown in Table 2.

실시예 15Example 15

비닐렌카보네이트 0.014g (10wt%) 과 하기 식 (vii-1) 의 에틸렌옥사이드 단위를 갖는 에테르 화합물 0.126g (90wt%) 과, 리튬비스(트리플루오로메틸술포닐)이미드 (LiTFSI) 0.06g 을 함유하는 전해질의 리튬 석출 용해 효율의 평균치는 92% 이었다. 그 결과를 표 2 에 나타낸다.0.014 g (10 wt%) of vinylene carbonate, 0.126 g (90 wt%) of an ether compound having an ethylene oxide unit of formula (vii-1), and 0.06 g of lithium bis (trifluoromethylsulfonyl) imide (LiTFSI) The average value of the lithium precipitation dissolution efficiency of the electrolyte containing was 92%. The results are shown in Table 2.

Figure 112005057767685-PCT00015
Figure 112005057767685-PCT00015

실시예 16Example 16

비닐렌카보네이트 0.024g (20wt%) 과 상기 식 (vii-1) 의 에틸렌옥사이드 단위를 갖는 에테르 화합물 0.096g (80wt%) 을 사용하고, 그 이외에는 실시예 12 와 동일한 전해질의 리튬 석출 용해 효율의 평균치는 91% 이었다. 그 결과를 표 2 에 나타낸다.0.024 g (20 wt%) of vinylene carbonate and 0.096 g (80 wt%) of an ether compound having an ethylene oxide unit of formula (vii-1) were used, except that the average value of lithium precipitation dissolution efficiency of the same electrolyte as in Example 12 was used. Was 91%. The results are shown in Table 2.

실시예 17Example 17

비닐렌카보네이트 0.060g (50wt%) 과 상기 식 (vii-1) 의 에틸렌옥사이드 단위를 갖는 에테르 화합물 0.060g (50wt%) 을 사용하고, 그 이외에는 실시예 12 와 동일한 전해질의 리튬 석출 용해 효율의 평균치는 91% 이었다. 그 결과를 표 2 에 나타낸다.0.060 g (50 wt%) of vinylene carbonate and 0.060 g (50 wt%) of an ether compound having an ethylene oxide unit of the formula (vii-1) were used, except that the average value of the lithium precipitation dissolution efficiency of the same electrolyte as in Example 12 was used. Was 91%. The results are shown in Table 2.

실시예 18Example 18

비닐렌카보네이트 0.096g (80wt%) 과 상기 식 (vii-1) 의 에틸렌옥사이드 단위를 갖는 에테르 화합물 0.024g (20wt%) 을 사용하고, 그 이외에는 실시예 12 와 동일한 전해질의 리튬 석출 용해 효율의 평균치는 88% 이었다. 그 결과를 표 2 에 나타낸다.0.096 g (80 wt%) of vinylene carbonate and 0.024 g (20 wt%) of an ether compound having an ethylene oxide unit of formula (vii-1) were used, except that the average value of the lithium precipitation dissolution efficiency of the same electrolyte as in Example 12 was used. Was 88%. The results are shown in Table 2.

비교예 7Comparative Example 7

상기 식 (iv-1) 의 에틸렌옥사이드 단위를 갖는 에테르 화합물 0.12g 과, LiBETI 0.08g 을 함유하는 전해질의 리튬 석출 용해 효율의 평균치는 71% 이었다. 그 결과를 표 2 에 나타낸다.The average value of the lithium precipitation dissolution efficiency of the ether compound containing 0.12 g of the ether compound having the ethylene oxide unit of formula (iv-1) and 0.08 g of LiBETI was 71%. The results are shown in Table 2.

비교예 8Comparative Example 8

상기 식 (vii-1) 의 에틸렌옥사이드 단위를 갖는 에테르 화합물 0.14g 과, LiTFSI 0.06g 을 함유하는 전해질의 리튬 석출 용해 효율의 평균치는 54% 이었다. 그 결과를 표 2 에 나타낸다.The average value of the lithium precipitation dissolution efficiency of the electrolyte containing 0.14 g of the ether compound having the ethylene oxide unit of the formula (vii-1) and 0.06 g of LiTFSI was 54%. The results are shown in Table 2.

비닐렌카보네이트 첨가량 (wt%) Vinylene carbonate added amount (wt%) 리튬염 화합물 Lithium salt compound 리튬 석출 용해 효율Lithium precipitation dissolution efficiency 초회치 (%)Initial value (%) 최고치 (%)Peak (%) 평균치 (%)Average value (%) 실시예 12Example 12 33 LiBETILiBETI 8282 9090 8686 실시예 13Example 13 55 LiBETILiBETI 8383 9292 9191 실시예 14Example 14 1010 LiBETILiBETI 8585 9494 9292 실시예 15Example 15 1010 LiTFSILiTFSI 8686 9494 9292 실시예 16Example 16 2020 LiBETILiBETI 8282 9393 9191 실시예 17Example 17 5050 LiBETILiBETI 8383 9494 9191 실시예 18Example 18 8080 LiBETILiBETI 8888 9595 8888 비교예 7Comparative Example 7 00 LiBETILiBETI 6767 7878 7171 비교예 8Comparative Example 8 00 LiTFSILiTFSI 5555 6464 5454

평균치는 20 사이클째까지의 리튬 석출 용해 효율의 값을 평균하여 구하였다The average value was obtained by averaging the values of lithium precipitation dissolution efficiency up to the 20th cycle.

실시예 19Example 19

실시예 13 의 전해질을 함침시킨 다공질 세퍼레이터 (토넨 타피루스 (주) 제 E25MMS 두께 25μm, 기공률 38%), 부극으로서 리튬금속박, 및 정극 활물질로서 코발트산리튬을 사용하여 2차 전지를 구성하였다.The secondary battery was constructed using the porous separator (25 micrometers of E25MMS thickness, 38% of porosity) by the Toene Tapyrus Co., Ltd. which impregnated the electrolyte of Example 13, lithium metal foil as a negative electrode, and lithium cobaltate as a positive electrode active material.

