JPH0699189B2 - High hardness fine crystal sintered body and manufacturing method thereof - Google Patents

High hardness fine crystal sintered body and manufacturing method thereof

Info

Publication number
JPH0699189B2
JPH0699189B2 JP62292476A JP29247687A JPH0699189B2 JP H0699189 B2 JPH0699189 B2 JP H0699189B2 JP 62292476 A JP62292476 A JP 62292476A JP 29247687 A JP29247687 A JP 29247687A JP H0699189 B2 JPH0699189 B2 JP H0699189B2
Authority
JP
Japan
Prior art keywords
diamond
sintered body
less
particle size
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62292476A
Other languages
Japanese (ja)
Other versions
JPH01133977A (en
Inventor
学 宮本
浩二郎 北畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP62292476A priority Critical patent/JPH0699189B2/en
Publication of JPH01133977A publication Critical patent/JPH01133977A/en
Publication of JPH0699189B2 publication Critical patent/JPH0699189B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、切削用工具の刃先,ドレッサー,ダイス等の
耐摩耗性部品として有用な高硬度微細結晶焼結体及びそ
の製造方法に関するものである。
Description: TECHNICAL FIELD The present invention relates to a high hardness fine crystal sintered body useful as a wear-resistant component such as a cutting edge of a cutting tool, a dresser, a die, and a method for producing the same. is there.

[従来の技術] ダイヤモンド焼結体は高硬度で且つ耐摩耗性に富んでい
るので、従来から切削用工具の刃先や線引ダイス等の素
材として使用されてきたが、天然ダイヤモンド単石工具
と比較して加工物の仕上面粗度が粗く鏡面と呼ばれ得る
程の緻密な面は得られないという欠点を有していた。即
ち市販のダイヤモンド焼結体においては構成ダイヤモン
ド粒子が2〜20μm程度であり、この焼結体を用いた切
削工具の刃先には結晶粒子の大きさにほぼ対応する凹凸
が認められ、天然ダイヤモンド単石工具の様な鋭い刃先
でないことがその主な原因であると考えられている(特
公昭58−32224号参照)。
[Prior Art] Since a diamond sintered body has a high hardness and abundant wear resistance, it has been conventionally used as a material for the cutting edge of a cutting tool or a wire drawing die. In comparison, there was a drawback that the finished surface of the processed product was rough and a dense surface that could be called a mirror surface could not be obtained. That is, in the commercially available diamond sintered body, the constituent diamond particles are about 2 to 20 μm, and the cutting edge using this sintered body has irregularities almost corresponding to the size of the crystal particles. It is believed that the main cause is that it is not a sharp cutting edge like a stone tool (see Japanese Examined Patent Publication No. 58-32224).

上記不都合を回避する為には焼結体を構成するダイヤモ
ンド結晶粒子を粒径1μm以下の極めて微細なものとす
ればよいことは容易に着想し得ることである。ところが
従来の一般的な高温高圧法を採用しても希望する焼結体
を製造することは不可能であった。即ち本発明者らが実
験によって確認したところでは、原料ダイヤモンド粉末
として粒径1μm以下の微細粒子を用い、Co板を積層し
て超高圧高温発生装置によって60キロバール,1450℃の
条件で焼結しても、ダイヤモンドの微細粒子は約500μ
m程度の大きさの大粒子に成長するだけであって、希望
する焼結体を得ることはできなかった。これに対し原料
ダイヤモンド粉末として粒径2μm以上のものを用いれ
ば粒成長は認められず、焼結体を得ることができた。こ
の様なことが市販ダイヤモンド焼結体の構成ダイヤモン
ド粒子の最も微細なものが粒径2μm程度となる理由と
思われる。
In order to avoid the above-mentioned inconvenience, it is easily conceivable that the diamond crystal particles forming the sintered body should be extremely fine with a particle size of 1 μm or less. However, it has been impossible to produce a desired sintered body by using the conventional general high temperature and high pressure method. That is, the inventors of the present invention have confirmed by experiments that fine diamond particles having a particle size of 1 μm or less are used as raw material diamond powder, Co plates are laminated and sintered by an ultrahigh pressure and high temperature generator at 60 kbar and 1450 ° C. However, fine diamond particles are about 500μ
However, the desired sintered compact could not be obtained because it only grew to large particles having a size of about m. On the other hand, when a raw material diamond powder having a particle size of 2 μm or more was used, no grain growth was observed and a sintered body could be obtained. This seems to be the reason why the finest diamond particles constituting the commercially available diamond sintered body have a particle size of about 2 μm.

粒径1μm以下のダイヤモンド粉末を原料として焼結時
の粒成長を抑制する技術は、例えば前述の特公昭58−32
224号公報に見られる様に既に開発されている。この技
術は粒径1μm以下のダイヤモンド粒子の他に粒径1μ
m以下の周期律表4a,5a,6a族金属の炭化物,窒化物,硼
化物若しくはこれらの混合物又は相互固溶体化合物等を
も原料として混合し、これらによって微細ダイヤモンド
粒子の粒成長を抑制しようとするものである。
A technique for suppressing grain growth during sintering using diamond powder having a grain size of 1 μm or less is described in, for example, Japanese Patent Publication No. 58-32.
It has already been developed as seen in Japanese Patent No. 224. In addition to diamond particles with a particle size of 1 μm or less, this technology has a particle size of 1 μm
Attempts to suppress grain growth of fine diamond particles by mixing carbides, nitrides, borides or mixtures thereof of metals of groups 4a, 5a, 6a of the periodic table of m or less as raw materials, and by using these as raw materials It is a thing.

しかしながら本発明者らが上記技術内容に従って実際に
焼結体を試作して検討したところ、上記化合物の添加に
よるダイヤモンド粒子の粒成長抑制効果は確かに認めら
れたものの、焼結体の硬度は通常のダイヤモンド焼結体
と比較して大幅な低下を示すことが判明した。これは上
記化合物の硬度がダイヤモンドの硬度よりも遥かに小さ
いことによるものと考えられる。そればかりでなく、上
記技術では粉末状の原料を使用しているので原料粉末の
表面にガスが吸着され易く、従って焼結が阻害されて未
焼結部分が残ってしまうという問題もあった。
However, the inventors of the present invention actually manufactured a sintered body according to the above technical contents and studied it, and although the grain growth suppressing effect of the diamond particles by the addition of the above compound was certainly confirmed, the hardness of the sintered body is usually It was revealed that the diamond sintered body showed a significant decrease as compared with the diamond sintered body. It is considered that this is because the hardness of the above compound is much smaller than that of diamond. Not only that, but since the above-mentioned technique uses a powdery raw material, there is a problem that gas is easily adsorbed on the surface of the raw material powder, and thus sintering is hindered and an unsintered portion remains.

[発明が解決しようとする問題点] 本発明はこうした従来技術がもつ問題点を解決する為に
なされたものであって、その目的とするところは、切削
用工具の刃先や線引ダイス等に用いられた場合に優れた
仕上面粗度が得られる様な高硬度微細結晶焼結体及びそ
の製造方法を提供する点にある。
[Problems to be Solved by the Invention] The present invention has been made in order to solve the problems of the conventional techniques, and its purpose is to provide a cutting edge of a cutting tool, a wire drawing die, or the like. It is another object of the present invention to provide a high-hardness fine crystal sintered body and a method for producing the same, which can give an excellent finished surface roughness when used.

[問題点を解決する為の手段] 本発明に係る高硬度微細結晶焼結体とは、粒径1μm以
下のダイヤモンド:20〜93体積%、粒径1μm以下の高
圧相型窒化硼素:75〜5体積%、ダイヤモンド合成用金
属触媒(但し鉄族金属を5重量%以上含む):30体積%
未満から成り、組織上ダイヤモンドが直結々合相を形成
している点に要旨を有するものである。
[Means for Solving Problems] The high hardness fine crystal sintered body according to the present invention means a diamond having a grain size of 1 μm or less: 20 to 93% by volume, and a high pressure phase type boron nitride having a grain size of 1 μm or less: 75 to 5% by volume, metal catalyst for diamond synthesis (however, containing 5% by weight or more of iron group metal): 30% by volume
It is composed of less than the following, and has a gist in that the diamond forms a direct bond with the structure.

又本発明に係る高硬度微細結晶焼結体の製造方法とは、
粒径1μm以下のダイヤモンド粉末と粒径1μm以下の
高圧相型窒化硼素粉末を含有する樹脂由来非晶質炭素
に、鉄族金属を5重量%以上含む金属又は合金を接触さ
せ、1250℃以上の温度で且つ熱力学的なダイヤモンド安
定領域の圧力で加圧焼結する点に要旨を有するものであ
る。
Further, the manufacturing method of the high hardness fine crystal sintered body according to the present invention,
Resin-derived amorphous carbon containing diamond powder with a particle size of 1 μm or less and high-pressure phase boron nitride powder with a particle size of 1 μm or less is contacted with a metal or alloy containing 5 wt% or more of an iron group metal, and at 1250 ° C. or more. The gist of the present invention lies in that pressure sintering is performed at a temperature and a pressure in a thermodynamically stable diamond region.

[作用] 本発明者らは上記目的を達成する為鋭意研究を重ねた結
果、ダイヤモンドに次ぐ硬度を有する高圧相型窒化硼素
を、粒径1μm以下のダイヤモンド粉末中に分散させて
高温・高圧下で焼結させることによって、ダイヤモンド
における焼結時の粒成長を抑制しつつ高硬度の微細結晶
焼結体が実現できることを見出し、茲に本発明を完成し
た。
[Operation] The inventors of the present invention have conducted extensive studies to achieve the above object. As a result, high-pressure phase type boron nitride having hardness second to diamond is dispersed in diamond powder having a particle size of 1 μm or less under high temperature and high pressure. It was found that a high-hardness fine crystal sintered body can be realized by suppressing the grain growth of diamond at the time of sintering by sintering with, and the present invention was completed.

又上述した如く従来技術では粉末状の原料を焼結してい
たのでガス吸着等の不都合が発生していたのであるが、
本発明者らはこの点をも考慮し、ダイヤモンド粉末と高
圧相型窒化硼素粉末とを含有させた樹脂由来非晶質炭素
を原料とすることによって、上記の様な不都合をも解消
し得た。
Further, as described above, in the prior art, powdery raw materials were sintered, so that inconveniences such as gas adsorption occurred.
In view of this point, the present inventors were able to eliminate the above-mentioned disadvantages by using a resin-derived amorphous carbon containing a diamond powder and a high-pressure phase boron nitride powder as a raw material. .

即ち樹脂由来非晶質炭素は後に詳述する如く液体状モノ
マーから製造できるので、高圧相型窒化硼素粉末及びダ
イヤモンド粉末を適度に分散でき、従来技術で述べたガ
ス吸着等の不都合を発生することなく、希望する高硬度
微細結晶焼結体が実現できたのである。
That is, since the resin-derived amorphous carbon can be produced from a liquid monomer as described in detail later, it is possible to appropriately disperse the high-pressure phase boron nitride powder and the diamond powder, and to cause the disadvantages such as gas adsorption described in the prior art. Instead, the desired high-hardness fine crystal sintered body was realized.

樹脂由来非晶質炭素はグラッシーカーボンとも呼ばれて
おり、代表例としてはフラン樹脂由来非晶質炭素が挙げ
られ、これはフルフリルアルコールに酸触媒を添加して
脱水縮合し、得られたフラン樹脂を炭化処理したもので
ある。従って本発明において樹脂由来非晶質炭素として
フラン樹脂由来非晶質炭素を用いる場合には、フルフリ
ルアルコール中に原料粉末を混合分散させてから上記処
理を行なうことによって、所定量の原料粉末を含有した
固形のフラン樹脂由来非晶質炭素が得られる。こうして
得られた原料粉末含有樹脂由来非晶質炭素を高温真空下
で脱ガス処理した後(従来技術ではこの後が問題とな
る)、金属触媒を積層又は同心円状に配置して接触さ
せ、高温・高圧下で焼結させることによって、前記樹脂
由来非晶質炭素自体がダイヤモンドに変換されると共
に、全体としてダイヤモンドを直結々合相とする高硬度
の焼結体が得られる。
Resin-derived amorphous carbon is also called glassy carbon, and a typical example is furan resin-derived amorphous carbon, which is a furan obtained by dehydration condensation of furfuryl alcohol with an acid catalyst. The resin is carbonized. Therefore, when furan resin-derived amorphous carbon is used as the resin-derived amorphous carbon in the present invention, a predetermined amount of the raw material powder is obtained by mixing and dispersing the raw material powder in furfuryl alcohol and then performing the above treatment. A solid furan resin-derived amorphous carbon that is contained is obtained. The raw material powder-containing resin-derived amorphous carbon thus obtained is subjected to a degassing treatment under high temperature vacuum (this is a problem in the prior art), and then the metal catalysts are laminated or concentrically arranged and brought into contact with each other. -By sintering under high pressure, the above-mentioned resin-derived amorphous carbon itself is converted into diamond, and at the same time, a high-hardness sintered body in which the diamond is directly connected to the solid phase is obtained.

原料粉末を分散含有した樹脂由来非晶質炭素は緻密な固
形物であり、一度脱ガス処理した後はガス成分の吸着は
少なく、しかも原料粉末をカーボンで均一に被覆した成
形体を形成する。
The resin-derived amorphous carbon in which the raw material powder is dispersed and contained is a dense solid substance, and once degassed, the gas component is less adsorbed, and moreover, the raw material powder is uniformly coated with carbon to form a compact.

上記発明では樹脂由来非晶質炭素の代表例としてフラン
樹脂を炭化処理したフラン樹脂由来非晶質炭素を示した
が、本発明で用いる樹脂由来非晶質炭素はフラン樹脂由
来のものに限らず、その他フェノールホルムアルデヒド
樹脂,アセトン・フルフラール共重合樹脂,フルフリル
アルコール・フェノール共重合樹脂,尿素樹脂,メラミ
ン樹脂,キシレン樹脂,トルエン樹脂,グアナミン樹脂
等の熱硬化性樹脂由来のものであっても同様に処理で
き、樹脂の種類に限定されない。
In the above invention, the furan resin-derived amorphous carbon obtained by carbonizing the furan resin is shown as a representative example of the resin-derived amorphous carbon, but the resin-derived amorphous carbon used in the present invention is not limited to the furan resin-derived amorphous carbon. , Other phenol formaldehyde resin, acetone-furfural copolymer resin, furfuryl alcohol-phenol copolymer resin, urea resin, melamine resin, xylene resin, toluene resin, guanamine resin, etc. Can be processed into any type and is not limited to the type of resin.

希望する複合焼結体を得る為の焼結温度は1250℃以上と
する必要があり、1250℃未満では焼結性が劣る。又焼結
の際の圧力としては当然のことながら、熱力学的なダイ
ヤモンド安定領域の圧力とする必要があり、約40キロバ
ール以上の圧力が必要である。更に焼結工程で用いる金
属触媒としては鉄,、コバルト,ニッケル等の鉄族金属
であることが必要であり、鉄族金属のいずれかを5重量
%以上含有する合金であれば十分な触媒作用が発揮され
る。しかしながら鉄族金属が5重量%未満であると触媒
作用が発揮されず、焼結性が低下する。
The sintering temperature for obtaining the desired composite sintered body must be 1250 ° C or higher, and if it is lower than 1250 ° C, the sinterability is poor. As a matter of course, the pressure during sintering needs to be a pressure in the thermodynamic diamond stable region, and a pressure of about 40 kbar or more is required. Further, the metal catalyst used in the sintering step needs to be an iron group metal such as iron, cobalt, nickel, etc., and an alloy containing at least 5% by weight of any iron group metal has sufficient catalytic action. Is demonstrated. However, when the iron group metal is less than 5% by weight, the catalytic action is not exhibited and the sinterability is deteriorated.

尚本発明における高圧相型窒化硼素とは、立方晶型窒化
硼素とウルツ鉱型窒化硼素の2種類を包含する意味であ
り、従って本発明においてはどちらか一方を単独で使用
することもあり得るし、両方を混合して使用することも
あり得る。但し、ウルツ鉱型窒化硼素粉末は粒径1μm
以下のものが一般であるのでそのまま使用すればよい
が、立方晶型窒化硼素粉末は粗いものから粒径1μm以
下の微細なものまであるので、本発明において立方晶型
窒化硼素を使用する際には粒径1μm以下のものを選定
して使用する必要がある。
The high-pressure phase type boron nitride in the present invention is meant to include two types of cubic type boron nitride and wurtzite type boron nitride, and therefore either one may be used alone in the present invention. However, it is also possible to mix and use both. However, the particle size of wurtzite boron nitride powder is 1 μm.
The following are general and can be used as they are. However, cubic boron nitride powders range from coarse ones to fine ones having a particle size of 1 μm or less. Therefore, when using cubic boron nitride in the present invention, It is necessary to select and use those having a particle size of 1 μm or less.

本発明に係る焼結体においては、微細ダイヤモンドの含
有量を20〜93体積%とする必要がある。即ちダイヤモン
ドの含有量が93体積%を超えると高圧相型窒化硼素が相
対的に不足し、焼結時のダイヤモンドの粒成長が発生
し、20%未満ではダイヤモンドの焼結性が低下して耐摩
耗性が低下する。又高圧相型窒化硼素の含有量は、75〜
5体積%とする必要がある。これは高圧相型窒化硼素の
含有量が75体積%を超えると耐摩耗性が劣り、5体積%
未満では焼結時のダイヤモンドの粒成長抑制効果が小さ
いからである。
In the sintered body according to the present invention, the content of fine diamond needs to be 20 to 93% by volume. That is, when the content of diamond exceeds 93% by volume, the high-pressure phase boron nitride is relatively insufficient, and the grain growth of diamond occurs during sintering. Abrasion property decreases. The content of high-pressure phase type boron nitride is 75-
It must be 5% by volume. This is because when the content of high-pressure phase type boron nitride exceeds 75% by volume, the wear resistance is inferior and it is 5% by volume.
If it is less than the above, the effect of suppressing the grain growth of diamond during sintering is small.

一方本発明に係る焼結体は上述の如く、その製造段階に
おいて鉄族金属を5%以上含む金属又は合金を金属触媒
として使用するものであるので、得られる焼結体は当該
金属触媒を当然含んだものとなる。この金属触媒の含有
量は原料粉末とフルフリルアルコール等との混合比を調
整することによって適宜設定できるが、その範囲は30体
積%未満とする必要がある。即ちこの含有量が30体積%
以上になると焼結体の粗粒化が発生する。一方この含有
量の下限については特に限定するものではないが、0.5
体積%未満となる様な量であると、触媒作用が低下して
未焼結部が残留するので、0.5体積%以上にするのが良
い。尚金属触媒のより好ましい含有量は3〜15体積%程
度である。
On the other hand, as described above, the sintered body according to the present invention uses a metal or alloy containing 5% or more of iron group metal as a metal catalyst in the manufacturing stage thereof. It will be included. The content of this metal catalyst can be appropriately set by adjusting the mixing ratio of the raw material powder and furfuryl alcohol and the like, but the range must be less than 30% by volume. That is, this content is 30% by volume
When it becomes above, coarsening of the sintered body occurs. On the other hand, the lower limit of this content is not particularly limited, but 0.5
When the amount is less than the volume%, the catalytic action is lowered and the unsintered portion remains, so it is preferable to set the content to 0.5% by volume or more. The more preferable content of the metal catalyst is about 3 to 15% by volume.

以下本発明を実施例によって更に詳細に説明するが、下
記実施例は本発明を限定する性質のものではなく、前・
後記の趣旨に徴して設計変更することはいずれも本発明
の技術的範囲に含まれるものである。
Hereinafter, the present invention will be described in more detail with reference to Examples, but the following Examples are not of a nature limiting the present invention.
Any design changes made within the spirit of the later description are included in the technical scope of the present invention.

[実施例] 粒径1μm以下のダイヤモンド粉末と、粒径1μm以下
の立方晶型窒化硼素粉末(CBN)とを各種割合で十分混
合した混合粉末にフルフリルアルコールを加えて更に混
合し、微量の硝酸を添加した後70℃に加熱して脱水縮合
し、フルフリルアルコールを樹脂化した。これを800℃
で炭化処理し、原料粉末を含有した緻密な固形のフラン
樹脂由来非晶質炭素を得た。
[Examples] Furfuryl alcohol was added to a mixed powder in which diamond powder having a particle size of 1 µm or less and cubic boron nitride powder (CBN) having a particle size of 1 µm or less were sufficiently mixed at various ratios, and further mixed to obtain a trace amount. After adding nitric acid, the mixture was heated to 70 ° C. for dehydration condensation to make furfuryl alcohol into a resin. 800 ° C
To obtain a dense solid furan resin-derived amorphous carbon containing the raw material powder.

得られたフラン樹脂非晶質炭素を直径10mm,厚さ1mmの円
板状に加工し、1×10-5Torr,1450℃の条件で脱ガス処
理を行なった。これらを触媒作用を有する10%Co含有超
硬合金板及び鉄族金属板で挟み、超高圧高温発生装置を
用いて60キロバール,1480℃の条件で焼結を行ない各種
の焼結体No.1〜10を得た。
The obtained furan resin amorphous carbon was processed into a disk shape having a diameter of 10 mm and a thickness of 1 mm, and degassed under the conditions of 1 × 10 −5 Torr and 1450 ° C. These were sandwiched between 10% Co containing cemented carbide plates and iron group metal plates that have catalytic action, and sintered using an ultrahigh pressure and high temperature generator at 60 kbar and 1480 ° C. Got ~ 10.

得られた各焼結体について、構成々分の構成割合、焼結
体組織及びビッカース硬度を調査したところ、下記第1
表に示す結果が得られた。第1表には、原料粉末含有樹
脂由来非晶質炭素の割合についても示した。このときN
o.1〜7の焼結体(実施例)の粒径は、配合原料の粒径
とほとんど代わらず、粒径1μm以下の均質微細結晶体
が得られていた。尚鉄族金属の含有量は原料粉末に加え
るフルフリルアルコール量が多い程多くなった。又焼結
体No.8,10については粗粒化しているのでビッカース硬
度は測定していない。
With respect to each of the obtained sintered bodies, the composition ratio for each constituent, the sintered body structure, and the Vickers hardness were examined, and
The results shown in the table were obtained. Table 1 also shows the ratio of the amorphous carbon derived from the resin containing the raw material powder. At this time N
The particle diameters of the sintered bodies (Examples) of o.1 to 7 were almost the same as the particle diameters of the compounding raw materials, and a homogeneous fine crystal body having a particle diameter of 1 μm or less was obtained. The iron group metal content increased as the amount of furfuryl alcohol added to the raw material powder increased. The sintered bodies Nos. 8 and 10 are coarse-grained, so the Vickers hardness is not measured.

第1図は、No.1の焼結体の破面の結晶組織(酸処理に金
属成分除去後のもの)を示す図面代用顕微鏡写真である
が、ダイヤモンド粒子同士が直結々合相を形成している
ことがわかる。これは、樹脂由来非晶質炭素から交換し
たダイヤモンド粒子が結合相の形成に寄与したためと考
えられる。
Fig. 1 is a drawing-substituting micrograph showing the crystal structure of the fracture surface of the No. 1 sintered body (after the removal of metal components by acid treatment). The diamond particles form a direct bond and a coalescence phase. You can see that It is considered that this is because the diamond particles exchanged from the resin-derived amorphous carbon contributed to the formation of the binder phase.

次に本発明に係る焼結体No.1〜7を切断して切削チープ
を作成し、被削材として直径80mmの丸棒のA1−12%Si合
金に対して、切削速度300m/分,送り0.02mm/回転,切込
み0.05mmの条件で切削試験を行なった。その結果、被削
材の加工面の粗度は、天然ダイヤモンド単石工具を用い
て同条件で切削したものと殆んど差が認められず、鏡面
に近い仕上げ面が得られた。
Next, the sintered bodies Nos. 1 to 7 according to the present invention were cut to form a cutting chip, and a cutting speed of 300 m / min was used for a round bar A1-12% Si alloy having a diameter of 80 mm as a work material. A cutting test was conducted under the conditions of feed 0.02 mm / revolution and depth of cut 0.05 mm. As a result, the roughness of the machined surface of the work material was almost the same as that obtained by cutting under the same conditions using a natural diamond monolithic tool, and a finished surface close to a mirror surface was obtained.

[発明の効果] 以上述べた如く本発明によれば、既述の構成を採用する
ことによって、優れた仕上面粗度が得られる高硬度の加
工々具等に適した微細結晶焼結体が実現できた。
[Advantages of the Invention] As described above, according to the present invention, by adopting the above-described structure, a fine crystal sintered body suitable for a high hardness processing tool or the like that can obtain an excellent finished surface roughness can be provided. It was realized.

【図面の簡単な説明】[Brief description of drawings]

第1図はNo.1の焼結体の破面の結晶組織を示す図面代用
顕微鏡写真である。
FIG. 1 is a drawing-substituting micrograph showing the crystal structure of the fracture surface of the No. 1 sintered body.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】粒径1μm以下のダイヤモンド:20〜93体
積%、粒径1μm以下の高圧相型窒化硼素:75〜5体積
%、ダイヤモンド合成用金属触媒(但し鉄族金属を5重
量%以上含む):30体積%未満から成り、組織上ダイヤ
モンドが直結々合相を形成していることを特徴とする高
硬度微細結晶焼結体。
1. A diamond having a particle size of 1 μm or less: 20 to 93% by volume, a high-pressure phase type boron nitride having a particle size of 1 μm or less: 75 to 5% by volume, a metal catalyst for synthesizing diamond (however, an iron group metal is 5% by weight or more). Including): less than 30% by volume, a high hardness fine crystal sintered body, characterized in that the diamond directly forms a combined phase on the structure.
【請求項2】粒径1μm以下のダイヤモンド粉末と粒径
1μm以下の高圧相型窒化硼素粉末を含有させた樹脂由
来非晶質炭素に、鉄族金属を5重量%以上含む金属又は
合金を接触させ、1250℃以上の温度で且つ熱力学的なダ
イヤモンド安定領域の圧力で加圧焼結することを特徴と
する高硬度微細結晶焼結体の製造方法。
2. A metal or alloy containing 5 wt% or more of iron group metal is contacted with resin-derived amorphous carbon containing diamond powder with a particle size of 1 μm or less and high-pressure phase boron nitride powder with a particle size of 1 μm or less. And a pressure-sintering at a temperature of 1250 ° C. or higher and in a thermodynamically stable diamond region, for producing a high-hardness fine crystal sintered body.
JP62292476A 1987-11-18 1987-11-18 High hardness fine crystal sintered body and manufacturing method thereof Expired - Fee Related JPH0699189B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62292476A JPH0699189B2 (en) 1987-11-18 1987-11-18 High hardness fine crystal sintered body and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62292476A JPH0699189B2 (en) 1987-11-18 1987-11-18 High hardness fine crystal sintered body and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH01133977A JPH01133977A (en) 1989-05-26
JPH0699189B2 true JPH0699189B2 (en) 1994-12-07

Family

ID=17782306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62292476A Expired - Fee Related JPH0699189B2 (en) 1987-11-18 1987-11-18 High hardness fine crystal sintered body and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH0699189B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5911551A (en) * 1982-07-12 1984-01-21 Toshiba Corp Optical information storage medium

Also Published As

Publication number Publication date
JPH01133977A (en) 1989-05-26

Similar Documents

Publication Publication Date Title
JP5680567B2 (en) Sintered body
EP1309732B1 (en) Method of producing an abrasive product containing diamond
EP1313887B1 (en) Method of producing an abrasive product containing cubic boron nitride
JP5268908B2 (en) Abrasive compact
JP2004160637A (en) Sintered compact used for machining chemically reactive material
JPH0713279B2 (en) High-pressure phase boron nitride sintered body for cutting tool and manufacturing method thereof
KR20050072753A (en) Method for producing a sintered, supported polycrystalline diamond compact
CN108115142B (en) Diamond compact and preparation method thereof
JP2019521941A (en) Sintered polycrystalline cubic boron nitride material
WO2004054943A1 (en) Heat-resistant composite diamond sintered product and method for production thereof
JPH0564691B2 (en)
JP2747358B2 (en) High hardness microcrystalline sintered body and method for producing the same
JP2003095743A (en) Diamond sintered compact and method of manufacturing the same
JPH05132704A (en) High-hardness microcrystal sintered compact and production thereof
JPH0699189B2 (en) High hardness fine crystal sintered body and manufacturing method thereof
JP5008789B2 (en) Super hard sintered body
JP3255750B2 (en) Method for producing diamond-like sintered body
JPH0269354A (en) Sintered diamond body and production thereof
KR860002131B1 (en) Sintered compact for use in a tool
JPH05132703A (en) High-hardness compound sintered compact
JPS5855111B2 (en) High hardness sintered body for tools and its manufacturing method
JPH01133978A (en) High hardness combined sintered body having good workability and its manufacture
JPS6310119B2 (en)
JPH06102575B2 (en) High hardness composite sintered body
JPS6159392B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees