KR20050100252A - Method of transparent electrode for ohmic contact to p-algainn compound semiconductor using zinc oxide - Google Patents

Method of transparent electrode for ohmic contact to p-algainn compound semiconductor using zinc oxide Download PDF

Info

Publication number
KR20050100252A
KR20050100252A KR1020040025463A KR20040025463A KR20050100252A KR 20050100252 A KR20050100252 A KR 20050100252A KR 1020040025463 A KR1020040025463 A KR 1020040025463A KR 20040025463 A KR20040025463 A KR 20040025463A KR 20050100252 A KR20050100252 A KR 20050100252A
Authority
KR
South Korea
Prior art keywords
oxide
layer
ohmic contact
zinc oxide
compound semiconductor
Prior art date
Application number
KR1020040025463A
Other languages
Korean (ko)
Other versions
KR100564912B1 (en
Inventor
박성주
임재홍
황대규
Original Assignee
광주과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 광주과학기술원 filed Critical 광주과학기술원
Priority to KR1020040025463A priority Critical patent/KR100564912B1/en
Publication of KR20050100252A publication Critical patent/KR20050100252A/en
Application granted granted Critical
Publication of KR100564912B1 publication Critical patent/KR100564912B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/02554Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28525Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table the conductive layers comprising semiconducting material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

본 발명에 따른 오믹접촉 투명전극층 형성방법은, p-AlGaInN 화합물 반도체층(120) 상에 니켈산화물(NiO1-x), 망간산화물(MnO1-x), 철산화물(FeO 3/2(1-x)), 코발트산화물(CoO1-x), 크롬산화물(CrO3/2(1-x)), 구리산화물(CuO1-x), 주석산화물(SnO 1-x), 은산화물(AgO1-x), 구리알루미늄산화물(CuAlO2(1-x)), 및 팔라듐산화물(PdO1-x )으로 이루어진 금속 산화물군으로부터 선택된 적어도 어느 하나를 포함하여 이루어지는 삽입층(130)과 아연 산화물층(140)을 순차적으로 적층하고 상기 결과물을 100~1200℃의 온도범위에서 열처리하는 것을 특징으로 한다. 아연산화물의 우수한 열적 안정성 및 투광성으로 인해서 우수한 광방출효율을 갖는 발광소자를 제조할 수 있으며, 발광소자의 고온 열처리에 의한 특성 저하를 방지할 수 있게 된다.In the method of forming an ohmic contact transparent electrode layer according to the present invention, a nickel oxide (NiO 1-x ) , manganese oxide (MnO 1-x ), and iron oxide (FeO 3/2 (1 ) are formed on the p-AlGaInN compound semiconductor layer 120. -x) ), cobalt oxide (CoO 1-x ), chromium oxide (CrO 3/2 (1-x) ), copper oxide (CuO 1-x ), tin oxide (SnO 1-x ), silver oxide (AgO Insertion layer 130 and zinc oxide layer comprising at least one selected from the group consisting of metal oxides consisting of 1-x ), copper aluminum oxide (CuAlO 2 (1-x) ), and palladium oxide (PdO 1-x ). The 140 is sequentially laminated and characterized in that the resulting heat treatment in a temperature range of 100 ~ 1200 ℃. Due to the excellent thermal stability and light transmittance of the zinc oxide, it is possible to manufacture a light emitting device having excellent light emission efficiency, and to prevent the deterioration of properties due to high temperature heat treatment of the light emitting device.

Description

아연산화물을 이용한 p-AlGaInN 화합물 반도체의 오믹접촉 투명전극층 형성방법{Method of transparent electrode for ohmic contact to p-AlGaInN compound semiconductor using zinc oxide} Method of transparent electrode for ohmic contact to p-AlGaInN compound semiconductor using zinc oxide}

본 발명은 p-AlxGayInzN 화합물 반도체의 오믹접촉 투명전극층 형성방법에 관한 것으로서, 특히 아연산화물을 이용하는 p-AlxGayInzN 화합물 반도체의 오믹접촉 투명전극층 형성방법에 관한 것이다. 여기서, 0≤x, y, z≤1, x+y+z=1 이다.The present invention relates to a method of forming an ohmic contact transparent electrode layer of a p-Al x Ga y In z N compound semiconductor, and more particularly to a method of forming an ohmic contact transparent electrode layer of a p-Al x Ga y In z N compound semiconductor using zinc oxide. will be. Here, 0 ≦ x, y, z ≦ 1 and x + y + z = 1.

p-GaN에 오믹접촉되는 전극층으로서 니켈(Ni)을 기본으로 하는 금속층, 예컨대 니켈(Ni)/금(Au)의 금속층이 널리 사용되어 왔다. 니켈을 기본으로 하는 금속층을 전극층으로 사용할 경우 산소(O2) 분위기에서 500~600℃의 온도범위에서 열처리하면 질화갈륨과 니켈의 계면에 p형 반도체 산화물인 니켈 산화물(NiO)이 형성되고, 또한 갈륨이 바깥쪽으로 확산하여 질화갈륨 표면 부위에 다수 캐리어인 홀(hole)이 공급되어 질화갈륨 표면부근에서의 실효 캐리어 농도(effective carrier concentration)가 증가되어 10-3 ~ 10-4 Ωcm2 정도의 비접촉저항을 갖는 오믹접촉을 얻을 수 있게 된다.As an electrode layer in ohmic contact with p-GaN, a metal layer based on nickel (Ni), for example, a metal layer of nickel (Ni) / gold (Au), has been widely used. In the case of using a nickel-based metal layer as an electrode layer, when a heat treatment is performed in an oxygen (O 2 ) atmosphere at a temperature range of 500 to 600 ° C., nickel oxide (NiO), a p-type semiconductor oxide, is formed at an interface between gallium nitride and nickel. gallium is a hole (hole) majority carriers on the surface of the gallium nitride region is diffused to the outside is supplied is the effective carrier concentration near the GaN surface (effective carrier concentration) by 10 -3 to An ohmic contact having a specific contact resistance of about 10 −4 Ωcm 2 can be obtained.

그러나, 니켈(Ni)/금(Au) 투명전극층의 경우, 열적 불안정성으로 인하여 실제 발광소자에 응용시 소자 신뢰성에 있어 많은 문제가 발생한다. 또한 p형 질화갈륨 위에 적층되는 금속층이 낮은 실효 저항(effective resistance)과 높은 투광성을 갖도록 하기 위해서는 소정의 임계 두께를 가져야 하는 한계가 있다. 따라서, 니켈(Ni)/금(Au) 투명전극층은 낮은 접촉저항을 얻을 수는 있으나 좋은 발광효율을 얻지 못하는 단점을 가진다.However, in the case of the nickel (Ni) / gold (Au) transparent electrode layer, due to thermal instability, there are many problems in device reliability when applied to the actual light emitting device. In addition, in order for the metal layer stacked on the p-type gallium nitride to have a low effective resistance and a high light transmittance, there is a limit to have a predetermined critical thickness. Therefore, the nickel (Ni) / gold (Au) transparent electrode layer can obtain a low contact resistance but has a disadvantage of not obtaining a good luminous efficiency.

따라서, 본 발명이 이루고자 하는 기술적 과제는, 낮은 오믹접촉저항을 가지면서 투명하고 열적으로도 안정한 새로운 오믹접촉계(ohmic contact system)를 도입함으로써 상술한 종래의 문제점을 해결할 수 있는 p-AlxGayInzN 화합물 반도체의 오믹접촉 투명전극층 형성방법을 제공하는 데 있다.Accordingly, the object of the present invention are, while having a low ohmic contact resistance, a transparent and thermally FIG stable new ohmic contact system (ohmic contact system) to which can solve the conventional problems above-described p-Al x Ga by introducing It is to provide a method for forming an ohmic contact transparent electrode layer of y In z N compound semiconductor.

상기 기술적 과제를 달성하기 위한 본 발명에 따른 오믹접촉 투명전극층 형성방법은, p-AlGaInN 화합물 반도체층 상에 니켈산화물(NiO1-x), 망간산화물(MnO1-x ), 철산화물(FeO3/2(1-x)), 코발트산화물(CoO1-x), 크롬산화물(CrO3/2(1-x)), 구리산화물(CuO1-x), 주석산화물(SnO1-x), 은산화물(AgO1-x), 구리알루미늄산화물(CuAlO2(1-x)), 및 팔라듐산화물(PdO1-x)으로 이루어진 금속 산화물군으로부터 선택된 적어도 어느 하나를 포함하여 이루어지는 삽입층과 아연 산화물층을 순차적으로 적층하고 상기 결과물을 100~1200℃의 온도범위에서 열처리하는 것을 특징으로 한다.The ohmic contact transparent electrode layer forming method according to the present invention for achieving the above technical problem, the nickel oxide (NiO 1-x ) , manganese oxide (MnO 1-x ), iron oxide (FeO 3 ) on the p-AlGaInN compound semiconductor layer / 2 (1-x) ), cobalt oxide (CoO 1-x ), chromium oxide (CrO 3/2 (1-x) ), copper oxide (CuO 1-x ), tin oxide (SnO 1-x ), Insertion layer and zinc oxide comprising at least one selected from the group of metal oxides consisting of silver oxide (AgO 1-x ), copper aluminum oxide (CuAlO 2 (1-x) ), and palladium oxide (PdO 1-x ) The layers are sequentially stacked and the resultant is heat-treated at a temperature range of 100 to 1200 ° C.

상기 열처리는 질소 및 산소로 이루어진 군으로부터 선택된 적어도 어느 하나를 포함하는 분위기에서 행해지는 것이 바람직하다. The heat treatment is preferably carried out in an atmosphere containing at least one selected from the group consisting of nitrogen and oxygen.

상기 p-AlGaInN 화합물 반도체층의 p형 도펀트로서 Be, Mg, Ca, Zn, 및 Cd으로 이루어진 군으로부터 선택된 적어도 어느 하나가 사용되어질 수 있다. At least one selected from the group consisting of Be, Mg, Ca, Zn, and Cd may be used as the p-type dopant of the p-AlGaInN compound semiconductor layer.

상기 아연 산화물층은 인듐 산화물, 주석 산화물, 갈륨 산화물, 및 알루미늄 산화물로 이루어진 군으로부터 선택된 적어도 어느 하나를 포함하여 이루어진 것일 수 있다. The zinc oxide layer may include at least one selected from the group consisting of indium oxide, tin oxide, gallium oxide, and aluminum oxide.

상기 삽입층은 0.1~1000nm의 두께를 가지는 것이 바람직하다. The insertion layer preferably has a thickness of 0.1 ~ 1000nm.

상기 아연 산화물층은 0.1~1000nm의 두께를 가지는 것이 바람직하다. The zinc oxide layer preferably has a thickness of 0.1 ~ 1000nm.

상기 열처리가 1초 내지 3시간 동안 행해지는 것이 바람직하다. Preferably, the heat treatment is performed for 1 second to 3 hours.

상기 삽입층을 적층하기 이전에 염산(HCl), 인산(H3PO4), 수산화칼륨(KOH), 또는 왕수(Aqua regia solution)로 상기 p-AlGaInN 화합물 반도체층의 표면을 처리하면 더 좋다.It is better to treat the surface of the p-AlGaInN compound semiconductor layer with hydrochloric acid (HCl), phosphoric acid (H 3 PO 4 ), potassium hydroxide (KOH), or aqua regia solution before stacking the insertion layer.

이하에서, 본 발명의 바람직한 실시예를 첨부한 도면들을 참조하여 상세히 설명한다. 아래의 실시예는 본 발명의 내용을 이해하기 위해 제시된 것일 뿐이며 당 분야에서 통상의 지식을 가진 자라면 본 발명의 기술적 사상 내에서 많은 변형이 가능할 것이다. 따라서, 본 발명의 권리범위가 이러한 실시예에 한정되어지는 것으로 해석되어져서는 안된다.Hereinafter, with reference to the accompanying drawings, preferred embodiments of the present invention will be described in detail. The following examples are only presented to understand the content of the present invention, and those skilled in the art will be capable of many modifications within the technical spirit of the present invention. Accordingly, the scope of the present invention should not be construed as being limited to these embodiments.

도 1은 본 발명의 실시예에 따른 p-AlxGayInzN 화합물 반도체의 오믹접촉 투명전극층 형성방법을 설명하기 위한 단면도이다.1 is a cross-sectional view illustrating a method of forming an ohmic contact transparent electrode layer of a p-Al x Ga y In z N compound semiconductor according to an embodiment of the present invention.

먼저, 산화알루미늄 기판(110) 상에 MOCVD 또는 MBE법으로 p-GaN층(120)을 형성하고, p-GaN층(120) 상에 PVD 또는 CVD법으로 삽입층(130)을 형성한다.First, the p-GaN layer 120 is formed on the aluminum oxide substrate 110 by MOCVD or MBE, and the insertion layer 130 is formed on the p-GaN layer 120 by PVD or CVD.

p-GaN층(120)의 p형 도펀트로서는 Be, Mg, Ca, Zn, 또는 Cd 등을 선택할 수 있다. 삽입층(130)은 0.1~1000nm의 두께를 가지며, 니켈산화물(NiO1-x), 망간산화물(MnO1-x), 철산화물(FeO3/2(1-x)), 코발트산화물(CoO1-x), 크롬산화물(CrO 3/2(1-x)), 구리산화물(CuO1-x), 주석산화물(SnO1-x), 은산화물(AgO1-x), 구리알루미늄산화물(CuAlO2(1-x)), 및 팔라듐산화물(PdO1-x)으로 이루어진 금속 산화물군으로부터 선택된 적어도 어느 하나를 포함하여 이루어지는 것이 바람직하다. 여기서, 0 < x < 1 이다. 특히, 니켈 산화물의 경우가 바람직하다. 삽입층(130)을 적층하기 이전에 염산, 인산, 수산화칼륨, 또는 왕수로 p-GaN층(120) 표면을 처리하면 더 좋다.As the p-type dopant of the p-GaN layer 120, Be, Mg, Ca, Zn, Cd, or the like can be selected. Insertion layer 130 has a thickness of 0.1 ~ 1000nm, nickel oxide (NiO 1-x ) , manganese oxide (MnO 1-x ), iron oxide (FeO 3/2 (1-x) ), cobalt oxide (CoO 1-x ), chromium oxide (CrO 3/2 (1-x) ), copper oxide (CuO 1-x ), tin oxide (SnO 1-x ), silver oxide (AgO 1-x ), copper aluminum oxide ( At least one selected from the group consisting of metal oxides consisting of CuAlO 2 (1-x) ) and palladium oxide (PdO 1-x ) is preferable. Where 0 <x <1. In particular, nickel oxide is preferable. It is better to treat the surface of the p-GaN layer 120 with hydrochloric acid, phosphoric acid, potassium hydroxide, or aqua regia before stacking the insertion layer 130.

다음에, 삽입층(130) 상에 0.1~1000nm 두께의 아연 산화물층(140)을 형성한다. 여기서, 아연 산화물층(140)은 인듐 산화물(In2O3), 주석 산화물(SnO), 갈륨 산화물(GaO), 및 알루미늄 산화물(Al2O3)로 이루어진 군으로부터 선택된 적어도 어느 하나를 불순물로서 포함하는 것이 바람직하며, 특히 인듐 산화물의 경우가 바람직하다.Next, a zinc oxide layer 140 having a thickness of 0.1 to 1000 nm is formed on the insertion layer 130. Here, the zinc oxide layer 140 preferably includes at least one selected from the group consisting of indium oxide (In 2 O 3), tin oxide (SnO), gallium oxide (GaO), and aluminum oxide (Al 2 O 3) as impurities. In particular, indium oxide is preferable.

이어서, p-GaN층(120)과 그 위에 적층된 층들 사이에 오믹접촉이 이루어지도록 상기 결과물을 100~1200℃의 온도범위에서 열처리를 행한다. 이 때의 열처리는 1초 내지 3시간 동안 행해질 수 있으며, 열처리 분위기는 질소 및 산소로 이루어진 군으로부터 선택된 적어도 어느 하나를 포함하는 분위기인 것이 바람직하다. Subsequently, the resultant is heat-treated in a temperature range of 100 to 1200 ° C. such that ohmic contact is made between the p-GaN layer 120 and the layers stacked thereon. The heat treatment at this time may be performed for 1 second to 3 hours, the heat treatment atmosphere is preferably an atmosphere containing at least one selected from the group consisting of nitrogen and oxygen.

도 2의 그래프 320은 오믹접촉을 위한 열처리가 행해진 니켈산화물/아연산화물 오믹접촉계에 대한 전류-전압 그래프이며, 그래프 310은 오믹접촉을 위한 열처리가 행해진 니켈금속/아연산화물 전극에 대한 것이다. 그래프 320의 경우가 낮은 접촉저항을 가짐을 알 수 있다. Graph 320 of FIG. 2 is a current-voltage graph for a nickel oxide / zinc oxide ohmic contact system subjected to heat treatment for ohmic contact, and graph 310 is for a nickel metal / zinc oxide electrode subjected to heat treatment for ohmic contact. It can be seen that graph 320 has a low contact resistance.

도 3(a)는 오믹접촉을 위한 열처리가 행해진 니켈금속/아연산화물 전극에 대한 대한 깊이에 따른 원소 분포도이며, 도3(b)는 오믹접촉을 위한 열처리가 행해진 니켈산화물/아연산화물 전극에 대한 깊이에 따른 원소 분포도이다. 도 3을 참조하면, 니켈금속을 삽입층으로 사용하는 경우에는 p-GaN과의 계면에 니켈이 금속으로서 존재하지만, 니켈산화물을 삽입층으로 사용하는 경우에는 p-GaN와의 계면과 아연산화물층 내에 니켈이 산화물 형태로 존재함을 알 수 있다. 따라서, 니켈산화물을 삽입층으로 이용하는 경우에는 p형 반도체인 니켈산화물의 존재로 인하여 p-GaN 내에 더 많은 홀이 공급되어 바람직하게 된다. FIG. 3 (a) is an element distribution diagram according to the depth of the nickel metal / zinc oxide electrode subjected to the heat treatment for ohmic contact, and FIG. 3 (b) is the nickel oxide / zinc oxide electrode subjected to the heat treatment for ohmic contact. The element distribution along the depth. Referring to FIG. 3, when nickel metal is used as an insertion layer, nickel exists as a metal at an interface with p-GaN, but when nickel oxide is used as an insertion layer, an interface with p-GaN and a zinc oxide layer are used. It can be seen that nickel is present in oxide form. Therefore, when nickel oxide is used as the intercalation layer, more holes are supplied in p-GaN due to the presence of nickel oxide, which is a p-type semiconductor.

상술한 바와 같이 오믹접촉 투명전극층으로서 아연산화물층을 사용하면, 아연산화물의 우수한 열적 안정성 및 투광성으로 인해서 우수한 광방출효율을 갖는 발광소자를 제조할 수 있으며, 발광소자의 고온 열처리에 의한 특성 저하를 방지할 수 있게 된다.As described above, when the zinc oxide layer is used as the ohmic contact transparent electrode layer, a light emitting device having excellent light emission efficiency can be manufactured due to the excellent thermal stability and light transmittance of the zinc oxide. It can be prevented.

도 1은 본 발명의 실시예에 따른 p-AlxGayInzN 화합물 반도체의 오믹접촉 투명전극층 형성방법을 설명하기 위한 단면도;1 is a cross-sectional view for explaining a method of forming an ohmic contact transparent electrode layer of a p-Al x Ga y In z N compound semiconductor according to an embodiment of the present invention;

도 2는 니켈금속/아연산화물과 니켈산화물/아연산화물로 이루어진 오믹접촉계에 대한 전류-전압 그래프;2 is a current-voltage graph for an ohmic contact system consisting of nickel metal / zinc oxide and nickel oxide / zinc oxide;

도 3은 니켈금속/아연산화물과 니켈산화물/아연산화물로 이루어진 오믹접촉계의 깊이에 따른 원소 분포도이다. 3 is an element distribution diagram according to a depth of an ohmic contact system composed of nickel metal / zinc oxide and nickel oxide / zinc oxide.

< 도면의 주요 부분에 대한 참조번호의 설명 ><Description of Reference Numbers for Main Parts of Drawings>

110: 산화알루미늄 기판 120: p-GaN층110: aluminum oxide substrate 120: p-GaN layer

130: 삽입층 140: 아연 산화물층130: insertion layer 140: zinc oxide layer

Claims (8)

p-AlGaInN 화합물 반도체층 상에 니켈산화물(NiO1-x), 망간산화물(MnO1-x), 철산화물(FeO3/2(1-x)), 코발트산화물(CoO1-x), 크롬산화물(CrO3/2(1-x)), 구리산화물(CuO1-x), 주석산화물(SnO1-x), 은산화물(AgO1-x), 구리알루미늄산화물(CuAlO2(1-x) ), 및 팔라듐산화물(PdO1-x)으로 이루어진 금속 산화물군으로부터 선택된 적어도 어느 하나를 포함하여 이루어지는 삽입층과 아연 산화물층을 순차적으로 적층하고 상기 결과물을 100~1200℃의 온도범위에서 열처리하는 것을 특징으로 하는 오믹접촉 투명전극층 형성방법.Nickel oxide (NiO 1-x ) , manganese oxide (MnO 1-x ), iron oxide (FeO 3/2 (1-x) ), cobalt oxide (CoO 1-x ), chromium on the p-AlGaInN compound semiconductor layer Oxides (CrO 3/2 (1-x) ), Copper oxides (CuO 1-x ), Tin oxides (SnO 1-x ), Silver oxides (AgO 1-x ), Copper aluminum oxides (CuAlO 2 (1-x) ) ) And palladium oxide (PdO 1-x ) and sequentially laminating an insertion layer and a zinc oxide layer comprising at least one selected from the group consisting of metal oxides and heat-treated the resultant at a temperature range of 100 ~ 1200 ℃ Method of forming an ohmic contact transparent electrode layer, characterized in that. 제1항에 있어서, 상기 열처리는 질소 및 산소로 이루어진 군으로부터 선택된 적어도 어느 하나를 포함하는 분위기에서 행해지는 것을 특징으로 하는 오믹접촉 투명전극층 형성방법. The method of claim 1, wherein the heat treatment is performed in an atmosphere including at least one selected from the group consisting of nitrogen and oxygen. 제1항에 있어서, 상기 p-AlGaInN 화합물 반도체층의 p형 도펀트로서 Be, Mg, Ca, Zn, 및 Cd으로 이루어진 군으로부터 선택된 적어도 어느 하나를 사용하는 것을 특징으로 하는 오믹접촉 투명전극층 형성방법. The method of claim 1, wherein at least one selected from the group consisting of Be, Mg, Ca, Zn, and Cd is used as a p-type dopant of the p-AlGaInN compound semiconductor layer. 제1항에 있어서, 상기 아연 산화물층이 인듐 산화물, 주석 산화물, 갈륨 산화물, 및 알루미늄 산화물로 이루어진 군으로부터 선택된 적어도 어느 하나를 포함하여 이루어진 것을 특징으로 하는 오믹접촉 투명전극층 형성방법. The method of claim 1, wherein the zinc oxide layer comprises at least one selected from the group consisting of indium oxide, tin oxide, gallium oxide, and aluminum oxide. 제1항에 있어서, 상기 삽입층이 0.1~1000nm의 두께를 가지는 것을 특징으로 하는 오믹접촉 투명전극층 형성방법. The method of claim 1, wherein the insertion layer has a thickness of about 0.1 nm to about 1000 nm. 제1항에 있어서, 상기 아연 산화물층이 0.1~1000nm의 두께를 가지는 것을 특징으로 하는 오믹접촉 투명전극층 형성방법. The method of claim 1, wherein the zinc oxide layer has a thickness of about 0.1 nm to about 1000 nm. 제1항에 있어서, 상기 열처리가 1초 내지 3시간 동안 행해지는 것을 특징으로 하는 오믹접촉 투명전극층 형성방법. The method of claim 1, wherein the heat treatment is performed for 1 second to 3 hours. 제1항에 있어서, 상기 삽입층을 적층하기 이전에 염산, 인산, 수산화칼륨, 또는 왕수로 상기 p-AlGaInN 화합물 반도체층의 표면을 처리하는 단계를 더 포함하는 것을 특징으로 하는 오믹접촉 투명전극층 형성방법. The ohmic contact transparent electrode layer forming method of claim 1, further comprising treating the surface of the p-AlGaInN compound semiconductor layer with hydrochloric acid, phosphoric acid, potassium hydroxide, or aqua regia before stacking the insertion layer. Way.
KR1020040025463A 2004-04-13 2004-04-13 Method of transparent electrode for ohmic contact to p-AlGaInN compound semiconductor using zinc oxide KR100564912B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020040025463A KR100564912B1 (en) 2004-04-13 2004-04-13 Method of transparent electrode for ohmic contact to p-AlGaInN compound semiconductor using zinc oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040025463A KR100564912B1 (en) 2004-04-13 2004-04-13 Method of transparent electrode for ohmic contact to p-AlGaInN compound semiconductor using zinc oxide

Publications (2)

Publication Number Publication Date
KR20050100252A true KR20050100252A (en) 2005-10-18
KR100564912B1 KR100564912B1 (en) 2006-03-30

Family

ID=37279142

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040025463A KR100564912B1 (en) 2004-04-13 2004-04-13 Method of transparent electrode for ohmic contact to p-AlGaInN compound semiconductor using zinc oxide

Country Status (1)

Country Link
KR (1) KR100564912B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113053730A (en) * 2021-03-05 2021-06-29 中国科学院苏州纳米技术与纳米仿生研究所 Porous gallium oxide epitaxial layer and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113053730A (en) * 2021-03-05 2021-06-29 中国科学院苏州纳米技术与纳米仿生研究所 Porous gallium oxide epitaxial layer and preparation method thereof
CN113053730B (en) * 2021-03-05 2024-05-03 中国科学院苏州纳米技术与纳米仿生研究所 Porous gallium oxide epitaxial layer and preparation method thereof

Also Published As

Publication number Publication date
KR100564912B1 (en) 2006-03-30

Similar Documents

Publication Publication Date Title
US7180094B2 (en) Nitride-based light emitting device and method of manufacturing the same
US7061026B2 (en) High brightness gallium nitride-based light emitting diode with transparent conducting oxide spreading layer
US7193249B2 (en) Nitride-based light emitting device and method of manufacturing the same
US20120012884A1 (en) Semiconductor light emitting device
TW200807756A (en) Process for producing semiconductor light emitting element, semiconductor light emitting element, and lamp equipped with the same
JP2005223326A (en) Electrode layer, light-emitting device provided with the same, and manufacturing method for the electrode layer
JP2004282006A (en) Light emitting diode with dual dopant contact layer
US20090315065A1 (en) Nitride semiconductor light-emitting diode and method of manufacturing the same
KR100755649B1 (en) Gan-based semiconductor light emitting device and method of manufacturing the same
CN100442549C (en) Gallium nitride-based III-V group compound semiconductor light-emitting device and method for manufacturing same
JP2005086210A (en) Nitride light-emitting device and manufacturing method therefor
JP3665243B2 (en) Nitride semiconductor device and manufacturing method thereof
JP4543700B2 (en) Semiconductor light emitting device
JP5624712B2 (en) Manufacturing method of conductive transparent layer made of TiO2 and manufacturing method of semiconductor light emitting device using manufacturing method of said conductive transparent layer
KR100564912B1 (en) Method of transparent electrode for ohmic contact to p-AlGaInN compound semiconductor using zinc oxide
KR100543414B1 (en) Method of transparent electrode for ohmic contact to p-AlGaInN compound semiconductor using zinc oxide
KR100764458B1 (en) Electrode layer, light generating device comprising the same and method of forming the same
KR100515652B1 (en) Transparant Electrode Film for Ohmic Contact of p-GaN Semiconductor
US11658261B2 (en) Method of manufacturing nitride semiconductor device
KR20060067487A (en) Light emitting diode having zinc oxide transparent conducting oxide
JP2007103407A (en) Light emitting element
KR20060003920A (en) Gan based light emitting device using ni metal as a p-contact current spreading layer
KR101353577B1 (en) Luminous element with semiconductor and method for manufacturing the same element
JP2011086855A (en) Method of manufacturing semiconductor light-emitting element

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130204

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20140303

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20150302

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20160211

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20180228

Year of fee payment: 13