KR20060000519A - 연료전지용 개질기 및 이를 포함하는 연료 전지 시스템 - Google Patents

연료전지용 개질기 및 이를 포함하는 연료 전지 시스템 Download PDF

Info

Publication number
KR20060000519A
KR20060000519A KR1020040049416A KR20040049416A KR20060000519A KR 20060000519 A KR20060000519 A KR 20060000519A KR 1020040049416 A KR1020040049416 A KR 1020040049416A KR 20040049416 A KR20040049416 A KR 20040049416A KR 20060000519 A KR20060000519 A KR 20060000519A
Authority
KR
South Korea
Prior art keywords
reformer
fuel cell
fuel
heat source
flow path
Prior art date
Application number
KR1020040049416A
Other languages
English (en)
Other versions
KR100627334B1 (ko
Inventor
임현정
Original Assignee
삼성에스디아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성에스디아이 주식회사 filed Critical 삼성에스디아이 주식회사
Priority to KR1020040049416A priority Critical patent/KR100627334B1/ko
Priority to US11/155,038 priority patent/US8318363B2/en
Priority to JP2005179968A priority patent/JP2006012817A/ja
Priority to CNB2005100813667A priority patent/CN100345330C/zh
Publication of KR20060000519A publication Critical patent/KR20060000519A/ko
Application granted granted Critical
Publication of KR100627334B1 publication Critical patent/KR100627334B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/384Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts the catalyst being continuously externally heated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0093Microreactors, e.g. miniaturised or microfabricated reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/248Reactors comprising multiple separated flow channels
    • B01J19/249Plate-type reactors
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/48Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents followed by reaction of water vapour with carbon monoxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • H01M8/0668Removal of carbon monoxide or carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00783Laminate assemblies, i.e. the reactor comprising a stack of plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00819Materials of construction
    • B01J2219/00822Metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00819Materials of construction
    • B01J2219/00835Comprising catalytically active material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00873Heat exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2451Geometry of the reactor
    • B01J2219/2453Plates arranged in parallel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2451Geometry of the reactor
    • B01J2219/2456Geometry of the plates
    • B01J2219/2458Flat plates, i.e. plates which are not corrugated or otherwise structured, e.g. plates with cylindrical shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2451Geometry of the reactor
    • B01J2219/2456Geometry of the plates
    • B01J2219/2459Corrugated plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2461Heat exchange aspects
    • B01J2219/2465Two reactions in indirect heat exchange with each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2469Feeding means
    • B01J2219/247Feeding means for the reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2476Construction materials
    • B01J2219/2477Construction materials of the catalysts
    • B01J2219/2479Catalysts coated on the surface of plates or inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2476Construction materials
    • B01J2219/2483Construction materials of the plates
    • B01J2219/2485Metals or alloys
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0435Catalytic purification
    • C01B2203/044Selective oxidation of carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/047Composition of the impurity the impurity being carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1288Evaporation of one or more of the different feed components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • H01M8/0631Reactor construction specially adapted for combination reactor/fuel cell
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

본 발명은 연료전지용 개질기 및 이를 포함하는 연료 전지 시스템에 관한 것으로, 상기 혼합연료가 통과하는 소정길이의 유로를 구비하고, 상기 유로의 내면에는 촉매층이 형성되며, 상기 혼합연료를 기화시키는 열원을 공급하는 열원부; 및 상기 혼합연료가 통과하는 소정길이의 유로를 구비하고, 상기 유로의 내면에는 촉매층이 형성되며, 상기 열원에 의한 화학 촉매 반응을 통해 상기 혼합연료로부터 수소 가스를 발생시키는 개질 반응부를 포함하며, 상기 열원부와 개질반응부 중 적어도 어느 하나는 Al 및 Fe의 합금으로 이루어지는 연료전지용 개질기, 및 이를 포함하는 연료전지 시스템을 제공한다.
본 발명은 연료 전지 시스템에 사용되는 개질기에 있어 그 재질을 Al과 Fe의 합금을 이용하고 유로를 제외한 부분을 미리 용접하여 개질기를 형성함으로써, 용접성을 향상시키고 산화물 피막 형성을 통한 촉매와의 접착성을 증가시킬 수 있다.
개질기, 연료 전지 시스템, 합금

