KR100543414B1 - Method of transparent electrode for ohmic contact to p-AlGaInN compound semiconductor using zinc oxide - Google Patents

Method of transparent electrode for ohmic contact to p-AlGaInN compound semiconductor using zinc oxide Download PDF

Info

Publication number
KR100543414B1
KR100543414B1 KR1020040021770A KR20040021770A KR100543414B1 KR 100543414 B1 KR100543414 B1 KR 100543414B1 KR 1020040021770 A KR1020040021770 A KR 1020040021770A KR 20040021770 A KR20040021770 A KR 20040021770A KR 100543414 B1 KR100543414 B1 KR 100543414B1
Authority
KR
South Korea
Prior art keywords
zinc oxide
layer
ohmic contact
transparent electrode
compound semiconductor
Prior art date
Application number
KR1020040021770A
Other languages
Korean (ko)
Other versions
KR20050097051A (en
Inventor
박성주
임재홍
황대규
Original Assignee
광주과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 광주과학기술원 filed Critical 광주과학기술원
Priority to KR1020040021770A priority Critical patent/KR100543414B1/en
Publication of KR20050097051A publication Critical patent/KR20050097051A/en
Application granted granted Critical
Publication of KR100543414B1 publication Critical patent/KR100543414B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Led Devices (AREA)

Abstract

본 발명에 따른 오믹접촉 투명전극층 형성방법은, p-AlxGayInzN(0≤x, y, z≤1, x+y+z=1) 화합물 반도체층 상에 아연 산화물층을 적층하고 상기 아연 산화물층이 p-AlxGayInzN 화합물 반도체층(120)에 오믹접촉되도록 상기 결과물을 100~1200℃의 온도범위에서 열처리하는 것을 특징으로 한다. 상기 열처리는 아르곤, 질소 및 산소로 이루어진 군으로부터 선택된 적어도 어느 하나를 포함하는 분위기에서 행해지는 것이 바람직하다. 상기 아연 산화물층은 인듐 산화물, 주석 산화물, 갈륨 산화물, 및 알루미늄 산화물로 이루어진 군으로부터 선택된 적어도 어느 하나를 불순물로서 포함할 수 있다. 상기 아연 산화물층은 1~1000nm의 두께를 가질 수 있다. 상기 열처리는 1초 내지 3시간 동안 행하는 것이 바람직하다. 투명전극층으로서 아연산화물층을 사용하면, 아연산화물의 우수한 열적 안정성 및 투광성으로 인해서 우수한 광방출효율을 갖는 발광소자를 제조할 수 있으며, 발광소자의 고온 열처리에 의한 특성 저하를 방지할 수 있게 된다. In the method of forming an ohmic contact transparent electrode layer according to the present invention, a zinc oxide layer is deposited on a p-Al x Ga y In z N (0 ≦ x, y, z ≦ 1, x + y + z = 1) compound semiconductor layer. The resultant is heat-treated at a temperature in a range of 100 to 1200 ° C. such that the zinc oxide layer is in ohmic contact with the p-Al x Ga y In z N compound semiconductor layer 120. The heat treatment is preferably performed in an atmosphere containing at least one selected from the group consisting of argon, nitrogen and oxygen. The zinc oxide layer may include at least one selected from the group consisting of indium oxide, tin oxide, gallium oxide, and aluminum oxide as impurities. The zinc oxide layer may have a thickness of 1 ~ 1000nm. The heat treatment is preferably performed for 1 second to 3 hours. By using the zinc oxide layer as the transparent electrode layer, it is possible to manufacture a light emitting device having excellent light emission efficiency due to the excellent thermal stability and light transmittance of the zinc oxide, it is possible to prevent the degradation of the characteristics of the light emitting device by high temperature heat treatment.

아연 산화물, 열처리, 오믹접촉, 투명전극, GaNZinc oxide, heat treatment, ohmic contact, transparent electrode, BANN

Description

아연산화물을 이용한 p-AlGaInN 화합물 반도체의 오믹접촉 투명전극층 형성방법{Method of transparent electrode for ohmic contact to p-AlGaInN compound semiconductor using zinc oxide} Method of transparent electrode for ohmic contact to p-AlGaInN compound semiconductor using zinc oxide}             

도 1은 본 발명의 실시예에 따른 p-AlxGayInzN 화합물 반도체의 오믹접촉 투명전극층 형성방법을 설명하기 위한 단면도;1 is a cross-sectional view for explaining a method of forming an ohmic contact transparent electrode layer of a p-Al x Ga y In z N compound semiconductor according to an embodiment of the present invention;

도 2는 오믹접촉을 위한 열처리 전과 열처리 후의 전류-전압 그래프;2 is a current-voltage graph before and after heat treatment for ohmic contact;

도 3은 아연 산화물층에 인듐 산화물이 불순물로 첨가된 경우의 아연 산화물 반도체의 투광성을 나타낸 그래프;3 is a graph showing the light transmittance of a zinc oxide semiconductor when indium oxide is added as an impurity to the zinc oxide layer;

도 4는 아연 산화물층을 광소자에 적용하였을 경우의 광소자의 발광효율을 나타낸 그래프이다. 4 is a graph showing luminous efficiency of an optical device when a zinc oxide layer is applied to the optical device.

< 도면의 주요 부분에 대한 참조번호의 설명 ><Description of Reference Numbers for Main Parts of Drawings>

110: 산화알루미늄 기판 120: p-GaN층110: aluminum oxide substrate 120: p-GaN layer

130: 아연 산화물층130: zinc oxide layer

본 발명은 p-AlxGayInzN 화합물 반도체의 오믹접촉 투명전극층 형성방법에 관한 것으로서, 특히 아연산화물을 이용하는 p-AlxGayInzN 화합물 반도체의 오믹접촉 투명전극층 형성방법에 관한 것이다. 여기서, 0≤x, y, z≤1, x+y+z=1 이다. The present invention relates to a method of forming an ohmic contact transparent electrode layer of a p-Al x Ga y In z N compound semiconductor, and more particularly to a method of forming an ohmic contact transparent electrode layer of a p-Al x Ga y In z N compound semiconductor using zinc oxide. will be. Here, 0 ≦ x, y, z ≦ 1 and x + y + z = 1.

p-GaN에 오믹접촉되는 전극층으로서 니켈(Ni)을 기본으로 하는 금속층, 예컨대 니켈(Ni)/금(Au)의 금속층이 널리 사용되어 왔다. 니켈을 기본으로 하는 금속층을 전극층으로 사용할 경우 산소(O2) 분위기에서 500~600℃의 온도범위에서 열처리하면 질화갈륨과 니켈의 계면에 p형 반도체 산화물인 니켈 산화물(NiO)이 형성되고, 또한 갈륨이 바깥쪽으로 확산하여 질화갈륨 표면 부위에 다수 캐리어인 홀(hole)이 공급되어 질화갈륨 표면부근에서의 실효 캐리어 농도(effective carrier concentration)가 증가되어 10-3 ~ 10-4 Ωcm2 정도의 비접촉저항을 갖는 오믹접촉을 얻을 수 있게 된다. As an electrode layer in ohmic contact with p-GaN, a metal layer based on nickel (Ni), for example, a metal layer of nickel (Ni) / gold (Au), has been widely used. In the case of using a nickel-based metal layer as an electrode layer, when a heat treatment is performed in an oxygen (O 2 ) atmosphere at a temperature range of 500 to 600 ° C., nickel oxide (NiO), a p-type semiconductor oxide, is formed at an interface between gallium nitride and nickel. gallium is a hole (hole) majority carriers on the surface of the gallium nitride region is diffused to the outside is supplied is the effective carrier concentration near the GaN surface (effective carrier concentration) by 10 -3 to An ohmic contact having a specific contact resistance of about 10 −4 Ωcm 2 can be obtained.

그러나, 니켈(Ni)/금(Au) 투명전극층의 경우, 열적 불안정성으로 인하여 실제 발광소자에 응용시 소자 신뢰성에 있어 많은 문제가 발생한다. 또한 p형 질화갈륨 위에 적층되는 금속층이 낮은 실효 저항(effective resistance)과 높은 투광성을 갖도록 하기 위해서는 소정의 임계 두께를 가져야 하는 한계가 있다. 따라서, 니켈(Ni)/금(Au) 투명전극층은 낮은 접촉저항을 얻을 수는 있으나 좋은 발광효율을 얻지 못하는 단점을 가진다.However, in the case of the nickel (Ni) / gold (Au) transparent electrode layer, due to thermal instability, there are many problems in device reliability when applied to the actual light emitting device. In addition, in order for the metal layer stacked on the p-type gallium nitride to have a low effective resistance and a high light transmittance, there is a limit to have a predetermined critical thickness. Therefore, the nickel (Ni) / gold (Au) transparent electrode layer can obtain a low contact resistance but has a disadvantage of not obtaining a good luminous efficiency.

따라서, 본 발명이 이루고자 하는 기술적 과제는, 낮은 오믹접촉저항을 가지면서 투명하고 열적으로도 안정한 새로운 오믹접촉계(ohmic contact system)를 도입함으로써 상술한 종래의 문제점을 해결할 수 있는 p-AlxGayInzN 화합물 반도체의 오믹접촉 투명전극층 형성방법을 제공하는 데 있다.
Accordingly, the object of the present invention are, while having a low ohmic contact resistance, a transparent and thermally FIG stable new ohmic contact system (ohmic contact system) to which can solve the conventional problems above-described p-Al x Ga by introducing It is to provide a method for forming an ohmic contact transparent electrode layer of y In z N compound semiconductor.

상기 기술적 과제를 달성하기 위한 본 발명에 따른 오믹접촉 투명전극층 형성방법은: p-AlxGayInzN(0≤x, y, z≤1, x+y+z=1) 화합물 반도체층 상에 인듐 산화물, 주석 산화물, 갈륨 산화물, 및 알루미늄 산화물로 이루어진 군으로부터 선택된 적어도 어느 하나를 포함하여 이루어지는 아연 산화물층을 적층하고, 상기 아연 산화물층이 상기 p-AlxGayInzN 화합물 반도체층에 오믹접촉되도록 상기 결과물을 100~1200℃의 온도범위에서 열처리하는 것을 특징으로 한다.Method for forming an ohmic contact transparent electrode layer according to the present invention for achieving the above technical problem is: p-Al x Ga y In z N (0≤x, y, z≤1, x + y + z = 1) compound semiconductor layer Laminating a zinc oxide layer comprising at least any one selected from the group consisting of indium oxide, tin oxide, gallium oxide, and aluminum oxide on the zinc oxide layer is the p-Al x Ga y In z N compound semiconductor The resultant is characterized in that the heat treatment in the temperature range of 100 ~ 1200 ℃ to ohmic contact with the layer.

상기 열처리는 아르곤, 질소 및 산소로 이루어진 군으로부터 선택된 적어도 어느 하나를 포함하는 분위기에서 행해지는 것이 바람직하다. The heat treatment is preferably performed in an atmosphere containing at least one selected from the group consisting of argon, nitrogen and oxygen.

상기 p-AlxGayInzN 화합물 반도체층의 p형 도펀트로서 Be, Mg, Ca, Zn, 및 Cd으로 이루어진 군으로부터 선택된 적어도 어느 하나를 사용할 수 있다. At least one selected from the group consisting of Be, Mg, Ca, Zn, and Cd may be used as the p-type dopant of the p-Al x Ga y In z N compound semiconductor layer.

삭제delete

상기 아연 산화물층은 1~1000nm의 두께를 가질 수 있다. The zinc oxide layer may have a thickness of 1 ~ 1000nm.

상기 열처리는 1초 내지 3시간 동안 행하는 것이 바람직하다. The heat treatment is preferably performed for 1 second to 3 hours.

상기 아연 산화물층을 적층하기 이전에 염산(HCl), 인산(H3PO4), 수산화칼륨(KOH), 또는 왕수(Aqua regia solution)로 상기 p-AlxGayInzN 화합물 반도체층의 표면을 처리하면 더 좋다. Before stacking the zinc oxide layer, the p-Al x Ga y In z N compound semiconductor layer is formed with hydrochloric acid (HCl), phosphoric acid (H 3 PO 4 ), potassium hydroxide (KOH), or aqua regia solution. Better to treat the surface.

이하에서, 본 발명의 바람직한 실시예를 첨부한 도면들을 참조하여 상세히 설명한다. 아래의 실시예는 본 발명의 내용을 이해하기 위해 제시된 것일 뿐이며 당 분야에서 통상의 지식을 가진 자라면 본 발명의 기술적 사상 내에서 많은 변형이 가능할 것이다. 따라서, 본 발명의 권리범위가 이러한 실시예에 한정되어지는 것으로 해석되어져서는 안된다.Hereinafter, with reference to the accompanying drawings, preferred embodiments of the present invention will be described in detail. The following examples are only presented to understand the content of the present invention, and those skilled in the art will be capable of many modifications within the technical spirit of the present invention. Accordingly, the scope of the present invention should not be construed as being limited to these embodiments.

도 1은 본 발명의 실시예에 따른 p-AlxGayInzN 화합물 반도체의 오믹접촉 투명전극층 형성방법을 설명하기 위한 단면도이다. 1 is a cross-sectional view illustrating a method of forming an ohmic contact transparent electrode layer of a p-Al x Ga y In z N compound semiconductor according to an embodiment of the present invention.

먼저, (002)면 방향의 산화알루미늄 기판(110) 상에 p-GaN층(120)을 형성한다. 이때의 p형 도펀트로서는 Be, Mg, Ca, Zn, 또는 Cd 등을 선택할 수 있다.First, the p-GaN layer 120 is formed on the aluminum oxide substrate 110 in the (002) plane direction. Be, Mg, Ca, Zn, Cd, etc. can be selected as a p-type dopant at this time.

그리고, p-GaN층(120) 상에 PVD 또는 CVD법으로 아연 산화물층(130)을 형성한다. 이 때의 아연 산화물층(130)은 1~1000nm의 두께를 가지며, 인듐 산화물(In2O3), 주석 산화물(SnO), 갈륨 산화물(GaO), 및 알루미늄 산화물(Al2 O3)로 이루어진 군으로부터 선택된 적어도 어느 하나를 불순물로서 포함하는 것이 바람직하며, 특히 인듐 산화물을 포함하는 것이 더욱 좋다. 아연 산화물층(130)을 적층하기 이전에 염산, 인산, 수산화칼륨, 또는 왕수로 p-GaN층(120) 표면을 처리하면 더 좋다. The zinc oxide layer 130 is formed on the p-GaN layer 120 by PVD or CVD. In this case, the zinc oxide layer 130 has a thickness of 1 to 1000 nm, and is made of indium oxide (In 2 O 3 ), tin oxide (SnO), gallium oxide (GaO), and aluminum oxide (Al 2 O 3 ). It is preferable to include at least any one selected from the group as impurities, and more particularly to include indium oxide. The p-GaN layer 120 may be treated with hydrochloric acid, phosphoric acid, potassium hydroxide, or aqua regia before the zinc oxide layer 130 is laminated.

다음에, 아연 산화물층(130)이 p-GaN층(120)과 오믹접촉되도록 100~1200℃의 온도범위에서 열처리를 행한다. 이 때의 열처리는 1초 내지 3시간 동안 행해질 수 있으며, 열처리 분위기는 아르곤, 질소 및 산소로 이루어진 군으로부터 선택된 적어도 어느 하나를 포함하는 분위기인 것이 바람직하다.  Next, the zinc oxide layer 130 is heat treated in a temperature range of 100 to 1200 ° C. such that the zinc oxide layer 130 is in ohmic contact with the p-GaN layer 120. At this time, the heat treatment may be performed for 1 second to 3 hours, the heat treatment atmosphere is preferably an atmosphere containing at least one selected from the group consisting of argon, nitrogen and oxygen.

도 2는 오믹접촉을 위한 열처리 전과 열처리 후의 전류-전압 그래프이다. 그래프 310은 열처리 하기 전의 것이고, 그래프 320은 산화분위기에서 600℃에서 5분 정도 급속열처리한 경우이다. 열처리에 의해 1.74×0-4 Ωcm2의 낮은 접촉저항을 얻을 수 있음을 알 수 있다. 2 is a current-voltage graph before and after heat treatment for ohmic contact. The graph 310 is before heat treatment, and the graph 320 is a case where rapid heat treatment is performed at 600 ° C. for 5 minutes in an oxidizing atmosphere. It can be seen that a low contact resistance of 1.74 × 0 −4 Ωcm 2 can be obtained by the heat treatment.

도 3은 아연 산화물층에 인듐 산화물이 불순물로 첨가된 경우의 아연 산화물 반도체의 투광성을 나타낸 그래프이다. 종래의 Ni/Au 금속층의 투광성은 400~600nm의 파장에서 60~75% 인 반면에 아연 산화물 반도체의 투광성은 같은 파장 영역에서 80% 이상임을 알 수 있다. 3 is a graph showing the light transmittance of a zinc oxide semiconductor when indium oxide is added as an impurity to the zinc oxide layer. The light transmittance of the conventional Ni / Au metal layer is 60 to 75% at a wavelength of 400 to 600 nm, while the light transmittance of the zinc oxide semiconductor is 80% or more in the same wavelength range.

도 4는 아연 산화물층을 광소자에 적용하였을 경우의 광소자의 발광효율을 나타낸 그래프이다. 종래의 Ni/Au 금속층을 사용하였을 경우보다 약 30% 발광효율 이 증가를 하였다.4 is a graph showing luminous efficiency of an optical device when a zinc oxide layer is applied to the optical device. The luminescence efficiency increased by about 30% compared with the conventional Ni / Au metal layer.

따라서, AlxGayInzN 화합물 반도체를 이용하는 발광소자에서 아연 산화물층을 오믹접촉 투명전극층으로 사용하는 경우가 발광효율이 더 좋게 된다. 또한, 아연 산화물 반도체의 녹는점이 2000℃ 이상이므로 열적 안정성이 Ni/Au보다 훨씬 낫다. Therefore, when the zinc oxide layer is used as the ohmic contact transparent electrode layer in the light emitting device using the Al x Ga y In z N compound semiconductor, the luminous efficiency is better. In addition, the melting point of the zinc oxide semiconductor is more than 2000 ℃ thermal stability is much better than Ni / Au.

상술한 바와 같이 오믹접촉 투명전극층으로서 아연산화물층을 사용하면, 아연산화물의 우수한 열적 안정성 및 투광성으로 인해서 우수한 광방출효율을 갖는 발광소자를 제조할 수 있으며, 발광소자의 고온 열처리에 의한 특성 저하를 방지할 수 있게 된다.As described above, when the zinc oxide layer is used as the ohmic contact transparent electrode layer, a light emitting device having excellent light emission efficiency can be manufactured due to the excellent thermal stability and light transmittance of the zinc oxide. It can be prevented.

Claims (7)

p-AlxGayInzN(0≤x, y, z≤1, x+y+z=1) 화합물 반도체층 상에 인듐 산화물, 주석 산화물, 갈륨 산화물, 및 알루미늄 산화물로 이루어진 군으로부터 선택된 적어도 어느 하나를 포함하여 이루어지는 아연 산화물층을 적층하고, 상기 아연 산화물층이 상기 p-AlxGayInzN 화합물 반도체층에 오믹접촉되도록 상기 결과물을 100~1200℃의 온도범위에서 열처리하는 것을 특징으로 하는 오믹접촉 투명전극층 형성방법. p-Al x Ga y In z N (0≤x, y, z≤1, x + y + z = 1) selected from the group consisting of indium oxide, tin oxide, gallium oxide, and aluminum oxide on the compound semiconductor layer Laminating a zinc oxide layer comprising at least any one, and heat-treating the resultant at a temperature range of 100 ~ 1200 ℃ so that the zinc oxide layer is ohmic contact with the p-Al x Ga y In z N compound semiconductor layer A method of forming an ohmic contact transparent electrode layer, characterized in that. 제1항에 있어서, 상기 열처리는 아르곤, 질소 및 산소로 이루어진 군으로부터 선택된 적어도 어느 하나를 포함하는 분위기에서 행해지는 것을 특징으로 하는 오믹접촉 투명전극층 형성방법. The method of claim 1, wherein the heat treatment is performed in an atmosphere including at least one selected from the group consisting of argon, nitrogen, and oxygen. 제1항에 있어서, 상기 p-AlxGayInzN 화합물 반도체층의 p형 도펀트로서 Be, Mg, Ca, Zn, 및 Cd으로 이루어진 군으로부터 선택된 적어도 어느 하나를 사용하는 것을 특징으로 하는 오믹접촉 투명전극층 형성방법. 2. The ohmic according to claim 1, wherein at least one selected from the group consisting of Be, Mg, Ca, Zn, and Cd is used as a p-type dopant of the p-Al x Ga y In z N compound semiconductor layer. Method of forming a contact transparent electrode layer. 삭제delete 제1항에 있어서, 상기 아연 산화물층이 1~1000nm의 두께를 가지는 것을 특징으로 하는 오믹접촉 투명전극층 형성방법. The method of claim 1, wherein the zinc oxide layer has a thickness of 1 to 1000 nm. 제1항에 있어서, 상기 열처리가 1초 내지 3시간 동안 행해지는 것을 특징으로 하는 오믹접촉 투명전극층 형성방법. The method of claim 1, wherein the heat treatment is performed for 1 second to 3 hours. 제1항에 있어서, 상기 아연 산화물층을 적층하기 이전에 염산, 인산, 수산화칼륨, 또는 왕수로 상기 p-AlxGayInzN 화합물 반도체층의 표면을 처리하는 단계를 더 포함하는 것을 특징으로 하는 오믹접촉 투명전극층 형성방법. The method of claim 1, further comprising treating the surface of the p-Al x Ga y In z N compound semiconductor layer with hydrochloric acid, phosphoric acid, potassium hydroxide, or aqua regia before stacking the zinc oxide layer. A method of forming an ohmic contact transparent electrode layer.
KR1020040021770A 2004-03-30 2004-03-30 Method of transparent electrode for ohmic contact to p-AlGaInN compound semiconductor using zinc oxide KR100543414B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020040021770A KR100543414B1 (en) 2004-03-30 2004-03-30 Method of transparent electrode for ohmic contact to p-AlGaInN compound semiconductor using zinc oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040021770A KR100543414B1 (en) 2004-03-30 2004-03-30 Method of transparent electrode for ohmic contact to p-AlGaInN compound semiconductor using zinc oxide

Publications (2)

Publication Number Publication Date
KR20050097051A KR20050097051A (en) 2005-10-07
KR100543414B1 true KR100543414B1 (en) 2006-01-23

Family

ID=37276922

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040021770A KR100543414B1 (en) 2004-03-30 2004-03-30 Method of transparent electrode for ohmic contact to p-AlGaInN compound semiconductor using zinc oxide

Country Status (1)

Country Link
KR (1) KR100543414B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100682741B1 (en) * 2005-06-17 2007-02-15 한국과학기술연구원 Fabrication method of zinc oxide based transparent conductive oxide thin film
KR100870838B1 (en) * 2008-03-04 2008-11-28 한국철강 주식회사 Removal method of moisture from substrate coated with transparent electrode

Also Published As

Publication number Publication date
KR20050097051A (en) 2005-10-07

Similar Documents

Publication Publication Date Title
KR100571818B1 (en) light emitting device and method of manufacturing the same
JP3739951B2 (en) Semiconductor light emitting device and manufacturing method thereof
KR100647279B1 (en) light emitting device and method of manufacturing thereof
JP5084099B2 (en) Top-emitting nitride-based light emitting device and method for manufacturing the same
KR100571819B1 (en) light emitting device and method of manufacturing the same using p-type conductive transparent oxide thin film electrode
JP2005260244A (en) Top emit type nitride-based light emitting element and its manufacturing method
JPH10247747A (en) Semiconductor light emitting device and manufacture thereof
KR20100103866A (en) High-performance heterostructure light emitting devices and methods
CN101609867B (en) Nitride semiconductor light-emitting diode and method of manufacturing the same
KR20050066029A (en) Method of producing gan based semiconductor light emitting diode
JP2005340860A (en) Semiconductor light-emitting element
JP2005086210A (en) Nitride light-emitting device and manufacturing method therefor
JP3665243B2 (en) Nitride semiconductor device and manufacturing method thereof
KR100755649B1 (en) Gan-based semiconductor light emitting device and method of manufacturing the same
JP2007149983A (en) Manufacture of nitride semiconductor light-emitting element
KR100543414B1 (en) Method of transparent electrode for ohmic contact to p-AlGaInN compound semiconductor using zinc oxide
KR100564912B1 (en) Method of transparent electrode for ohmic contact to p-AlGaInN compound semiconductor using zinc oxide
KR100293467B1 (en) blue emitting device and method for fabricating the same
KR100737821B1 (en) Light emitting device and the fabrication method thereof
KR20070035260A (en) Nitride Based Light Emitting Diode
KR100764458B1 (en) Electrode layer, light generating device comprising the same and method of forming the same
US11658261B2 (en) Method of manufacturing nitride semiconductor device
KR100716784B1 (en) Light emitting device and method of manufacturing the same
KR100348280B1 (en) method for fabricating blue emitting device
KR20080065219A (en) Ohmic electrode and method for forming the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130102

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20140103

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20141231

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20160104

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20170102

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20191226

Year of fee payment: 15