KR20050087247A - Organic solar cell and fabrication method thereof - Google Patents
Organic solar cell and fabrication method thereof Download PDFInfo
- Publication number
- KR20050087247A KR20050087247A KR1020040012959A KR20040012959A KR20050087247A KR 20050087247 A KR20050087247 A KR 20050087247A KR 1020040012959 A KR1020040012959 A KR 1020040012959A KR 20040012959 A KR20040012959 A KR 20040012959A KR 20050087247 A KR20050087247 A KR 20050087247A
- Authority
- KR
- South Korea
- Prior art keywords
- solar cell
- organic solar
- cathode
- carbon nanotubes
- thin film
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 20
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 34
- 239000002041 carbon nanotube Substances 0.000 claims abstract description 34
- 229910021393 carbon nanotube Inorganic materials 0.000 claims abstract description 33
- 238000006243 chemical reaction Methods 0.000 claims abstract description 33
- 229920001940 conductive polymer Polymers 0.000 claims abstract description 14
- 239000002105 nanoparticle Substances 0.000 claims abstract description 11
- 239000010409 thin film Substances 0.000 claims description 20
- 239000000758 substrate Substances 0.000 claims description 18
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical compound C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 claims description 13
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 13
- 229910052721 tungsten Inorganic materials 0.000 claims description 13
- 239000010937 tungsten Substances 0.000 claims description 13
- 229910052782 aluminium Inorganic materials 0.000 claims description 12
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 12
- 229910003472 fullerene Inorganic materials 0.000 claims description 11
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 8
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 claims description 8
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 7
- 239000010703 silicon Substances 0.000 claims description 7
- 229910052710 silicon Inorganic materials 0.000 claims description 7
- 238000005229 chemical vapour deposition Methods 0.000 claims description 6
- 229910003437 indium oxide Inorganic materials 0.000 claims description 6
- 229910052751 metal Inorganic materials 0.000 claims description 6
- 239000002184 metal Substances 0.000 claims description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 5
- 239000003054 catalyst Substances 0.000 claims description 5
- 239000000919 ceramic Substances 0.000 claims description 5
- 229910052802 copper Inorganic materials 0.000 claims description 5
- 239000010949 copper Substances 0.000 claims description 5
- 239000011521 glass Substances 0.000 claims description 5
- 238000004544 sputter deposition Methods 0.000 claims description 5
- 229910001220 stainless steel Inorganic materials 0.000 claims description 5
- 239000010935 stainless steel Substances 0.000 claims description 5
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 claims description 5
- 229910001887 tin oxide Inorganic materials 0.000 claims description 5
- 238000001771 vacuum deposition Methods 0.000 claims description 5
- 229910004613 CdTe Inorganic materials 0.000 claims description 4
- UHYPYGJEEGLRJD-UHFFFAOYSA-N cadmium(2+);selenium(2-) Chemical compound [Se-2].[Cd+2] UHYPYGJEEGLRJD-UHFFFAOYSA-N 0.000 claims description 4
- SBIBMFFZSBJNJF-UHFFFAOYSA-N selenium;zinc Chemical compound [Se]=[Zn] SBIBMFFZSBJNJF-UHFFFAOYSA-N 0.000 claims description 4
- 229910017052 cobalt Inorganic materials 0.000 claims description 3
- 239000010941 cobalt Substances 0.000 claims description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 3
- 238000007606 doctor blade method Methods 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 238000007650 screen-printing Methods 0.000 claims description 3
- 238000004528 spin coating Methods 0.000 claims description 3
- 238000005507 spraying Methods 0.000 claims description 3
- 239000011146 organic particle Substances 0.000 claims 1
- 239000000203 mixture Substances 0.000 abstract description 6
- 239000000463 material Substances 0.000 abstract description 5
- 239000000370 acceptor Substances 0.000 description 22
- 229920000547 conjugated polymer Polymers 0.000 description 6
- 230000003287 optical effect Effects 0.000 description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- MCEWYIDBDVPMES-UHFFFAOYSA-N [60]pcbm Chemical compound C123C(C4=C5C6=C7C8=C9C%10=C%11C%12=C%13C%14=C%15C%16=C%17C%18=C(C=%19C=%20C%18=C%18C%16=C%13C%13=C%11C9=C9C7=C(C=%20C9=C%13%18)C(C7=%19)=C96)C6=C%11C%17=C%15C%13=C%15C%14=C%12C%12=C%10C%10=C85)=C9C7=C6C2=C%11C%13=C2C%15=C%12C%10=C4C23C1(CCCC(=O)OC)C1=CC=CC=C1 MCEWYIDBDVPMES-UHFFFAOYSA-N 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000031700 light absorption Effects 0.000 description 2
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 2
- 239000011358 absorbing material Substances 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000002109 single walled nanotube Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/30—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
- H10K30/35—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains comprising inorganic nanostructures, e.g. CdSe nanoparticles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Nanotechnology (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Photovoltaic Devices (AREA)
Abstract
광전변환재료로서 도전성 고분자와 나노입자의 혼합물을 사용하는 벌크 이종접합 구조를 가지는 유기 태양전지의 변환효율을 높이고자 한다. 이를 위해 본 발명에서는 빛에 의해 생성 및 분리된 전자의 수집을 돕기 위해 전극 위에 탄소 나노튜브를 수직으로 배열하는 것을 특징으로 한다. 즉, 본 발명에 따른 유기 태양전지는 서로 대향 배치되는 음극 및 양극; 음극 위에 형성되고 수직으로 배열된 탄소 나노튜브; 음극 및 양극 사이에 위치하고 정공수용체 및 전자수용체가 혼합된 광전변환층을 포함하는 구성이다.To improve the conversion efficiency of an organic solar cell having a bulk heterojunction structure using a mixture of a conductive polymer and nanoparticles as a photoelectric conversion material. To this end, the present invention is characterized in that the carbon nanotubes are arranged vertically on the electrode to help the collection of electrons generated and separated by light. That is, the organic solar cell according to the present invention includes a cathode and an anode disposed to face each other; Carbon nanotubes formed on the cathode and arranged vertically; It is a configuration including a photoelectric conversion layer between the cathode and the anode and the hole acceptor and the electron acceptor are mixed.
Description
본 발명은 유기 태양전지 및 그 제조 방법에 관한 것으로, 더욱 상세하게는 도전성 고분자와 나노입자의 혼합물을 사용하는 벌크 이종접합 구조의 유기 태양전지에서 탄소 나노튜브를 사용하여 효율을 향상시키는 방법에 관한 것이다. The present invention relates to an organic solar cell and a method for manufacturing the same, and more particularly, to a method for improving efficiency using carbon nanotubes in an organic solar cell having a bulk heterojunction structure using a mixture of a conductive polymer and nanoparticles. will be.
유기 태양전지에 관한 대표적인 종래 기술로는 미국특허 5,331,183호가 있다. 도 1은 종래 유기 태양전지의 구조가 도시된 단면도로서, 이에 도시된 바와 같이, 종래 유기 태양전지는 기판 및 그 위에 형성된 주석도핑 산화인듐(ITO : tin-doped indium oxide) 박막과 같은 투명전극(양극)(1)과 알루미늄 전극(음극)(2)의 사이에 전자수용체(electron acceptor)(3)와 정공수용체(hole acceptor)(4)가 혼재되어 있는 벌크 이종접합 구조를 가지고 있다. Representative prior art regarding organic solar cells is US Patent No. 5,331,183. 1 is a cross-sectional view illustrating a structure of a conventional organic solar cell. As shown in the drawing, a conventional organic solar cell includes a substrate and a transparent electrode such as a tin-doped indium oxide (ITO) thin film formed thereon. It has a bulk heterojunction structure in which an electron acceptor 3 and a hole acceptor 4 are mixed between the anode 1 and the aluminum electrode 2.
정공수용체(4)로는 피피브이(PPV:poly-para-phenylene vinylene)와 같은 도전성을 갖는 공액 고분자(conjugated polymer)가 사용되고, 전자수용체로(3)는 풀러렌(fullerene, 60)을 사용한다. As the hole acceptor 4, a conjugated polymer having conductivity such as PPV (poly-para-phenylene vinylene) is used, and as the electron acceptor 3, fullerene (60) is used.
공액고분자와 풀러렌은 두 전극 사이에 혼합되어 있는데, 이 때 빛에 의해 생성된 전자를 풀러렌을 통해 알루미늄 전극으로 손실 없이 수집하기 위해서는 공액고분자 내에 풀러렌이 충분히 혼합되어 있어야 한다. 풀러렌이 공액고분자와 잘 혼합되도록 하기 위해 피씨비엠(PCBM([6,6] phenyl-C61-butyric acid methyl ester), methanofullerene의 일종)과 같은 풀러렌 유도체를 사용한다. The conjugated polymer and the fullerene are mixed between the two electrodes. In this case, the fullerene must be sufficiently mixed in the conjugated polymer in order to collect the electrons generated by light through the fullerene without loss to the aluminum electrode. Fullerene derivatives such as PCBM ([6,6] phenyl-C61-butyric acid methyl ester), a type of methanofullerene, are used to ensure that fullerenes are well mixed with conjugated polymers.
공액고분자가 빛을 흡수하여 전자-정공쌍(exciton)이 생성되고 전자와 정공은 각각 풀러렌과 공액고분자를 경유하여 양극 및 음극에 수집된다. Conjugated polymers absorb light to produce electron-hole pairs, and electrons and holes are collected at the anode and cathode via fullerenes and conjugated polymers, respectively.
이와 같은 종래 기술에서 전자수용체로 사용하는 풀러렌은 탄소원자 60개가 축구공 모양으로 결합되어 있는 구조이며 분리된 전자를 잘 받아들이는 이상적인 전자수용체이지만 전극으로 전자를 전달하기에 적합한 재료는 아니다. 따라서 전자수용체가 받아들인 전자가 음극으로 충분히 전달되지 못함으로 인해 유기 고분자 태양전지의 효율이 낮은 문제점이 있다.The fullerene used as an electron acceptor in the prior art is a structure in which 60 carbon atoms are bonded in the shape of a soccer ball and is an ideal electron acceptor that accepts separated electrons well, but is not a suitable material for transferring electrons to an electrode. Therefore, there is a problem that the efficiency of the organic polymer solar cell is low because the electrons received by the electron acceptor are not sufficiently delivered to the cathode.
본 발명은 상기한 바와 같은 문제점을 해결하기 위한 것으로, 그 목적은 전자수용체가 받아들인 전자를 음극으로 효과적으로 전달하는 것이다.The present invention is to solve the above problems, the object is to effectively transfer the electrons received by the electron acceptor to the cathode.
본 발명의 다른 목적은 유기 태양전지, 그 중에서도 광전변환재료로서 도전성 고분자와 나노입자의 혼합물을 사용하는 벌크 이종접합 구조를 가지는 유기 태양전지의 변환효율을 높이는 것이다.Another object of the present invention is to improve the conversion efficiency of an organic solar cell, particularly an organic solar cell having a bulk heterojunction structure using a mixture of a conductive polymer and nanoparticles as a photoelectric conversion material.
상기한 바와 같은 목적을 달성하기 위하여, 본 발명에서는 빛에 의해 생성 및 분리된 전자의 수집을 돕기 위해 전극 위에 탄소 나노튜브를 수직으로 배열하는 것을 특징으로 한다. In order to achieve the object as described above, the present invention is characterized in that the carbon nanotubes are arranged vertically on the electrode to help the collection of electrons generated and separated by light.
이렇게 하면 벌크 이종접합 구조의 유기 태양전지에서 빛에 의해 생성 및 분리된 전자를 전극 위에 수직으로 배열된 탄소 나노튜브를 통해 수집함으로써 전자의 수집효율을 높이고, 나아가 광전변환층인 도전성 고분자와 나노입자 혼합물층의 두께를 증가시켜 더욱 많은 빛을 흡수할 수 있게 함으로써 변환효율의 향상을 기대할 수 있다. This increases the collection efficiency of electrons by collecting electrons generated and separated by light through carbon nanotubes arranged vertically on electrodes in bulk heterojunction organic solar cells, and furthermore, conductive polymers and nanoparticles as photoelectric conversion layers. Increasing the thickness of the mixture layer to absorb more light can be expected to improve the conversion efficiency.
즉, 본 발명에 따른 유기 태양전지는 서로 대향 배치되는 음극 및 양극; 음극 위에 형성되고 수직으로 배열된 탄소 나노튜브; 음극 및 양극 사이에 위치하고 정공수용체 및 전자수용체가 혼합된 광전변환층을 포함하는 구성이다.That is, the organic solar cell according to the present invention includes a cathode and an anode disposed to face each other; Carbon nanotubes formed on the cathode and arranged vertically; It is a configuration including a photoelectric conversion layer between the cathode and the anode and the hole acceptor and the electron acceptor are mixed.
이 때 광전변환층의 두께는 100nm 보다 클 수 있다. In this case, the thickness of the photoelectric conversion layer may be greater than 100 nm.
음극은 유리 또는 세라믹 기판과 같은 절연기판 상에 형성된 알루미늄 또는 텅스텐과 같은 도전성 박막 형태일 수도 있고, 또는 스테인레스 스틸, 구리, 알루미늄, 텅스텐, 실리콘 중의 어느 하나로 이루어진 금속판 형태일 수도 있다. The cathode may be in the form of a conductive thin film such as aluminum or tungsten formed on an insulating substrate such as a glass or ceramic substrate, or may be in the form of a metal plate made of any one of stainless steel, copper, aluminum, tungsten, and silicon.
양극은 태양광이 투과할 수 있는 투명전극인 것이 바람직하고, 일 예로는 주석도핑 산화인듐(ITO : tin-doped indium oxide) 또는 불소도핑 산화주석(FTO : fluorine-doped tin oxide)이 있다. It is preferable that the anode is a transparent electrode through which sunlight can pass, and an example thereof is tin-doped indium oxide (ITO) or fluorine-doped tin oxide (FTO).
정공수용체는 피피브이(PPV:poly-para-phenylene vinylene)를 포함하는 도전성 고분자이고, 전자수용체는 풀러렌(fullerene, 60), CdS, CdSe, CdTe, ZnSe 중의 어느 하나로 이루어진 나노입자일 수 있다. The hole acceptor may be a conductive polymer including PPV (poly-para-phenylene vinylene), and the electron acceptor may be a nanoparticle including any one of fullerene (60), CdS, CdSe, CdTe, and ZnSe.
상술한 바와 같은 본 발명의 유기 태양전지를 제조하기 위해서는, 음극을 준비하는 단계; 음극 상에 탄소 나노튜브를 수직으로 배열되도록 형성하는 단계; 탄소 나노튜브 및 음극 상에 정공수용체 및 전자수용체가 혼합된 광전변환층을 형성하는 단계; 광전변환층 상에 양극을 형성하는 단계를 순차 수행한다.In order to manufacture the organic solar cell of the present invention as described above, preparing a cathode; Forming carbon nanotubes arranged vertically on the cathode; Forming a photoelectric conversion layer on which the carbon acceptor and the electron acceptor are mixed on the carbon nanotube and the cathode; A step of forming an anode on the photoelectric conversion layer is sequentially performed.
탄소 나노튜브를 형성하는 단계에서는 플라즈마 화학기상증착(PECVD) 방법을 이용할 수 있으며, 보다 구체적으로는 음극 상에 코발트, 니켈, 및 텅스텐 중의 어느 하나를 포함하는 촉매박막을 형성한 후 촉매박막 상에 플라즈마 화학기상증착 방법으로 탄소 나노튜브를 수직으로 배열되도록 형성할 수 있다. In the forming of the carbon nanotubes, a plasma chemical vapor deposition (PECVD) method may be used, and more specifically, after forming a catalyst thin film including any one of cobalt, nickel, and tungsten on the cathode, It is possible to form the carbon nanotubes arranged vertically by the plasma chemical vapor deposition method.
광전변환층을 형성하는 단계에서는 스핀 코팅, 스프레이 코팅, 스크린 인쇄, 닥터 블레이드법 중의 어느 한 방법으로 광전변환층을 100nm 보다 큰 두께로 형성하는 것이 바람직하다. In the step of forming the photoelectric conversion layer, it is preferable to form the photoelectric conversion layer with a thickness larger than 100 nm by any one of spin coating, spray coating, screen printing, and doctor blade method.
음극을 준비하는 단계에서는 유리 또는 세라믹으로 이루어진 절연기판 상에 알루미늄 박막 또는 텅스텐 박막을 형성하거나, 또는 스테인레스 스틸, 구리, 알루미늄, 텅스텐, 실리콘 중의 어느 하나로 이루어진 금속판을 준비할 수 있다.In the preparing of the cathode, an aluminum thin film or a tungsten thin film may be formed on an insulating substrate made of glass or ceramic, or a metal plate made of any one of stainless steel, copper, aluminum, tungsten, and silicon may be prepared.
양극을 형성하는 단계에서는 스퍼터링 또는 진공증착법에 의해 주석도핑 산화인듐(ITO : tin-doped indium oxide) 또는 불소도핑 산화주석(FTO : fluorine-doped tin oxide)을 형성할 수 있다. In the forming of the anode, tin-doped indium oxide (ITO) or fluorine-doped tin oxide (FTO) may be formed by sputtering or vacuum deposition.
이하, 본 발명에 대해 상세히 설명한다. Hereinafter, the present invention will be described in detail.
본 발명에서는 전자수용체가 받아들인 전자를 음극으로 효과적으로 전달하기 위한 수단으로서 음극 위에 수직으로 배열된 탄소 나노튜브(carbon nanotube, CNT)를 사용한다. In the present invention, carbon nanotubes (CNTs) vertically arranged on the cathode are used as means for effectively transferring the electrons received by the electron acceptor to the cathode.
미국특허 2002/0159943에 단일벽(single wall) 탄소 나노튜브의 배열 또는 배열된 탄소 나노튜브의 끝부분에 빛에 반응하는 색소(photoactive dye)가 결합된 것을 광흡수 재료(photon collector)로 사용한 예가 있다. In US 2002/0159943, an example in which a photoreactive dye is combined with an array of single wall carbon nanotubes or an end of the arranged carbon nanotubes is used as a photon collector. have.
그러나 본 발명에서는 광흡수 재료로서 전자 및 정공 수용체가 혼합된 벌크 이종접합 재료를 사용하고, 분리된 전자를 전극에 전달하는 수단으로 탄소 나노튜브를 사용하는 것을 특징으로 한다. However, in the present invention, a bulk heterojunction material in which electrons and hole acceptors are mixed as a light absorbing material, and carbon nanotubes are used as a means for transferring the separated electrons to the electrode.
도 2는 본 발명에 따른 유기 태양전지의 구조를 도시한 단면도이다. 도 2에 도시된 바와 같이, 본 발명에 따른 유기 태양전지는 서로 대향 배치되는 음극(10, 11)과 양극(14)을 포함하고 있고, 음극(10, 11) 위에는 수직으로 배열된 탄소 나노튜브(12)가 형성되어 있으며, 음극(10, 11) 및 양극(14) 사이에는 정공수용체 및 전자수용체가 혼합된 광전변환층(13)이 위치하고 있다. 2 is a cross-sectional view showing the structure of an organic solar cell according to the present invention. As shown in FIG. 2, the organic solar cell according to the present invention includes the cathodes 10 and 11 and the anode 14 disposed to face each other, and the carbon nanotubes arranged vertically on the cathodes 10 and 11. 12 is formed, and between the cathodes 10, 11 and the anode 14, a photoelectric conversion layer 13 in which a hole acceptor and an electron acceptor are mixed is located.
음극은 유리나 세라믹과 같은 절연 기판(10) 상에 알루미늄 박막 또는 텅스텐과 같은 도전성 박막(11)이 형성된 구조이다. 또는 음극은 스테인레스 스틸, 구리, 알루미늄, 텅스텐, 실리콘과 같은 금속판을 기판으로 사용할 수 있으며, 이처럼 기판이 금속인 경우 그 위의 전극층은 생략할 수 있다.The cathode has a structure in which a conductive thin film 11 such as aluminum thin film or tungsten is formed on an insulating substrate 10 such as glass or ceramic. Alternatively, the cathode may use a metal plate such as stainless steel, copper, aluminum, tungsten, or silicon as a substrate, and when the substrate is a metal, the electrode layer thereon may be omitted.
음극(10, 11) 위에 탄소 나노튜브 배열을 성장시키는 방법은 여러 문헌에 제시되어 있다. 예를 들면 M. Chhowalla 등이 발표한 "플라즈마 화학기상증착 방법을 이용한 수직으로 배열된 탄소 나노튜브의 성장 조건(Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition)"(Journal of Applied Physics, volume 90, number 10, page 5308-5317)에서는 실리콘을 기판으로 하고 직류 플라즈마 화학기상증착법(PECVD)을 사용하여 기판에 대해 수직으로 배열된 탄소 나노튜브를 성장시켰다. Methods of growing carbon nanotube arrays on the cathodes 10, 11 have been described in several documents. For example, M. Chhowalla et al., "Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition" (Journal of Applied Physics). , volume 90, number 10, page 5308-5317), grew carbon nanotubes arranged perpendicular to the substrate using silicon as the substrate and direct current plasma chemical vapor deposition (PECVD).
즉, 기판 위에 두께 0.5~20nm의 코발트(Co) 또는 니켈(Ni) 촉매를 스퍼터링(sputtering)이나 진공증착법으로 형성한 후 750??에서 열처리를 하면 Co 또는 Ni 박막이 기판과의 표면장력 및 열팽창계수의 차이로 인해 무수히 작은 섬(island) 형태로 분리된다. 이어서 암모니아(NH3)와 아세틸렌(C2H2) 가스 분위기에서 직류 플라즈마를 형성하면 기판 위에 탄소 나노튜브가 수직으로 성장한다. 성장되는 탄소 나노튜브의 직경, 성장속도 및 밀도(단위면적당 탄소 나노튜브의 수)는 촉매 박막의 두께로 조절할 수 있다.That is, a cobalt (Co) or nickel (Ni) catalyst having a thickness of 0.5 to 20 nm is formed on a substrate by sputtering or vacuum deposition, and then subjected to heat treatment at 750 ° C. Due to the difference in coefficients, they are separated into a myriad of islands. Subsequently, when a direct current plasma is formed in an ammonia (NH 3 ) and acetylene (C 2 H 2 ) gas atmosphere, carbon nanotubes grow vertically on the substrate. The diameter, growth rate and density (number of carbon nanotubes per unit area) of the grown carbon nanotubes can be controlled by the thickness of the catalyst thin film.
또 다른 방법을 예로 들면, M. Tanemura 등이 발표한 "플라즈마 화학기상증착 방법에 의한 배열된 탄소 나노튜브이 성장: 성장 파라미터의 최적화(Growth of aligned carbon nanotubes by plasma-enhanced chemical vapor deposition: Optimization of growth parameters)"(Journal of Applied Physics, volume 90, number 3, page 1529-1533)에서는 탄소 나노튜브를 텅스텐 위에 성장하였으며 그 방법은 앞에 제시한 예와 유사하다.Another example is M. Tanemura et al., "Growth of aligned carbon nanotubes by plasma-enhanced chemical vapor deposition: Optimization of growth." parameters ”(Journal of Applied Physics, volume 90, number 3, page 1529-1533), grew carbon nanotubes on tungsten, and the method is similar to the previous example.
최영철 등이 발표한 "니켈 박막의 표면 형상이 고주파 플라즈마 화학기상증착 방법에 의한 배열 탄소 나노튜브의 성장에 미치는 영향(Effect of surface morphology of Ni thin film on the growth of aligned carbon nanotubes by microwave plasma-enhanced chemical vapor deposition)"(Journal of Applied Physics, volume 88, number 8, page 4898-4903)에서는 실리콘 기판 위에 고주파(microwave) PECVD법으로 탄소 나노튜브를 성장시켰다."Effect of surface morphology of Ni thin film on the growth of aligned carbon nanotubes by microwave plasma-enhanced" chemical vapor deposition) ”(Journal of Applied Physics, volume 88, number 8, page 4898-4903), carbon nanotubes were grown on a silicon substrate by microwave PECVD.
상술한 바와 같은 방법으로 음극(10, 11) 위에 탄소 나노튜브를 성장시킨 후 그 위에 도전성 고분자와 나노입자가 혼합된 광전변환층(13)을 도포한다. 도포 방법으로는 스핀 코팅, 스프레이 코팅, 스크린 인쇄, 닥터 블레이드법 등이 가능하다. After the carbon nanotubes are grown on the cathodes 10 and 11 in the same manner as described above, the photoelectric conversion layer 13 in which the conductive polymer and the nanoparticles are mixed is coated thereon. As a coating method, spin coating, spray coating, screen printing, a doctor blade method, etc. are possible.
이 때 광전변환층(13)은 100nm 보다 큰 두께로 형성한다. 종래 기술에서는 빛에 의해 생성된 전자의 수집효율이 낮아 광전변환층(13)의 두께가 100nm 정도까지로 제한되었으나, 본 발명에서는 탄소 나노튜브(12)를 통해 전자를 효과적으로 수집할 수 있으므로 광전변환층(13) 층의 두께를 100nm 보다 크게 증가시킴으로써 빛의 흡수를 증가시키는 것이 가능하다. 따라서, 높은 변환효율을 얻을 수 있게 된다. At this time, the photoelectric conversion layer 13 is formed to a thickness larger than 100nm. In the prior art, the thickness of the photoelectric conversion layer 13 is limited to about 100 nm because the collection efficiency of electrons generated by light is low. However, in the present invention, electrons can be effectively collected through the carbon nanotubes 12. It is possible to increase the absorption of light by increasing the thickness of the layer 13 layer greater than 100 nm. Therefore, high conversion efficiency can be obtained.
아울러 종래의 발명에서는 광전변환층(13)의 두께가 너무 얇기 때문에 빛의 흡수를 증가시키기 위해서는 도전성 고분자의 광학적 밴드갭을 작게 할 필요가 있었다. 그러나, 일반적으로 도전성 고분자의 광학적 밴드갭이 작아질수록 재료의 안정성이 떨어지기 때문에 안정하면서도 광학적 밴드갭이 작은 도전성 고분자를 개발하는 것이 기술적인 과제였다. In addition, in the conventional invention, since the thickness of the photoelectric conversion layer 13 is too thin, it is necessary to reduce the optical band gap of the conductive polymer in order to increase the absorption of light. However, in general, as the optical bandgap of the conductive polymer decreases, the stability of the material decreases. Therefore, it was a technical problem to develop a conductive polymer having a stable optical bandgap.
그러나, 본 발명에서는 광전변환층(13)을 충분히 두껍게 할 수 있으므로 안정하면서도 광학적 밴드갭이 큰 기존의 도전성 고분자를 사용해도 높은 변환효율을 얻을 수 있게 된다. However, in the present invention, since the photoelectric conversion layer 13 can be sufficiently thick, high conversion efficiency can be obtained even by using a conventional conductive polymer having a stable and large optical band gap.
광전변환층(13)은 정공수용체와 전자수용체가 혼합된 것으로서, 정공수용체는 피피브이(PPV:poly-para-phenylene vinylene)를 포함하는 도전성 고분자이고, 전자수용체는 풀러렌(fullerene, 60), CdS, CdSe, CdTe, ZnSe 중의 어느 하나로 이루어진 나노입자인 것이 바람직하다. 나노입자로서는 풀러렌이 대표적이지만 CdS, CdSe, CdTe, 또는 ZnSe와 같은 반도체 나노입자도 적용할 수 있다. The photoelectric conversion layer 13 is a mixture of a hole acceptor and an electron acceptor, the hole acceptor is a conductive polymer containing PPV (poly-para-phenylene vinylene), and the electron acceptor is a fullerene (60), CdS It is preferable that it is a nanoparticle which consists of any one of CdSe, CdTe, and ZnSe. Fullerene is typical as nanoparticles, but semiconductor nanoparticles such as CdS, CdSe, CdTe, or ZnSe may also be applied.
광전변환층(13)을 코팅한 후에는 최종적으로 주석도핑 산화인듐(ITO : tin-doped indium oxide) 또는 불소도핑 산화주석(FTO : fluorine-doped tin oxide)ITO와 같은 투명전극으로 이루어진 양극(14)을 형성한다. After coating the photoelectric conversion layer 13, an anode 14 made of a transparent electrode such as tin-doped indium oxide (ITO) or fluorine-doped tin oxide (FTO) ).
일반적으로 ITO 박막은 스퍼터링이나 진공증착법으로 형성할 수 있지만 도전성 고분자로 구성된 광전변환층(13) 위에 형성하는 경우에는 진공증착법이 더욱 바람직하다. 스퍼터링의 경우 박막 형성 과정에서 높은 에너지를 가진 이온이 광전변환층(13)에 손상을 줄 수 있기 때문이다. In general, the ITO thin film can be formed by sputtering or vacuum deposition. However, when the ITO thin film is formed on the photoelectric conversion layer 13 made of a conductive polymer, the vacuum deposition method is more preferable. This is because, in the case of sputtering, ions having high energy may damage the photoelectric conversion layer 13 during the thin film formation process.
상기한 바와 같이, 본 발명에서는 벌크 이종접합 구조의 유기 태양전지에서 빛에 의해 생성 및 분리된 전자를 전극 위에 수직으로 배열된 탄소 나노튜브를 통해 수집함으로써 전자의 수집효율을 높이는 효과가 있다.As described above, in the present invention, in the organic solar cell of the bulk heterojunction structure, electrons generated and separated by light are collected through carbon nanotubes arranged vertically on the electrode, thereby increasing the electron collecting efficiency.
또한 광전변환층인 도전성 고분자와 나노입자 혼합물층의 두께를 증가시켜 더욱 많은 빛을 흡수할 수 있게 함으로써 변환효율을 향상시키는 효과가 있다. In addition, by increasing the thickness of the conductive polymer and the nanoparticle mixture layer that is a photoelectric conversion layer to absorb more light, there is an effect of improving the conversion efficiency.
도 1은 종래 유기 태양전지의 구조가 도시된 단면도이고,1 is a cross-sectional view showing a structure of a conventional organic solar cell,
도 2는 본 발명에 따른 유기 태양전지의 구조를 도시한 단면도이다.2 is a cross-sectional view showing the structure of an organic solar cell according to the present invention.
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020040012959A KR101030039B1 (en) | 2004-02-26 | 2004-02-26 | Organic solar cell and fabrication method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020040012959A KR101030039B1 (en) | 2004-02-26 | 2004-02-26 | Organic solar cell and fabrication method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20050087247A true KR20050087247A (en) | 2005-08-31 |
KR101030039B1 KR101030039B1 (en) | 2011-04-20 |
Family
ID=37270557
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020040012959A KR101030039B1 (en) | 2004-02-26 | 2004-02-26 | Organic solar cell and fabrication method thereof |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101030039B1 (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100924366B1 (en) * | 2005-12-09 | 2009-10-30 | 고려대학교 산학협력단 | Organic-inorganic hybrid solar cell and method for preparing the same |
KR100935322B1 (en) * | 2008-01-02 | 2010-01-06 | 삼성전기주식회사 | Solar cell with high efficiency and method of producing the same |
WO2010067958A2 (en) * | 2008-12-10 | 2010-06-17 | 한양대학교 산학협력단 | Solar battery with a reusable substrate, and manufacturing method thereof |
KR100975506B1 (en) * | 2008-06-18 | 2010-08-11 | 경북대학교 산학협력단 | Method for producing solar battery |
WO2010144551A2 (en) * | 2009-06-10 | 2010-12-16 | Applied Materials, Inc. | Carbon nanotube-based solar cells |
WO2011035157A2 (en) * | 2009-09-18 | 2011-03-24 | Applied Materials, Inc. | Apparatus and methods for forming energy storage and photovoltaic devices in a linear system |
KR101026763B1 (en) * | 2009-07-27 | 2011-04-11 | 재단법인대구경북과학기술원 | Organic-inorganic hybrid solar cell |
KR101039208B1 (en) * | 2008-12-10 | 2011-06-03 | 한양대학교 산학협력단 | Photovoltaic cell having semiconductor rod, method for fabricating the cell, and unified module of photovoltaic cell - thermoelectric device |
KR101144886B1 (en) * | 2009-08-14 | 2012-05-14 | 연세대학교 산학협력단 | Organic solar cell comprising non-metallic nano particles and method for manufacturing the same |
KR101145903B1 (en) * | 2010-05-24 | 2012-05-15 | 한국화학연구원 | Manufacturing method of organic photovoltaic cell fabricated by solution process and organic photovoltaic cell fabricated thereby |
KR101144034B1 (en) * | 2010-04-27 | 2012-05-23 | 현대자동차주식회사 | Method for manufacturing organic thin film solar cell using ion beam treatment and organic thin film solar cell manufactured by the same |
WO2013006016A2 (en) * | 2011-07-07 | 2013-01-10 | 포항공과대학교 산학협력단 | Solar cell element and manufacturing method for same |
KR101222940B1 (en) * | 2010-01-25 | 2013-02-05 | (주)루미나노 | Solar cells showing improved light conversion efficiency by electric field enhancement effects |
US9136404B2 (en) | 2008-12-10 | 2015-09-15 | Iucf-Hyu (Industry-University Cooperation Foundation Hanyang University) | Solar cell capable of recycling a substrate and method for manufacturing the same |
KR20160049443A (en) | 2014-10-27 | 2016-05-09 | 주식회사 엘지화학 | Ink composition for use in manufacturing of solar cell and method for producing solar cell using the same |
TWI691093B (en) * | 2018-04-16 | 2020-04-11 | 鴻海精密工業股份有限公司 | Polymer solar cell |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101327996B1 (en) | 2012-07-11 | 2013-11-13 | 한국화학연구원 | Nanostructured inorganic semiconductor-sensitized solar cell with vertically aligned photoelectrode |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05343718A (en) * | 1991-10-01 | 1993-12-24 | Ricoh Co Ltd | Photovoltaic element |
JPH05121770A (en) * | 1991-10-29 | 1993-05-18 | Ricoh Co Ltd | Organic photovoltaic element |
JP4507306B2 (en) | 1999-08-31 | 2010-07-21 | 株式会社豊田中央研究所 | Oxide semiconductor electrode and dye-sensitized solar cell using the same |
JP2004523129A (en) * | 2001-06-11 | 2004-07-29 | ザ、トラスティーズ オブ プリンストン ユニバーシティ | Organic photovoltaic device |
-
2004
- 2004-02-26 KR KR1020040012959A patent/KR101030039B1/en not_active IP Right Cessation
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100924366B1 (en) * | 2005-12-09 | 2009-10-30 | 고려대학교 산학협력단 | Organic-inorganic hybrid solar cell and method for preparing the same |
KR100935322B1 (en) * | 2008-01-02 | 2010-01-06 | 삼성전기주식회사 | Solar cell with high efficiency and method of producing the same |
KR100975506B1 (en) * | 2008-06-18 | 2010-08-11 | 경북대학교 산학협력단 | Method for producing solar battery |
WO2010067958A3 (en) * | 2008-12-10 | 2010-08-12 | 한양대학교 산학협력단 | Solar battery with a reusable substrate, and manufacturing method thereof |
WO2010067958A2 (en) * | 2008-12-10 | 2010-06-17 | 한양대학교 산학협력단 | Solar battery with a reusable substrate, and manufacturing method thereof |
US9136404B2 (en) | 2008-12-10 | 2015-09-15 | Iucf-Hyu (Industry-University Cooperation Foundation Hanyang University) | Solar cell capable of recycling a substrate and method for manufacturing the same |
KR101039208B1 (en) * | 2008-12-10 | 2011-06-03 | 한양대학교 산학협력단 | Photovoltaic cell having semiconductor rod, method for fabricating the cell, and unified module of photovoltaic cell - thermoelectric device |
WO2010144551A2 (en) * | 2009-06-10 | 2010-12-16 | Applied Materials, Inc. | Carbon nanotube-based solar cells |
WO2010144551A3 (en) * | 2009-06-10 | 2011-03-10 | Applied Materials, Inc. | Carbon nanotube-based solar cells |
US8747942B2 (en) | 2009-06-10 | 2014-06-10 | Applied Materials, Inc. | Carbon nanotube-based solar cells |
KR101026763B1 (en) * | 2009-07-27 | 2011-04-11 | 재단법인대구경북과학기술원 | Organic-inorganic hybrid solar cell |
KR101144886B1 (en) * | 2009-08-14 | 2012-05-14 | 연세대학교 산학협력단 | Organic solar cell comprising non-metallic nano particles and method for manufacturing the same |
WO2011035157A3 (en) * | 2009-09-18 | 2011-07-14 | Applied Materials, Inc. | Apparatus and methods for forming energy storage and photovoltaic devices in a linear system |
US8334017B2 (en) | 2009-09-18 | 2012-12-18 | Applied Materials, Inc. | Apparatus and methods for forming energy storage and photovoltaic devices in a linear system |
WO2011035157A2 (en) * | 2009-09-18 | 2011-03-24 | Applied Materials, Inc. | Apparatus and methods for forming energy storage and photovoltaic devices in a linear system |
KR101222940B1 (en) * | 2010-01-25 | 2013-02-05 | (주)루미나노 | Solar cells showing improved light conversion efficiency by electric field enhancement effects |
KR101144034B1 (en) * | 2010-04-27 | 2012-05-23 | 현대자동차주식회사 | Method for manufacturing organic thin film solar cell using ion beam treatment and organic thin film solar cell manufactured by the same |
KR101145903B1 (en) * | 2010-05-24 | 2012-05-15 | 한국화학연구원 | Manufacturing method of organic photovoltaic cell fabricated by solution process and organic photovoltaic cell fabricated thereby |
KR101295199B1 (en) * | 2011-07-07 | 2013-08-09 | 포항공과대학교 산학협력단 | Solar cell device and manufacturing method thereof |
WO2013006016A3 (en) * | 2011-07-07 | 2013-02-28 | 포항공과대학교 산학협력단 | Solar cell element and manufacturing method for same |
WO2013006016A2 (en) * | 2011-07-07 | 2013-01-10 | 포항공과대학교 산학협력단 | Solar cell element and manufacturing method for same |
KR20160049443A (en) | 2014-10-27 | 2016-05-09 | 주식회사 엘지화학 | Ink composition for use in manufacturing of solar cell and method for producing solar cell using the same |
US10294379B2 (en) | 2014-10-27 | 2019-05-21 | Lg Chem, Ltd. | Ink composition for organic solar cell and method for producing organic solar cell using same |
TWI691093B (en) * | 2018-04-16 | 2020-04-11 | 鴻海精密工業股份有限公司 | Polymer solar cell |
Also Published As
Publication number | Publication date |
---|---|
KR101030039B1 (en) | 2011-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101030039B1 (en) | Organic solar cell and fabrication method thereof | |
Mahmoudi et al. | Graphene and its derivatives for solar cells application | |
US8747942B2 (en) | Carbon nanotube-based solar cells | |
Kuo et al. | Ordered bulk heterojunction solar cells with vertically aligned TiO2 nanorods embedded in a conjugated polymer | |
Wang et al. | Scrolling bilayer WS 2/MoS 2 heterostructures for high-performance photo-detection | |
CN102646745B (en) | Photovoltaic device and solar battery | |
US20080066802A1 (en) | Photovoltaic device containing nanoparticle sensitized carbon nanotubes | |
US20080110494A1 (en) | Nanoparticle sensitized nanostructured solar cells | |
CN101127374B (en) | Making method for flexible dye sensitized solar battery nano crystal thin film | |
TW201108485A (en) | Organic solar cell and method forming the same | |
KR20190026484A (en) | Tandem solar cell and manufacturing method the same | |
Zhang et al. | Wire-supported CdSe nanowire array photoelectrochemical solar cells | |
CN109244244B (en) | Ordered heterojunction photovoltaic device and preparation method thereof | |
Li et al. | CuI-Si heterojunction solar cells with carbon nanotube films as flexible top-contact electrodes | |
TWI466816B (en) | Vertically oriented nanowires array structure and method thereof | |
CN112909181A (en) | Tunneling junction of perovskite/perovskite two-end laminated solar cell | |
WO2023098038A1 (en) | Method for preparing columnar electrode structure of perovskite solar cell | |
Wang et al. | Improvement of inverted-type organic solar cells by mild oxygen plasma etching on polymer thin film | |
CN114122155B (en) | Gallium arsenide solar cell containing flame synthesized nickel gold nanosphere array and preparation thereof | |
Dai et al. | Inverted Planar Perovskite Solar Cells Based on NiOx Nano Film with Enhanced Efficiency and Stability | |
KR101062906B1 (en) | Thin film solar cell based on carbon nanotube network | |
Castrucci et al. | Photovoltaic response of carbon nanotube-silicon heterojunctions: Effect of nanotube film thickness and number of walls | |
CN111326659A (en) | Metal transparent electrode and organic solar cell | |
CN118102820A (en) | Perovskite-silicon laminated solar cell and preparation method thereof | |
Arpavate et al. | ZnO nanorod arrays fabricated by hydrothermal method using different thicknesses of seed layers for applications in hybrid photovoltaic cells |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
LAPS | Lapse due to unpaid annual fee |