JP3550587B2 - Method for manufacturing fine diamond sintered body - Google Patents

Method for manufacturing fine diamond sintered body Download PDF

Info

Publication number
JP3550587B2
JP3550587B2 JP2000384523A JP2000384523A JP3550587B2 JP 3550587 B2 JP3550587 B2 JP 3550587B2 JP 2000384523 A JP2000384523 A JP 2000384523A JP 2000384523 A JP2000384523 A JP 2000384523A JP 3550587 B2 JP3550587 B2 JP 3550587B2
Authority
JP
Japan
Prior art keywords
diamond
sintered body
carbonate
fine
organic substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000384523A
Other languages
Japanese (ja)
Other versions
JP2002187775A (en
Inventor
實 赤石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute for Materials Science
Original Assignee
Japan Science and Technology Agency
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute for Materials Science filed Critical Japan Science and Technology Agency
Priority to JP2000384523A priority Critical patent/JP3550587B2/en
Publication of JP2002187775A publication Critical patent/JP2002187775A/en
Application granted granted Critical
Publication of JP3550587B2 publication Critical patent/JP3550587B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、優れた耐摩耗性と耐熱性を有し、例えば、高Si−Al合金等の難削材料の仕上げ切削工具、金属の超精密加工工具および線引きダイス等に適用した場合、優れた切削性能や伸線性能を発揮することが期待されるダイヤモンド焼結体の製造方法に関するものである。
【0002】
【従来の技術】
従来、Co等の金属を焼結助剤とする微粒ダイヤモンド焼結体が通常の超高圧合成装置で焼結することにより製造されることは良く知られているところである。また、金属焼結助剤を全く使用しないで、アルカリ土類金属の炭酸塩を焼結助剤に用いて、従来よりも高い圧力、温度条件下で焼結することにより、耐熱性に優れた高硬度ダイヤモンド焼結体を合成する方法が知られている(Diamond and Related Mater.,5巻,34〜37頁,1996年)。
【0003】
【発明が解決しようとする課題】
しかし、上記の金属系微粒ダイヤモンド焼結体は、ダイヤモンドの異常粒成長を抑制して微細粒子からなる焼結体を製造するため、焼結温度を低く制限する必要があるため(J.Am.Ceram.Soc.,74巻,5〜10頁,1990年)、焼結体の硬度がダイヤモンド本来の特性には程遠い。
【0004】
また、従来の微粒ダイヤモンド焼結体は金属焼結助剤を大量に含有するため、高温条件下では、金属とダイヤモンドの熱膨張率が異なることに起因する熱応力により簡単に黒鉛化やクラックの導入等が起こり焼結体が劣化するため、難削材料の切削工具に使用することが難しい。
【0005】
炭酸塩を助剤とする耐熱性に優れたダイヤモンド焼結体は、その粒子径が約5μmと比較的大きな粒子径のものに限定されているため、超精密加工用工具等に必要な鋭利な刃先形状の切削工具を製造することや線引きダイスに使用した時の線の表面粗さに問題があった。
本発明は、これらの問題を解決するため、耐熱性に優れたダイヤモンド本来の特性を有する微粒ダイヤモンド焼結体の製造方法の開発を目的とする。
【0006】
【課題を解決するための手段】
炭酸塩を助剤とするダイヤモンド焼結体の製造において、得られる焼結体の粒子径の制限は、焼結助剤に使用する溶融炭酸塩の粘性に密接に関係する。天然ダイヤモンド粉末(例えば、表示粒度2〜4μmの市販品)を炭酸マグネシウム上に積層し、7.7GPa、2300℃の条件で焼結しても、溶融炭酸塩は約0.1mm程度しかダイヤモンド層へ溶浸しないため、ダイヤモンド焼結体を合成することは出来ない。
【0007】
微粒ダイヤモンド焼結体を合成するためには、溶融炭酸塩の粘性を低くし、溶融塩がダイヤモンド層へ容易に溶浸し、ダイヤモンド粒子間に溶浸した溶融塩がダイヤモンドの焼結助剤として機能するようにしなければならない。
炭酸塩の融点を低くするためには、炭酸塩に水や炭酸ガス等の揮発性成分を添加することにより、容易に実現できることは良く知られている。この場合、これらの揮発性成分を高圧高温条件に密閉するためのカプセルが必要である。
【0008】
カプセル形状、材質、試料構成等を鋭意検討した結果、高融点金属であるTa製やMo製のシングルカプセルで流体相をシール可能であることが明らかとなった。前記の揮発性成分を主体とするC−O−H流体相がダイヤモンド合成触媒として機能することも最近の我々の研究から明らかとなった(J.Crystal Growth,209巻,999〜1003頁,2000年)。
【0009】
本発明者は、上記の方法を改善し、粒子径がサブミクロンの耐熱性に優れた高硬度高靭性微粒ダイヤモンド焼結体の合成を実現することができる手段を見出した。
すなわち、本発明は、炭酸塩と超臨界流体相を形成する有機物との混合物を焼結助剤に使用して、ダイヤモンド粉末層に積層した状態でダイヤモンドが熱力学的に安定な2000℃以上の高圧高温条件で焼結することにより粒子径がサブミクロンの微粒ダイヤモンド焼結体を製造することを特徴とする微粒ダイヤモンド焼結体の製造方法である。
また、本発明は、Ta製またはMo製のカプセルで超臨界流体相をシールして焼結することを特徴とする上記の微粒ダイヤモンド焼結体の製造方法である。
【0010】
また、本発明は、上記焼結助剤は、炭酸塩1モルに対し0.1モル以上〜0.3モル未満の有機物の混合粉末からなり、該混合粉末中の有機物が高圧高温条件下で分解して、COとHOからなる超臨界流体相を生成し、炭酸塩−CO−HO系焼結助剤を形成することを特徴とする上記の微粒ダイヤモンド焼結体の製造方法である。
【0011】
また、本発明は、ダイヤモンド粉末層として粒径1μm以下の天然ダイヤモンド粉末を用いることを特徴とする上記の微粒ダイヤモンド焼結体の製造方法である。
【0012】
焼結助剤を用いて超臨界流体相を形成するためには炭酸塩に有機物を混合し、この混合物とダイヤモンド粉末を積層し、混合した有機物が高圧高温条件下で分解し、超臨界流体相状態のHOやCOを生成するようにする。生成した超臨界流体相が炭酸塩の融点を低下させて、ダイヤモンド中に炭酸塩は容易に溶浸する。この溶浸した超臨界流体相を含有する炭酸塩がダイヤモンド粒子の一部を効率的に溶解し、炭素で過飽和となった溶融炭酸塩からダイヤモンドを析出して、ダイヤモンド粒子間に直接結合を形成させる。その結果、ダイヤモンド焼結体を合成することができる。なお、ダイヤモンド粉末と焼結助剤との混合等の方法では良質の焼結体を合成するのは難しい。
【0013】
【発明の実施の形態】
図1の(a)は、上記ダイヤモンド粉末および焼結助剤を充填したTa製またはMo製カプセルの断面図である。図1の(b)は、原料を充填した図1aのTa製またはMo製カプセルをベルト型超高圧合成装置などに組み込んだ状態を示す断面図である。
【0014】
超臨界流体相が漏れてしまうと炭酸塩の融点が降下しないのでカプセルを使用する。カプセルの材料としては高融点金属の中でTaまたはMoが望ましく、他の金属では実用的でない。以下では、Ta製カプセルを用いる場合について説明するがMo製カプセルについても同様である。図1の(a)に示すように、炭酸塩と超臨界流体相を形成する有機物との混合物からなる焼結助剤をダイヤモンド粉末層に積層した状態にするために、Ta製カプセルの底からTa箔5、黒鉛板4、Ta箔5、ダイヤモンド粉末1、炭酸塩−有機物混合粉末2、ダイヤモンド粉末1、Ta箔5、ダイヤモンド粉末1、炭酸塩−有機物混合粉末2、ダイヤモンド粉末1、Ta箔5、黒鉛板4、Ta箔5の順に積層し、200MPaの圧力で充填し蓋をする。
【0015】
原料を充填したTa製カプセル8を図1の(b)に示すように、Ta箔で作ったカプセル12中に挿入し、Ta箔13を介して上下にNaCl−20wt%ZrO成形体を、側面にNaCl−10wt%ZrO成形体を圧力媒体として、周囲をスチールリング7で固定してパイロフイライト6で覆い黒鉛ヒータ9で加熱する。
【0016】
炭酸塩としては、炭酸マグネシウムまたは炭酸カルシウムが適する。また、炭酸塩に添加する有機物としては、ダイヤモンド合成触媒として機能するC,O,Hからなるシュウ酸二水和物またはマロン酸等が好適である。例えば、シュウ酸二水和物は下記の式に示すように分解してHO,COおよびCを生成する。(COOH)・2HO→3/2CO+3HO+1/2C
混合割合としては、炭酸塩1モルに有機物0.1モル以上〜0.3モル未満の割合が好ましい。0.3モル以上添加すると炭酸塩の量が少なくなり、良好な焼結体が得られなくなる。サブミクロンの粒子径からなるダイヤモンド焼結体を合成するには、ダイヤモンド粉末としては、1μm以下のダイヤモンド粉末、例えば、表示粒度0〜1μmの市販天然ダイヤモンド粉末を用いることが望ましい。
【0017】
圧力は、7.7GPa以上、焼結温度2000℃以上の条件で10〜30分間で処理すれば微粒ダイヤモンドを再現性良く合成することができる。圧力の上限は、8GPa程度とする。これ以上では、試料空間が限定され、工業的な生産に好ましくない。焼結温度の上限は、ダイヤモンドの熱力学的安定条件で規定されるため2500℃程度とする。
【0018】
【実施例】
次に、本発明の微粒ダイヤモンド焼結体の製造方法を実施例により具体的に説明する。
実施例1
天然ダイヤモンド粉末にはしばしば珪酸塩を相当量含有していることがあるため、使用前にZrルツボを用いて溶融NaOH中で天然ダイヤモンド粉末を処理し珪酸塩を除去した。処理後のダイヤモンド粉末中へのZrの混入を防ぐために、溶融NaOH処理後、ダイヤモンド粉末を熱王水中で処理し、Zrを除去した。上記の脱珪酸塩処理した粒度表示0〜1μmダイヤモンド粉末の平均粒径を測定した結果、平均粒径:0.68μmであった。さらに、オーストラリア産の天然の炭酸マグネシウム1モルに0.1モルのシュウ酸二水和物を混合添加し、焼結助剤を調製した。
【0019】
この焼結助剤とダイヤモンド粉末を図1の(a)および図1の(b)に示すような試料構成として超高圧合成装置により、7.7GPa、2000℃の高圧高温条件下で30分間処理した。焼結体のX線回折図形から、焼結体がダイヤモンドと少量の炭酸マグネシウムからなることが明らかとなった。
【0020】
焼結体の耐熱性を評価するため、真空中1200℃の条件で30分間処理した。処理前後で焼結体の硬さの変化および熱処理によるクラックの導入も全く認められなかった。これらの結果から、高硬度微粒ダイヤモンド焼結体は耐熱性にも大変優れていることは明らかである。
【0021】
ダイヤモンド焼結体を研削加工し、焼結体のヴィツカース硬さを荷重19.6Nで測定したところ、ダイヤモンド単結晶と同等以上の硬度70GPa以上であることが明らかとなった。硬度測定に用いた圧痕の観察から、圧痕の先端に全くクラックが認められないので、靭性に大変優れた焼結体であることは明らかである。既存の粗粒ダイヤモンド焼結体の場合、圧痕の先端にクラックが導入されることが良く知られている。焼結体の粒子径を明らかにするため、焼結体の破面を走査型電子顕微鏡で調べた結果、サブミクロンの粒子径からなり、出発物質の天然ダイヤモンド粉末の粒子径とほとんど同等であった。
【0022】
比較例1
シュウ酸二水和物1モルに0.1モルの炭酸マグネシウムを添加した混合粉末上に実施例1と同様に脱珪酸塩処理したダイヤモンド粉末を積層し、実施例1と同じ試料構成を用い、7.7GPa、2200℃の高圧高温条件下で20分間焼結した。焼結後の試料を実施例1と同様な方法で調べた結果、焼結体は全く未焼結であった。
【0023】
【発明の効果】
本発明により合成される微粒ダイヤモンド焼結体は、炭酸マグネシウムと超臨界流体相を形成する有機物との混合物からなる焼結助剤を使用することにより、異常粒成長粒子が見られない粒子径が1μm以下の耐熱性に優れた高硬度高靭性微粒ダイヤモンド焼結体の合成を実現したものである。この焼結体は従来の焼結体にない特性を持っているため、超精密加工用工具、難削材料の加工工具や線引きダイス等の分野での用途が期待される。
【図面の簡単な説明】
【図1】図1の(a)は、ダイヤモンド粉末および焼結助剤を充填したTa製またはMo製カプセルの断面図である。図1の(b)は、原料を充填した図1の(a)のTa製またはMo製カプセルを超高圧合成装置に組み込んだ状態を示す断面図である。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention has excellent wear resistance and heat resistance, for example, when applied to finish cutting tools of difficult-to-cut materials such as high Si-Al alloys, ultra-precision machining tools of metal, and drawing dies, etc. The present invention relates to a method for producing a diamond sintered body expected to exhibit cutting performance and wire drawing performance.
[0002]
[Prior art]
Conventionally, it is well known that a fine-grained diamond sintered body using a metal such as Co as a sintering aid is manufactured by sintering with a normal ultra-high pressure synthesis apparatus. Also, without using any metal sintering aid, by using alkaline earth metal carbonate as a sintering aid, and sintering under higher pressure and temperature conditions than before, excellent heat resistance A method of synthesizing a high-hardness diamond sintered body is known (Diamond and Related Mater., Vol. 5, pp. 34-37, 1996).
[0003]
[Problems to be solved by the invention]
However, in the case of the above-mentioned metal-based fine-grained diamond sintered body, in order to manufacture a sintered body composed of fine particles while suppressing abnormal grain growth of diamond, it is necessary to limit the sintering temperature low (J. Am. Ceram. Soc., Vol. 74, pp. 5-10, 1990), the hardness of the sintered body is far from the original properties of diamond.
[0004]
Also, conventional fine-grained diamond sintered bodies contain a large amount of metal sintering aids, so that under high temperature conditions, graphitization and cracking can easily occur due to thermal stress caused by the difference in the coefficient of thermal expansion between metal and diamond. Since the sintered body is deteriorated due to the introduction and the like, it is difficult to use it for a cutting tool of a difficult-to-cut material.
[0005]
Since the diamond sintered body having excellent heat resistance using carbonate as an auxiliary is limited to a relatively large particle diameter of about 5 μm, the sharpness required for ultra-precision machining tools and the like is required. There was a problem in manufacturing a cutting tool having a cutting edge shape and in the surface roughness of a wire when used in a drawing die.
In order to solve these problems, an object of the present invention is to develop a method for manufacturing a fine-grained diamond sintered body having the original characteristics of diamond having excellent heat resistance.
[0006]
[Means for Solving the Problems]
In the production of a diamond sintered body using a carbonate as an aid, the limitation on the particle size of the obtained sintered body is closely related to the viscosity of the molten carbonate used for the sintering aid. Even if natural diamond powder (for example, a commercially available product having an indicated particle size of 2 to 4 μm) is laminated on magnesium carbonate and sintered under the conditions of 7.7 GPa and 2300 ° C., only about 0.1 mm of molten carbonate forms the diamond layer. Therefore, a diamond sintered body cannot be synthesized.
[0007]
In order to synthesize a fine diamond sintered body, the viscosity of the molten carbonate is reduced, the molten salt easily infiltrates the diamond layer, and the molten salt infiltrated between the diamond particles functions as a diamond sintering aid. You have to do it.
It is well known that the melting point of the carbonate can be easily reduced by adding a volatile component such as water or carbon dioxide to the carbonate. In this case, a capsule for sealing these volatile components under high pressure and high temperature conditions is required.
[0008]
As a result of intensive studies on the capsule shape, material, sample configuration, and the like, it has been clarified that the fluid phase can be sealed with a single capsule made of a high melting point metal such as Ta or Mo. Our recent study also revealed that the C—O—H fluid phase mainly composed of the volatile component functions as a diamond synthesis catalyst (J. Crystal Growth, 209, 999-1003, 2000). Year).
[0009]
The present inventor has improved the above-mentioned method and found a means capable of realizing the synthesis of a high-hardness and high-toughness fine-grained sintered diamond material having a submicron particle size and excellent heat resistance.
That is, the present invention uses a mixture of a carbonate and an organic substance that forms a supercritical fluid phase as a sintering aid, and in a state where diamond is thermodynamically stable at 2000 ° C. or higher in a state of being laminated on a diamond powder layer. This is a method for producing a fine-grained diamond sintered body, characterized by producing a fine-grained diamond sintered body having a submicron particle diameter by sintering under high pressure and high temperature conditions.
Further, the present invention is the above-mentioned method for producing a fine-grained diamond sintered body, characterized in that a supercritical fluid phase is sealed and sintered with a Ta or Mo capsule.
[0010]
Further, in the present invention, the sintering aid comprises a mixed powder of an organic substance in an amount of 0.1 mol or more and less than 0.3 mol per 1 mol of a carbonate, and the organic substance in the mixed powder is subjected to high pressure and high temperature conditions. Decomposes to form a supercritical fluid phase comprising CO 2 and H 2 O to form a carbonate-CO 2 -H 2 O-based sintering aid. It is a manufacturing method.
[0011]
Further, the present invention is the above-described method for producing a fine-grained diamond sintered body, wherein a natural diamond powder having a particle size of 1 μm or less is used as the diamond powder layer.
[0012]
In order to form a supercritical fluid phase using a sintering aid, an organic substance is mixed with a carbonate, this mixture is laminated with diamond powder, and the mixed organic substance is decomposed under high pressure and high temperature conditions to form a supercritical fluid phase. H 2 O and CO 2 in a state are generated. The generated supercritical fluid phase lowers the melting point of the carbonate, and the carbonate easily infiltrates into the diamond. The carbonate containing the infiltrated supercritical fluid phase efficiently dissolves a part of the diamond particles, deposits diamond from the molten carbonate supersaturated with carbon, and forms a direct bond between the diamond particles Let it. As a result, a diamond sintered body can be synthesized. It is difficult to synthesize a high-quality sintered body by a method such as mixing diamond powder with a sintering aid.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1A is a sectional view of a Ta or Mo capsule filled with the diamond powder and the sintering aid. FIG. 1B is a cross-sectional view showing a state where the Ta or Mo capsule of FIG. 1A filled with the raw material is incorporated in a belt-type ultra-high pressure synthesizer or the like.
[0014]
Capsules are used because the leakage of the supercritical fluid phase does not lower the melting point of the carbonate. As the material of the capsule, Ta or Mo is preferable among the high melting point metals, and it is not practical with other metals. The case where a Ta capsule is used will be described below, but the same applies to a Mo capsule. As shown in FIG. 1 (a), a sintering aid comprising a mixture of a carbonate and an organic substance forming a supercritical fluid phase is laminated on the diamond powder layer from the bottom of the Ta capsule. Ta foil 5, graphite plate 4, Ta foil 5, diamond powder 1, carbonate-organic mixed powder 2, diamond powder 1, Ta foil 5, diamond powder 1, carbonate-organic mixed powder 2, diamond powder 1, Ta foil 5, a graphite plate 4, and a Ta foil 5 are laminated in this order, filled with a pressure of 200 MPa, and covered.
[0015]
As shown in FIG. 1B, the Ta-made capsule 8 filled with the raw material is inserted into a capsule 12 made of Ta foil, and a NaCl-20 wt% ZrO 2 molded body is vertically placed through the Ta foil 13. Using a NaCl-10 wt% ZrO 2 molded body as a pressure medium on the side surface, the periphery is fixed with a steel ring 7, covered with pyrophyllite 6, and heated with a graphite heater 9.
[0016]
As the carbonate, magnesium carbonate or calcium carbonate is suitable. Further, as the organic substance to be added to the carbonate, oxalic acid dihydrate composed of C, O and H or malonic acid which functions as a diamond synthesis catalyst is suitable. For example, oxalic acid dihydrate decomposes to form H 2 O, CO 2 and C as shown in the following formula. (COOH) 2 · 2H 2 O → 3 / 2CO 2 + 3H 2 O + 1 / 2C
The mixing ratio is preferably a ratio of 0.1 mol or more to less than 0.3 mol of the organic substance per 1 mol of the carbonate. If it is added in an amount of 0.3 mol or more, the amount of carbonate decreases, and a good sintered body cannot be obtained. In order to synthesize a diamond sintered body having a submicron particle size, it is desirable to use a diamond powder having a particle size of 1 μm or less, for example, a commercially available natural diamond powder having a display particle size of 0 to 1 μm.
[0017]
If the treatment is performed at a pressure of 7.7 GPa or more and a sintering temperature of 2000 ° C. or more for 10 to 30 minutes, fine diamond can be synthesized with good reproducibility. The upper limit of the pressure is about 8 GPa. Above this, the sample space is limited, which is not preferable for industrial production. The upper limit of the sintering temperature is set to about 2500 ° C. because it is defined by the thermodynamic stability conditions of diamond.
[0018]
【Example】
Next, a method for producing a fine-grained diamond sintered body of the present invention will be specifically described with reference to examples.
Example 1
Because natural diamond powder often contains significant amounts of silicate, prior to use, natural diamond powder was treated in molten NaOH using a Zr crucible to remove silicate. To prevent Zr from being mixed into the diamond powder after the treatment, the diamond powder was treated in hot aqua regia after the molten NaOH treatment to remove Zr. As a result of measuring the average particle diameter of the above-described desilicate-treated 0 to 1 μm diamond powder, the average particle diameter was 0.68 μm. Further, 0.1 mol of oxalic acid dihydrate was mixed and added to 1 mol of natural Australian magnesium carbonate to prepare a sintering aid.
[0019]
The sintering aid and the diamond powder were treated in a sample configuration as shown in FIG. 1A and FIG. did. The X-ray diffraction pattern of the sintered body revealed that the sintered body was composed of diamond and a small amount of magnesium carbonate.
[0020]
In order to evaluate the heat resistance of the sintered body, the sintered body was treated in a vacuum at 1200 ° C. for 30 minutes. No change in the hardness of the sintered body before and after the treatment and no introduction of cracks due to the heat treatment were observed. From these results, it is clear that the high-hardness fine-grained diamond sintered body is very excellent in heat resistance.
[0021]
The diamond sintered body was ground, and the Vitzkars hardness of the sintered body was measured at a load of 19.6 N. As a result, it was found that the hardness was 70 GPa or more, which was equal to or higher than that of a diamond single crystal. Observation of the indentation used for the hardness measurement clearly shows that no crack is observed at the tip of the indentation, and that the sintered body is very excellent in toughness. It is well known that cracks are introduced at the tips of indentations in the case of existing coarse-grained diamond sintered bodies. In order to clarify the particle size of the sintered body, the fracture surface of the sintered body was examined with a scanning electron microscope.As a result, it was found to have a submicron particle size, which was almost the same as that of the natural diamond powder as the starting material. Was.
[0022]
Comparative Example 1
On a mixed powder obtained by adding 0.1 mol of magnesium carbonate to 1 mol of oxalic acid dihydrate, a diamond powder subjected to desilicate treatment in the same manner as in Example 1 was laminated, and the same sample configuration as in Example 1 was used. Sintering was performed for 20 minutes under a high pressure and high temperature condition of 7.7 GPa and 2200 ° C. As a result of examining the sample after sintering in the same manner as in Example 1, the sintered body was completely unsintered.
[0023]
【The invention's effect】
The fine diamond sintered body synthesized according to the present invention has a particle diameter in which no abnormal grain growth particles are observed by using a sintering aid composed of a mixture of magnesium carbonate and an organic substance forming a supercritical fluid phase. The present invention realizes the synthesis of a high-hardness, high-toughness fine-grained diamond sintered body having excellent heat resistance of 1 μm or less. Since this sintered body has characteristics not found in conventional sintered bodies, it is expected to be used in fields such as tools for ultra-precision machining, machining tools for difficult-to-cut materials, and drawing dies.
[Brief description of the drawings]
FIG. 1 (a) is a sectional view of a Ta or Mo capsule filled with diamond powder and a sintering aid. FIG. 1B is a cross-sectional view showing a state where the Ta or Mo capsule of FIG. 1A filled with the raw material is incorporated in an ultrahigh-pressure synthesis apparatus.

Claims (5)

炭酸塩と超臨界流体相を形成する有機物との混合物を焼結助剤に使用して、ダイヤモンド粉末層に積層した状態でダイヤモンドが熱力学的に安定な2000℃以上の高圧高温条件で焼結することにより粒子径がサブミクロンの微粒ダイヤモンド焼結体を製造することを特徴とする微粒ダイヤモンド焼結体の製造方法。Using a mixture of carbonate and an organic substance that forms a supercritical fluid phase as a sintering aid, diamond is sintered in a thermodynamically stable high-pressure high-temperature condition of 2000 ° C or higher in a state of being laminated on a diamond powder layer. A method for producing a fine-grained diamond sintered body having a particle diameter of submicron. Ta製またはMo製のカプセルで超臨界流体相をシールして焼結することを特徴とする請求項1記載の微粒ダイヤモンド焼結体の製造方法。2. The method for producing a fine-grained diamond sintered body according to claim 1, wherein the supercritical fluid phase is sealed and sintered with a Ta or Mo capsule. 上記焼結助剤は、炭酸塩1モルに対し0.1モル以上〜0.3モル未満の有機物の混合粉末からなり、該混合粉末中の有機物が高圧高温条件下で分解して、COとHOからなる超臨界流体相を生成し、炭酸塩−CO−HO系焼結助剤を形成することを特徴とする請求項1または2記載の微粒ダイヤモンド焼結体の製造方法。The sintering aid is composed of a mixed powder of an organic substance in an amount of 0.1 mol or more to less than 0.3 mol with respect to 1 mol of a carbonate, and the organic substance in the mixed powder is decomposed under high pressure and high temperature conditions to form CO 2. production and generating of H 2 O consisting of supercritical fluid phase, the fine diamond sintered body according to claim 1 or 2, wherein the forming a carbonate -CO 2 -H 2 O-based sintering aid Method. 炭酸塩は、炭酸マグネシウムまたは炭酸カルシウムであり、有機物は、シュウ酸二水和物またはマロン酸であることを特徴とする請求項1乃至3のいずれかに記載の微粒ダイヤモンド焼結体の製造方法。4. The method according to claim 1, wherein the carbonate is magnesium carbonate or calcium carbonate, and the organic substance is oxalic acid dihydrate or malonic acid. . ダイヤモンド粉末層として粒径1μm以下のダイヤモンド粉末を用いることを特徴とする請求項1乃至4のいずれかに記載の微粒ダイヤモンド焼結体の製造方法。The method for producing a fine-grained diamond sintered body according to any one of claims 1 to 4, wherein a diamond powder having a particle diameter of 1 µm or less is used as the diamond powder layer.
JP2000384523A 2000-12-18 2000-12-18 Method for manufacturing fine diamond sintered body Expired - Lifetime JP3550587B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000384523A JP3550587B2 (en) 2000-12-18 2000-12-18 Method for manufacturing fine diamond sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000384523A JP3550587B2 (en) 2000-12-18 2000-12-18 Method for manufacturing fine diamond sintered body

Publications (2)

Publication Number Publication Date
JP2002187775A JP2002187775A (en) 2002-07-05
JP3550587B2 true JP3550587B2 (en) 2004-08-04

Family

ID=18851952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000384523A Expired - Lifetime JP3550587B2 (en) 2000-12-18 2000-12-18 Method for manufacturing fine diamond sintered body

Country Status (1)

Country Link
JP (1) JP3550587B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8753562B2 (en) 2010-03-31 2014-06-17 Mitsubishi Materials Corporation Production method of fine grain polycrystalline diamond compact

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3992595B2 (en) * 2002-11-15 2007-10-17 独立行政法人科学技術振興機構 Manufacturing method of high purity, high hardness ultrafine diamond sintered body
JP3877677B2 (en) * 2002-12-18 2007-02-07 独立行政法人科学技術振興機構 Heat resistant diamond composite sintered body and its manufacturing method
JP2006007677A (en) * 2004-06-29 2006-01-12 National Institute For Materials Science Diamond polycrystalline substance scriber
US20100146865A1 (en) 2008-02-06 2010-06-17 Sumitomo Electric Industries, Ltd Polycrystalline diamond
GB201014283D0 (en) 2010-08-27 2010-10-13 Element Six Production Pty Ltd Method of making polycrystalline diamond material
GB201017924D0 (en) 2010-10-22 2010-12-01 Element Six Production Pty Ltd Polycrystalline diamond material
GB201017923D0 (en) 2010-10-22 2010-12-01 Element Six Production Pty Ltd Polycrystalline diamond material
US10315175B2 (en) 2012-11-15 2019-06-11 Smith International, Inc. Method of making carbonate PCD and sintering carbonate PCD on carbide substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8753562B2 (en) 2010-03-31 2014-06-17 Mitsubishi Materials Corporation Production method of fine grain polycrystalline diamond compact

Also Published As

Publication number Publication date
JP2002187775A (en) 2002-07-05

Similar Documents

Publication Publication Date Title
US4874398A (en) Diamond compacts and process for making same
US4985051A (en) Diamond compacts
JP5013156B2 (en) High hardness diamond polycrystal and method for producing the same
JP2001080964A (en) POLYCRYSTAL SiC SINTERED COMPACT PRODUCTION OF THE SAME AND PRODUCT OBTAINED BY APPLYING THE SAME
JP2004506094A (en) Manufacturing method of polishing products containing cubic boron nitride
JP4203900B2 (en) Polycrystalline diamond and method for producing the same
ZA200504183B (en) Superfine particulate diamond sintered product of high purity and high hardness and method for production thereof
IE48038B1 (en) Polycrystalline diamond body/silicon carbide or silicon nitride substrate composite
JP2007055819A (en) High-hardness polycrystalline diamond and process for producing the same
JP3550587B2 (en) Method for manufacturing fine diamond sintered body
JPS5939362B2 (en) Boron nitride compound and its manufacturing method
JP2018525530A (en) How to produce a composite component of diamond and binder
JP2013530914A (en) High-strength diamond-SiC compact and manufacturing method thereof
JP5182582B2 (en) Method for synthesizing cubic boron nitride and method for producing sintered cubic boron nitride
JP5045953B2 (en) Method for synthesizing cubic boron nitride and method for producing sintered cubic boron nitride
JP2009007248A (en) Diamond polycrystal body
US20150033637A1 (en) Polycrystalline superhard material and method of forming
JP4362582B2 (en) Method for producing sintered metal ceramic titanium silicon carbide
JP2003226578A (en) Method of producing high hardness fine-grained diamond sintered compact
TW526296B (en) A method of making a bonded, coherent material comprising mass of diamond crystals in a matrix
RU2711699C1 (en) METHOD OF PRODUCING COMPOSITE MATERIAL Ti/TiB
Zhong et al. In situ synthesis of polycrystalline cubic boron nitride reinforced by different morphologic TiB 2
JP5093433B2 (en) Method for producing a bulk body of Al-added TiN
JP3946896B2 (en) Method for producing diamond-silicon carbide composite sintered body
JPH055150A (en) Boron carbide-reactive metal cermet

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20031210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040326

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3550587

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

LAPS Cancellation because of no payment of annual fees
R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term