KR20050088415A - Heat-resistant composite diamond sintered product and method for production thereof - Google Patents

Heat-resistant composite diamond sintered product and method for production thereof Download PDF

Info

Publication number
KR20050088415A
KR20050088415A KR1020057010387A KR20057010387A KR20050088415A KR 20050088415 A KR20050088415 A KR 20050088415A KR 1020057010387 A KR1020057010387 A KR 1020057010387A KR 20057010387 A KR20057010387 A KR 20057010387A KR 20050088415 A KR20050088415 A KR 20050088415A
Authority
KR
South Korea
Prior art keywords
diamond
sintered body
powder
sintered product
heat
Prior art date
Application number
KR1020057010387A
Other languages
Korean (ko)
Other versions
KR100642841B1 (en
Inventor
미노루 아카이시
케이고 카와무라
Original Assignee
도꾸리쯔교세이호징 가가꾸 기쥬쯔 신꼬 기꼬
도쿠리츠교세이호징 붓시쯔 자이료 겐큐키코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 도꾸리쯔교세이호징 가가꾸 기쥬쯔 신꼬 기꼬, 도쿠리츠교세이호징 붓시쯔 자이료 겐큐키코 filed Critical 도꾸리쯔교세이호징 가가꾸 기쥬쯔 신꼬 기꼬
Publication of KR20050088415A publication Critical patent/KR20050088415A/en
Application granted granted Critical
Publication of KR100642841B1 publication Critical patent/KR100642841B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/427Diamond
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/781Nanograined materials, i.e. having grain sizes below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Abstract

A heat-resistant composite diamond sintered product which comprises a sintered product from a superfine synthetic diamond powder, characterized in that said sintered product is produced with no sintering auxiliary and is a composite sintered product comprising diamond crystals and a trace amount of non-diamond carbon formed and has a Visckers hardness of 85 GPa or more; and a method for producing the above heat-resistant composite diamond sintered product which comprises encapsulating a synthetic diamond powder having an average particle diameter of 200 nm or less by the use of a Ta or Mo capsule, and heating and pressuring said capsule using a super high pressure synthesis apparatus under a condition wherein diamond is thermodynamically stable, that is, of a temperature of 2100°C or higher and a pressure of 7.7 GPa or more, to thereby sinter the diamond powder.

Description

내열성 다이아몬드 복합 소결체와 그 제조법{Heat-resistant composite diamond sintered product and method for production thereof}Heat-resistant composite diamond sintered product and method for production

본 발명은 내열성 다이아몬드 복합 소결체와 그 제조법에 관한 것이다. The present invention relates to a heat resistant diamond composite sintered body and a method of manufacturing the same.

종래 Co 등의 금속을 소결조제(助劑)로 하는 다이아몬드 소결체나 탄산염을 소결 조제로 하는 다이아몬드 소결체가 통상의 초고압 합성장치로 제조되는 것이 알려져 있다(특허문헌 1,2). 또한, 금속 소결조제를 전혀 사용하지 않고, 알칼리토류 금속의 탄산염을 소결조제로 이용하여, 종래보다도 높은 압력,온도 조건하에서 소결하는 것에 의해 내열성이 우수한 고경도 다이아몬드 소결체를 얻는 합성법이 알려져 있다(비 특허문헌 1). 그렇지만, 이러한 소결체는 용융 탄산염의 점성이 높기 때문에 그 입경은 작아도 약 5㎛로 비교적 큰 입경으로 한정되어 있다.Conventionally, it is known that the diamond sintered compact which uses metals, such as Co, as a sintering aid, and the diamond sintered compact which uses carbonate as a sintering aid, are manufactured by the usual ultrahigh pressure synthesis apparatus (patent document 1, 2). In addition, a synthetic method is obtained in which a high hardness diamond sintered body having excellent heat resistance is known by sintering under alkaline pressure metal temperature carbonate as a sintering aid without using any metal sintering aid at all. Patent document 1). However, since such a sintered compact has high viscosity of molten carbonate, its particle size is limited to a relatively large particle size of about 5 µm even though it is small.

본 발명자들은 CO2-H2O 유체상(流體相)의 원천으로 되는 옥살산 이수화물(oxalic acid dihydrate)을 탄산염에 첨가한 혼합분말을 제작하고, 이 혼합분말상에 입경 폭 0∼1㎛의 천연 다이아몬드 분말을 적층하고, 미립(微粒) 다이아몬드 소결체를 제조하는 방법을 보고하였지(특허문헌 3, 비 특허문헌 2,3)만, 그 제조에는 2200℃이상의 고온을 필요로 한다.The present inventors produced a mixed powder in which oxalic acid dihydrate, which is a source of CO 2 -H 2 O fluid phase, was added to carbonate, and the mixed powder had a natural particle diameter of 0 to 1 탆. Although the method of laminating | stacking diamond powder and manufacturing a fine diamond sintered compact was reported (patent document 3, nonpatent literature 2,3), the manufacture requires high temperature of 2200 degreeC or more.

본 발명자들은 동일한 방법으로 또한 미세한 다이아몬드 분말, 예를 들면, 입경 폭 0∼0.1㎛의 다이아몬드 분말을 소결한 예를 보고하였다(비 특허문헌 4). 그러나, 다이아몬드의 이상(異常) 입성장이 일어나고, 고경도 다이아몬드 소결체를 제조할 수 없었다.The present inventors reported the example which sintered the fine diamond powder, for example, the diamond powder of 0-0.1 micrometer of particle diameter widths by the same method (nonpatent literature 4). However, abnormal grain growth of diamond occurred, and a high hardness diamond sintered body could not be produced.

최근, 흑연으로부터 다이야몬도로의 직접변환 반응에 의하여 12∼25GPa,2000∼2500℃의 조건에서 소결조제없이 다이아몬드 소결체를 합성하는 방법이 발표되어, 투광성 소결체로 된다고 보고되어 있다(비 특허문헌 5).Recently, a method of synthesizing a diamond sintered body without a sintering aid under conditions of 12 to 25 GPa, 2000 to 2500 ° C by a direct conversion reaction from graphite to diamond road has been announced, and it is reported that it becomes a translucent sintered body (Non Patent Literature 5). .

특허문헌 1 특공소 52-12126호 공보 Patent Document 1 Special Publication No. 52-12126

특허문헌 2 특공평 4-50270호 공보 Patent Document 2 Special Publication No. 4-50270

특허문헌 3 특개2002-187775호 공보 Patent Document 3 Publication No. 2002-187775

비 특허문헌 1 Diamond and Related Mater.,5권, 34-37 페이지, Elsevier Science S.A, 1996년Non Patent Literature 1 Diamond and Related Mater., Vol. 5, pages 34-37, Elsevier Science S.A, 1996

비 특허문헌 2 제 41회 고압 토론회 강연 요지집, 108 페이지, 일본 고압력 학회, 2000년Non-Patent Literature 2 The 41st High-Pressure Discussion Lecture Summaries Collection, 108 pages, Japan High Pressure Society, 2000

비 특허문헌 3 Proceedings of the 8th NIRIM International Symposium on Advanced Materials, 33-34 페이지, 무기재질 연구소, 2001년Non-Patent Document 3 Proceedings of the 8th NIRIM International Symposium on Advanced Materials, pages 33-34, Institute of Inorganic Materials, 2001

비 특허문헌 4 제 42회 고압 토론회 강연 요지집, 89 페이지, 일본 고압력 학회, 2001년Non-Patent Document 4 Collection of Lectures on the 42nd High Pressure Discussion Forum, p. 89, Japan High Pressure Society, 2001

비특허문헌 5 T.Irifune et al.,「Characterization of polycrystalline diamonds synthesized by direct conversion of graphite using multi anvil apparatus」, 6th High Pressure Mineral Physics Seminar, 28 August, 2002, Verbania, Italy[Non-Patent Document 5] T.Irifune et al., `` Characterization of polycrystalline diamonds synthesized by direct conversion of graphite using multi anvil apparatus '', 6th High Pressure Mineral Physics Seminar, 28 August, 2002, Verbania, Italy

도 1은 본 발명의 제조법에 있어서, 다이아몬드 분말을 소결하기 위한 소결체 합성용 캡슐에 다이아몬드 분말을 충전한 상태의 일례를 개념적으로 나타내는 단면도이다.1 is a cross-sectional view conceptually illustrating an example of a state in which a diamond powder is filled in a capsule for sintered body synthesis for sintering diamond powder in the production method of the present invention.

도 2는 실시례 1에서 얻어진 소결체의 X선 회절 도형((a)는 열처리 전, (b)는 열처리후)이다.2 is an X-ray diffraction figure of the sintered body obtained in Example 1 ((a) before heat treatment and (b) after heat treatment).

도 3은 실시례 1에서 얻어진 소결체의 파면의 도면대용 전자현미경 조직 사진이다.3 is a photographic electron microscope structure photograph of the wavefront of the sintered compact obtained in Example 1. FIG.

(발명을 실시하기 위한 최선의 형태)(The best mode for carrying out the invention)

본 발명의 다이아몬드 소결체의 제조법에서는 합성 초미립 다이아몬드 분말을 출발 물질로서 이용한다. 도 1은 본 발명의 제조법에 있어서, 다이아몬드 분말을 소결하기 위한 소결체 합성용 캡슐에 다이아몬드 분말을 충전한 상태의 일례를 나타내는 단면도이다.In the method for producing a diamond sintered body of the present invention, synthetic ultrafine diamond powder is used as a starting material. BRIEF DESCRIPTION OF THE DRAWINGS In the manufacturing method of this invention, sectional drawing which shows an example of the state in which the diamond powder was filled in the capsule for sintered compact synthesis for sintering diamond powder.

도 1에 나타낸 것처럼, 원통형의 Ta제(製) 캡슐(3)의 바닥에 캡슐의 변형 억제용의 흑연제 원반(4A)을 두고, Ta 또는 Mo박(箔)(1A)을 이용하여 다이아몬드 분말(2A)을 가압 충전한다. Ta 또는 Mo박은 원하는 두께의 소결체를 합성하기 위한 다이아몬드 분말끼리의 분리, 흑연과 다이아몬드 분말의 분리, 압력매체의 침입방지, 유체상의 실(seal) 등 때문에 이용하고 있다. 이 다이아몬드 분말(2A) 위에 Ta 또는 Mo박(1B)을 배치한다. 동일한 방법에 의해 또한 3층의 다이아몬드 분말(2B,2C,2D)을 Ta 또는 Mo박(1C,1D)을 개재시켜 충전한 후에 Ta 또는 Mo박(1E)을 배치하고, 그 위에 캡슐의 변형 억제용의 흑연제 원반(4B)을 배치한다.As shown in FIG. 1, the graphite disk 4A for suppressing the deformation | transformation of a capsule is put in the bottom of the cylindrical Ta capsule 3, and diamond powder is made using Ta or Mo foil 1A. Pressurized charging (2A). Ta or Mo foil is used for the separation of diamond powders to synthesize a sintered body of a desired thickness, separation of graphite and diamond powder, prevention of intrusion of a pressure medium, seal in a fluid phase, and the like. Ta or Mo foil 1B is arrange | positioned on this diamond powder 2A. By the same method, after filling three layers of diamond powder (2B, 2C, 2D) through Ta or Mo foil (1C, 1D), Ta or Mo foil (1E) is arrange | positioned and the deformation suppression of a capsule thereon Distribute the master disk made of graphite (4B).

이 캡슐을 압력 매체중에 수용하고, 벨트형 초고압 합성장치등의 정적(靜的) 압축법에 의해 초고압 장치를 이용하여 실온조건하에서 7.7GPa 이상까지 가압하고, 동 압력조건하에서 2100℃ 이상의 소정의 온도까지 가열하여 소결을 행한다. 압력이 7.7GPa 미만에서는 2100℃ 이상의 온도라도 원하는 내열성 소결체를 얻을 수 없다. 또한, 소결온도가 2100℃ 미만에서는 7.7GPa 이상의 압력이라도 원하는 내열성 소결체를 얻을 수 없다. 온도, 압력은 필요이상으로 높게 하여도 에너지 효율을 나쁘게 하는 것 뿐이기 때문에 장치의 대응한도도 고려하여 필요 최소한도로 하는 것이 바람직하다.This capsule is accommodated in a pressure medium, pressurized to 7.7 GPa or more under room temperature conditions using a high pressure device by a static compression method such as a belt type ultrahigh pressure synthesizing apparatus, and a predetermined temperature of 2100 ° C. or higher under the same pressure condition. It heats to and sintering. If the pressure is less than 7.7 GPa, the desired heat resistant sintered compact cannot be obtained even at a temperature of 2100 ° C or higher. If the sintering temperature is lower than 2100 ° C, the desired heat resistant sintered body cannot be obtained even at a pressure of 7.7 GPa or more. Even if the temperature and pressure are higher than necessary, the energy efficiency is only deteriorated. Therefore, it is preferable that the temperature and pressure be minimized in consideration of the corresponding limit of the apparatus.

평균입경이 200nm 이하인 합성 다이아몬드 분말은 입경이 큰 합성 다이아몬드 분말을 분쇄후 분급(分級)에 의해 얻어진 분말이고, 측정법은 마이크로 트랙 UPA 입도측정기(microtrack UPA particle size-measuring apparatus)에 의한 측정값이다. 이와 같은 측정법은 공지이다(예를 들면, 특개2002-35636호 공보 참조). 이와 같은 합성 다이아몬드 분말은 시판품으로 입수할 수 있다(예를 들면, 동명 다이아몬드사제(社製) 상품명 MD200(평균 입경 200nm), MD100(평균 입경 100nm)). Synthetic diamond powder having an average particle diameter of 200 nm or less is a powder obtained by classifying after crushing a synthetic diamond powder having a large particle size, and the measuring method is a measured value by a microtrack UPA particle size-measuring apparatus. Such a measuring method is well-known (for example, see Unexamined-Japanese-Patent No. 2002-35636). Such synthetic diamond powder can be obtained as a commercial item (for example, brand name MD200 (average particle diameter 200nm) and MD100 (average particle diameter 100nm) by a same-name diamond company).

(발명의 개시)(Initiation of invention)

절삭공구의 분야에서의 고성능 공구로서의 사용은 물론, 내열성이 높고, 종래는 오로지 단결정이 사용되고 있던 초정밀 가공 공구, 나아가서는,귀금속품으로서도 가치가 높은 다이아몬드 소결체가 요구되고 있다. 특히, 석유 굴착용 오일 비트나 자동차용 특수부품의 절삭의 고속화에 수반하여 다이아몬드 소결체 공구의 내열성이 요구되고 있다.In addition to use as a high performance tool in the field of cutting tools, a diamond sintered body having high heat resistance and high precision machining tools in which single crystals have been used conventionally, and also as precious metal products, is required. In particular, the heat resistance of diamond sintered tools is demanded along with the high speed of cutting oil bits for oil drilling and special parts for automobiles.

종래 금속 및 비금속을 불문하고 소결조제를 이용하여 고경도 다이아몬드 소결체가 5.5Gpa∼7.7Gpa의 초고압 조건하에서 고압 고온 소결에 의하여 제조되고 있다. 이와 같은 소결조제를 이용하는 다이아몬드 소결체의 제조법에서는 소결조제에 이용한 물질이 고압 고온 소결후에 소결체중에 고체로서 잔류하기 때문에 다이아몬드 입자간의 결합의 비율이 감소한다. Conventionally, high hardness diamond sintered bodies are manufactured by high pressure and high temperature sintering under super high pressure conditions of 5.5Gpa to 7.7Gpa using a sintering aid, regardless of metals and nonmetals. In the method for producing a diamond sintered body using such a sintering aid, since the material used for the sintering aid remains as a solid in the sintered body after high pressure and high temperature sintering, the ratio of the bonds between the diamond particles is reduced.

소결조제를 전혀 함유하지 않는 이상적인 다이아몬드 소결체와 비교해서 그러한 소결체의 경도는 낮아지거나 소결체중에 잔존하는 소결조제가 다이아몬드와 화학반응하거나 하여 소결체의 특성을 저하시키는 원인으로 된다. 또한, 소결조제를 전혀 함유하지 않는 소결체의 합성은 대단히 높은 압력과 온도가 필요하다.Compared with the ideal diamond sintered body which does not contain the sintering aid at all, the hardness of such a sintered body is lowered or the sintering aid remaining in the sintered body is chemically reacted with diamond, which causes deterioration of the characteristics of the sintered body. Moreover, the synthesis | combination of the sintered compact which does not contain the sintering aid at all requires very high pressure and temperature.

탄산염-C-O-H 유체상으로 되는 소결조제를 이용하여 입경 폭 0∼0.1㎛의 천연 다이아몬드 분말을 소결하면 다이아몬드 입자간에 균질하게 탄산염이 분포한 고경도 미립 다이아몬드 소결체를 7.7GPa, 1700℃이상의 조건에서 용이하게 합성하는 것이 가능하다(특원2002-030863호=특개2003-226578).When sintering natural diamond powder having a particle size width of 0 to 0.1 µm using a sintering aid that becomes a carbonate-COH fluid phase, a high-hardness fine diamond sintered body in which carbonates are homogeneously distributed among diamond particles is easily formed under conditions of 7.7 GPa and 1700 ° C. or more. It is possible to synthesize (JP-A 2002-030863 = JP-A 2003-226578).

그래서, 본 발명자들은 탄산염을 소결조제로 하는 고경도 미립 다이아몬드 소결체의 합성 비용의 절감을 목적으로, 평균입경 100nm의 수소 종단처리(終端處理)한 합성 다이아몬드 분말을 탄산염-C-O-H 유체상으로 되는 소결조제상에 적층하고, 고압 고온 조건하에서 처리하여 다이아몬드 소결체의 합성을 시도해 보았다. 회수 시료는 층상에서 나누어져 도중까지 탄산염은 용침(溶浸)하고 있지만, 다이아몬드 분말중에의 탄산염-C-O-H 유체상으로 되는 소결조제의 균질 용침은 실현할 수 없었다.이 이유를 검토해 본 결과, 합성 다이아몬드 분말이 소성변형하기 용이하므로 다이아몬드 분말 입자간의 공극이 일부 부서져 버리기 때문에 용융 소결조제가 균질 용침하지 않는다는 결론에 도달하였다.Therefore, the present inventors use a sintering aid in which a hydrogen-terminated synthetic diamond powder having an average particle diameter of 100 nm is converted into a carbonate-COH fluid for the purpose of reducing the synthesis cost of the high-hardness fine diamond sintered body using the carbonate as the sintering aid. It was laminated on the phase and treated under high pressure and high temperature conditions to try to synthesize a diamond sintered body. The recovered sample was divided into layers and the carbonate was infiltrated to the middle, but the homogeneous infiltration of the sintering aid in the carbonate-COH fluid phase in the diamond powder could not be realized. This plastic deformation is easy, and thus the voids between the diamond powder particles are partially broken, so that the melt sintering aid is not homogeneously infiltrated.

또한, 발명자들은 소결조제를 전혀 사용하지 않는 시스템에서 입경 폭 0∼0.1㎛의 천연 다이아몬드 분말을 7.7Gpa, 2300℃의 조건으로 15분간 소결 처리를 행하였다. 그 결과, 입경 폭0∼0.1㎛의 천연 다이아몬드 분말로부터는 고경도 다이아몬드 소결체를 합성하는 것은 어려운 것이 분명해졌다.In addition, the inventors sintered the natural diamond powder having a particle size width of 0 to 0.1 µm for 15 minutes under conditions of 7.7 Gpa and 2300 ° C in a system using no sintering aid. As a result, it became clear that it is difficult to synthesize | harden a high hardness diamond sintered compact from the natural diamond powder of particle size width 0-0.1 micrometer.

본 발명자들은 평균 입경 200nm 이하의 합성 다이아몬드 분말을 출발 물질로 이용해서, 탄산염 등의 소결조제를 이용하여 다이아몬드 소결체를 제조하고 있는 고압 고온 조건과 동등의 제조 조건에서 고압 고온 소결하면 의외로 상기와 같은 문제가 발생하지 않는 것을 발견하고, 소결조제를 전혀 함유하지 않는 미세한 입자로 되는 내열성 다이아몬드 소결체를 합성하는 것에 성공하였다.The present inventors surprisingly suffer from the above problems when high-temperature high-temperature sintering is performed using synthetic diamond powder having an average particle diameter of 200 nm or less as a starting material and a high-temperature and high-temperature condition in which a diamond sintered body is manufactured using a sintering aid such as carbonate. Was found not to occur, and succeeded in synthesizing a heat-resistant diamond sintered body comprising fine particles containing no sintering aid at all.

게다가, 이 제조법으로 얻어진 소결체에는 미량의 비 다이아몬드 탄소가 생성물로서 함유되어 다이아몬드 결정과 비 다이아몬드 탄소와의 복합 소결체로 되고, 소결체에 전기 전도성이 부여된다. 이 비 다이아몬드 탄소는 출발 물질의 다이아몬드 분말이 일부 흑연화하는 것에 의해 생성한 것으로 추정된다. 그 결과, 전기 전도성이 부여되는 것에 의하여방전가공이 가능해진다. 또한, 종래의 다이아몬드 소결체에 전혀 없는 반짝임과 광택을 가진다.In addition, the sintered compact obtained by this manufacturing method contains a small amount of non-diamond carbon as a product to form a composite sintered compact of diamond crystals and non-diamond carbon, and electrical conductivity is imparted to the sintered compact. This non-diamond carbon is estimated to be produced by the partial graphitization of the diamond powder of the starting material. As a result, electrical discharge is provided, thereby enabling electrical discharge machining. In addition, it has sparkles and luster that are not at all in the conventional diamond sintered body.

즉, 본 발명은 (1) 평균 입경이 200nm 이하인 초미립 합성 다이아몬드 분말의 소결체로 되고, 그 소결체는 소결 조제없이 소결되어 다이아몬드 결정으로 생성한 미량의 비 다이아몬드 탄소로 되는 복합 소결체이고, 비커스(Vickers) 경도가 85GPa 이상인 것을 특징으로 하는 내열성 다이아몬드 복합 소결체이다.That is, this invention is (1) the sintered compact of the ultra-fine synthetic diamond powder whose average particle diameter is 200 nm or less, The sintered compact is a composite sintered compact which becomes the trace amount non-diamond carbon produced by diamond crystal sintering without a sintering aid, ) A heat resistant diamond composite sintered body having a hardness of 85 GPa or more.

또한, 본 발명은 (2) 평균 입경이 200nm 이하인 합성 다이아몬드 분말을 Ta 또는 Mo제 캡슐에 봉입하고, 그 캡슐을 초고압 합성장치를 이용하여 다이아몬드의 열역학적 안정조건의 2100℃ 이상의 온도, 7.7GPa 이상의 압력하에서 가열 가압하는 것에 의해 다이아몬드 분말을 소결하는 것을 특징으로 하는 상기 (1)의 내열성 다이아몬드 복합 소결체의 제조법이다.In addition, the present invention (2) a synthetic diamond powder having an average particle diameter of 200 nm or less is encapsulated in a capsule made of Ta or Mo, and the capsule is subjected to a thermodynamic stable condition of diamond at a temperature of 2100 ° C. or higher and a pressure of 7.7 GPa or higher using an ultrahigh pressure synthesizer. It is a manufacturing method of the heat resistant diamond composite sintered compact of said (1) characterized by sintering diamond powder by heating under pressure.

다이아몬드 분말의 입경을 거의 동일하게 비교한 경우, 합성 다이아몬드 분말은 천연 다이아몬드 분말과 비교해서 소성변형하기 쉬운 분말이다. 출발 다이아몬드 분말의 입경 분포가 적은 분말은 분포가 큰 분말과 비교하여 입자간의 공극 크기의 분포가 적다고 생각된다. 그래서, 다이아몬드 분말의 입경이 대략 일정하고, 동시에 평균 입경의 가능한 한 작은 합성 다이아몬드 분말을 출발 물질로 사용하면, 다이아몬드 입자는 용이하게 소성변형하고, 작은 다이아몬드 입자가 고유하게 갖고 있는 큰 표면 에너지를 구동력으로 하여, 소결조제를 전혀 사용하지 않아도 내열성 다이아몬드 복합 소결체가 합성된다고 생각된다.In the case where the particle diameters of the diamond powders are compared almost identically, the synthetic diamond powder is a powder that is easily plastically deformed as compared with the natural diamond powder. It is considered that the powder having a small particle size distribution of the starting diamond powder has a smaller distribution of the pore size between the particles than the powder having a large distribution. Therefore, when the particle diameter of the diamond powder is approximately constant, and at the same time, the synthetic diamond powder having the smallest average particle diameter is used as the starting material, the diamond particles are easily plastically deformed, and the large surface energy inherently possessed by the small diamond particles is driven. It is thought that a heat resistant diamond composite sintered compact is synthesized even when no sintering aid is used.

평균 입경이 200nm을 초과하여 큰 합성 다이아몬드 분말을 이용하면 다이아몬드 입자의 입경이 커짐에 따라 입자의 표면 에너지가 작아지고 다이아몬드 소결체의 합성이 곤란해진다.When a synthetic diamond powder having an average particle diameter of more than 200 nm is used, the surface energy of the particles becomes smaller and the synthesis of the diamond sintered body becomes difficult as the particle diameter of the diamond particles increases.

본 발명의 제조법에 의해 합성되는 내열성 다이아몬드 복합 소결체는 절삭공구 분야에서의 고성능 공구, 내열성이 요구되는 오일 비트등의 공업용 용도뿐만아니라 다이아몬드 고유의 높은 굴절율을 갖고 있는 것은 말할것도 없지만 소결조제없는 다이아몬드 소결체 독특한 반짝임을 갖고 있는 것이며, 대형 소결체를 제조하는 것이 용이하므로 귀금속용의 용도로서의 새로운 용도가 기대된다.The heat-resistant diamond composite sintered body synthesized by the manufacturing method of the present invention is not only for industrial use such as high performance tools in cutting tool field, oil bits requiring heat resistance, but also has a high refractive index inherent to diamond, but it is a diamond sintered body without sintering aid. It has a unique sparkle, and it is easy to manufacture a large sintered compact, and thus a new use as a use for a noble metal is expected.

본 발명의 제조법은 탄산염을 소결조제로 하는 다이아몬드 소결체와 동등의 압력ㆍ온도 조건에서의 제조가 가능하기 때문에 대형 소결체의 제조가 용이하다.Since the manufacturing method of this invention can manufacture on the pressure and temperature conditions equivalent to the diamond sintered compact which uses a carbonate as a sintering aid, manufacture of a large sized sintered compact is easy.

이하,본 발명의 다이아몬드 소결체의 제조법을 실시례에 근거하여 구체적으로 설명한다.Hereinafter, the manufacturing method of the diamond sintered compact of this invention is demonstrated concretely based on an Example.

(실시례 1) (Example 1)

시판의 평균 입경 100nm의 합성 다이아몬드 분말을 출발 물질로 준비하였다.A synthetic diamond powder having a commercial average particle size of 100 nm was prepared as a starting material.

두께 0.8mm, 외경 11.6mm의 원통형 Ta제 캡슐의 바닥에 캡슐의 변형 억제용의 2.6mm 두께의 흑연제 원반을 두고, Ta박을 이용하여 다이아몬드 분말 250mg를 층상(層狀)에 100MPa의 압력으로 충전하였다. 이 다이아몬드 분말 위에 Ta박을 두고, Ta박의 위에는 캡슐의 변형을 억제하기 위해 2.6mm 두께의 흑연제 원반을 배치하였다. 캡슐을 가압 성형후에 상부의 여분의 흑연을 깎았다.At the bottom of the cylindrical Ta capsule having a thickness of 0.8 mm and an outer diameter of 11.6 mm, a 2.6 mm thick disk made of graphite for suppressing the deformation of the capsule was placed. Using Ta foil, 250 mg of diamond powder was applied to the layer at a pressure of 100 MPa. Charged. Ta foil was placed on the diamond powder, and a 2.6 mm thick graphite disk was placed on the Ta foil to suppress deformation of the capsule. After the capsules were press molded, the excess graphite at the top was shaved.

다음에, 캡슐을 NaCl-10% ZrO2의 압력 매체중에 충전하고, 벨트형 초고압 합성장치를 이용하여 7.7GPa, 2200℃의 조건에서 30분간 소결한 후, 합성장치로부터 캡슐을 취출하였다.Next, the capsules were filled in a pressure medium of NaCl-10% ZrO 2 , and sintered for 30 minutes under conditions of 7.7 GPa and 2200 ° C. using a belt type ultrahigh pressure synthesizer, and then the capsules were taken out from the synthesizer.

소결체의 표면에 형성된 TaC 등을 불화 수소산-초산 용액으로 처리하여 제거하고, 소결체의 상하면을 평면으로 하기 위해서 다이아몬드 휠로 연삭하였다. 연삭저항이 높은 소결체이고, 연삭후의 소결체의 비커스 경도의 평균치는 90GPa 이상이었다.TaC and the like formed on the surface of the sintered compact were treated with a hydrofluoric acid-acetic acid solution and removed, and the upper and lower surfaces of the sintered compact were ground with a diamond wheel. It was a sintered compact with high grinding resistance, and the average value of the Vickers hardness of the sintered compact after grinding was 90 GPa or more.

이 소결체의 내열성을 평가하기 위해서 진공중 1200℃로 30분간 처리하였다. 처리후의 비커스 경도는 처리전과 전혀 변하지 않았다. 도 2에, 얻어진 소결체의 X선회절 도형을 나타낸다. 도 2 (a)는 열처리 전, 도 2 (b)는 1200℃, 30분간, 진공중 열처리후이다. 도 2 (a)에 나타나는 결과로부터 명확한 것처럼, 비(非) 다이아몬드 탄소의 회절선의 위치는 흑연의 (002)의 회절선보다 고각측(高角側)의 d=3.26∼3.19의 위치에 폭넓은 회절선으로 관측되어 다이아몬드와 아주 약간의 비 다이아몬드 탄소(도면 중 ●로 나타냈다)가 확인되지만, 도 2 (b)의 결과로부터 명확한 것처럼, 이 회절선의 위치도 강도(Intensity)도 전혀 변화는 인지할 수 없고, 비 다이아몬드 탄소의 양은 열처리후도 전혀 변화하지 않는다. 도 3에 나타낸 것처럼,소결체의 파면의 전자현미경에 의한 조직관찰의 결과, 평균 입경 80nm와 미세 입자로 이루어진 소결체인 것이 분명해졌다.In order to evaluate the heat resistance of this sintered compact, it processed for 30 minutes at 1200 degreeC in vacuum. Vickers hardness after treatment did not change at all before treatment. The X-ray diffraction figure of the obtained sintered compact is shown in FIG. Figure 2 (a) is before the heat treatment, Figure 2 (b) is 1200 ℃, 30 minutes, after the vacuum heat treatment. As apparent from the results shown in Fig. 2 (a), the diffraction line of non-diamond carbon has a broad diffraction line at a position d = 3.26 to 3.19 on the high angle side of the diffraction line of (002) of graphite. It is observed that the diamond and very little non-diamond carbon (indicated by ● in the figure) are confirmed, but as is clear from the results of FIG. 2 (b), neither the position nor the intensity of this diffraction line is recognized at all. However, the amount of non-diamond carbon does not change at all even after heat treatment. As shown in Fig. 3, as a result of the structure observation by the electron microscope of the wavefront of the sintered body, it became clear that the sintered body was composed of an average particle diameter of 80 nm and fine particles.

(비교례 1)(Comparative Example 1)

소결온도를 2000℃로 한 다른 것은 실시례 1과 동일한 방법으로 소결하였다.얻어진 소결체는 연삭저항이 낮고, 비커스 경도의 평균은 50GPa이었다.Others having a sintering temperature of 2000 ° C. were sintered in the same manner as in Example 1. The obtained sintered body had low grinding resistance and an average of Vickers hardness was 50 GPa.

(실시례 2)(Example 2)

평균 입경 200nm의 합성 다이아몬드 분말을 출발물질로 하여, 소결온도를 2300℃로 한 다른 것은 실시례 1과 동일한 방법으로 소결하였다. 얻어진 소결체는 연삭저항이 극히 높고, 비커스 경도의 평균은 85GPa 이상으로 상당히 고경도이었다.Using a synthetic diamond powder having an average particle diameter of 200 nm as a starting material, the other one having a sintering temperature of 2300 ° C. was sintered in the same manner as in Example 1. The obtained sintered compact was extremely high in grinding resistance, and the average of Vickers hardness was 85 Gpa or more, and was quite hard.

(비교례 2)(Comparative Example 2)

평균 입경 300nm의 합성 다이아몬드 분말을 출발 물질로 한 다른 것은, 실시례 2와 동일한 방법으로 소결하였다. 얻어진 소결체는 층상(層狀) 균열이 인지되고, 그 연삭저항은 실시례 2의 소결체와 비교하여 현저하게 낮은 것이었다. 평균 입경을 크게하면 고경도 다이아몬드 소결체를 합성하는 것은 어렵다.Others having a synthetic diamond powder having an average particle diameter of 300 nm as a starting material were sintered in the same manner as in Example 2. The obtained sintered compact had a layered crack recognized, and the grinding resistance was remarkably low compared with the sintered compact of Example 2. When the average particle diameter is increased, it is difficult to synthesize a high hardness diamond sintered body.

본 발명의 다이아몬드 소결체는 우수한 내열성과 내마모성을 갖고, 고경도이며, 예를 들면,고 Si-Al 합금등의 난삭(難削) 재료의 마무리 절삭, 금속ㆍ합금의 초정밀 가공, 선긋기 다이스 등에 적용한 경우, 우수한 절삭성능이나 선긋기 성능을 발휘한다. 나아가서는 석유 굴착용 오일 비트나 자동차용 특수부품의 고속절삭에 적합한 충분한 내열성을 갖는다. 또한, 비 다이아몬드 탄소로 이루어진 생성물이 복합되어 소결체에 전기 전도성이 부여되어 있기 때문에 소결체의 절단가공에 방전가공이 적용가능해지고, 가공 비용의 절감을 도모하는 것이 가능해진다.The diamond sintered body of the present invention has excellent heat resistance and abrasion resistance, and has high hardness. For example, when the diamond sintered body is applied to finish cutting of a difficult material such as a high Si-Al alloy, ultra-precision machining of metals or alloys, and drawing dies, etc. Excellent cutting performance and line drawing performance. Furthermore, it has sufficient heat resistance suitable for high speed cutting of oil drilling oil bits or special parts for automobiles. In addition, since a product made of non-diamond carbon is combined to impart electrical conductivity to the sintered body, the electric discharge machining can be applied to the cutting process of the sintered body, and the processing cost can be reduced.

또한, 방전가공에 더하여 레이저 가공, 연삭 및 연마가공에 의해 다양한 형상을 부여하는 것이 가능한 소결체이기 때문에 종래의 다이아몬드 소결체에 없는 반짝임과 광택을 가지는 귀금속용 블랙 다이아몬드로서 이용이 기대된다.In addition, since it is a sintered body which can be given various shapes by laser processing, grinding and polishing processing in addition to electric discharge machining, it is expected to be used as a black diamond for precious metals having shiny and gloss which is not present in conventional diamond sintered bodies.

Claims (2)

평균 입경이 200nm 이하인 초미립 합성 다이아몬드 분말의 소결체로 되고, 그 소결체는 소결조제없이 소결되어 다이아몬드 결정으로 생성한 미량의 비 다이아몬드 탄소로 되는 복합 소결체이고, 비커스(Vickers) 경도가 85GPa 이상인 것을 특징으로 하는 내열성 다이아몬드 복합 소결체.It is a sintered body of ultra-fine synthetic diamond powder having an average particle diameter of 200 nm or less, and the sintered body is a composite sintered body made of a trace amount of non-diamond carbon produced by diamond crystals without sintering aid, and Vickers hardness is 85 GPa or more. Heat-resistant diamond composite sintered compact. 평균 입경이 200nm 이하인 합성 다이아몬드 분말을 Ta 또는 Mo제 캡슐에 봉입하고, 그 캡슐을 초고압 합성장치를 이용하여 다이아몬드의 열역학적 안정조건의 2100℃ 이상의 온도, 7.7GPa 이상의 압력하에서 가열 가압하는 것에 의해 다이아몬드 분말을 소결하는 것을 특징으로 하는 청구항 1 기재의 내열성 다이아몬드 복합소결체의 제조법.Synthetic diamond powder having an average particle diameter of 200 nm or less is enclosed in a capsule made of Ta or Mo, and the capsule is heated and pressurized under a pressure of 7.7 GPa or higher at a temperature of 2100 ° C. or higher under conditions of thermodynamic stability of diamond using an ultrahigh pressure synthesizer. Sintering the manufacturing method of the heat resistant diamond composite sinter of Claim 1 characterized by the above-mentioned.
KR1020057010387A 2002-12-18 2003-11-19 Heat-resistant composite diamond sintered product and method for production thereof KR100642841B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPJP-P-2002-00367354 2002-12-18
JP2002367354A JP3877677B2 (en) 2002-12-18 2002-12-18 Heat resistant diamond composite sintered body and its manufacturing method

Publications (2)

Publication Number Publication Date
KR20050088415A true KR20050088415A (en) 2005-09-06
KR100642841B1 KR100642841B1 (en) 2006-11-10

Family

ID=32588341

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020057010387A KR100642841B1 (en) 2002-12-18 2003-11-19 Heat-resistant composite diamond sintered product and method for production thereof

Country Status (7)

Country Link
US (1) US20070009374A1 (en)
JP (1) JP3877677B2 (en)
KR (1) KR100642841B1 (en)
CN (1) CN1300053C (en)
RU (1) RU2312844C2 (en)
WO (1) WO2004054943A1 (en)
ZA (1) ZA200505162B (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070056778A1 (en) * 2005-09-15 2007-03-15 Steven Webb Sintered polycrystalline diamond material with extremely fine microstructures
US9403137B2 (en) 2005-09-15 2016-08-02 Diamond Innovations, Inc. Polycrystalline diamond material with extremely fine microstructures
US8490721B2 (en) 2009-06-02 2013-07-23 Element Six Abrasives S.A. Polycrystalline diamond
GB0913304D0 (en) * 2009-07-31 2009-09-02 Element Six Ltd Polycrystalline diamond composite compact elements and tools incorporating same
JP5500508B2 (en) * 2010-03-31 2014-05-21 三菱マテリアル株式会社 Manufacturing method of fine polycrystalline diamond sintered body
JP6390152B2 (en) * 2014-04-30 2018-09-19 住友電気工業株式会社 Composite sintered body
JP6390151B2 (en) * 2014-04-30 2018-09-19 住友電気工業株式会社 Composite sintered body
CN108348970B (en) 2015-10-30 2020-12-25 住友电气工业株式会社 Wear-resistant tool
JP6112177B1 (en) * 2015-10-30 2017-04-12 住友電気工業株式会社 Composite polycrystal and method for producing the same
US10287824B2 (en) 2016-03-04 2019-05-14 Baker Hughes Incorporated Methods of forming polycrystalline diamond
CN107402196B (en) * 2016-05-18 2020-09-25 株式会社岛津制作所 X-ray fluorescence analysis instrument and sample container therefor
CN114315355A (en) * 2016-10-07 2022-04-12 住友电气工业株式会社 Method for producing diamond polycrystal, cutting tool, wear-resistant tool, and grinding tool
US11396688B2 (en) 2017-05-12 2022-07-26 Baker Hughes Holdings Llc Cutting elements, and related structures and earth-boring tools
US11292750B2 (en) 2017-05-12 2022-04-05 Baker Hughes Holdings Llc Cutting elements and structures
US10870606B2 (en) 2018-03-05 2020-12-22 Wenhui Jiang Polycrystalline diamond comprising nanostructured polycrystalline diamond particles and method of making the same
US11536091B2 (en) 2018-05-30 2022-12-27 Baker Hughes Holding LLC Cutting elements, and related earth-boring tools and methods

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3816085A (en) * 1971-01-29 1974-06-11 Megadiamond Corp Diamond-nondiamond carbon polycrystalline composites
JPH02668A (en) * 1987-12-15 1990-01-05 Konica Corp Imidazole dye excellent in spectral absorption characteristic and the like
JP2764044B2 (en) * 1988-07-18 1998-06-11 日本油脂株式会社 Diamond sintered body composed of ultrafine particles and method for producing the same
JP2590413B2 (en) * 1989-11-17 1997-03-12 科学技術庁無機材質研究所長 Method for producing translucent high-purity cubic boron nitride sintered body
JPH04261703A (en) * 1991-02-18 1992-09-17 Sumitomo Electric Ind Ltd Polycrystal diamond cutting tool
US5173091A (en) * 1991-06-04 1992-12-22 General Electric Company Chemically bonded adherent coating for abrasive compacts and method for making same
US5456735A (en) * 1991-07-12 1995-10-10 Norton Company Method of abrading with boron suboxide (BxO) and the boron suboxide (BxO) articles and composition used
US5366526A (en) * 1991-07-12 1994-11-22 Norton Company Method of abrading with boron suboxide (BxO) and the boron suboxide (BxO) articles and composition used
JP2000054007A (en) * 1998-07-31 2000-02-22 Sumitomo Electric Ind Ltd Diamond-sintered body and its production
CA2416522A1 (en) * 2000-07-21 2003-01-21 Hiroshi Yamanaka Single crystal fine diamond powder having narrow particle size distribution and method for production thereof
DE60111859T2 (en) * 2000-08-02 2006-05-24 Element Six (Pty) Ltd. SCHLEIFMITTEL
JP3550587B2 (en) * 2000-12-18 2004-08-04 独立行政法人 科学技術振興機構 Method for manufacturing fine diamond sintered body
US6733087B2 (en) * 2002-08-10 2004-05-11 David R. Hall Pick for disintegrating natural and man-made materials
JP3992595B2 (en) * 2002-11-15 2007-10-17 独立行政法人科学技術振興機構 Manufacturing method of high purity, high hardness ultrafine diamond sintered body
US20050019114A1 (en) * 2003-07-25 2005-01-27 Chien-Min Sung Nanodiamond PCD and methods of forming
US9227166B2 (en) * 2005-07-21 2016-01-05 Sumitomo Electric Industries, Ltd. High-hardness polycrystalline diamond and method of preparing the same
US7585342B2 (en) * 2006-07-28 2009-09-08 Adico, Asia Polydiamond Company, Ltd. Polycrystalline superabrasive composite tools and methods of forming the same

Also Published As

Publication number Publication date
ZA200505162B (en) 2007-02-28
CN1726174A (en) 2006-01-25
US20070009374A1 (en) 2007-01-11
KR100642841B1 (en) 2006-11-10
CN1300053C (en) 2007-02-14
JP3877677B2 (en) 2007-02-07
RU2005121920A (en) 2006-01-20
JP2004196595A (en) 2004-07-15
RU2312844C2 (en) 2007-12-20
WO2004054943A1 (en) 2004-07-01

Similar Documents

Publication Publication Date Title
KR100642841B1 (en) Heat-resistant composite diamond sintered product and method for production thereof
EP1341865B1 (en) Method for the production of polycrystalline abrasive grit
KR100402986B1 (en) Manufacturing method of compact for polishing with improved properties
JP5268908B2 (en) Abrasive compact
JP2004505786A (en) Manufacturing method of polishing products containing diamond
CN110342943B (en) Method for synthesizing binderless polycrystalline boron nitride block under industrial pressure and application thereof
KR20050072753A (en) Method for producing a sintered, supported polycrystalline diamond compact
EP0604073A2 (en) Production of multicrystalline cubic boron nitride
JPWO2005065809A1 (en) High hardness conductive diamond polycrystal and method for producing the same
SE415882B (en) HARD METAL COMPOSITION BODY, IN PARTICULAR FOR GRINDING OR CUTTING TOOLS, INCLUDING CRYSTIC BORNITRID CRYSTALS AND HARD METAL MATERIALS AND PROCEDURE FOR MAKING THE COMPOSITE BODY
JP2019521941A (en) Sintered polycrystalline cubic boron nitride material
JPH0443874B2 (en)
KR100642840B1 (en) Superfine particulate diamond sintered product of high purity and high hardness and method for production thereof
JP7188726B2 (en) Diamond-based composite material using boron-based binder, method for producing the same, and tool element using the same
US9573249B2 (en) Boron nitride composites
JP3260790B2 (en) Cubic boron nitride / cubic boron nitride composite and method for producing the same
CN114728853B (en) Polycrystalline diamond with iron-containing binder
Sung Handbook of Industrial Diamonds: Volume 1, Superabrasives and Diamond Syntheses
JP2672681B2 (en) Method for producing cubic boron nitride
WO2012118393A1 (en) Method for producing a polycrystalline composite
KR20210057737A (en) Cubic boron nitride particle population with highly etched particle surface and high toughness index
JPH0116894B2 (en)
JPH01131068A (en) Production of cubic boron nitride calcined compact
JPH0699189B2 (en) High hardness fine crystal sintered body and manufacturing method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20111025

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20121019

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee