KR20050097051A - Method of transparent electrode for ohmic contact to p-algainn compound semiconductor using zinc oxide - Google Patents
Method of transparent electrode for ohmic contact to p-algainn compound semiconductor using zinc oxide Download PDFInfo
- Publication number
- KR20050097051A KR20050097051A KR1020040021770A KR20040021770A KR20050097051A KR 20050097051 A KR20050097051 A KR 20050097051A KR 1020040021770 A KR1020040021770 A KR 1020040021770A KR 20040021770 A KR20040021770 A KR 20040021770A KR 20050097051 A KR20050097051 A KR 20050097051A
- Authority
- KR
- South Korea
- Prior art keywords
- zinc oxide
- layer
- ohmic contact
- transparent electrode
- compound semiconductor
- Prior art date
Links
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 title claims abstract description 72
- 239000011787 zinc oxide Substances 0.000 title claims abstract description 36
- 239000004065 semiconductor Substances 0.000 title claims abstract description 21
- 150000001875 compounds Chemical class 0.000 title claims abstract description 17
- 238000000034 method Methods 0.000 title claims abstract description 16
- 238000010438 heat treatment Methods 0.000 claims abstract description 16
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims abstract description 8
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 8
- 229910003437 indium oxide Inorganic materials 0.000 claims abstract description 7
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 claims abstract description 7
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims abstract description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 5
- AJNVQOSZGJRYEI-UHFFFAOYSA-N digallium;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Ga+3].[Ga+3] AJNVQOSZGJRYEI-UHFFFAOYSA-N 0.000 claims abstract description 5
- 229910001195 gallium oxide Inorganic materials 0.000 claims abstract description 5
- 239000001301 oxygen Substances 0.000 claims abstract description 5
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 5
- 229910052786 argon Inorganic materials 0.000 claims abstract description 4
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 4
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 claims abstract description 4
- 229910001887 tin oxide Inorganic materials 0.000 claims abstract description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 8
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 claims description 7
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 6
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims description 3
- QZPSXPBJTPJTSZ-UHFFFAOYSA-N aqua regia Chemical compound Cl.O[N+]([O-])=O QZPSXPBJTPJTSZ-UHFFFAOYSA-N 0.000 claims description 3
- 229910052790 beryllium Inorganic materials 0.000 claims description 3
- 229910052793 cadmium Inorganic materials 0.000 claims description 3
- 229910052791 calcium Inorganic materials 0.000 claims description 3
- 239000002019 doping agent Substances 0.000 claims description 3
- 229910052749 magnesium Inorganic materials 0.000 claims description 3
- 229910052725 zinc Inorganic materials 0.000 claims description 3
- 239000011701 zinc Substances 0.000 claims description 3
- 238000002834 transmittance Methods 0.000 abstract description 7
- 239000012535 impurity Substances 0.000 abstract description 5
- 230000015556 catabolic process Effects 0.000 abstract 1
- 238000006731 degradation reaction Methods 0.000 abstract 1
- 238000004519 manufacturing process Methods 0.000 abstract 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 19
- 229910002601 GaN Inorganic materials 0.000 description 10
- 239000010931 gold Substances 0.000 description 9
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 229910052759 nickel Inorganic materials 0.000 description 6
- 230000003287 optical effect Effects 0.000 description 4
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 229910000480 nickel oxide Inorganic materials 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/28008—Making conductor-insulator-semiconductor electrodes
- H01L21/28017—Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
- H01L21/28026—Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
- H01L21/02172—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/324—Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Electrodes Of Semiconductors (AREA)
- Led Devices (AREA)
Abstract
본 발명에 따른 오믹접촉 투명전극층 형성방법은, p-AlxGayInzN(0≤x, y, z≤1, x+y+z=1) 화합물 반도체층 상에 아연 산화물층을 적층하고 상기 아연 산화물층이 p-AlxGayInzN 화합물 반도체층(120)에 오믹접촉되도록 상기 결과물을 100~1200℃의 온도범위에서 열처리하는 것을 특징으로 한다. 상기 열처리는 아르곤, 질소 및 산소로 이루어진 군으로부터 선택된 적어도 어느 하나를 포함하는 분위기에서 행해지는 것이 바람직하다. 상기 아연 산화물층은 인듐 산화물, 주석 산화물, 갈륨 산화물, 및 알루미늄 산화물로 이루어진 군으로부터 선택된 적어도 어느 하나를 불순물로서 포함할 수 있다. 상기 아연 산화물층은 1~1000nm의 두께를 가질 수 있다. 상기 열처리는 1초 내지 3시간 동안 행하는 것이 바람직하다. 투명전극층으로서 아연산화물층을 사용하면, 아연산화물의 우수한 열적 안정성 및 투광성으로 인해서 우수한 광방출효율을 갖는 발광소자를 제조할 수 있으며, 발광소자의 고온 열처리에 의한 특성 저하를 방지할 수 있게 된다.In the method of forming an ohmic contact transparent electrode layer according to the present invention, a zinc oxide layer is deposited on a p-Al x Ga y In z N (0 ≦ x, y, z ≦ 1, x + y + z = 1) compound semiconductor layer. The resultant is heat-treated at a temperature in a range of 100 to 1200 ° C. such that the zinc oxide layer is in ohmic contact with the p-Al x Ga y In z N compound semiconductor layer 120. The heat treatment is preferably performed in an atmosphere containing at least one selected from the group consisting of argon, nitrogen and oxygen. The zinc oxide layer may include at least one selected from the group consisting of indium oxide, tin oxide, gallium oxide, and aluminum oxide as impurities. The zinc oxide layer may have a thickness of 1 ~ 1000nm. The heat treatment is preferably performed for 1 second to 3 hours. By using the zinc oxide layer as the transparent electrode layer, it is possible to manufacture a light emitting device having excellent light emission efficiency due to the excellent thermal stability and light transmittance of the zinc oxide, it is possible to prevent the degradation of the characteristics of the light emitting device by high temperature heat treatment.
Description
본 발명은 p-AlxGayInzN 화합물 반도체의 오믹접촉 투명전극층 형성방법에 관한 것으로서, 특히 아연산화물을 이용하는 p-AlxGayInzN 화합물 반도체의 오믹접촉 투명전극층 형성방법에 관한 것이다. 여기서, 0≤x, y, z≤1, x+y+z=1 이다.The present invention relates to a method of forming an ohmic contact transparent electrode layer of a p-Al x Ga y In z N compound semiconductor, and more particularly to a method of forming an ohmic contact transparent electrode layer of a p-Al x Ga y In z N compound semiconductor using zinc oxide. will be. Here, 0 ≦ x, y, z ≦ 1 and x + y + z = 1.
p-GaN에 오믹접촉되는 전극층으로서 니켈(Ni)을 기본으로 하는 금속층, 예컨대 니켈(Ni)/금(Au)의 금속층이 널리 사용되어 왔다. 니켈을 기본으로 하는 금속층을 전극층으로 사용할 경우 산소(O2) 분위기에서 500~600℃의 온도범위에서 열처리하면 질화갈륨과 니켈의 계면에 p형 반도체 산화물인 니켈 산화물(NiO)이 형성되고, 또한 갈륨이 바깥쪽으로 확산하여 질화갈륨 표면 부위에 다수 캐리어인 홀(hole)이 공급되어 질화갈륨 표면부근에서의 실효 캐리어 농도(effective carrier concentration)가 증가되어 10-3 ~ 10-4 Ωcm2 정도의 비접촉저항을 갖는 오믹접촉을 얻을 수 있게 된다.As an electrode layer in ohmic contact with p-GaN, a metal layer based on nickel (Ni), for example, a metal layer of nickel (Ni) / gold (Au), has been widely used. In the case of using a nickel-based metal layer as an electrode layer, when a heat treatment is performed in an oxygen (O 2 ) atmosphere at a temperature range of 500 to 600 ° C., nickel oxide (NiO), a p-type semiconductor oxide, is formed at an interface between gallium nitride and nickel. gallium is a hole (hole) majority carriers on the surface of the gallium nitride region is diffused to the outside is supplied is the effective carrier concentration near the GaN surface (effective carrier concentration) by 10 -3 to An ohmic contact having a specific contact resistance of about 10 −4 Ωcm 2 can be obtained.
그러나, 니켈(Ni)/금(Au) 투명전극층의 경우, 열적 불안정성으로 인하여 실제 발광소자에 응용시 소자 신뢰성에 있어 많은 문제가 발생한다. 또한 p형 질화갈륨 위에 적층되는 금속층이 낮은 실효 저항(effective resistance)과 높은 투광성을 갖도록 하기 위해서는 소정의 임계 두께를 가져야 하는 한계가 있다. 따라서, 니켈(Ni)/금(Au) 투명전극층은 낮은 접촉저항을 얻을 수는 있으나 좋은 발광효율을 얻지 못하는 단점을 가진다.However, in the case of the nickel (Ni) / gold (Au) transparent electrode layer, due to thermal instability, there are many problems in device reliability when applied to the actual light emitting device. In addition, in order for the metal layer stacked on the p-type gallium nitride to have a low effective resistance and a high light transmittance, there is a limit to have a predetermined critical thickness. Therefore, the nickel (Ni) / gold (Au) transparent electrode layer can obtain a low contact resistance but has a disadvantage of not obtaining a good luminous efficiency.
따라서, 본 발명이 이루고자 하는 기술적 과제는, 낮은 오믹접촉저항을 가지면서 투명하고 열적으로도 안정한 새로운 오믹접촉계(ohmic contact system)를 도입함으로써 상술한 종래의 문제점을 해결할 수 있는 p-AlxGayInzN 화합물 반도체의 오믹접촉 투명전극층 형성방법을 제공하는 데 있다.Accordingly, the object of the present invention are, while having a low ohmic contact resistance, a transparent and thermally FIG stable new ohmic contact system (ohmic contact system) to which can solve the conventional problems above-described p-Al x Ga by introducing It is to provide a method for forming an ohmic contact transparent electrode layer of y In z N compound semiconductor.
상기 기술적 과제를 달성하기 위한 본 발명에 따른 오믹접촉 투명전극층 형성방법은, p-AlxGayInzN(0≤x, y, z≤1, x+y+z=1) 화합물 반도체층 상에 아연 산화물층을 적층하고 상기 아연 산화물층이 상기 p-AlxGayInzN 화합물 반도체층에 오믹접촉되도록 상기 결과물을 100~1200℃의 온도범위에서 열처리하는 것을 특징으로 한다.Method for forming an ohmic contact transparent electrode layer according to the present invention for achieving the above technical problem, p-Al x Ga y In z N (0≤x, y, z≤1, x + y + z = 1) compound semiconductor layer The zinc oxide layer is stacked on the zinc oxide layer, and the resultant is heat-treated at a temperature range of 100 to 1200 ° C. such that the zinc oxide layer is in ohmic contact with the p-Al x Ga y In z N compound semiconductor layer.
상기 열처리는 아르곤, 질소 및 산소로 이루어진 군으로부터 선택된 적어도 어느 하나를 포함하는 분위기에서 행해지는 것이 바람직하다. The heat treatment is preferably performed in an atmosphere containing at least one selected from the group consisting of argon, nitrogen and oxygen.
상기 p-AlxGayInzN 화합물 반도체층의 p형 도펀트로서 Be, Mg, Ca, Zn, 및 Cd으로 이루어진 군으로부터 선택된 적어도 어느 하나를 사용할 수 있다.At least one selected from the group consisting of Be, Mg, Ca, Zn, and Cd may be used as the p-type dopant of the p-Al x Ga y In z N compound semiconductor layer.
상기 아연 산화물층은 인듐 산화물, 주석 산화물, 갈륨 산화물, 및 알루미늄 산화물로 이루어진 군으로부터 선택된 적어도 어느 하나를 불순물로서 포함할 수 있다. The zinc oxide layer may include at least one selected from the group consisting of indium oxide, tin oxide, gallium oxide, and aluminum oxide as impurities.
상기 아연 산화물층은 1~1000nm의 두께를 가질 수 있다. The zinc oxide layer may have a thickness of 1 ~ 1000nm.
상기 열처리는 1초 내지 3시간 동안 행하는 것이 바람직하다. The heat treatment is preferably performed for 1 second to 3 hours.
상기 아연 산화물층을 적층하기 이전에 염산(HCl), 인산(H3PO4), 수산화칼륨(KOH), 또는 왕수(Aqua regia solution)로 상기 p-AlxGayInzN 화합물 반도체층의 표면을 처리하면 더 좋다.Before stacking the zinc oxide layer, the p-Al x Ga y In z N compound semiconductor layer is formed with hydrochloric acid (HCl), phosphoric acid (H 3 PO 4 ), potassium hydroxide (KOH), or aqua regia solution. Better to treat the surface.
이하에서, 본 발명의 바람직한 실시예를 첨부한 도면들을 참조하여 상세히 설명한다. 아래의 실시예는 본 발명의 내용을 이해하기 위해 제시된 것일 뿐이며 당 분야에서 통상의 지식을 가진 자라면 본 발명의 기술적 사상 내에서 많은 변형이 가능할 것이다. 따라서, 본 발명의 권리범위가 이러한 실시예에 한정되어지는 것으로 해석되어져서는 안된다.Hereinafter, with reference to the accompanying drawings, preferred embodiments of the present invention will be described in detail. The following examples are only presented to understand the content of the present invention, and those skilled in the art will be capable of many modifications within the technical spirit of the present invention. Accordingly, the scope of the present invention should not be construed as being limited to these embodiments.
도 1은 본 발명의 실시예에 따른 p-AlxGayInzN 화합물 반도체의 오믹접촉 투명전극층 형성방법을 설명하기 위한 단면도이다.1 is a cross-sectional view illustrating a method of forming an ohmic contact transparent electrode layer of a p-Al x Ga y In z N compound semiconductor according to an embodiment of the present invention.
먼저, (002)면 방향의 산화알루미늄 기판(110) 상에 p-GaN층(120)을 형성한다. 이때의 p형 도펀트로서는 Be, Mg, Ca, Zn, 또는 Cd 등을 선택할 수 있다.First, the p-GaN layer 120 is formed on the aluminum oxide substrate 110 in the (002) plane direction. Be, Mg, Ca, Zn, Cd, etc. can be selected as a p-type dopant at this time.
그리고, p-GaN층(120) 상에 PVD 또는 CVD법으로 아연 산화물층(130)을 형성한다. 이 때의 아연 산화물층(130)은 1~1000nm의 두께를 가지며, 인듐 산화물(In2O3), 주석 산화물(SnO), 갈륨 산화물(GaO), 및 알루미늄 산화물(Al2 O3)로 이루어진 군으로부터 선택된 적어도 어느 하나를 불순물로서 포함하는 것이 바람직하며, 특히 인듐 산화물을 포함하는 것이 더욱 좋다. 아연 산화물층(130)을 적층하기 이전에 염산, 인산, 수산화칼륨, 또는 왕수로 p-GaN층(120) 표면을 처리하면 더 좋다.The zinc oxide layer 130 is formed on the p-GaN layer 120 by PVD or CVD. In this case, the zinc oxide layer 130 has a thickness of 1 to 1000 nm, and is made of indium oxide (In 2 O 3 ), tin oxide (SnO), gallium oxide (GaO), and aluminum oxide (Al 2 O 3 ). It is preferable to include at least any one selected from the group as impurities, and more particularly to include indium oxide. The p-GaN layer 120 may be treated with hydrochloric acid, phosphoric acid, potassium hydroxide, or aqua regia before the zinc oxide layer 130 is laminated.
다음에, 아연 산화물층(130)이 p-GaN층(120)과 오믹접촉되도록 100~1200℃의 온도범위에서 열처리를 행한다. 이 때의 열처리는 1초 내지 3시간 동안 행해질 수 있으며, 열처리 분위기는 아르곤, 질소 및 산소로 이루어진 군으로부터 선택된 적어도 어느 하나를 포함하는 분위기인 것이 바람직하다. Next, the zinc oxide layer 130 is heat treated in a temperature range of 100 to 1200 ° C. such that the zinc oxide layer 130 is in ohmic contact with the p-GaN layer 120. At this time, the heat treatment may be performed for 1 second to 3 hours, the heat treatment atmosphere is preferably an atmosphere containing at least one selected from the group consisting of argon, nitrogen and oxygen.
도 2는 오믹접촉을 위한 열처리 전과 열처리 후의 전류-전압 그래프이다. 그래프 310은 열처리 하기 전의 것이고, 그래프 320은 산화분위기에서 600℃에서 5분 정도 급속열처리한 경우이다. 열처리에 의해 1.74×0-4 Ωcm2의 낮은 접촉저항을 얻을 수 있음을 알 수 있다.2 is a current-voltage graph before and after heat treatment for ohmic contact. The graph 310 is before heat treatment, and the graph 320 is a case where rapid heat treatment is performed at 600 ° C. for 5 minutes in an oxidizing atmosphere. It can be seen that a low contact resistance of 1.74 × 0 −4 Ωcm 2 can be obtained by the heat treatment.
도 3은 아연 산화물층에 인듐 산화물이 불순물로 첨가된 경우의 아연 산화물 반도체의 투광성을 나타낸 그래프이다. 종래의 Ni/Au 금속층의 투광성은 400~600nm의 파장에서 60~75% 인 반면에 아연 산화물 반도체의 투광성은 같은 파장 영역에서 80% 이상임을 알 수 있다. 3 is a graph showing the light transmittance of a zinc oxide semiconductor when indium oxide is added as an impurity to the zinc oxide layer. The light transmittance of the conventional Ni / Au metal layer is 60 to 75% at a wavelength of 400 to 600 nm, while the light transmittance of the zinc oxide semiconductor is 80% or more in the same wavelength range.
도 4는 아연 산화물층을 광소자에 적용하였을 경우의 광소자의 발광효율을 나타낸 그래프이다. 종래의 Ni/Au 금속층을 사용하였을 경우보다 약 30% 발광효율이 증가를 하였다.4 is a graph showing luminous efficiency of an optical device when a zinc oxide layer is applied to the optical device. The light emission efficiency was increased by about 30% compared with the conventional Ni / Au metal layer.
따라서, AlxGayInzN 화합물 반도체를 이용하는 발광소자에서 아연 산화물층을 오믹접촉 투명전극층으로 사용하는 경우가 발광효율이 더 좋게 된다. 또한, 아연 산화물 반도체의 녹는점이 2000℃ 이상이므로 열적 안정성이 Ni/Au보다 훨씬 낫다.Therefore, when the zinc oxide layer is used as the ohmic contact transparent electrode layer in the light emitting device using the Al x Ga y In z N compound semiconductor, the luminous efficiency is better. In addition, the melting point of the zinc oxide semiconductor is more than 2000 ℃ thermal stability is much better than Ni / Au.
상술한 바와 같이 오믹접촉 투명전극층으로서 아연산화물층을 사용하면, 아연산화물의 우수한 열적 안정성 및 투광성으로 인해서 우수한 광방출효율을 갖는 발광소자를 제조할 수 있으며, 발광소자의 고온 열처리에 의한 특성 저하를 방지할 수 있게 된다.As described above, when the zinc oxide layer is used as the ohmic contact transparent electrode layer, a light emitting device having excellent light emission efficiency can be manufactured due to the excellent thermal stability and light transmittance of the zinc oxide. It can be prevented.
도 1은 본 발명의 실시예에 따른 p-AlxGayInzN 화합물 반도체의 오믹접촉 투명전극층 형성방법을 설명하기 위한 단면도;1 is a cross-sectional view for explaining a method of forming an ohmic contact transparent electrode layer of a p-Al x Ga y In z N compound semiconductor according to an embodiment of the present invention;
도 2는 오믹접촉을 위한 열처리 전과 열처리 후의 전류-전압 그래프;2 is a current-voltage graph before and after heat treatment for ohmic contact;
도 3은 아연 산화물층에 인듐 산화물이 불순물로 첨가된 경우의 아연 산화물 반도체의 투광성을 나타낸 그래프;3 is a graph showing the light transmittance of a zinc oxide semiconductor when indium oxide is added as an impurity to the zinc oxide layer;
도 4는 아연 산화물층을 광소자에 적용하였을 경우의 광소자의 발광효율을 나타낸 그래프이다. 4 is a graph showing luminous efficiency of an optical device when a zinc oxide layer is applied to the optical device.
< 도면의 주요 부분에 대한 참조번호의 설명 ><Description of Reference Numbers for Main Parts of Drawings>
110: 산화알루미늄 기판 120: p-GaN층110: aluminum oxide substrate 120: p-GaN layer
130: 아연 산화물층130: zinc oxide layer
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020040021770A KR100543414B1 (en) | 2004-03-30 | 2004-03-30 | Method of transparent electrode for ohmic contact to p-AlGaInN compound semiconductor using zinc oxide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020040021770A KR100543414B1 (en) | 2004-03-30 | 2004-03-30 | Method of transparent electrode for ohmic contact to p-AlGaInN compound semiconductor using zinc oxide |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20050097051A true KR20050097051A (en) | 2005-10-07 |
KR100543414B1 KR100543414B1 (en) | 2006-01-23 |
Family
ID=37276922
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020040021770A KR100543414B1 (en) | 2004-03-30 | 2004-03-30 | Method of transparent electrode for ohmic contact to p-AlGaInN compound semiconductor using zinc oxide |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100543414B1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100682741B1 (en) * | 2005-06-17 | 2007-02-15 | 한국과학기술연구원 | Fabrication method of zinc oxide based transparent conductive oxide thin film |
KR100870838B1 (en) * | 2008-03-04 | 2008-11-28 | 한국철강 주식회사 | Removal method of moisture from substrate coated with transparent electrode |
-
2004
- 2004-03-30 KR KR1020040021770A patent/KR100543414B1/en active IP Right Grant
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100682741B1 (en) * | 2005-06-17 | 2007-02-15 | 한국과학기술연구원 | Fabrication method of zinc oxide based transparent conductive oxide thin film |
KR100870838B1 (en) * | 2008-03-04 | 2008-11-28 | 한국철강 주식회사 | Removal method of moisture from substrate coated with transparent electrode |
US8176653B2 (en) | 2008-03-04 | 2012-05-15 | Kisco | Method for removing moisture from substrate coated with transparent electrode |
Also Published As
Publication number | Publication date |
---|---|
KR100543414B1 (en) | 2006-01-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100571818B1 (en) | light emitting device and method of manufacturing the same | |
KR100647279B1 (en) | light emitting device and method of manufacturing thereof | |
JP5084099B2 (en) | Top-emitting nitride-based light emitting device and method for manufacturing the same | |
JP3739951B2 (en) | Semiconductor light emitting device and manufacturing method thereof | |
KR100571819B1 (en) | light emitting device and method of manufacturing the same using p-type conductive transparent oxide thin film electrode | |
JP2005260244A (en) | Top emit type nitride-based light emitting element and its manufacturing method | |
JPH10247747A (en) | Semiconductor light emitting device and manufacture thereof | |
KR20100103866A (en) | High-performance heterostructure light emitting devices and methods | |
JP2005340860A (en) | Semiconductor light-emitting element | |
CN101609867B (en) | Nitride semiconductor light-emitting diode and method of manufacturing the same | |
KR20050066029A (en) | Method of producing gan based semiconductor light emitting diode | |
JP3665243B2 (en) | Nitride semiconductor device and manufacturing method thereof | |
JP2005086210A (en) | Nitride light-emitting device and manufacturing method therefor | |
KR100755649B1 (en) | Gan-based semiconductor light emitting device and method of manufacturing the same | |
KR100543414B1 (en) | Method of transparent electrode for ohmic contact to p-AlGaInN compound semiconductor using zinc oxide | |
KR101131349B1 (en) | Nitride Based Light Emitting Diode | |
KR20050035325A (en) | Nitride semiconductor light emitting device and method of manufacturing the same | |
KR100293467B1 (en) | blue emitting device and method for fabricating the same | |
KR100737821B1 (en) | Light emitting device and the fabrication method thereof | |
KR100564912B1 (en) | Method of transparent electrode for ohmic contact to p-AlGaInN compound semiconductor using zinc oxide | |
KR100764458B1 (en) | Electrode layer, light generating device comprising the same and method of forming the same | |
KR100515652B1 (en) | Transparant Electrode Film for Ohmic Contact of p-GaN Semiconductor | |
KR100716784B1 (en) | Light emitting device and method of manufacturing the same | |
JP2005072594A (en) | Transparent thin-film electrode for embodying high-quality light emitting diode and laser diode | |
KR100348280B1 (en) | method for fabricating blue emitting device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20130102 Year of fee payment: 8 |
|
FPAY | Annual fee payment |
Payment date: 20140103 Year of fee payment: 9 |
|
FPAY | Annual fee payment |
Payment date: 20141231 Year of fee payment: 10 |
|
FPAY | Annual fee payment |
Payment date: 20160104 Year of fee payment: 11 |
|
FPAY | Annual fee payment |
Payment date: 20170102 Year of fee payment: 12 |
|
FPAY | Annual fee payment |
Payment date: 20191226 Year of fee payment: 15 |