코발트산리튬은 소정량의 탄산리튬 및 탄산코발트 분체를 혼합한 후 900℃ 에서 5시간 소성함으로써 조제하였다. 다음으로 이것을 분쇄하여, 얻어진 코발트산리튬 90중량부에 대하여 아세틸렌블랙 4중량부와 폴리불화비닐리덴 6중량부를 첨가하여 롤로 혼합한 후, 30MPa 의 압력으로 프레스 성형하여 전지의 정극으로 하였다.Lithium cobalt acid was prepared by mixing a predetermined amount of lithium carbonate and cobalt carbonate powder and baking at 900 ° C for 5 hours. Next, 4 parts by weight of acetylene black and 6 parts by weight of polyvinylidene fluoride were added to the obtained 90 parts by weight of lithium cobalt acid, mixed with a roll, and press-molded at a pressure of 30 MPa to form a positive electrode of the battery.

실시예 13 의 전해질을 함침시킨 다공질 세퍼레이터를 리튬금속박과 정극판 사이에 끼우고, 계면이 밀착하도록 1MPa 의 압력을 가하면서 25℃ 에서 전지의 충방전 특성을 조사하였다. 충전은 전류 밀도 0.1mA/㎠, 상한 전압 4.2V 까지의 정전류 정전압으로 행하고, 방전은 전류 밀도 0.1mA/㎠ 의 정전류로 행하였다. 100 사이클의 충방전 후의 방전 용량은 초기 용량의 86% 를 나타냈다.The porous separator impregnated with the electrolyte of Example 13 was sandwiched between the lithium metal foil and the positive electrode plate, and the charge and discharge characteristics of the battery were investigated at 25 ° C. while applying a pressure of 1 MPa so that the interface was in close contact. The charging was performed at a constant current constant voltage up to a current density of 0.1 mA / cm 2 and an upper limit of 4.2 V, and the discharge was performed at a constant current having a current density of 0.1 mA / cm 2. The discharge capacity after 100 cycles of charge and discharge represented 86% of the initial capacity.

실시예 20Example 20

실시예 15 의 전해질을 함침시킨 다공질 세퍼레이터, 부극으로서 리튬금속박, 및 실시예 19 에서 제작한 정극을 사용하여 2차 전지를 제작하고, 실시예 19 와 동일하게 충방전 특성을 조사하였다. 100 사이클의 충방전 후의 방전 용량은 초기 용량의 88% 를 나타내었다.The secondary battery was produced using the porous separator in which the electrolyte of Example 15 was impregnated, the lithium metal foil as a negative electrode, and the positive electrode produced in Example 19, and the charge / discharge characteristic was investigated similarly to Example 19. The discharge capacity after 100 cycles of charge and discharge represented 88% of the initial capacity.

비교예 9Comparative Example 9

비교예 7 의 전해질을 함침시킨 다공질 세퍼레이터, 부극으로서 리튬금속박, 및 실시예 19 에서 제작한 정극을 사용하여 2차 전지를 제작하고, 실시예 19 와 동일하게 충방전 특성을 조사하였다. 100 사이클의 충방전 후의 방전 용량은 초기 용량의 64% 를 나타내었다.The secondary battery was produced using the porous separator which impregnated the electrolyte of the comparative example 7, the lithium metal foil as a negative electrode, and the positive electrode produced in Example 19, and the charge / discharge characteristic was investigated similarly to Example 19. The discharge capacity after 100 cycles of charge and discharge represented 64% of the initial capacity.

비교예 10 Comparative Example 10

비교예 8 의 전해질을 함침시킨 다공질 세퍼레이터, 부극으로서 리튬금속박, 및 실시예 19 에서 제작한 정극을 사용하여 2차 전지를 제작하고, 실시예 19 와 동일하게 충방전 특성을 조사하였다. 100 사이클의 충방전 후의 방전 용량은 초기 용량의 43% 를 나타내었다.The secondary battery was produced using the porous separator which impregnated the electrolyte of the comparative example 8, the lithium metal foil as a negative electrode, and the positive electrode produced in Example 19, and the charge / discharge characteristic was investigated similarly to Example 19. The discharge capacity after 100 cycles of charge and discharge represented 43% of the initial capacity.

실시예 21Example 21

중합예 1 에서 얻어진 중량 평균 분자량이 110만인 에틸렌옥사이드/메틸글리시딜에테르 2원 공중합체 1g, 하기 식 (iv-1) 의 에틸렌옥사이드 단위를 갖는 에테르 화합물을 함유하는 첨가제 2g, 리튬염 화합물로서 리튬비스(트리플루오로메틸술포닐)이미드 (LiTFSI) 0.7g 을 아세토니트릴 50g 속에서 균일해질 때까지 혼합시키고, 두께 20μm 의 다공질막에 양면 도공한 후, 30℃ 에서 12시간 감압 건조시키고, 다공질막을 포함하는 60μm 의 전해질 필름을 얻었다.1 g of ethylene oxide / methylglycidyl ether binary copolymer having a weight average molecular weight obtained in Polymerization Example 1 and an ether compound having an ethylene oxide unit of formula (iv-1) below, as a lithium salt compound 0.7 g of lithium bis (trifluoromethylsulfonyl) imide (LiTFSI) was mixed in 50 g of acetonitrile until uniform, mixed on both sides of a 20 μm porous membrane, and dried under reduced pressure at 30 ° C. for 12 hours, A 60 µm electrolyte film containing a porous membrane was obtained.

Figure 112005057767685-PCT00016
Figure 112005057767685-PCT00016

실시예 22Example 22

중합예 2 에서 얻어진 중량 평균 분자량이 170만인 에틸렌옥사이드/프로필렌옥사이드/메타크릴산글리시딜 3원 공중합체 1g, 상기 식 (iv-1) 의 에틸렌옥사이드 단위를 갖는 에테르 화합물을 함유하는 첨가제 2g, 리튬염 화합물로서 LiTFSI 0.7g, 개시제로서 과산화벤조일 0.015g, 가교 보조제로서 에틸렌글리콜디아크릴레이트 0.3g 을 아세토니트릴 50g 속에서 균일해질 때까지 혼합시킨 후, 폴리에틸렌테레프탈레이트 수지 (PET) 필름에 균일하게 도포하였다. 그 후, 30℃ 에서 12시간 감압 건조시키고, 다시, 100℃, 3시간, 질소 분위기 하에서 가열을 행하여, 50μm 의 전해질 가교 필름을 얻었다.1 g of ethylene oxide / propylene oxide / glycidyl methacrylate terpolymer having a weight average molecular weight of 1.7 million obtained in Polymerization Example 2, an additive containing 2 g of an ether compound having an ethylene oxide unit of formula (iv-1), 0.7 g of LiTFSI as a lithium salt compound, 0.015 g of benzoyl peroxide as an initiator, and 0.3 g of ethylene glycol diacrylate as a crosslinking assistant were mixed until uniform in 50 g of acetonitrile, and then uniformly mixed with a polyethylene terephthalate resin (PET) film. Applied. Then, it dried under reduced pressure at 30 degreeC for 12 hours, and also heated in 100 degreeC and 3 hours and nitrogen atmosphere, and obtained 50 micrometers electrolyte crosslinked film.

실시예 23Example 23

중합예 3 에서 얻어진 중량 평균 분자량이 130만인 에틸렌옥사이드/EM/알릴글리시딜에테르 3원 공중합체 1g, 하기 식 (vii-1) 의 에틸렌옥사이드 단위를 갖는 에테르 화합물을 함유하는 첨가제 2g, 리튬염 화합물로서 리튬비스(퍼플루오로에틸술포닐)이미드 (LiBETI) 0.8g, 개시제로서 과산화벤조일 0.015g, 가교 보조제로서 에틸렌글리콜디아크릴레이트 0.3g 을 아세토니트릴 50g 속에서 균일해질 때까지 혼합시킨 후, PET 필름에 균일하게 도포하였다. 그 후, 30℃ 에서 12시간 감압 건조시키고, 다시, 100℃, 3시간, 질소 분위기 하에서 가열을 행하여, 50μm 의 전해질 가교 필름을 얻었다.1 g of an ethylene oxide / EM / allyglycidyl ether terpolymer having a weight average molecular weight of 1.3 million obtained in the polymerization example 3 and an ether compound containing an ethylene oxide unit having the ethylene oxide unit of formula (vii-1) below, a lithium salt 0.8 g of lithium bis (perfluoroethylsulfonyl) imide (LiBETI) as a compound, 0.015 g of benzoyl peroxide as an initiator and 0.3 g of ethylene glycol diacrylate as a crosslinking aid were mixed until uniform in 50 g of acetonitrile. It was apply | coated uniformly to PET film. Then, it dried under reduced pressure at 30 degreeC for 12 hours, and also heated in 100 degreeC and 3 hours and nitrogen atmosphere, and obtained 50 micrometers electrolyte crosslinked film.

Figure 112005057767685-PCT00017
Figure 112005057767685-PCT00017

실시예 24Example 24

중합예 4 에서 얻어진 중량 평균 분자량이 130만인 에틸렌옥사이드/GM/알릴글리시딜에테르 3원 공중합체 1g, 상기 식 (vii-1) 의 에틸렌옥사이드 단위를 갖는 에테르 화합물을 함유하는 첨가제 2g, 리튬염 화합물로서 LiBETI 0.8g, 붕불화리튬 (LiBF4) 0.05g, 개시제로서 과산화벤조일 0.015g, 가교 보조제로서 에틸렌글리콜디아크릴레이트 0.3g 을 아세토니트릴 50g 속에서 균일해질 때까지 혼합시킨 후, PET 필름에 균일하게 도포하였다. 그 후, 30℃ 에서 12시간 감압 건조시키고, 다시, 100℃, 3시간, 질소 분위기 하에서 가열을 행하여, 50μm 의 전해질 가교 필름을 얻었다.1 g of an ethylene oxide / GM / allylglycidyl ether terpolymer having a weight average molecular weight obtained in the polymerization example 4, an ether compound having an ethylene oxide unit of formula (vii-1) and a lithium salt 0.8 g of LiBETI as a compound, 0.05 g of lithium borofluoride (LiBF 4 ), 0.015 g of benzoyl peroxide as an initiator, and 0.3 g of ethylene glycol diacrylate as a crosslinking aid were mixed until uniform in 50 g of acetonitrile, and then to the PET film. The coating was applied uniformly. Then, it dried under reduced pressure at 30 degreeC for 12 hours, and also heated in 100 degreeC and 3 hours and nitrogen atmosphere, and obtained 50 micrometers electrolyte crosslinked film.

실시예 25Example 25

실시예 21 의 전해질 필름 0.01g 에 대하여 6wt% 의 비닐에틸렌카보네이트를 함유하는 상기 식 (iv-1) 의 에틸렌옥사이드 단위를 갖는 에테르 화합물 0.02g 을 함침한 폴리머 전해질 조성물의 리튬 석출 용해 효율의 평균치는 75% 이었다. 그 결과를 표 3 에 나타낸다.The average value of the lithium precipitation dissolution efficiency of the polymer electrolyte composition impregnated with 0.02 g of the ether compound having the ethylene oxide unit of formula (iv-1) containing 6 wt% of vinyl ethylene carbonate relative to 0.01 g of the electrolyte film of Example 21 75%. The results are shown in Table 3.

실시예 26Example 26

실시예 22 의 PET 필름을 제외한 전해질 가교 필름 0.01g 에 대하여 12wt% 의 비닐에틸렌카보네이트와 1mol/kg 의 LiTFSI 를 포함하는 상기 식 (vii-1) 의 에틸렌옥사이드 단위를 갖는 에테르 화합물 0.02g 을 함침한 폴리머 전해질 조성물의 리튬 석출 용해 효율의 평균치는 82% 이었다. 그 결과를 표 3 에 나타낸다.To 0.01 g of the electrolyte crosslinked film excluding the PET film of Example 22, impregnated with 0.02 g of an ether compound having an ethylene oxide unit of formula (vii-1) containing 12 wt% of vinyl ethylene carbonate and 1 mol / kg of LiTFSI The average value of the lithium precipitation dissolution efficiency of the polymer electrolyte composition was 82%. The results are shown in Table 3.

실시예 27Example 27

실시예 23 의 전해질 가교 필름 0.01g 에 대하여 18wt% 의 비닐에틸렌카보네이트를 함유하는 상기 식 (vii-1) 의 에틸렌옥사이드 단위를 갖는 에테르 화합물 0.02g 을 함침한 폴리머 전해질 조성물의 리튬 석출 용해 효율의 평균치는 91% 이었다. 그 결과를 표 3 에 나타낸다.Average value of lithium precipitation dissolution efficiency of a polymer electrolyte composition impregnated with 0.02 g of an ether compound having an ethylene oxide unit of formula (vii-1) containing 18 wt% of vinyl ethylene carbonate relative to 0.01 g of the electrolyte crosslinked film of Example 23. Was 91%. The results are shown in Table 3.

실시예 28Example 28

실시예 24 의 전해질 가교 필름 0.01g 에 대하여 20wt% 의 비닐에틸렌카보네이트를 함유하는 상기 식 (vii-1) 의 에틸렌옥사이드 단위를 갖는 에테르 화합물 0.02g 을 함침한 폴리머 전해질 조성물의 리튬 석출 용해 효율의 평균치는 93% 이었다. 그 결과를 표 3 에 나타낸다.Average value of lithium precipitation dissolution efficiency of a polymer electrolyte composition impregnated with 0.02 g of an ether compound having an ethylene oxide unit of formula (vii-1) containing 20 wt% of vinyl ethylene carbonate relative to 0.01 g of the electrolyte crosslinked film of Example 24 Was 93%. The results are shown in Table 3.

실시예 29Example 29

실시예 24 의 전해질 가교 필름 0.01g 에 대하여 50wt% 의 비닐에틸렌카보네이트를 함유하는 상기 식 (vii-1) 의 에틸렌옥사이드 단위를 갖는 에테르 화합물 0.02g 을 함침한 폴리머 전해질 조성물의 리튬 석출 용해 효율의 평균치는 90% 이었다. 그 결과를 표 3 에 나타낸다.Average value of lithium precipitation dissolution efficiency of a polymer electrolyte composition impregnated with 0.02 g of an ether compound having an ethylene oxide unit of formula (vii-1) containing 50 wt% of vinyl ethylene carbonate relative to 0.01 g of the electrolyte crosslinked film of Example 24 Was 90%. The results are shown in Table 3.

비교예 11Comparative Example 11

실시예 22 의 전해질 가교 필름 0.01g 에 대하여 비닐에틸렌카보네이트를 함유하지 않는 상기 식 (vii-1) 의 에틸렌옥사이드 단위를 갖는 에테르 화합물 0.02g 을 함침한 폴리머 전해질 조성물의 리튬 석출 용해 효율의 평균치는 62% 이었다. 그 결과를 표 3 에 나타낸다.The average value of the lithium precipitation dissolution efficiency of the polymer electrolyte composition which was impregnated with 0.02 g of the ether compound having the ethylene oxide unit of formula (vii-1) containing no vinyl ethylene carbonate relative to 0.01 g of the electrolyte crosslinked film of Example 22 was 62. Was%. The results are shown in Table 3.

비교예 12Comparative Example 12

실시예 23 의 전해질 가교 필름 0.01g 에 대하여 20wt% 의 에틸렌카보네이트를 함유하는 상기 식 (vii-1) 의 에틸렌옥사이드 단위를 갖는 에테르 화합물 0.02g 을 함침한 폴리머 전해질 조성물의 리튬 석출 용해 효율의 평균치는 58% 이었다. 그 결과를 표 3 에 나타낸다.The average value of the lithium precipitation dissolution efficiency of the polymer electrolyte composition impregnated with 0.02 g of the ether compound having the ethylene oxide unit of formula (vii-1) containing 20 wt% of ethylene carbonate relative to 0.01 g of the electrolyte crosslinked film of Example 23 58%. The results are shown in Table 3.

비교예 13Comparative Example 13

실시예 23 의 전해질 가교 필름 0.01g 에 대하여 20wt% 의 프로필렌카보네이트를 함유하는 상기 식 (vii-1) 의 에틸렌옥사이드 단위를 갖는 에테르 화합물 0.02g 을 함침한 폴리머 전해질 조성물의 리튬 석출 용해 효율의 평균치는 38% 이었다. 그 결과를 표 3 에 나타낸다.The average value of the lithium precipitation dissolution efficiency of the polymer electrolyte composition impregnated with 0.02 g of an ether compound having an ethylene oxide unit of formula (vii-1) containing 20 wt% of propylene carbonate based on 0.01 g of the electrolyte crosslinked film of Example 23 38%. The results are shown in Table 3.

비교예 14Comparative Example 14

실시예 22 의 전해질 가교 필름 0.01g 에 대하여 120wt% 의 비닐에틸렌카보네이트를 함유하는 상기 식 (vii-1) 의 에틸렌옥사이드 단위를 갖는 에테르 화합물 0.02g 을 함침한 폴리머 전해질 조성물의 리튬 석출 효율의 평균치는 65% 이었다. 그 결과를 표 3 에 나타낸다.The average of the lithium precipitation efficiencies of the polymer electrolyte composition impregnated with 0.02 g of the ether compound having the ethylene oxide unit of formula (vii-1) containing 120 wt% of vinyl ethylene carbonate relative to 0.01 g of the electrolyte crosslinked film of Example 22 65%. The results are shown in Table 3.

비닐에틸렌카보네이트 첨가량 (wt%)Vinyl Ethylene Carbonate Addition (wt%) 리튬 석출 용해 효율Lithium precipitation dissolution efficiency 초회치 (%)Initial value (%) 최고치 (%)Peak (%) 평균치 (%)Average value (%) 실시예 25 실시예 26 실시예 27 실시예 28 실시예 29 비교예 11 비교예 12 비교예 13 비교예 14Example 25 Example 26 Example 27 Example 28 Example 29 Comparative Example 11 Comparative Example 12 Comparative Example 13 Comparative Example 14 6 12 18 20 50 0 0 0 1206 12 18 20 50 0 0 0 120 68 80 89 91 88 46 46 26 5568 80 89 91 88 46 46 26 55 80 84 93 94 92 65 61 58 7180 84 93 94 92 65 61 58 71 75 82 91 93 90 62 58 38 6575 82 91 93 90 62 58 38 65

평균치는 20 사이클째까지의 리튬 석출 용해 효율의 값을 평균하여 구하였다The average value was obtained by averaging the values of lithium precipitation dissolution efficiency up to the 20th cycle.

실시예 30Example 30

실시예 26 에서 얻어진 폴리머 전해질 조성물, 부극으로서 리튬금속박, 및 정극 활물질로서 코발트산리튬 (LiCo02) 을 사용하여 2차 전지를 구성하였다.As in Example 26 the polymer electrolyte composition obtained, a lithium metal foil as a negative electrode and a positive electrode active material using a lithium cobalt oxide (LiCo0 2) formed the secondary battery.

코발트산리튬은 소정량의 탄산리튬 및 탄산코발트 분체를 혼합한 후 900℃ 에서 5시간 소성함으로써 조제하였다. 다음으로 이것을 분쇄하고, 얻어진 코발트산리튬 85중량부에 대하여 아세틸렌블랙 5중량부와 중합예 2 에서 얻어진 폴리머 10중량부, LiTFSI 5중량부를 첨가하여 롤로 혼합한 후, 30MPa 의 압력으로 프레스 성형하여 전지의 정극으로 하였다.Lithium cobalt acid was prepared by mixing a predetermined amount of lithium carbonate and cobalt carbonate powder and baking at 900 ° C for 5 hours. Next, this was pulverized, and 5 parts by weight of acetylene black, 10 parts by weight of the polymer obtained in Polymerization Example 2, and 5 parts by weight of LiTFSI were added to the obtained 85 parts by weight of lithium cobalt acid, mixed with a roll, and press-molded at a pressure of 30 MPa to give a battery It was set as the positive electrode.

실시예 26 에서 얻어진 폴리머 전해질 조성물을 리튬금속박과 정극판 사이에 끼우고, 계면이 밀착하도록 1MPa 의 압력을 가하면서 실온에서 전지의 충방전 특성을 조사하였다. 충전은 4.2V 까지의 정전류 정전압으로 행하고, 방전은 정전류로 행하였다. 방전 전류는 0.1mA/㎠ 이고, 0.1mA/㎠ 로 충전을 행하였다. 100 사이클의 충방전 후의 방전 용량은 초기 용량의 90% 를 나타내었다.The polymer electrolyte composition obtained in Example 26 was sandwiched between the lithium metal foil and the positive electrode plate, and the charge and discharge characteristics of the battery were examined at room temperature while applying a pressure of 1 MPa so that the interface was in close contact. Charging was performed at a constant current constant voltage up to 4.2 V, and discharge was performed at a constant current. The discharge current was 0.1 mA / cm 2, and charging was performed at 0.1 mA / cm 2. The discharge capacity after 100 cycles of charge and discharge represented 90% of the initial capacity.

실시예 31Example 31

실시예 28 에서 얻어진 폴리머 전해질 조성물, 부극으로서 리튬금속박, 및 실시예 30 에서 제작한 정극을 사용하여 2차 전지를 제작하고, 마찬가지로 충방전 특성을 조사하였다. 100 사이클의 충방전 후의 방전 용량은 초기 용량의 91% 를 나타내었다.The secondary battery was produced using the polymer electrolyte composition obtained in Example 28, the lithium metal foil as a negative electrode, and the positive electrode produced in Example 30, and similarly the charge / discharge characteristic was investigated. The discharge capacity after 100 cycles of charge and discharge represented 91% of the initial capacity.

비교예 15 Comparative Example 15

비교예 11 에서 얻어진 폴리머 전해질 조성물, 부극으로서 리튬금속박, 및 실시예 30 에서 제작한 정극을 사용하여 2차 전지를 제작하고, 마찬가지로 충방전 특성을 조사하였다. 100 사이클의 충방전 후의 방전 용량은 초기 용량의 80% 를 나타내었다.The secondary battery was produced using the polymer electrolyte composition obtained by the comparative example 11, the lithium metal foil as a negative electrode, and the positive electrode produced in Example 30, and similarly the charge / discharge characteristic was investigated. The discharge capacity after 100 cycles of charge and discharge represented 80% of the initial capacity.

실시예 32Example 32

비닐에틸렌카보네이트 0.004g (3wt%) 과 하기 식 (iv-2) 의 에틸렌옥사이드 단위를 갖는 에테르 화합물 0.116g (97wt%) 과, 리튬비스(퍼플루오로에틸술포닐)이미드 (LiBETI) 0.08g 을 함유하는 전해질의 리튬 석출 용해 효율의 평균치는 82% 이었다. 그 결과를 표 4 에 나타낸다.0.004 g (3 wt%) of vinylethylene carbonate, 0.116 g (97 wt%) of an ether compound having an ethylene oxide unit of formula (iv-2), and 0.08 g of lithium bis (perfluoroethylsulfonyl) imide (LiBETI) The average value of the lithium precipitation dissolution efficiency of the electrolyte containing was 82%. The results are shown in Table 4.

Figure 112005057767685-PCT00018
Figure 112005057767685-PCT00018

실시예 33Example 33

비닐에틸렌카보네이트 0.006g (5wt%) 과 상기 식 (iv-2) 의 에틸렌옥사이드 단위를 갖는 에테르 화합물 0.114g (95wt%) 을 사용하고, 그 이외에는 실시예 32 와 동일한 전해질의 리튬 석출 용해 효율의 평균치는 88% 이었다. 그 결과를 표 4 에 나타낸다.0.006 g (5 wt%) of vinyl ethylene carbonate and 0.114 g (95 wt%) of an ether compound having an ethylene oxide unit of formula (iv-2) were used, except that the average value of the lithium precipitation dissolution efficiency of the same electrolyte as in Example 32 was used. Was 88%. The results are shown in Table 4.

실시예 34Example 34

비닐에틸렌카보네이트 0.012g (10 w 7%) 과 상기 식 (iv-2) 의 에틸렌옥사이드 단위를 갖는 에테르 화합물 0.108g (90wt%) 을 사용하고, 그 이외에는 실시예 32 와 동일한 전해질의 리튬 석출 용해 효율의 평균치는 93% 이었다. 그 결과를 표 4 에 나타낸다.0.012 g (10 w 7%) of vinyl ethylene carbonate and 0.108 g (90 wt%) of an ether compound having an ethylene oxide unit of the above formula (iv-2) were used, except for the lithium precipitation dissolution efficiency of the same electrolyte as in Example 32. The mean value was 93%. The results are shown in Table 4.

실시예 35Example 35

비닐에틸렌카보네이트 0.014g (10wt%) 와 하기 식 (vii-1) 의 에틸렌옥사이드 단위를 갖는 에테르 화합물 0.126g (90wt%) 과, 리튬비스(트리플루오로메틸술포닐)이미드 (LiTFSI) 0.054g 과 붕불화리튬 (LiBF4) 0.001g 을 함유하는 전해질의 리튬 석출 용해 효율의 평균치는 90% 이었다. 그 결과를 표 4 에 나타낸다.0.014 g (10 wt%) of vinyl ethylene carbonate, 0.126 g (90 wt%) of an ether compound having an ethylene oxide unit of formula (vii-1), and 0.054 g of lithium bis (trifluoromethylsulfonyl) imide (LiTFSI) The average value of the lithium precipitation dissolution efficiency of the electrolyte containing 0.001 g of lithium boron fluoride (LiBF 4 ) was 90%. The results are shown in Table 4.

Figure 112005057767685-PCT00019
Figure 112005057767685-PCT00019

실시예 36Example 36

비닐에틸렌카보네이트 0.024g (20wt%) 과 상기 식 (vii-1) 의 에틸렌옥사이드 단위를 갖는 에테르 화합물 0.096g (80wt%) 을 사용하고, 그 이외에는 실시예 35 와 동일한 전해질의 리튬 석출 용해 효율의 평균치는 89% 이었다. 그 결과를 표 4 에 나타낸다.0.024 g (20 wt%) of vinyl ethylene carbonate and 0.096 g (80 wt%) of an ether compound having an ethylene oxide unit of formula (vii-1) were used, except that the average value of the lithium precipitation dissolution efficiency of the same electrolyte as in Example 35 was used. Was 89%. The results are shown in Table 4.

실시예 37Example 37

비닐에틸렌카보네이트 0.060g (50wt%) 과 상기 식 (vii-1) 의 에틸렌옥사이드 단위를 갖는 에테르 화합물 0.060g (50wt%) 을 사용하고, 그 이외에는 실시예 32 와 동일한 전해질의 리튬 석출 용해 효율의 평균치는 92% 이었다. 그 결과를 표 4 에 나타낸다.0.060 g (50 wt%) of vinyl ethylene carbonate and 0.060 g (50 wt%) of an ether compound having an ethylene oxide unit of formula (vii-1) were used, except that the average value of the lithium precipitation dissolution efficiency of the same electrolyte as in Example 32 was used. Was 92%. The results are shown in Table 4.

비닐에틸렌카보네이트 첨가량 (wt%) Vinyl Ethylene Carbonate Addition (wt%) 리튬염 화합물 (몰/kg) Lithium Salt Compound (mol / kg) 리튬 석출 용해 효율Lithium precipitation dissolution efficiency 초회치 (%)Initial value (%) 최고치 (%)Peak (%) 평균치 (%)Average value (%) 실시예 32Example 32 33 LiBETI=1.0LiBETI = 1.0 8080 8888 8282 실시예 33Example 33 55 LiBETI=1.0LiBETI = 1.0 8282 9292 8888 실시예 34Example 34 1010 LiBETI=1.0LiBETI = 1.0 8787 9696 9393 실시예 35Example 35 1010 LiTFSI=1.0 LiBF4=0.05LiTFSI = 1.0 LiBF 4 = 0.05 8484 9393 9090 실시예 36Example 36 2020 LiTFSI=1.0 LiBF4=0.05LiTFSI = 1.0 LiBF 4 = 0.05 8282 9393 8989 실시예 37Example 37 5050 LiBETI=1.0LiBETI = 1.0 8585 9494 9292

평균치는 20 사이클번째까지의 리튬 석출 용해 효율의 값을 평균하여 구하였다.The average value was obtained by averaging the values of lithium precipitation dissolution efficiency up to the 20th cycle.

Claims (12)

(1) 필요에 따라 존재하는 에테르 결합을 갖는 폴리머와,(1) a polymer having an ether bond present as needed; (2) 필요에 따라 존재하는 에틸렌옥사이드 단위를 갖는 에테르 화합물로 이루어지는 첨가제와,(2) an additive consisting of an ether compound having an ethylene oxide unit present as necessary; (3) 리튬염 화합물과,(3) a lithium salt compound, (4) 불포화기를 갖는 고리형 카보네이트(4) cyclic carbonates having unsaturated groups 로 이루어지고, 성분 (1) 및 (2) 의 적어도 일방이 존재하는 것을 특징으로 하는 전해질 조성물.An electrolyte composition, comprising at least one of the components (1) and (2). 제 1 항에 있어서, 에테르 결합을 갖는 폴리머 (1) 가, 하기 식 (i) 으로 표현되는 구성 단위와, 하기 식 (ii) 으로 표현되는 구성 단위를 갖고 이루어지는 공중합체, 및/또는 구성 단위 (i), 구성 단위 (ii), 및 하기 식 (iii) 으로 표현되는 가교가능한 구성 단위를 갖고 이루어지는 공중합체인 전해질 조성물.The copolymer (1) according to claim 1, wherein the polymer (1) having an ether bond has a structural unit represented by the following formula (i), a structural unit represented by the following formula (ii), and / or a structural unit ( The electrolyte composition which is a copolymer which has i), structural unit (ii), and a crosslinkable structural unit represented by following formula (iii).
Figure 112005057767685-PCT00020
Figure 112005057767685-PCT00020
Figure 112005057767685-PCT00021
Figure 112005057767685-PCT00021
[식 중, R1 은 탄소수 1∼6 의 알킬기, 페닐기 또는 -CH2O-R2 를 나타내고, R2 는 탄소수 1∼6 의 알킬기 또는 페닐기 또는 -(-CH2-CH2-O-)a-R2' 또는 -CH[CH2-O-(-CH2-CH2-O-)b-R2']2 를 나타내고, R2' 는 탄소수 1∼6 의 알킬기, a 및 b 는 0∼12 의 정수이다.][Wherein, R 1 is an alkyl group, a phenyl group or a -CH 2 OR 2, R 2 is an alkyl group or a phenyl group having 1 to 6 carbon atoms or having a carbon number of 1~6 - (- CH 2 -CH 2 -O-) a - R 2 ′ or —CH [CH 2 —O — (— CH 2 —CH 2 —O—) b —R 2 ′ ] 2 , R 2 ′ is an alkyl group having 1 to 6 carbon atoms, and a and b are 0 to Is an integer of 12.]
Figure 112005057767685-PCT00022
Figure 112005057767685-PCT00022
[식 중, R3 은 (a) 반응성 규소기, (b) 메틸에폭시기, (c) 에틸렌성 불포화기 또는 (d) 할로겐원자를 갖는 반응성 기를 나타낸다][Wherein, R 3 represents a reactive group having (a) a reactive silicon group, (b) a methylepoxy group, (c) an ethylenically unsaturated group or (d) a halogen atom]
제 1 항에 있어서, 에틸렌옥사이드 단위를 갖는 에테르 화합물로 이루어지는 첨가제 (2) 는 (iv)∼(vii) 의 어느 하나로 표현되는 첨가제인 전해질 조성물.The electrolyte composition according to claim 1, wherein the additive (2) consisting of an ether compound having an ethylene oxide unit is an additive represented by any one of (iv) to (vii).
Figure 112005057767685-PCT00023
Figure 112005057767685-PCT00023
Figure 112005057767685-PCT00024
Figure 112005057767685-PCT00024
Figure 112005057767685-PCT00025
Figure 112005057767685-PCT00025
Figure 112005057767685-PCT00026
Figure 112005057767685-PCT00026
[식 중, R4∼R18 은 탄소수 1∼6 의 알킬기, c∼r 은 0∼12 의 수이다.][In formula, R <4> -R <18> is a C1-C6 alkyl group and c-r is a number of 0-12.]
제 1 항에 있어서, 불포화기를 갖는 고리형 카보네이트 (4) 가, 비닐렌카보네이트 또는 그 유도체, 또는 불포화기를 갖는 에틸렌카보네이트인 전해질 조성물.The electrolyte composition according to claim 1, wherein the cyclic carbonate (4) having an unsaturated group is vinylene carbonate or a derivative thereof or ethylene carbonate having an unsaturated group. 제 4 항에 있어서, 비닐렌카보네이트 또는 그 유도체는 하기 식 (viii-1) 으로 표현되는 화합물인 전해질 조성물.The electrolyte composition according to claim 4, wherein the vinylene carbonate or its derivative is a compound represented by the following formula (viii-1).
Figure 112005057767685-PCT00027
Figure 112005057767685-PCT00027
[식 중, R19 및 R20 은 수소 또는 탄소수가 1∼6 인 알킬기이다.][Wherein, R 19 and R 20 are hydrogen or an alkyl group having 1 to 6 carbon atoms.]
제 4 항에 있어서, 불포화기를 갖는 에틸렌카보네이트는 하기 식 (viii-2) 으로 표현되는 화합물인 전해질 조성물.The electrolyte composition according to claim 4, wherein the ethylene carbonate having an unsaturated group is a compound represented by the following formula (viii-2).
Figure 112005057767685-PCT00028
Figure 112005057767685-PCT00028
[식 중, R21 은 H 또는 탄소수가 1∼6 인 알킬기, R22 는 탄소수가 1∼6 인 알케닐기 또는 -CH2OR22' 이고, R22' 는 탄소수가 1∼6 인 알케닐기이다.][Wherein, R 21 is H or an alkyl group having 1 to 6 carbon atoms, R 22 is an alkenyl group having 1 to 6 carbon atoms or -CH 2 OR 22 ' , and R 22' is an alkenyl group having 1 to 6 carbon atoms .]
제 1 항에 있어서, 고리형 카보네이트 (4) 의 함유량은 (1) 에테르 결합을 갖는 폴리머와, (2) 에틸렌옥사이드 단위를 갖는 에테르 화합물로 이루어지는 첨가제와, (3) 리튬염 화합물의 합계 100중량부에 대하여, 1∼100중량부인 것을 특징으로 하는 전해질 조성물.The content of the cyclic carbonate (4) is 100% by weight in total of (1) an additive comprising a polymer having an ether bond, (2) an ether compound having an ethylene oxide unit, and (3) a lithium salt compound. It is 1-100 weight part with respect to a part, The electrolyte composition characterized by the above-mentioned. 제 1 항에 있어서, 에테르 결합을 갖는 폴리머 (1) 는 중량 평균 분자량이 104∼108 인 전해질 조성물.The electrolyte composition according to claim 1, wherein the polymer (1) having an ether bond has a weight average molecular weight of 10 4 to 10 8 . 제 1 항에 있어서, 전해질 조성물이, 폴리머 (1) 를 함유하여, 성분 (1)∼(3) 으로 이루어지는 가교체에, 고리형 카보네이트 (4) 를 함침시킴으로써 제조되 는 전해질 조성물.The electrolyte composition according to claim 1, wherein the electrolyte composition contains a polymer (1) and is produced by impregnating a crosslinked product consisting of components (1) to (3) with a cyclic carbonate (4). 제 9 항에 있어서, 첨가제 (2) 및/또는 리튬염 화합물 (3) 을 함유한 상태에서 폴리머 (1) 가 가교되어 있거나, 또는 첨가제 (2) 및/또는 리튬염 화합물 (3) 이 가교체에 함침되는 전해질 조성물.The polymer (1) is crosslinked in the state containing the additive (2) and / or the lithium salt compound (3), or the additive (2) and / or the lithium salt compound (3) is crosslinked. An electrolyte composition that is impregnated with. 제 1 항 내지 제 10 항 중 어느 한 항에 기재된 전해질 조성물, 정극(正極) 및 부극(負極)으로 이루어지는 전지.The battery which consists of an electrolyte composition as described in any one of Claims 1-10, a positive electrode, and a negative electrode. 제 11 항에 있어서, 부극이 리튬금속인 전지.The battery according to claim 11, wherein the negative electrode is lithium metal.
KR1020057019410A 2003-04-15 2004-04-15 Electrolyte composition and cell KR20060002984A (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JPJP-P-2003-00110011 2003-04-15
JP2003110011 2003-04-15
JP2003177688 2003-06-23
JPJP-P-2003-00177688 2003-06-23
JP2004082155 2004-03-22
JPJP-P-2004-00082155 2004-03-22

Publications (1)

Publication Number Publication Date
KR20060002984A true KR20060002984A (en) 2006-01-09

Family

ID=33303690

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020057019410A KR20060002984A (en) 2003-04-15 2004-04-15 Electrolyte composition and cell

Country Status (4)

Country Link
JP (1) JP4640172B2 (en)
KR (1) KR20060002984A (en)
CA (1) CA2522234A1 (en)
WO (1) WO2004092269A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9799922B2 (en) 2012-09-13 2017-10-24 Samsung Electronics Co., Ltd. Lithium battery

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4560721B2 (en) * 2004-11-18 2010-10-13 ダイソー株式会社 Electrolyte composition and battery
JP5407347B2 (en) * 2009-01-14 2014-02-05 パナソニック株式会社 Lithium primary battery
EP3257099B1 (en) * 2015-02-09 2019-11-27 SES Holdings Pte. Ltd High salt concentration electrolytes for rechargeable lithium battery
CN112713306B (en) * 2020-12-24 2022-02-25 清华大学深圳国际研究生院 Electrolyte capable of being cured when meeting air or moisture, preparation method and application thereof
CN113136159B (en) * 2021-04-27 2022-07-19 西南科技大学 Preparation and use methods of epoxy structure adhesive capable of being peeled off as required when electrified

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2978290B2 (en) * 1991-07-18 1999-11-15 松下電器産業株式会社 Polymer solid electrolyte
TW446731B (en) * 1996-08-20 2001-07-21 Daiso Co Ltd Polymeric solid electrolyte
JPH10176105A (en) * 1996-12-17 1998-06-30 Daiso Co Ltd Solid polyelectrolyte
TW444044B (en) * 1996-12-09 2001-07-01 Daiso Co Ltd Polyether copolymer and polymer solid electrolyte
JP3724252B2 (en) * 1999-04-19 2005-12-07 ダイソー株式会社 Crosslinked polymer solid electrolyte and use thereof
JP2000323170A (en) * 1999-05-07 2000-11-24 Lion Corp Non-protonic solvent excellent in electrochemical stability
WO2002093679A1 (en) * 2001-05-10 2002-11-21 Nisshinbo Industries, Inc. Nonaqueous electrolytic solution, composition for polymer gel electrolyte, polymer gel electrolyte, secondary cell, and electric double-layer capacitor
JP5239106B2 (en) * 2001-05-23 2013-07-17 三菱化学株式会社 Non-aqueous electrolyte secondary battery
JP2003016835A (en) * 2001-07-04 2003-01-17 Ube Ind Ltd Polymer electrolyte, and manufacturing method therefor
JP2003031259A (en) * 2001-07-12 2003-01-31 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9799922B2 (en) 2012-09-13 2017-10-24 Samsung Electronics Co., Ltd. Lithium battery

Also Published As

Publication number Publication date
CA2522234A1 (en) 2004-10-28
WO2004092269A1 (en) 2004-10-28
JPWO2004092269A1 (en) 2006-07-06
JP4640172B2 (en) 2011-03-02

Similar Documents

Publication Publication Date Title
JP3215440B2 (en) Polymer solid electrolyte
JP3223978B2 (en) Polyether copolymer and polymer solid electrolyte
EP0838487B1 (en) Polyether copolymer and polymer solid electrolyte
JP3215436B2 (en) Crosslinked polymer solid electrolyte and its use
JP3491539B2 (en) Polymer solid electrolyte and its use
JP4089221B2 (en) Polymer solid electrolyte and battery
JP3301378B2 (en) Polyether copolymer and crosslinked polymer solid electrolyte
US6858351B2 (en) Polyethylene oxide-based electrolyte containing silicon compound
JP4164131B2 (en) Polyether copolymer, polymer solid electrolyte and battery
JP3282565B2 (en) Crosslinked polymer solid electrolyte and its use
KR20060002984A (en) Electrolyte composition and cell
JP4269648B2 (en) Electrolyte composition and battery
JP3427730B2 (en) Lithium polymer battery
JP4089246B2 (en) Crosslinked polymer solid electrolyte and battery
JP2006134817A (en) Electrolyte composition and battery
JP2000150308A (en) Electric double layer capacitor

Legal Events

Date Code Title Description
WITN Withdrawal due to no request for examination