Description

연료전지용 개질기 및 이를 포함하는 연료 전지 시스템{REFORMER FOR FUEL CELL SYSTEM AND FUEL CELL SYSTEM COMPRISING THE SAME}
도 1은 본 발명의 일실시예에 따른 연료 전지 시스템의 전체적인 구성을 도시한 개략도이다.
도 2는 도 1에 도시한 개질기의 주요 부분을 나타내 보인 분해 사시도이다.
도 3은 도 1에 도시한 스택 구조를 나타내 보인 분해 사시도이다.
[산업상 이용 분야]
본 발명은 연료 전지 시스템에 관한 것으로서, 더욱 상세하게는 용접성을 향상시키고 산화물 피막 형성을 통한 촉매와의 접착성을 증진시킬 수 있는 Al 및 Fe의 합금으로 이루어진 연료전지용 개질기 및 이를 포함하는 연료 전지 시스템에 관한 것이다.
일반적으로, 연료 전지는 메탄올, 에탄올 또는 천연가스 등 탄화수소 계열의 유기연료 내에 함유되어 있는 수소를 연료로 하여 일어나는 전기화학 반응에 의하여 화학에너지를 직접 전기에너지로 변화시키는 발전 시스템이다. 유기 연료의 높 은 비에너지(specific energy)(예를 들어 메탄올의 비에너지는 6232 wh/kg임) 때문에 유기 연료를 사용하는 연료 전지는 설치상 또는 휴대상 모두 극도로 매력적이다.
연료 전지는 사용되는 전해질(electrolyte)의 종류에 따라, 크게 알칼리형, 인산형, 용융탄산염형, 고체 산화물형 및 고분자 연료전지로 분류되고 있다. 상기 여러 종류의 연료전지 중에서 고분자 전해질형 연료 전지(Polymer Electrolyte Membrance Fuel Cell: PEMFC)는, 고분자를 전해질로 사용하기 때문에 전해질에 의한 부식이나 증발의 위험이 없으며, 단위면적당 높은 전류밀도(current density)를 얻을 수 있어 타 연료전지에 비해 출력 특성이 월등히 높고, 작동 온도가 낮아 현재 자동차 등의 이동용(transportable) 전원, 주택이나 공공건물 등의 분산용 전원 및 전자기기용 등의 소형 전원으로 이용하기 위하여 이에 대한 개발이 활발히 추진되고 있다.
이와 같은 고분자 전해질형 연료 전지가 기본적으로 시스템의 구성을 갖추기 위해서는, 스택(stack)이라 불리는 연료 전지 본체(이하, 편의상 스택이라 칭한다.), 연료 탱크 및 이 연료 탱크로부터 상기 스택으로 연료를 공급하기 위한 연료 펌프 등이 필요하다. 그리고, 연료 탱크에 저장된 연료를 스택으로 공급하는 과정에서 연료를 개질하여 수소 가스를 발생시키고 그 수소 가스를 스택으로 공급하는 개질기(reformer)가 더욱 포함된다. 따라서, 고분자 전해질형 연료 전지는 연료 펌프의 펌핑력에 의해 연료 탱크에 저장된 연료를 개질기로 공급하고, 개질기가 연료를 개질하여 수소 가스를 발생시키며, 스택이 수소 가스와 산소를 전기 화학적 으로 반응하여 전기에너지를 생산해 내게 된다.
이때, 연료 전지는 액상의 메탄올 연료를 직접 스택에 공급할 수 있는 직접 메탄올형 연료 전지(Direct Methanol Fuel Cell: DMFC) 방식을 채용할 수도 있다. 이러한 직접 메탄올형 연료 방식의 연료 전지는 고분자 전해질형 연료 전지와 달리, 개질기가 배제된다.
상기와 같은 연료 전지 시스템에 있어서, 전기를 실질적으로 발생시키는 스택은 막/전극 접합체(Membrane Electrode Assembly: MEA)와 바이폴라 플레이트(Bipolar Plate)로 이루어진 단위 셀이 수 개 내지 수 십 개로 적층된 구조를 가진다. 막/전극 접합체는 전해질막을 사이에 두고 애노드 전극(일명, "연료극" 또는 "산화전극"이라고 한다)과 캐소드 전극(일명, "공기극" 또는 "환원전극"이라고 한다)이 부착된 구조를 가진다. 그리고 바이폴라 플레이트는 연료 전지의 반응에 필요한 수소 가스와 산소가 공급되는 통로의 역할과 각 막/전극 접합체의 애노드 전극과 캐소드 전극을 직렬로 연결시켜 주는 전도체의 역할을 동시에 수행한다. 따라서, 바이폴라 플레이트에 의해 애노드 전극에는 수소 가스가 공급되는 반면, 캐소드 전극에는 산소가 공급된다. 이 과정에서 애노드 전극에서는 수소 가스의 전기 화학적인 산화 반응이 일어나고, 캐소드 전극에서는 산소의 전기 화학적인 환원이 반응이 일어나며 이때 생성되는 전자의 이동으로 인해 전기와 열 그리고 물을 함께 얻을 수 있다.
한편, 고분자 전해질형 연료전지 시스템에 사용되는 개질기는 수소를 함유한 연료와 물을 개질하여 스택의 전기 생성에 필요한 수소 가스로 전환할 뿐만 아니 라, 연료 전지를 피독시켜 수명을 단축시키는 일산화탄소와 같은 유해 물질을 제거하는 장치이다. 통상적으로 상기한 개질기는 연료를 개질하는 개질반응부와, 일산화탄소를 제거하는 일산화탄소 저감(제거)부를 포함한다. 개질반응부는 연료를 수증기 개질, 부분산화, 자열 반응 등의 촉매 반응을 통해 상기한 연료를 수소가 풍부한 개질 가스로 전환한다. 일산화탄소 저감(제거)부는 수성가스 시프트 반응(WGS: Water Gas Shift reaction), 선택적 산화 반응(PROX: Preferential Oxidation reaction) 등과 같은 촉매 반응 또는 분리막을 이용한 수소의 정제 등과 같은 방법으로 개질 가스로부터 일산화탄소를 제거한다.
전술한 바 있는 개질기는 열 에너지에 의한 화학 촉매 반응을 통해 수소를 함유한 연료로부터 수소 가스를 발생시키는 장치이다. 통상적으로 상기한 개질기는 상기 열 에너지를 발생시키는 열원부와, 상기 열 에너지를 이용하여 상기 연료로부터 수소 가스를 발생시키는 개질 반응부와, 상기 수소 가스에 함유된 일산화탄소의 농도를 저감시키는 일산화탄소 제거부를 포함한다.
종래에 따른 연료 전지 시스템의 개질기에 있어 특히, 개질반응부는 소정의 반응기에 액상의 연료와 물의 혼합 연료를 개질하기 위한 개질 촉매층을 형성한 구조를 갖는다. 따라서 개질반응부는 외부로부터 소정의 열을 전달받아 개질 촉매층을 통한 개질 매 반응에 의해 상기한 혼합 연료로부터 수소가 풍부한 개질 가스를 발생시키게 된다.
본 발명은 상술한 종래 문제점을 해결하기 위한 것으로서, 본 발명의 목적은 용접성을 향상시키고 산화물 피막 형성을 통한 촉매와의 접착성을 향상시킬 수 있는 Al과 Fe 합금을 기재로 포함하는 연료 전지 시스템에 사용되는 마이크로 개질기를 제공하기 위한 것이다.
본 발명의 다른 목적은 상기 개질기를 채용한 연료 전지 시스템을 제공하기 위한 것이다.
상기 목적을 달성하기 위하여, 본 발명은 상기 혼합연료가 통과하는 소정길이의 유로를 구비하고, 상기 유로의 내면에는 촉매층이 형성되며, 상기 혼합연료를 기화시키는 열원을 공급하는 열원부; 및 상기 혼합연료가 통과하는 소정길이의 유로를 구비하고, 상기 유로의 내면에는 촉매층이 형성되며, 상기 열원에 의한 화학 촉매 반응을 통해 상기 혼합연료로부터 수소 가스를 발생시키는 개질 반응부를 포함하며, 상기 열원부와 개질반응부 중 적어도 어느 하나는 Al 및 Fe의 합금으로 이루어지는 연료전지용 개질기를 제공한다.
또한, 본 발명은 수소와 산소의 전기 화학적인 반응에 의해 전기를 발생시키는 스택; 수소를 함유한 액상의 연료와 물의 혼합 연료를 기화시키고, 상기 기화된 유체를 개질하여 수소 가스를 발생시키는 개질기; 상기 개질기로 혼합 연료를 공급하는 연료 공급부; 및 상기 스택으로 외부 공기를 공급하는 공기 공급부를 포함하며, 상기 개질기는, 상기 혼합연료가 통과하는 소정길이의 유로를 구비하고, 상기 유로의 내면에는 촉매층이 형성되며, 상기 혼합연료를 기화시키는 열원을 공급하는 열원부; 및 상기 혼합연료가 통과하는 소정길이의 유로를 구비하고, 상기 유로의 내면에는 촉매층이 형성되며, 상기 열원에 의한 화학 촉매 반응을 통해 상기 혼합연료로부터 수소 가스를 발생시키는 개질 반응부를 포함하며, 상기 열원부와 개질반응부 중 적어도 어느 하나는 Al 및 Fe의 합금으로 이루어지는 연료 전지 시스템을 제공한다.
이하 본 발명을 더욱 상세하게 설명한다.
본 발명은 개질기의 재료로서 Al과 Fe의 합금을 사용하여 용접성을 향상시키고 산화물 피막 형성을 통하여 기재와 촉매와의 결착력을 증진시킬 수 있는 연료전지 시스템의 개질기 및 이를 이용한 연료전지 시스템을 제공하는 특징이 있다.
상기 개질기는 마이크로 개질기이며, 그 기재(substrate)로서 Al과 Fe의 합금을 사용하면 순수 Al에 비해 용접성이 향상되는 장점이 있다.
또한, 본 발명은 열원부와 개질반응부에서 유로를 제외한 부분을 미리 용접하여 개질기를 형성한 후, 이를 산소 분위기에서 고온 열처리하여 유로 부분에 비결정성 산화막, 바람직하게는 Al의 산화에 의한 알루미나를 포함하는 촉매지지층이 형성되도록 함으로써 촉매 로딩 후 세라믹 촉매와 기재간의 결착력 향상을 도모할 수 있다. 이때, 상기 열처리 조건은 특별히 한정되지는 않으나, 바람직하게는 400℃ 내지 800℃에서 실시할 수 있으며, 가장 바람직하게는 600 ℃에서 실시하는 것이 좋다.
본 발명에 따른 연료 전지 시스템의 개질기는, 상기 연료와 공기의 혼합연료가 통과하는 소정길이의 유로를 구비하고, 상기 유로의 내표면에는 촉매층이 형성되는 연소 반응기 본체와, 혼합연료를 기화시키는 열원을 공급하는 열원부; 및 상 기 연료와 공기의 혼합연료가 통과하는 소정길이의 유로를 구비하고, 상기 유로의 내표면에는 촉매층이 형성되며, 상기 열원에 의해 연료와 물의 수증기 개질 반응으로 수소를 생성하는 개질 반응부를 포함한다. 특히, 상기 열원부와 개질반응부는 적층형의 구조 또는 원통형의 구조를 이룰 수 있으나, 바람직하게는 서로 적층된 구조로 이루어진다. 또한, 상기 열원부와 개질반응부 중 적어도 하나는 Al과 Fe의 합금으로 이루어지며, 바람직하게 이들 모두가 Al과 Fe의 합금으로 이루어진다.
상기에서 열원부 및 개질반응부의 유로는 고온 열처리 후, 비결정성 산화물을 포함하는 촉매지지층을 포함한다.
또한, 본 발명에 따른 연료 전지 시스템에 있어서, 상기 개질기는 상기 수소 가스의 흐름을 가능하게 하는 유로와 이 유로의 내표면에 촉매층을 형성하는 반응 기판을 가지면서 상기 수소 가스에 함유된 일산화탄소의 농도를 저감시키는 적어도 하나의 일산화탄소 저감부를 더욱 포함할 수 있다. 상기 일산화탄소 저감부는 상기 열원부 및 개질반응부와 적층되어 배치될 수도 있고, 상기 개질반응부의 유출구와 연결되도록 별도로 설치될 수도 있다.
구체적으로, 본 발명의 개질기는 발열부와 흡열부로 구분될 수 있는데, 상기에서 열원부는 연료와 공기의 산화 촉매 반응을 유도하여 연소열을 발생시키는 발열부이며, 개질반응부는 상기한 연소열을 전달받아 연료의 개질 촉매 반응을 유도하여 수소 가스를 발생시키는 흡열부이다. 상기 발열부는 개질기의 온도를 높여 수증기 개질(steam reforming) 반응에 필요한 열을 공급하는 역할을 한다.
이때, 본 발명의 개질기의 열원부와 개질반응부는 서로 적층된 구조로 이루 어지며, 이들 중 적어도 하나는 Al과 Fe의 합금으로 이루어져 순수 Al에 비해 용접성이 향상되는 장점이 있다.
바람직하게, 본 발명의 개질기의 열원부와 개질반응부 모두가 Al과 Fe의 합금으로 이루어진다.
또한, 본 발명의 열원부와 개질반응부 중 적어도 어느 하나가 Al과 Fe의 합금으로 이루어진 경우, 나머지 하나는 실리콘, 유리 또는 스테인레스 중에서 선택되는 어느 하나의 소재로 이루어질 수 있다.
본 발명에서 상기 Al 및 Fe의 합금 비율은 10: 90 내지 90: 10인 것이 바람직하며, 그 합금비율이 상기 범위 미만이면 알루미나(Alumina)와 같은 비결정성 산화물을 포함하는 촉매지지층이 형성되기 어려운 문제가 있고, 상기범위를 초과하면 개질 반응기의 기계적 강도가 저하되는 문제가 있다.
또한 본 발명에 따르면 상기 Al 및 Fe 이외에 소량의 Cr을 소량 첨가한 합금을 사용할 수도 있다.
본 발명에 따른 연료 전지 시스템의 개질기에 있어서, 상기 유로는 수소를 함유한 액상의 연료와 물의 혼합 연료가 유입되도록 하는 유입구와, 상기 개질 반응을 거쳐 생성된 개질 가스가 유출되도록 하는 유출구를 가진다.
그리고 본 발명에 따른 연료 전지 시스템의 개질기에 있어서, 상기 열원부는 상기 유로에 접촉 설치되어 상기 유로를 가열하는 히팅부재를 추가로 구비할 수 있으며, 상기 히팅부재는 상기 유로에 접촉하는 히팅 플레이트와, 상기 히팅 플레이트에 내장된 열선을 포함할 수 있고, 상기 히팅 플레이트에 상기 유로가 형합되는 형합홈을 형성하고 있는 것이 바람직하다. 이 경우 상기 유로는 지그재그 상으로 굴곡되게 형성될 수 있다.
그리고 상기 열원부에 포함되는 연소 반응기의 내부에 형성된 유로는 통상의 방법에 의해 형성될 수 있으며, 그 유로의 내표면과 촉매층 사이에는 지지층이 배치되어 상기 촉매층을 지지할 수 있다. 상기 열원부의 촉매로는 귀금속류, 예를 들면 Pt/Ru 등이 주로 사용될 수 있으나, 이에 특별히 한정되는 것은 아니다.
또한, 상기 개질반응부는 내부에 통상의 방법의 의해 형성되는 유로를 구비하고 있고, 그 유로의 내표면에는 지지층과 촉매층을 포함할 수 있다. 상기 개질반응부의 촉매로는 Zn, Fe, Cr, Cu, Ni, Rh, Cu/Zn 등이 주로 사용될 수 있으나, 특별히 한정되는 것은 아니다.
본 발명에서 상기 열원부 및 개질반응부의 재질이 모두 Al 및 Fe의 합금으로 이루어지는 경우 별도의 과정으로 촉매지지층을 형성하지 않아도 산화에 의해 촉매지지층인 알루미나 피막층이 형성될 수 있다. 또한, 본 발명에서 열원부 및 개질반응부 중 적어도 하나가 Al 및 Fe의 합금으로 이루어지는 경우도 별도의 과정으로 촉매지지층을 형성하지 않아도 산화에 의해 지지층인 알루미나 피막층이 형성될 수 있으며, 이때 나머지 하나는 알루미나, 실리카 또는 티타니아 중에서 선택되는 어느 하나의 소재로 이루어지는 지지층을 포함하는 것이 바람직하다.
상기 열원부 및 개질반응부를 포함하는 개질기의 형태는 소정의 길이, 폭 및 두께를 가진 대략 사각형 또는 원형상의 튜브일 수 있으며, 그 형태가 특별히 한정되는 것은 아니다.
본 발명의 개질기는 상기 열원부 및 개질반응부를 서로 용접하여 일체화함으로써, 연료전지용 개질기를 완성할 수 있다.
또한, 본 발명은 상기의 개질기를 채용한 연료전지 시스템으로서, 수소와 산소의 전기 화학적인 반응에 의해 전기를 발생시키는 스택; 수소를 함유한 액상의 연료와 물의 혼합 연료를 기화시키고, 상기 기화된 유체를 개질하여 수소 가스를 발생시키는 상기한 본 발명의 개질기; 상기 개질기로 혼합 연료를 공급하는 연료 공급부; 및 상기 스택으로 외부 공기를 공급하는 공기 공급부를 포함하는 연료 전지 시스템을 제공한다.
본 발명에 따른 연료 전지 시스템에 있어서, 상기 연료 공급부는, 수소를 함유한 액상의 연료를 저장하는 제1 탱크와, 물을 저장하는 제2 탱크와, 상기 제1 및 제2 탱크에 연결 설치되는 연료 펌프를 포함하며, 상기 공기 공급부는 외부 공기를 흡입하는 공기 펌프를 포함할 수 있다.
이하, 첨부한 도면을 참고로 하여 본 발명의 바람직한 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
도 1은 본 발명의 일실시예에 따른 연료전지시스템의 전체적인 구성을 도시한 개략도이다.
본 발명에 따른 연료 전지 시스템(100)에 있어 전기를 생성하기 위한 연료라 함은 메탄올, 에탄올 또는 천연 가스와 같이 수소를 함유한 협의(狹義)의 연료 이 외에, 광의(廣義)의 연료로서 물 및 산소가 더욱 포함된다. 바람직하게는 메탄올을 사용할 수 있다. 그러나 이하에서 설명하는 연료는 상기 협의의 연료로서 편의상 액상의 연료라 정의하고, 액상의 연료와 물을 혼합 연료라고 정의한다.
그리고 본 시스템(100)은 상기 연료에 함유된 수소와 반응하는 산소로서 별도의 저장수단에 저장된 순수한 산소 가스를 사용할 수 있으며, 산소를 함유한 공기를 그대로 사용할 수도 있다. 그러나 이하에서는 산소로서 공기를 사용하는 후자의 예를 설명한다.
도 1을 참고하면, 본 발명에 따른 연료 전지 시스템(100)은, 기본적으로 상기한 혼합 연료를 개질하여 수소 가스를 발생시키는 개질기(30)와, 개질기(30)에 의해 생성된 수소 가스와 외부 공기의 화학 반응 에너지를 전기 에너지로 변환시켜 전기를 생산 해 내는 스택(10)과, 상기한 혼합 연료를 개질기(30)로 공급하는 연료 공급부(50)와, 외부 공기를 스택(10)으로 공급하는 공기 공급부(70)를 포함하여 구성된다.
이러한 본 발명에 따른 연료 전지 시스템은, 개질기(30)를 통해 상기 수소 가스를 생성하고, 이 수소 가스를 스택(10)으로 공급하여 수소와 산소의 전기 화학적인 반응을 통해 전기 에너지를 발생시키는 고분자 전해질형 연료 전지(Polymer Electrode Membrane Fuel Cell; PEMFC) 방식을 채용한다.
상기한 연료 공급부(50)는 개질기(30)와 연결 설치되는 것으로, 종래와 같은 연료 펌프가 배재된 구조를 가진다. 즉, 연료 공급부(50)는 수소를 함유한 액상의 연료를 저장하는 제1 탱크(51)와, 물을 저장하는 제2 탱크(52)를 구비하고, 상기 제1 탱크 및 제2 탱크는 각각 연료 펌프(55)에 각각 연결 설치된다. 이때 연료 공급부(50)와 개질기(30)는 제1 공급라인(81) 및 제3 공급라인(83)에 의해 연결 설치될 수 있다.
그리고 공기 공급부(70)는 스택(10)과 연결 설치되는 것으로, 소정의 펌핑력으로 외부 공기를 흡입하는 공기 펌프(71)를 구비한다. 이 때 스택(10)과 공기 공급부(70)는 제6 공급라인(86)에 의해 연결 설치될 수 있다.
또한, 본 실시예에 따른 개질기(30)는 액상의 연료와 공기의 촉매산화 연소를 유도하여 연소열을 발생시키는 열원부(31)와, 상기 혼합연료를 개질하여 수소 가스를 생성시키는 개질반응부(32)를 포함한다.
또한, 상기 개질기는 상기 수소가스로부터 일산화탄소를 적극적으로 제거할 수 있는 적어도 하나의 일산화탄소 저감부(33, 34)를 포함할 수 있다.
도 2는 도 1에 도시한 개질기의 구조를 나타내 보인 분해 사시도이다.
도 1 및 2를 참고하면, 본 발명에 적용되는 개질기(30)는 통상적으로 열 에너지에 의한 화학 촉매 반응을 통해 전술한 바 있는 혼합 연료를 개질하여 수소 가스를 발생시키고, 아울러 상기 수소 가스에 함유된 일산화탄소의 농도를 저감시킬 수도 있는 구조를 갖는다. 이러한 개질기(30)는 예컨대, 수증기 개질, 부분 산화 또는 자열 반응 등의 촉매 반응을 통해 액상의 연료로부터 수소 가스를 발생시킨다. 그리고 개질기(30)는 예컨대, 수성가스 전환 방법, 선택적 산화 방법 등과 같은 촉매 반응 또는 분리막을 이용한 수소의 정제 등과 같은 방법으로 상기 수소 가스에 함유된 일산화탄소의 농도를 저감시킬 수도 있다.
이와 같은 개질기(30)는 상기 화학 촉매 반응에 필요한 열원을 발생시키는 열원부(31)와, 열원부(31)로부터 발생하는 열을 흡열하여 상기 혼합 연료를 기화시키고 수증기 개질(Steam Reforming: SR) 촉매 반응을 통해 상기 기화된 혼합 연료로부터 수소 가스를 발생시키는 개질 반응부(32)를 포함한다. 그리고 개질기(30)는 상기 수소 가스에 함유된 일산화탄소의 농도를 저감시키는 적어도 하나의 일산화탄소 저감부(33, 34)를 포함할 수도 있다. 일 예로서, 상기 일산화탄소 저감부(33, 34)는 수성가스 전환(Water-Gas Shift: WGS) 촉매 반응을 통해 상기 수소 가스로부터 추가의 수소 가스를 발생시키고 그 수소 가스에 함유된 일산화탄소의 농도를 1차적으로 저감시키는 제1 일산화탄소 저감부(33)와, 선택적 산화(Preferential CO Oxidation: PROX) 촉매 반응을 통해 상기 수소 가스에 함유된 일산화탄소의 농도를 2차적으로 저감시키는 제2 일산화탄소 저감부(34)를 포함할 수 있다.
본 실시예에 따르면, 상기 개질기(30)는 열원부(31), 개질 반응부(32) 및 일산화탄소 저감부(33, 34)가 플레이트 타입으로 구비되어 이들이 서로 적층된 구조를 갖는다. 즉, 열원부(31)의 상측에 개질 반응부(32)와 제1 일산화탄소 저감부(33)를 순차적으로 적층하고, 열원부(31)의 하측에 제2 일산화탄소 저감부(34)를 적층하여 상기 개질기(30)를 구성할 수 있다. 그리고 개질기(30)의 최 상측에 위치하는 제1 일산화탄소 저감부(33)의 상면에는 덮개부(35)가 결합될 수 있다.
대안으로서, 본 발명에 의한 개질기(30)는 열원부(31)로부터 발생하는 열 에 너지를 이용하여 상기 혼합 연료를 기화시키기 위한 기화부(도시하지 않음)를 열원부(31)와 개질 반응부(32) 사이에 별도로 배치할 수도 있다. 그러나 본 실시예에서는 상기 기화부를 배제하고 열원부(31)로부터 발생하는 열 에너지을 이용하여 개질 반응부(32)를 통해 상기 혼합 연료를 기화시키는 예를 설명한다.
이와 같은 개질기(30)에 있어 열원부(31)는 수소 가스의 생성에 필요한 열 에너지를 발생시키는 발열 부분으로서, 액상의 연료와 공기를 산화 촉매 반응을 통해 연소시키는 반응 기판(31a)을 포함한다. 이를 위해 상기 반응 기판(31a)은 연료와 공기의 흐름을 가능하게 하는 유로 채널(31c)을 가지면서 이 유로 채널(31c)에 촉매층을 형성하고 있는 몸체(31b)를 구비한다. 여기서 상기 촉매층은 연료와 공기의 산화 반응을 촉진시키는 통상적인 산화 촉매층을 포함한다. 그리고 유로 채널(31c)의 내표면과 촉매층 사이에는 촉매층을 지지하는 지지층을 구비하고 있다. 상기 유로 채널(31c)은 몸체(31b)의 일면에 대해 시작단과 끝단을 가지며, 일례로 그 시작단에 상기 액상의 연료와 공기가 유입되는 유입구(31f)를 형성하고, 끝단에는 상기 액상의 연료와 공기의 연소 가스가 유출되는 유출구(31g)를 형성하고 있다. 이 때 상기 유입구(31f)와 연료 공급원(50)의 제1 탱크(51)가 관로 형태의 제1 공급라인(81)에 의해 연결되고, 이 유입구(31f)와 산소 공급원(70)의 공기 펌프(71)가 관로 형태의 제2 공급라인(82)에 의해 연결될 수 있다.
상기 개질 반응부(32)는 열원부(31)로부터 발생하는 열원을 흡열하여 혼합 연료를 기화시키고, 수증기 개질(Steam Reformer: SR) 촉매 반응을 통해 상기 기화된 혼합 연료로부터 수소 가스를 발생시키는 반응 기판(32a)을 포함한다. 이를 위 해 상기 반응 기판(32a)은 혼합 연료의 흐름을 가능하게 하는 유로 채널(32c)을 가지면서 이 유로 채널(32c)에 촉매층을 형성하고 있는 몸체(32b)를 구비한다. 여기서 상기 촉매층은 혼합 연료의 수증기 개질 반응을 촉진시키는 통상적인 개질 촉매층을 포함한다. 그리고 유로 채널(32c)의 내표면과 촉매층 사이에는 촉매층을 지지하는 지지층을 구비하고 있다. 상기 유로 채널(32c)은 몸체(32b)의 일면에 대해 시작단과 끝단을 가지며, 일례로 그 시작단에 상기 혼합 연료가 유입되는 유입구(32f)를 형성하고, 끝단에는 상기 혼합 연료로부터 발생된 수소 가스가 유출되는 유출구(32g)를 형성하고 있다. 이 때 상기 유입구(32f)와 연료 공급원(50)의 제1 및 제2 탱크(51, 53)는 제3 공급라인(83)에 의해 연결될 수 있다. 그리고 상기 유입구(32f)는 열원부(31)의 유출구(31g)와 별도의 관로를 통해 연결될 수도 있다.
상기 제1 일산화탄소 저감부(33)는 수성 가스 전환(Water-Gas Shift Reaction: WGS) 촉매 반응을 통해 개질 반응부(32)에서 발생한 수소 가스 외에 추가의 수소 가스를 발생시키고, 상기한 수소 가스에 함유된 일산화탄소의 농도를 1차적으로 저감시키는 반응 기판(33a)을 포함한다. 이를 위해 상기 반응 기판(33a)은 상기 개질 반응부(32)로부터 발생된 수소 가스의 흐름을 가능하게 하는 유로 채널(33c)을 가지면서 이 유로 채널(33c)에 촉매층을 형성하고 있는 몸체(33b)를 구비한다. 여기서 촉매층은 상기 수소 가스의 수성 가스 전환 반응을 촉진시키는 통상적인 수성 가스 전환 촉매층을 포함한다. 그리고 유로 채널(33c)의 내표면과 촉매층 사이에는 촉매층을 지지하는 지지층을 구비하고 있다. 상기 유로 채널(33c)은 몸체(33b)의 일면에 대해 시작단과 끝단을 가지며, 일례로 그 시작단에 상기 수소 가스가 유입되는 유입구(33f)를 형성하고, 끝단에는 상기 일산화탄소의 농도가 1차적으로 저감된 수소 가스가 유출되는 유출구(33g)를 형성하고 있다. 이 때 상기 유입구(33f)는 별도의 연결수단 예컨대, 관로 또는 관통홀을 통해 상기 개질 반응부(32)의 유출구(32g)와 연결될 수 있다.
상기 제2 일산화탄소 저감부(34)는 제1 일산화탄소 저감부(33)를 통해 배출되는 상기 수소 가스와 공기의 선택적 산화(Preferential CO Oxidation: PROX) 촉매 반응을 통해 상기 수소 가스에 함유된 일산화탄소의 농도를 2차적으로 저감시키는 반응 기판(34a)을 포함한다. 이를 위해 상기 반응 기판(34a)은 상기 수소 가스의 흐름을 가능하게 하는 유로 채널(34c)을 가지면서 이 유로 채널(34c)에 촉매층을 형성하고 있는 몸체(34b)를 구비한다. 여기서 촉매층은 상기 수소 가스의 선택적 산화 반응을 촉진시키는 통상적인 선택적 산화 촉매층을 포함한다. 그리고 유로 채널(34c)의 내표면과 촉매층 사이에는 촉매층을 지지하는 지지층을 구비하고 있다. 상기 유로 채널(34c)은 몸체(34b)의 일면에 대해 시작단과 끝단을 가지며, 일례로 그 시작단에 상기 수소 가스가 유입되는 유입구(34f)를 형성하고, 끝단에는 상기 일산화탄소의 농도가 2차적으로 저감된 수소 가스가 유출되도록 하는 유출구(34g)를 형성하고 있다. 이 때 상기 유입구(34f)와 산소 공급원(70)의 공기 펌프(71)가 관로 형태의 제4 공급라인(84)에 의해 연결되고, 상기 유출구(34g)와 다음에 설명하는 스택(10)이 제5 공급라인(85)에 의해 연결 설치될 수 있다. 그리고 상기 유입구(34f)와 제1 일산화탄소 저감부(33)의 유출구(33g)가 별도의 연결수단 예컨대, 관로 또는 관통홀에 의하여 연결될 수 있다.
상기와 같은 열원부, 및 개질반응부를 구성하는 각 반응 기판(31a, 32a, 33a, 34a)의 몸체(31b, 32b, 33b, 34b) 중 적어도 하나는 Al과 Fe의 합금으로 이루어지고, 바람직하게는 모두가 Al과 Fe의 합금으로 이루어진다. 또한, 각 반응기판 중 적어도 어느 하나가 Al과 Fe의 합금으로 이루어진 경우, 나머지 하나는 실리콘, 유리 또는 스테인레스 중에서 선택되는 어느 하나의 소재로 이루어질 수 있다.
본 발명에서 상기 Al 및 Fe의 합금 비율은 10: 90 내지 90: 10인 것이 바람직하며, 그 합금비율이 상기 범위 미만이면 알루미나 층이 형성되기 어려운 문제가 있고, 상기범위를 초과하면 개질 반응기의 기계적 강도가 저하되는 문제가 있다.
또한, 상기와 같은 각 반응 기판(31a, 32a, 33a, 34a)의 몸체(31b, 32b, 33b, 34b)는, 일례로서 소정 폭과 길이를 갖는 사각형의 플레이트 형상을 취하고, 이때 상기 몸체(31b, 32b, 33b, 34b)는 위와 같은 사각형의 플레이트 타입으로 이루어지는 것에 국한되지 않고 다양한 형태로 변형될 수 있다.
상기 개질기는 유로를 제외한 부분을 미리 용접하고 산소분위기에서 고온 열처리하여 형성되는 것이 바람직하다.
한편, 본 발명의 실시예에 따르면, 도 1 및 2에 도시한 바와 같이 상기 열원부(31), 개질 반응부(32) 및 일산화탄소 저감부(33, 34)의 적층 구조로 이루어지는 개질기(30)를 구비하는 것에 한정되지 않고, 제1 변형예로서 열원부(31)와 개질 반응부(32)의 적층 구조로 이루어진 개질기(30)를 구비할 수 있다. 그리고 본 발명의 실시예에 대한 제2 변형예로서, 상기 개질기(30)는 열원부(31), 개질 반응부(32) 및 어느 하나의 일산화탄소 저감부(33, 34)의 적층 구조로 이루어질 수도 있다. 또 한 제3 변형예로서, 상기 개질기(30)는 열원부(31)가 버너와 같은 통상적인 히터를 구비할 수도 있다. 더욱이 제1 및 제3 변형예의 경우, 열원부(31)가 개질 반응부(32)의 하측에 위치하고, 개질 반응부(32)의 상면에 덮개부(35)가 결합될 수 있다. 그리고 제2 변형예의 경우, 열원부(31)를 중심으로 그 상측에 개질 반응부(32)가 위치하고 열원부(31)의 하측에 어느 하나의 일산화탄소 저감부(33, 34)가 위치하며, 개질 반응부(32)의 상면에 덮개부(35)가 결합될 수 있다.
도 3은 도 1에 도시한 스택 구조를 나타내 보인 분해 사시도이다.
도 1 및 도 3을 참고하면, 본 시스템(100)에 적용되는 스택(10)은 상기와 같은 구조의 개질기(30)를 통해 생성된 수소 가스와 공기 중에 함유된 공기의 산화/환원 반응에 의해 전기 에너지를 발생시키는 적어도 하나의 전기 생성부(11)를 포함한다.
각각의 전기 생성부(11)는 전기를 발생시키는 단위의 셀을 의미하며, 개질 가스와 공기 중의 산소를 산화/환원시키는 막/전극 접합체(Membrane Electrode assembly: MEA )(12)와, 개질 가스와 공기를 막/전극 접합체(12)로 공급하기 위한 바이폴라 플레이트(Bipolar Plate)(16)로 이루어진다.
이러한 전기 생성부(11)는 막/전극 접합체(12)를 중심에 두고 이의 양측에 바이폴라 플레이트(16)가 각각 배치된다. 이로서 스택(10)은 위와 같은 복수의 전기 생성부(11)가 연속적으로 배치됨으로써 구성된다. 여기서 스택(10)의 최외측에 각각 위치하는 바이폴라 플레이트(16)는 엔드 플레이트(13)라고 정의할 수 있다.
상기 막/전극 접합체(12)는 양측면을 이루는 애노드 전극과 캐소드 전극 사 이에 전해질막이 개재된 통상적인 MEA(Membrane Electrode Assembly)의 구조를 가진다. 애노드 전극은 바이폴라 플레이트(16)를 통해 개질 가스를 공급받는 부분으로서, 산화 반응에 의해 개질 가스를 전자와 수소 이온으로 변환시키는 촉매층과, 전자와 수소 이온의 원활한 이동을 위한 기체 확산층(Gas Diffusion Layer: GDS)으로 구성된다. 캐소드 전극은 바이폴라 플레이트(16)을 통해 공기를 공급받는 부분으로서, 환원 반응에 의해 공기 중의 산소를 전자와 산소 이온으로 변환시키는 촉매층과, 전자와 산소 이온의 원활한 이동을 위한 기체 확산층으로 구성된다. 그리고 전해질막은 두께가 50∼200㎛인 고체 폴리머 전해질로서, 애노드 전극의 촉매층에서 생성된 수소 이온을 캐소드 전극의 촉매층으로 이동시키는 이온 교환의 기능을 가진다.
전술한 바 있는 바이폴라 플레이트(16)는 막/전극 접합체(12)의 애노드 전극과 캐소드 전극을 직렬로 연결시켜 주는 전도체의 기능을 가진다. 그리고 바이폴라 플레이트(16)는 막/전극 접합체(12)의 산화/환원 반응에 필요한 개질 가스와 공기를 애노드 전극과 캐소드 전극에 공급하는 통로의 기능도 가진다. 이를 위해, 바이폴라 플레이트(16)의 표면에는 막/전극 접합체(12)의 산화/환원 반응에 필요한 가스를 공급하는 유로(17)을 형성하고 있다.
보다 구체적으로, 상기한 바이폴라 플레이트(16)는 막/전극 접합체(12)를 사이에 두고 그 양측에 각각 배치되어 막/전극 접합체(12)의 애노드 전극 및 캐소드 전극에 밀착된다. 그리고 바이폴라 플레이트(16)는 막/전극 접합체(12)의 애노드 전극 및 캐소드 전극에 각각 밀착되는 밀착면에 애노드 전극으로 개질 가스를 공급 하고, 캐소드 전극으로 공기를 공급하기 위한 유로 유로(17)을 형성하고 있다.
각각의 엔드 플레이트(13)는 스택(10)의 최외측에 각각 배치되어 위와 같은 바이폴라 플레이트(16)의 기능을 수행함과 동시에 복수의 전기 생성부(11)를 밀착하는 기능도 가진다. 각각의 엔드 플레이트(13)는 막/전극 접합체(12)의 애노드 전극 및 캐소드 전극 중 어느 하나의 전극에 밀착될 수 있다. 그리고 막/전극 접합체(12)에 밀착되는 엔드 플레이트(13)의 밀착면에는 상기한 어느 하나의 전극으로 개질 가스 및 공기 중 어느 하나를 공급하기 위한 유로 유로(17)을 형성할 수도 있다.
그리고 막/전극 접합체(12)에 밀착되는 엔드 플레이트(13)의 밀착면에는 상기한 어느 하나의 전극으로 수소 가스 및 공기 중 어느 하나를 공급하기 위한 유로 채널(17)을 형성하고 있다.
또한 엔드 플레이트(13)는 어느 하나의 유로 채널(17)에 개질기(30)로부터 생성된 수소 가스를 주입하기 위한 파이프 형상의 제1 공급관(13a)과, 다른 하나의 유로 채널(17)에 공기를 주입하기 위한 파이프 형상의 제2 공급관(13b)과, 복수의 전기 생성부(11)에서 최종적으로 미반응되고 남은 수소 가스를 배출시키기 위한 제1 배출관(13c)과, 상기한 전기 생성부(11)에서 최종적으로 미반응되고 남은 공기를 배출시키기 위한 제2 배출관(13d)을 구비한다.
제1 공급관(13a)은 전술한 바 있는 제4 공급라인(84)을 통하여 개질기(30)의 제2 일산화탄소 저감부(39)와 연결된다. 그리고 제2 공급관(13b)은 전술한 바 있는 공기 공급라인(85)을 통하여 공기 공급부(70)와 연결된다.
상기와 같이 구성된 본 발명의 실시예에 따른 연료 전지 시스템의 동작을 상세히 설명하면 다음과 같다.
우선, 연료 펌프(55)를 가동시켜 제1 탱크(51)에 저장된 액상의 연료를 제1 공급라인(81)을 통해 열원부(31)로 공급한다. 이와 동시에, 공기 펌프(71)를 가동시켜 공기를 제2 공급라인(82)을 통해 열원부(31)로 공급한다. 그러면, 상기 액상의 연료와 공기가 열원부(31)의 유로 채널(31c)을 따라 유동하면서 산화 촉매 반응을 일으킨다. 따라서, 열원부(31)에서는 이와 같은 산화 촉매 반응을 통해 소정 온도의 반응열을 발생시킨다. 이로써 열원부(31)로부터 발생하는 열 에너지가 개질 반응부(32), 일산화탄소 저감부(33, 34)에 전도되면서 개질기(30) 전체를 예열시키게 된다.
이와 같이 개질기(30)의 예열이 완료되면, 제1 펌프(55)를 가동시켜 제1 탱크(51)에 저장된 액상의 연료와 제2 탱크(53)에 저장된 물을 제3 공급라인(83)을 통해 개질 반응부(32)로 공급한다.
이어서, 상기 액상의 연료와 물의 혼합 연료가 개질 반응부(32)의 유로 채널(32c)을 따라 흐르면서 상기 열원부(31)로부터 제공되는 열 에너지에 의해 기화되게 된다. 그러면, 개질 반응부(32)는 수증기 개질 촉매 반응을 통해 상기 기화된 혼합 연료로부터 수소 가스를 발생시킨다. 부연 설명하면, 상기 개질 반응부(32)는 수증기 개질 촉매 반응을 통해 혼합 연료의 분해 반응과 일산화탄소의 변성 반응이 동시에 진행되어 이산화탄소와 수소를 함유하고 있는 수소 가스를 생성하게 된다. 이 때 상기 개질 반응부(32)는 일산화탄소의 변성 반응을 완전히 행하게 하는 것이 곤란하여 부(副) 생성물로서의 일산화탄소가 미량 함유된 수소 가스를 생성하게 된다.
다음, 상기 일산화탄소가 미량 함유된 수소 가스가 제1 일산화탄소 저감부(33)의 유로 채널(33c)을 따라 흐르게 된다. 그러면, 제1 일산화탄소 저감부(33)는 수성가스 전환 촉매 반응을 통해 추가의 수소 가스를 발생시키고, 수소 가스에 함유된 일산화탄소의 농도를 1차적으로 저감시킨다.
이어서, 제1 일산화탄소 저감부(33)의 유로 채널(33c)을 통과한 상기 수소 가스가 제2 일산화탄소 저감부(34)의 유로 채널(34c)을 따라 흐르게 된다. 이와 동시에, 공기 펌프(71)를 가동시켜 공기를 제4 공급라인(84)을 통해 제2 일산화탄소 저감부(34)의 유로 채널(34c)로 공급한다. 그러면, 제2 일산화탄소 저감부(34)에서는 선택적 산화 촉매 반응을 통해 수소 가스에 함유된 일산화탄소의 농도를 2차적으로 저감시키고, 상기 수소 가스를 유출구(34g)를 통해 배출시킨다.
이어서, 상기 수소 가스를 제5 공급라인(85)를 통해 스택(10)의 제1 주입부(13a)로 공급한다. 이와 동시에, 공기 펌프(71)를 가동시켜 공기를 제6 공급라인(86)을 통해 스택(10)의 제2 주입부(13b)로 공급한다.
그러면 상기 수소 가스는 바이폴라 플레이트(16)의 수소 통로를 통해 막/전극 접합체(12)의 애노드 전극으로 공급된다. 그리고 공기는 바이폴라 플레이트(16)의 공기 통로를 통해 막/전극 접합체(12)의 캐소드 전극으로 공급된다.
따라서 애노드 전극에서는 산화 반응을 통해 수소 가스를 전자와 프로톤(수소이온)으로 분해한다. 그리고 프로톤이 전해질막을 통하여 캐소드 전극으로 이동 하고, 전자는 전해질막을 통하여 이동되지 못하고 바이폴라 플레이트(16)를 통해 이웃하는 막/전극 접합체(12)의 캐소드 전극으로 이동하게 되는데 이때 전자의 흐름으로 전류를 발생시키고, 부수적으로 열과 물을 발생시킨다.
상기에서, 본 발명의 개질기의 구조에 대하여 설명하였지만, 본 발명의 개질기의 구조는 상기한 적층형의 구조에 한정되지는 않으며, 원통형의 구조를 이룰 수도 있다. 즉, 상기에서 설명한 바와 같이, 열원부 및 개질반응부를 포함하는 개질기의 형태가 소정의 길이, 폭 및 두께를 가진 대략 사각형의 형태라면 적층형의 구조가 바람직하고, 그 형태가 원형상의 튜브일 경우, 원통형의 구조가 이루어질 수 있다.
이상을 통해 본 발명의 바람직한 실시예에 대하여 설명하였지만, 본 발명은 이에 한정되는 것이 아니고 특허청구범위와 발명의 상세한 설명 및 첨부한 도면의 범위 안에서 여러 가지로 변형하여 실시하는 것이 가능하고 이 또한 본 발명의 범위에 속하는 것은 당연하다.
본 발명은 연료전지 시스템의 개질기의 재료로서 Al과 Fe의 합금을 사용하여 종래 순수 Al에 비해 용접성이 향상되는 장점이 있고, 산화물 피막 형성을 통한 촉매와의 접착성을 증진시킬 수 있다.

Claims (17)

  1. 수소를 함유한 액상의 연료와 물의 혼합 연료를 개질하여 수소가 풍부한 개질 가스를 발생시키는 연료전지용 개질기에 있어서,
    상기 혼합연료가 통과하는 소정길이의 유로를 구비하고, 상기 유로의 내면에는 촉매층이 형성되며, 상기 혼합연료를 기화시키는 열원을 공급하는 열원부; 및
    상기 혼합연료가 통과하는 소정길이의 유로를 구비하고, 상기 유로의 내면에는 촉매층이 형성되며, 상기 열원에 의한 화학 촉매 반응을 통해 상기 혼합연료로부터 수소 가스를 발생시키는 개질 반응부를 포함하며,
    상기 열원부와 개질반응부 중 적어도 어느 하나는 Al 및 Fe의 합금으로 이루어지는 연료전지용 개질기.
  2. 제 1항에 있어서, 상기 Al 및 Fe의 합금 비율은 10: 90 내지 90: 10인 연료 전지용 개질기.
  3. 제 1항에 있어서, 상기 유로는 상기 혼합 연료가 유입되도록 하는 유입구와, 상기 개질 반응을 거쳐 생성된 개질 가스가 유출되도록 하는 유출구를 가지는 연료 전지용 개질기.
  4. 제 1항에 있어서, 상기 개질기는 적층형 구조 또는 원통형의 구조를 가지는 연료 전지용 개질기.
  5. 제 1항에 있어서, 상기 개질기는 열원부 및 개질반응부를 서로 용접하여 일체화되는 것인 연료 전지용 개질기.
  6. 제 1항에 있어서, 상기 열원부 및 개질반응부의 유로는 비결정성 산화물을 포함하는 촉매지지층을 포함하는 것인 연료 전지용 개질기.
  7. 제 1항에 있어서, 상기 열원부는 상기 유로에 접촉 설치되어 상기 유로를 가열하는 히팅부재를 더욱 구비하는 연료전지용 개질기.
  8. 제 1항에 있어서, 상기 개질기는 상기 유로에 연결 설치되어 상기 개질부에 의해 생성된 개질가스로부터 일산화탄소를 제거하는 적어도 하나의 일산화탄소 저감부를 더욱 포함하는 연료 전지용 개질기.
  9. 수소와 산소의 전기 화학적인 반응에 의해 전기를 발생시키는 스택;
    수소를 함유한 액상의 연료와 물의 혼합 연료를 기화시키고, 상기 기화된 유체를 개질하여 수소 가스를 발생시키는 개질기;
    상기 개질기로 혼합 연료를 공급하는 연료 공급부; 및
    상기 스택으로 외부 공기를 공급하는 공기 공급부를 포함하며,
    상기 개질기는, 상기 혼합연료가 통과하는 소정길이의 유로를 구비하고, 상기 유로의 내면에는 촉매층이 형성되며, 상기 혼합연료를 기화시키는 열원을 공급하는 열원부; 및
    상기 혼합연료가 통과하는 소정길이의 유로를 구비하고, 상기 유로의 내면에는 촉매층이 형성되며, 상기 열원에 의한 화학 촉매 반응을 통해 상기 혼합연료로부터 수소 가스를 발생시키는 개질 반응부를 포함하며,
    상기 열원부와 개질반응부 중 적어도 어느 하나는 Al 및 Fe의 합금으로 이루어지는 연료 전지 시스템.
  10. 제 9항에 있어서, 상기 Al 및 Fe의 합금 비율은 10: 90 내지 90: 10인 연료 전지 시스템.
  11. 제 9항에 있어서, 상기 유로는 상기 혼합 연료가 유입되도록 하는 유입구와, 상기 개질 반응을 거쳐 생성된 개질 가스가 유출되도록 하는 유출구를 가지는 연료 전지 시스템.
  12. 제 9항에 있어서, 상기 개질기는 적층형 구조 또는 원통형의 구조를 가지는 연료 전지 시스템.
  13. 제 9항에 있어서, 상기 개질기는 열원부 및 개질반응부를 서로 용접하여 일 체화되는 것인 연료 전지 시스템.
  14. 제 9항에 있어서, 상기 열원부 및 개질반응부의 유로는 비결정성 산화물을 포함하는 촉매지지층을 포함하는 것인 연료 전지 시스템.
  15. 제 9항에 있어서, 상기 열원부는 상기 유로에 접촉 설치되어 상기 유로를 가열하는 히팅부재를 더욱 구비하는 연료전지 시스템.
  16. 제 9항에 있어서, 상기 개질기는 상기 유로에 연결 설치되어 상기 개질부에 의해 생성된 개질가스로부터 일산화탄소를 제거하는 적어도 하나의 일산화탄소 저감부를 더욱 포함하는 연료 전지 시스템.
  17. 제 9항에 있어서, 상기 연료 전지 시스템이 고분자 전해질형 연료 전지(Polymer Electrolyte Membrance Fuel Cell: PEMFC) 방식으로 이루어지는 연료 전지 시스템.
KR1020040049416A 2004-06-29 2004-06-29 연료전지용 개질기 및 이를 포함하는 연료 전지 시스템 KR100627334B1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020040049416A KR100627334B1 (ko) 2004-06-29 2004-06-29 연료전지용 개질기 및 이를 포함하는 연료 전지 시스템
US11/155,038 US8318363B2 (en) 2004-06-29 2005-06-17 Reformer for fuel cell system and fuel cell system comprising the same
JP2005179968A JP2006012817A (ja) 2004-06-29 2005-06-20 燃料電池用改質器及びこれを備えた燃料電池システム
CNB2005100813667A CN100345330C (zh) 2004-06-29 2005-06-28 燃料电池重整器以及包括其的燃料电池系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040049416A KR100627334B1 (ko) 2004-06-29 2004-06-29 연료전지용 개질기 및 이를 포함하는 연료 전지 시스템

Publications (2)

Publication Number Publication Date
KR20060000519A true KR20060000519A (ko) 2006-01-06
KR100627334B1 KR100627334B1 (ko) 2006-09-25

Family

ID=35503975

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040049416A KR100627334B1 (ko) 2004-06-29 2004-06-29 연료전지용 개질기 및 이를 포함하는 연료 전지 시스템

Country Status (4)

Country Link
US (1) US8318363B2 (ko)
JP (1) JP2006012817A (ko)
KR (1) KR100627334B1 (ko)
CN (1) CN100345330C (ko)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060080385A (ko) * 2005-01-05 2006-07-10 삼성에스디아이 주식회사 연료 전지 시스템, 개질기, 반응 기판 및 그 반응 기판의제조 방법
KR100674863B1 (ko) * 2005-09-29 2007-01-29 삼성전기주식회사 박형 개질 기
KR101223627B1 (ko) * 2006-02-03 2013-01-17 삼성에스디아이 주식회사 연료 개질장치 및 그 제조 방법
US8497043B2 (en) * 2008-03-26 2013-07-30 Mil3 Inc. Electrical power generator systems that passively transfer hydrogen and oxygen to fuel cells and methods for generating power via same
US8961627B2 (en) * 2011-07-07 2015-02-24 David J Edlund Hydrogen generation assemblies and hydrogen purification devices
US11738305B2 (en) 2012-08-30 2023-08-29 Element 1 Corp Hydrogen purification devices
US9187324B2 (en) 2012-08-30 2015-11-17 Element 1 Corp. Hydrogen generation assemblies and hydrogen purification devices
US10717040B2 (en) 2012-08-30 2020-07-21 Element 1 Corp. Hydrogen purification devices
JP6285563B2 (ja) 2013-11-06 2018-02-28 ワット・フューエル・セル・コーポレイションWatt Fuel Cell Corp. 構造成分としてペロブスカイトを有する改質器
CA2929680C (en) 2013-11-06 2019-03-26 Watt Fuel Cell Corp. Liquid fuel cpox reformers and methods of cpox reforming
CN105706281B (zh) 2013-11-06 2019-07-26 瓦特燃料电池公司 化学反应器系统
CN105706283B (zh) 2013-11-06 2018-11-06 瓦特燃料电池公司 集成的气态燃料催化部分氧化重整器和燃料电池系统、以及产生电力的方法
JP6549600B2 (ja) 2013-11-06 2019-07-24 ワット・フューエル・セル・コーポレイションWatt Fuel Cell Corp. 液体燃料cpox改質器と燃料セルの統合システム、及び電気を生成する方法
KR101796495B1 (ko) 2013-11-06 2017-11-10 와트 퓨얼 셀 코퍼레이션 기체 연료 촉매 부분산화 개질 장치 및 촉매 부분산화 개질 방법
DK178843B1 (en) * 2014-07-16 2017-03-20 Serenergy As A reformer for a fuel cell system

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5427601A (en) * 1990-11-29 1995-06-27 Ngk Insulators, Ltd. Sintered metal bodies and manufacturing method therefor
US5316747A (en) * 1992-10-09 1994-05-31 Ballard Power Systems Inc. Method and apparatus for the selective oxidation of carbon monoxide in a hydrogen-containing gas mixture
JPH07211333A (ja) 1994-01-10 1995-08-11 Fuji Electric Co Ltd 固体電解質型燃料電池
US5858314A (en) * 1996-04-12 1999-01-12 Ztek Corporation Thermally enhanced compact reformer
JPH10208759A (ja) 1997-01-23 1998-08-07 Chubu Electric Power Co Inc 溶融炭酸塩型燃料電池用のセパレータ
JP3129670B2 (ja) 1997-02-28 2001-01-31 三菱電機株式会社 燃料改質装置
US6238815B1 (en) * 1998-07-29 2001-05-29 General Motors Corporation Thermally integrated staged methanol reformer and method
JP2001023671A (ja) 1999-07-02 2001-01-26 Ishikawajima Harima Heavy Ind Co Ltd 燃料電池用触媒反応器および燃料電池システム、並びに坦体
JP2001023672A (ja) 1999-07-02 2001-01-26 Ishikawajima Harima Heavy Ind Co Ltd 燃料電池用触媒反応器および燃料電池システム
JP2001226104A (ja) 2000-02-21 2001-08-21 Suzuki Motor Corp メタノール改質装置
JP3678118B2 (ja) * 2000-06-01 2005-08-03 日産自動車株式会社 燃料改質システム
US20020071797A1 (en) * 2000-10-06 2002-06-13 Loffler Daniel G. Catalytic separator plate reactor and method of catalytic reforming of fuel to hydrogen
KR100525538B1 (ko) * 2001-01-12 2005-10-31 산요덴키가부시키가이샤 고체 고분자형 연료 전지 발전 장치
JP2002329517A (ja) * 2001-05-01 2002-11-15 Honda Motor Co Ltd 燃料電池システムに用いられる改質装置の暖機装置
WO2003072491A1 (en) * 2002-02-22 2003-09-04 Chevron U.S.A. Inc. Process for reducing metal catalyzed coke formation in hydrocarbon processing
KR100542201B1 (ko) * 2004-03-03 2006-01-10 삼성에스디아이 주식회사 연료 전지 시스템의 개질기 및 이를 채용한 연료 전지시스템

Also Published As

Publication number Publication date
CN100345330C (zh) 2007-10-24
CN1716673A (zh) 2006-01-04
US8318363B2 (en) 2012-11-27
KR100627334B1 (ko) 2006-09-25
US20050284022A1 (en) 2005-12-29
JP2006012817A (ja) 2006-01-12

Similar Documents

Publication Publication Date Title
US8486162B2 (en) Reformer for fuel cell system and fuel cell system having the same
US8318363B2 (en) Reformer for fuel cell system and fuel cell system comprising the same
US8043389B2 (en) Fuel cell heat recovering reformer and system
JP4444173B2 (ja) 改質装置及びこれを含む燃料電池システム
US7691509B2 (en) Reformer and fuel cell system having the same
US7763220B2 (en) Reformer, fuel cell system having the same, and method of manufacturing the same
KR20050087246A (ko) 연료 전지 시스템의 개질기 및 이를 채용한 연료 전지시스템
KR100542201B1 (ko) 연료 전지 시스템의 개질기 및 이를 채용한 연료 전지시스템
KR100646985B1 (ko) 평판형 연료개질 시스템 및 이를 구비한 연료전지 시스템
JP4351641B2 (ja) 燃料電池システム
US7935315B2 (en) Reformer for a fuel cell system, reaction substrate therefor, and manufacturing method for a reaction substrate
KR20050102233A (ko) 연료 전지 시스템
KR100560495B1 (ko) 연료 전지 시스템의 개질기 및 이를 채용한 연료 전지시스템
KR101030045B1 (ko) 연료전지용 개질기 및 이를 포함하는 연료 전지 시스템
KR100599687B1 (ko) 연료 전지 시스템 및 이에 사용되는 개질기
KR100560442B1 (ko) 연료 전지 시스템
US7727648B2 (en) Non-reactive fuel dissolution apparatus and fuel cell system having the same
KR100570685B1 (ko) 연료전지용 일산화탄소 정화기, 및 이를 포함하는연료전지 시스템
KR20060095223A (ko) 개질기용 미반응 연료 회수장치를 갖는 연료 전지 시스템

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120823

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20130827

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee