KR20050066213A - Method of preparing preform for step-index optical fiber - Google Patents

Method of preparing preform for step-index optical fiber Download PDF

Info

Publication number
KR20050066213A
KR20050066213A KR1020030097465A KR20030097465A KR20050066213A KR 20050066213 A KR20050066213 A KR 20050066213A KR 1020030097465 A KR1020030097465 A KR 1020030097465A KR 20030097465 A KR20030097465 A KR 20030097465A KR 20050066213 A KR20050066213 A KR 20050066213A
Authority
KR
South Korea
Prior art keywords
vinylidene fluoride
copolymer
optical fiber
plastic optical
mol
Prior art date
Application number
KR1020030097465A
Other languages
Korean (ko)
Inventor
홍현진
조재춘
조영준
김범준
김정선
Original Assignee
주식회사 효성
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 효성 filed Critical 주식회사 효성
Priority to KR1020030097465A priority Critical patent/KR20050066213A/en
Publication of KR20050066213A publication Critical patent/KR20050066213A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/2415Tubular reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00663Production of light guides
    • B29D11/00721Production of light guides involving preforms for the manufacture of light guides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/16Homopolymers or copolymers or vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • C08L33/12Homopolymers or copolymers of methyl methacrylate
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02033Core or cladding made from organic material, e.g. polymeric material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2027/00Use of polyvinylhalogenides or derivatives thereof as moulding material
    • B29K2027/12Use of polyvinylhalogenides or derivatives thereof as moulding material containing fluorine
    • B29K2027/16PVDF, i.e. polyvinylidene fluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2027/00Use of polyvinylhalogenides or derivatives thereof as moulding material
    • B29K2027/12Use of polyvinylhalogenides or derivatives thereof as moulding material containing fluorine
    • B29K2027/18PTFE, i.e. polytetrafluorethene, e.g. ePTFE, i.e. expanded polytetrafluorethene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2033/00Use of polymers of unsaturated acids or derivatives thereof as moulding material
    • B29K2033/04Polymers of esters
    • B29K2033/12Polymers of methacrylic acid esters, e.g. PMMA, i.e. polymethylmethacrylate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Ophthalmology & Optometry (AREA)
  • Mechanical Engineering (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

본 발명은 스텝인덱스형 플라스틱 광섬유용 프리폼의 제조방법에 관한 것으로, 보다 상세하게는 상기 원심력에 의해 회전하는 유리 튜브에 보호층, 클래드, 코어를 순서대로 중합하여 플라스틱 광섬유용 프리폼(preform)을 제조하고 이를 드로잉하여 광섬유를 제조하는 방법에 관한 것으로 본 발명의 방법에 의해 제조된 플라스틱 광섬유는 휨, 굽힘 등과 같은 기계적 물성이 우수하다. The present invention relates to a method for producing a preform for a step index type plastic optical fiber, and more particularly, to prepare a plastic optical fiber preform by polymerizing a protective layer, a clad, and a core in order on a glass tube rotating by the centrifugal force. And it relates to a method of manufacturing the optical fiber by drawing it, the plastic optical fiber produced by the method of the present invention is excellent in mechanical properties such as bending, bending.

Description

스텝인덱스형 플라스틱 광섬유용 프리폼의 제조방법{Method of preparing Preform for Step-Index Optical Fiber} Method of preparing preform for step index type plastic optical fiber {Method of preparing Preform for Step-Index Optical Fiber}

본 발명은 스텝인덱스형 플라스틱 광섬유용 프리폼의 제조방법에 관한 것으로, 보다 상세하게는 원심력법에 의해 스텝인덱스(Step-Index)형 굴절률 분포를 갖는 플라스틱 광섬유용 프리폼을 제조하는 방법에 관한 것이다.The present invention relates to a method for manufacturing a preform for a step index type plastic optical fiber, and more particularly, to a method for manufacturing a preform for a plastic optical fiber having a step-index type refractive index distribution by centrifugal force method.

플라스틱 광섬유는 크게, 조명용이나 디스플레이에 사용되고 있는 코어의 굴절률과 클래드의 굴절률이 서로 다른 스텝 인덱스형 광섬유와, 통신용으로 사용되고 있는 굴절률이 외부로부터 내부로 가면서 점차적으로 커지는 그레디드 인덱스형 광섬유로 구별될 수 있다. 스텝인덱스형은 상기한 바와 같이 조명용, 디스플레이용 등과 같이 빛의 전달 수단에 가장 많이 사용되나, 플라스틱 광섬유의 광전송 손실을 크게 줄임으로써 A/V 시스템의 신호전달용, 센서 등에도 이용될 수 있다. 최근에는 멀티스텝 인덱스형을 이용하여 근거리 통신용에도 이를 사용하려는 시도가 있었다. 이러한 플라스틱 광섬유는 석영 광섬유에 비해 섬유의 직경이 매우 크며, 굴절률 차에 의한 개구수가 커서 빛을 전달하는데 유리할 뿐만 아니라, 다수 접점을 지닌 근거리 네트워크에서도 응용 가능할 것으로 예상된다. Plastic optical fibers can be largely classified into step index type optical fibers having different refractive indices and clad refractive indices of cores used for lighting and display, and graded index optical fibers whose refractive indexes used for communication gradually increase from the outside to the inside. have. As described above, the step index type is most used for light transmission means, such as for lighting and display, but can also be used for signal transmission and sensors of A / V systems by greatly reducing the optical transmission loss of the plastic optical fiber. Recently, there have been attempts to use the multi-step index type for near field communication. The plastic optical fiber has a much larger diameter than the quartz optical fiber, and has a large numerical aperture due to the difference in refractive index, which is advantageous in transmitting light, and is expected to be applicable to a local area network having a large number of contacts.

종래 스텝인덱스형 플라스틱 광섬유는 일반적으로 연속중합에 의한 직접 방사에 의해 제조되어 왔다. 특히 코어 재료로는 폴리메틸 메타크릴레이트를, 클래드 재료로는 메틸 메타크릴레이트, 메타크릴레이트, 플루오로알킬 메타크릴레이트로 구성된 공중합체를 사용하고 있다. 또한 이들을 보호하는 보호층(미국특허 5,963,701 또는 한국특허 특1999-014822)으로 비닐리덴플루오로라이드/테트라플루오로에틸렌으로 구성된 공중합체를 사용하고 있다. 그러나 이들은 모두 연속중합법과 상용화된 공중합체를 용융 방사하는 방식으로 플라스틱 광섬유를 제조하기 때문에 높은 초기 투자비용, 코어와 클래드의 접착문제 및 공중합체의 오염문제를 해결해야하는 문제점이 있다.Conventional step-index plastic optical fibers have generally been produced by direct radiation by continuous polymerization. In particular, a copolymer composed of polymethyl methacrylate as the core material and methyl methacrylate, methacrylate and fluoroalkyl methacrylate is used as the clad material. In addition, a protective layer (US Pat. No. 5,963,701 or Korean Patent No. 1999-014822) for protecting them uses a copolymer composed of vinylidene fluoride / tetrafluoroethylene. However, all of them produce a plastic optical fiber by melt spinning a copolymerization method and a commercially available copolymer, and thus have high initial investment costs, core and clad adhesion problems, and problems of copolymer contamination.

상기와 같은 종래 기술의 문제점을 해결하기 위해 본 발명은 원심력을 이용한 스텝인덱스형 플라스틱 광섬유용 프리폼의 제조방법을 제공함으로써 낮은 손실, 높은 개구수, 높은 기계적 강도를 갖는 플라스틱 광섬유를 제조하고자 한다. In order to solve the problems of the prior art as described above, the present invention is to produce a plastic optical fiber having a low loss, high numerical aperture, high mechanical strength by providing a method for producing a pre-index for the step index type plastic optical fiber using a centrifugal force.

즉, 본 발명은 한 측면은 That is, the present invention is one aspect

1) 메틸메타크릴레이트와 테트라플루오로에틸렌/비닐리덴플루오로라이드의 공중합체, 비닐리덴플루오로라이드/헥사플루오로프로펜의 공중합체 및 테트라플루오로에틸렌/비닐리덴플루오로라이드/헥사플루오로프로펜의 공중합체로 이루어진 군으로부터 선택된 1종을 혼합한 혼합물에, 개시제 및 연쇄이동제를 첨가하여 원통형의 유리 반응기에 주입하고 이를 회전시킴으로써 원심력하에서 중합하여 보호층을 제조하는 단계;1) Copolymer of methyl methacrylate and tetrafluoroethylene / vinylidene fluoride, copolymer of vinylidene fluoride / hexafluoropropene and tetrafluoroethylene / vinylidene fluoride / hexafluoro Preparing a protective layer by adding an initiator and a chain transfer agent to a mixture of one selected from the group consisting of propene, injecting the same into a cylindrical glass reactor, and rotating the same to polymerize under centrifugal force;

2) 상기 1)단계가 종료된 후, 불소화된 알킬 메타크릴레이트와 메틸메타크릴레이트의 혼합액을 회전중인 상기 반응기에 투입하고 회전하면서 이를 중합하여 클래드를 제조하는 단계; 및2) after the step 1) is completed, adding a mixture of fluorinated alkyl methacrylate and methyl methacrylate to the reactor in rotation and polymerization while rotating to produce a clad; And

3) 상기 2)단계가 종료된 후, 메틸메타크릴레이트, 스타이렌 또는 이들의 공중합체를 상기 반응기에 투입하고 중합시켜 코어를 제조하는 단계를 포함하는 스텝인덱스형 플라스틱 광섬유용 프리폼을 제조하는 방법을 제공하는 것이다. 3) After the step 2) is completed, a method for producing a pre-index for the plastic step-index plastic optical fiber comprising the step of adding a methyl methacrylate, styrene or a copolymer thereof to the reactor and polymerized to produce a core To provide.

본 발명의 또 다른 측면은 상기 방법에 따라 제조된 프리폼 및 이를 연신하여 제조된 스텝인덱스형 플라스틱 광섬유를 제조하는 방법을 제공하는 것이다. Another aspect of the present invention is to provide a preform manufactured according to the above method and a method for manufacturing a step index plastic fiber manufactured by stretching the same.

이하에서 본 발명을 보다 상세하게 설명한다.The present invention will be described in more detail below.

본 발명에서는 스텝인덱스(step-index)형 플라스틱 광섬유의 프리폼은 기존에 이용되던 연속 방사법이 아닌 원심력법에 의해 제조된 것으로 그 과정은 다음과 같다.In the present invention, the pre-form of the step-index type plastic optical fiber is manufactured by the centrifugal force method rather than the conventional continuous spinning method, and the process is as follows.

본 발명의 플라스틱 광섬유용 프리폼 제조의 제 1단계로서 메틸메타크릴레이트와 테트라플루오로에틸렌/비닐리덴플루오로라이드의 공중합체, 비닐리덴플루오로라이드/헥사플루오로프로펜의 공중합체 및 테트라플루오로에틸렌/비닐리덴플루오로라이드/헥사플루오로프로펜의 공중합체로 이루어진 군으로부터 선택된 1종을 혼합한 혼합물에, 개시제 및 연쇄 이동제를 첨가하여 원통형의 유리 반응기에 주입하고 이를 회전시킴으로써 원심력하에서 중합하여 보호층을 제조한다.Copolymer of methyl methacrylate with tetrafluoroethylene / vinylidene fluoride, copolymer of vinylidene fluoride / hexafluoropropene, and tetrafluoro as a first step in preparing a preform for plastic optical fibers of the present invention Into a mixture of one selected from the group consisting of copolymers of ethylene / vinylidene fluoride / hexafluoropropene, an initiator and a chain transfer agent were added to the cylindrical glass reactor, and then rotated and polymerized under centrifugal force. Prepare a protective layer.

직접방사법에 의한 용융방사에 일반적으로 사용되는 테트라플루오로에틸렌/비닐리덴플루오로라이드 공중합체, 비닐리덴플루오로라이드/헥사플루오로프로펜의 공중합체 또는 테트라플루오로에틸렌/비닐리덴플루오로라이드/헥사플루오로프로펜 공중합체를 원심력을 이용한 플라스틱 광섬유용 프리폼의 제조에 사용하는데, 코어/클래드의 굴곡으로 인한 광손실을 보정해 줄 뿐만 아니라 플라스틱 광섬유의 기계적 특성을 향상시킬 수 있다.Tetrafluoroethylene / vinylidene fluoride copolymers, copolymers of vinylidene fluoride / hexafluoropropene, or tetrafluoroethylene / vinylidene fluoride / commonly used for melt spinning by direct spinning The hexafluoropropene copolymer is used for the production of preforms for plastic optical fibers using centrifugal force, which not only corrects optical loss due to bending of the core / clad, but also improves mechanical properties of the plastic optical fiber.

상기 제 1)단계에서, 메틸메타크릴레이트 50~90중량%와 테트라플루오로에틸렌/비닐리덴플루오로라이드의 공중합체, 비닐리덴플루오로라이드/헥사플루오로프로펜 공중합체, 및 테트라플루오로에틸렌/비닐리덴플루오로라이드/헥사플루오로프로펜의 공중합체로 이루어진 군으로부터 선택된 1종을 10~50중량%로 혼합하여 혼합액을 제조한다. 이때, 메틸 메타크릴레이트가 50중량% 미만인 경우, 테트라플루오로에틸렌/비닐리덴플루오로라이드 등 공중합체가 메틸메타크릴레이트에 분산상으로 존재하지 못하고 점도 또한 증가하여 공정상의 적용이 어렵게 되며, 메틸 메타크릴레이트가 90중량%를 초과하는 경우 테트라플루오로에틸렌/비닐리덴플루오로라이드 공중합체의 양이 너무 작아 보호층으로서의 역할을 하기 어렵게 된다. In step 1), a copolymer of 50 to 90% by weight of methyl methacrylate with tetrafluoroethylene / vinylidene fluoride, vinylidene fluoride / hexafluoropropene copolymer, and tetrafluoroethylene A mixed solution is prepared by mixing one selected from the group consisting of copolymers of vinylidene fluoride and hexafluoropropene at 10 to 50% by weight. At this time, when the methyl methacrylate is less than 50% by weight, copolymers such as tetrafluoroethylene / vinylidene fluoride do not exist in the methyl methacrylate as a dispersed phase and the viscosity is also increased, making it difficult to apply in the process. If the acrylate exceeds 90% by weight, the amount of tetrafluoroethylene / vinylidene fluoride copolymer is too small to serve as a protective layer.

본 발명에서 보호층에 사용되는 테트라플루오로에틸렌/비닐리덴플루오로라이드 공중합체의 조성은 테트라플루오로에틸렌이 60~90몰%, 비닐리덴플루오로라이드 10~40몰%로 구성되어야 하며 이들의 조성을 벗어나게 되면 보호층으로 사용될 수 있는 물성을 나타내기 어렵게 된다. The composition of the tetrafluoroethylene / vinylidene fluoride copolymer used in the protective layer in the present invention should be composed of 60 to 90 mol% of tetrafluoroethylene, 10 to 40 mol% of vinylidene fluoride and If the composition is out of the composition it becomes difficult to exhibit the properties that can be used as a protective layer.

보호층에 사용되는 비닐리덴플루오로라이드/헥사플루오로프로펜의 공중합체는 비닐리덴플루오로라이드가 70~90몰%, 헥사플루오로프로펜 10~30몰%로 구성되며 이 조성을 벗어나면 보호층으로써의 물성을 나타내기 어렵다. The copolymer of vinylidene fluoride / hexafluoropropene used in the protective layer is composed of 70 to 90 mol% of vinylidene fluoride and 10 to 30 mol% of hexafluoropropene. It is difficult to show the physical properties as a layer.

또한 테트라플루오로에틸렌/비닐리덴플루오로라이드/헥사플루오로프로펜으로 구성된 공중합체를 사용할 수도 있는데, 이때 공중합체의 조성은 테트라플루오로에틸렌이 60~90몰%, 비닐리덴플루오로라이드 5~30몰%, 헥사플루오로에틸렌 1~20몰%이며, 상기 조성을 벗어나면 보호층으로써의 물성을 나타내기가 힘들다. It is also possible to use a copolymer composed of tetrafluoroethylene / vinylidene fluoride / hexafluoropropene, wherein the composition of the copolymer is 60 to 90 mol% of tetrafluoroethylene and 5 to 5 vinylidene fluoride. It is 30 mol% and 1-20 mol% of hexafluoroethylene, and when it is out of the said composition, it is hard to show the physical property as a protective layer.

상기와 같이 제조된 혼합액으로 상기 제 1단계의 보호층을 중합함에 있어서, 개시제로 BPO(benzoylperoxide) 및 AIBN으로 이루어진 군중에서 선택된 1종 이상을 0.01~0.1몰%로 첨가하고, 연쇄이동제로 머캅탄 화합물 중 1종 이상을, 바람직하게는 n-부틸머캅탄을 0.05~0.5몰%로 첨가한 후, 혼합액을 유리 튜브에 투입하여 회전속도 1,000~10,000rpm로 회전한다. 이때의 회전속도는 투입된 혼합액이 유리튜브의 내부에 고르게 덮일 수 있는 정도의 회전수 이상이면 충분하나 1000rpm 미만인 경우에는 분산상태가 고르지 않은 단점이 있으며, 10,000rpm 초과인 경우는 설비 제조의 어려움이 있으나 그 이상도 가능하다. In polymerizing the protective layer of the first step with the mixed solution prepared as described above, at least one selected from the group consisting of BPO (benzoylperoxide) and AIBN as an initiator is added to 0.01 ~ 0.1 mol%, mercaptan as a chain transfer agent At least 1 type of compound is added, Preferably n-butyl mercaptan is added at 0.05-0.5 mol%, Then, a liquid mixture is thrown into a glass tube, and it rotates at a rotation speed of 1,000-10,000 rpm. At this time, the rotation speed is sufficient if the mixed liquid is more than enough to cover the inside of the glass tube evenly, but less than 1000rpm there is a disadvantage of uneven dispersion, if more than 10,000rpm is difficult to manufacture equipment More than that is possible.

상기 중합은 중합온도 60~150℃에서 수행한다. 중합온도가 60℃ 미만인 경우에는 중합시간이 오래 걸리며, 150℃ 초과인 경우에서는 메틸 메타크릴레이트가 기화되어 실질적으로 중합을 할 수 없다. The polymerization is carried out at a polymerization temperature of 60 ~ 150 ℃. If the polymerization temperature is less than 60 ℃ polymerization time is long, if the polymerization temperature is higher than 150 ℃ methyl methacrylate is evaporated and practically unable to polymerize.

상기 제 1단계의 보호층 중합이 끝나면 본 발명의 플라스틱 광섬유 프리폼의 제조를 위한 제 2단계로서 메틸메타크릴레이트 50~90중량%와 불소치환된 알킬 메타크릴레이트 10~50중량%로 구성된 혼합액에 상기와 마찬가지로 개시제로 BPO 및 AIBN으로 이루어진 군중에서 선택된 1종 이상을 0.01~0.1몰%을 첨가하고, 연쇄이동제로 머캅탄 화합물 중에서 1종 이상을, 바람직하게는 n-부틸머캅탄을 0.05~0.5몰%로 첨가한 후, 혼합액을 유리 튜브에 투입하여 회전속도 1,000~10,000rpm으로 회전시켜 클래드를 중합한다. 상기 불소치환된 알킬 메타크릴레이트로는 트리플루오로에틸 메타크릴레이트, 테트라플루오로프로필 메타크릴레이트, 펜타플루오로프로필 메타크릴레이트, 헥사플루오로 이소메타크릴레이트, 옥타플루오로 펜틸메타크릴레이트, 및 도데카플루오로 헵틸메타크릴레이트로 이루어진 군중에서 선택된 1종 이상의 공중합체가 바람직하다.When the protective layer polymerization of the first step is completed, as a second step for the preparation of the plastic optical fiber preform of the present invention, the mixture is composed of 50 to 90% by weight of methyl methacrylate and 10 to 50% by weight of fluorine-substituted alkyl methacrylate. In the same manner as described above, 0.01 to 0.1 mol% of at least one selected from the group consisting of BPO and AIBN is added as an initiator, and at least one of mercaptan compounds is preferably used as a chain transfer agent, preferably n-butyl mercaptan is 0.05 to 0.5. After adding it in mol%, the mixed liquid is put into a glass tube and rotated at a rotational speed of 1,000 to 10,000 rpm to polymerize the clad. The fluorine-substituted alkyl methacrylates include trifluoroethyl methacrylate, tetrafluoropropyl methacrylate, pentafluoropropyl methacrylate, hexafluoro isomethacrylate, octafluoro pentyl methacrylate, And at least one copolymer selected from the group consisting of dodecafluoro heptyl methacrylate.

상기 제 2단계의 클래드 중합이 끝나면 본 발명의 플라스틱 광섬유 프리폼의 제조를 위한 제 3단계로서 메틸 메타크릴레이트, 스타이렌 또는 이들의 공중합체에 상기와 동일한 개시제로 0.01~0.1몰%, 상기와 동일한 연쇄이동제로 0.05~0.5몰%를 첨가한 후, 혼합액을 유리 튜브에 투입하여 회전속도 1,000~10,000rpm으로 회전시켜 코어를 중합한다.After the second stage of the clad polymerization, as a third step for the preparation of the plastic optical fiber preform of the present invention, 0.01 to 0.1 mol% of methyl methacrylate, styrene or a copolymer thereof as the same initiator, After adding 0.05-0.5 mol% as a chain transfer agent, a mixed liquid is put into a glass tube, it rotates at a rotation speed of 1,000-10,000 rpm, and polymerizes a core.

상기와 같이 제조된 플라스틱 광섬유용 프리폼은 드로잉 과정을 거쳐 스텝인덱스형 플라스틱 광섬유로 제조된다.The preform for the plastic optical fiber manufactured as described above is manufactured as a step index plastic optical fiber through a drawing process.

즉, 상기 제 1단계 내지 제 3단계를 거쳐 코어의 중합이 끝나면 프리폼을 유리 튜브에서 분리한 후, 70~120℃ 온도의 진공오븐에 이를 투입하고, 잔류 모노머 및 첨가제를 제거하고 그 결과 수득된 프리폼에 열을 가하여 드로잉하면 플라스틱 광섬유가 제조된다. That is, after completion of the polymerization of the core through the first step to the third step, the preform is separated from the glass tube, and then put in a vacuum oven at a temperature of 70 ~ 120 ℃, to remove the residual monomers and additives obtained as a result Drawing on the preform with heat produces a plastic optical fiber.

이하의 실시예를 통하여 본 발명을 보다 상세하게 설명하고자 하나, 하기의 실시예는 설명의 목적을 위한 것으로 본 발명을 제한하고자 하는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following examples, but the following examples are for the purpose of explanation and are not intended to limit the present invention.

실시예에서 제조된 광섬유의 굽힘 특성은 각도 90도, 속도 90회/분의 굴곡을 가하였을 경우, 몇 번의 굽힘 후에 파단이 일어나는지로 시험하였고, 유연성은 다양한 크기의 지름을 갖는 원통에 20회를 감았을 때 파단이 일어나지 않았을 때를 기준으로 하여 측정하였다. 또한 광 손실의 측정은 30m의 광섬유를 3m씩 10회 컷-백(cut-back)하는 방법을 통하여 측정하였다.The bending characteristics of the optical fiber manufactured in Example were tested for how many times the fracture occurred after bending at an angle of 90 degrees and a speed of 90 times / min, and the flexibility was measured 20 times in a cylinder having various diameters. The measurement was made based on the time when no fracture occurred when wound. In addition, the measurement of the optical loss was measured by a method of cut-backing 30m optical fibers 10 times every 3m.

실시예 1Example 1

원심력에 의해 회전하는 유리 튜브에 중합비가 20몰%/80몰%인 테트라플로로에틸렌/비닐리덴플루오로라이드의 공중합체 30중량% 및 메틸메타크릴레이트 70중량%로 구성된 분산액에 개시제로 AIBN 0.06몰%와 연쇄이동제로 n-부틸머캅탄 0.3몰%로 투입한 후, 회전수 3,000rpm으로 회전시키면서 중합온도 90℃에서 중합하여 보호층을 제조하였다. 여기에 메틸 메타크릴레이트 90중량%, 트리플루오로에틸메타크릴레이트 10중량%에 개시제, 연쇄이동제를 상기와 동일한 양으로 첨가하여 혼합액을 만들고, 상기 보호층이 제조되어 있는 유리 튜브에 투입하여 동일한 조건에서 클래드를 중합하였다. 이어서 메틸메타크릴레이트에 개시제, 연쇄이동제를 상기와 동일한 양으로 첨가한 혼합액을 여러 단계에 걸쳐 회전하는 유리관에 투입하여 동일조건에서 중합하여 프리폼을 제조하였다. 제조된 프리폼을 드로잉하여 플라스틱 광섬유를 제조하였다. 이때의 물리적 특성과 광 특성을 표 1에 나타내었다.AIBN 0.06 as an initiator in a dispersion consisting of 30% by weight of a copolymer of tetrafluoroethylene / vinylidene fluoride having a polymerization ratio of 20 mol% / 80 mol% and 70% by weight of methyl methacrylate in a glass tube rotated by centrifugal force. N-butyl mercaptan 0.3 mol% was added as a mole% and a chain transfer agent, followed by polymerization at 90 ° C. while rotating at a rotational speed of 3,000 rpm to prepare a protective layer. 90 wt% of methyl methacrylate and 10 wt% of trifluoroethyl methacrylate were added to the same amount as the initiator and the chain transfer agent to make a mixed solution, and the same was added to the glass tube in which the protective layer was prepared. The clad was polymerized under the conditions. Subsequently, a mixed solution in which an initiator and a chain transfer agent were added to methyl methacrylate in the same amount as above was added to a rotating glass tube through several steps to prepare a preform by polymerization under the same conditions. The prepared preform was drawn to prepare a plastic optical fiber. Physical and optical properties at this time are shown in Table 1.

실시예 2Example 2

원심력에 의해 회전하는 유리 튜브에 중합비가 20몰%/80몰%인 테트라플로로에틸렌/비닐리덴 플루오라이드의 공중합체 20중량% 및 메틸메타크릴레이트 80중량%로 구성된 분산액에 개시제로 AIBN 0.06몰%와 연쇄이동제로 n-부틸머캅탄 0.3몰%를 투입한 후 회전수 3,000rpm으로 회전하면서 중합온도 90℃에서 중합하여 보호층을 제조하였다. 여기에 메틸 메타크릴레이트 90중량%, 트리플루오로에틸메타크릴레이트 10중량%에 개시제, 연쇄 이동제를 상기와 동일한 양으로 첨가하여 혼합액을 만들고 상기 보호층이 제조되어 있는 유리 튜브에 투입하여 동일한 조건에서 클래드를 중합하였다. 이어서 메틸메타크릴레이트에 개시제, 연쇄이동제를 상기의 양과 동일한 양으로 첨가한 혼합액을 여러 단계에 걸쳐 회전하는 유리관에 투입하여 동일조건에서 중합하여 프리폼을 제조하였다. 제조된 프리폼을 드로잉하여 플라스틱광섬유를 제조하였다. 이때의 물리적 특성과 광 특성을 표 1에 나타내었다.0.06 mol of AIBN as an initiator in a dispersion composed of 20 wt% of a copolymer of tetrafluoroethylene / vinylidene fluoride having a polymerization ratio of 20 mol% / 80 mol% in a glass tube rotating by centrifugal force and 80 wt% of methyl methacrylate. 0.3 mol% of n-butyl mercaptan was added as a% and a chain transfer agent, followed by polymerization at a polymerization temperature of 90 ° C. while rotating at a rotational speed of 3,000 rpm to prepare a protective layer. 90% by weight of methyl methacrylate and 10% by weight of trifluoroethyl methacrylate were added an initiator and a chain transfer agent in the same amounts as above to form a mixed solution and put into a glass tube in which the protective layer was prepared. The clad was polymerized at. Subsequently, a mixed solution in which an initiator and a chain transfer agent were added to methyl methacrylate in the same amount as described above was added to a rotating glass tube through several steps to prepare a preform by polymerization under the same conditions. The prepared preform was drawn to prepare a plastic optical fiber. Physical and optical properties at this time are shown in Table 1.

실시예 3Example 3

원심력에 의해 회전하는 유리 튜브에 중합비가 88몰%/12몰%인 비닐리덴플루오로라이드/헥사플루오로프로펜의 공중합체 30중량%, 메틸 메타크릴레이트 70중량%로 구성된 혼합액에 개시제로 AIBN 0.06몰%와 연쇄이동제로 n-부틸머캅탄 0.3몰%를 투입한 후, 회전수 3,000rpm으로 회전하면서 중합 온도 90℃에서 중합하여 보호층을 제조하였다. 여기에 메틸 메타크릴레이트 90중량%, 트리플루오로에틸메타크릴레이트 10중량%에 개시제, 연쇄이동제를 상기와 동일한 양을 첨가하여 혼합액을 만들고 상기 보호층이 제조되어 있는 유리 튜브에 투입하여 클래드를 동일조건에서 중합하였다. 다시 메틸메타크릴레이트에 개시제, 연쇄이동제를 상기의 양과 동일한 양을 첨가한 혼합액을 수단계에 걸쳐 회전하는 유리관에 투입하여 동일조건에서 중합하여 프리폼을 제조하였다. 제조된 프리폼을 드로잉하여 플라스틱 광섬유를 제조하였다. 이때의 물리적 특성과 광 특성을 표 1에 나타냈다.AIBN as an initiator in a mixed solution consisting of 30% by weight of a copolymer of vinylidene fluoride / hexafluoropropene having a polymerization ratio of 88 mol% / 12 mol% and 70% by weight of methyl methacrylate in a glass tube rotating by centrifugal force. After inserting 0.06 mol% and 0.3 mol% of n-butyl mercaptans as a chain transfer agent, it superposed | polymerized at the polymerization temperature of 90 degreeC, rotating at 3,000 rpm, and the protective layer was prepared. 90% by weight of methyl methacrylate and 10% by weight of trifluoroethyl methacrylate were added an initiator and a chain transfer agent in the same amounts to form a mixed solution, and the clad was added to a glass tube in which the protective layer was prepared. The polymerization was carried out under the same conditions. In addition, a mixture obtained by adding an initiator and a chain transfer agent to methyl methacrylate in an amount equal to the above amount was added to a rotating glass tube over several steps to polymerize under the same conditions, thereby preparing a preform. The prepared preform was drawn to prepare a plastic optical fiber. The physical characteristics and optical characteristics at this time are shown in Table 1.

실시예 4Example 4

원심력에 의해 회전하는 유리 튜브에 중합비가 18몰%/72몰%/10몰%인 테트라플로로에틸렌/비닐리덴 플루오라이드/헥사플루오로프로펜의 공중합체 30중량%, 메틸 메타크릴레이트 70중량%로 구성된 분산액에 개시제로 AIBN 0.06몰%와 연쇄이동제로 n-부틸머캅탄를 0.3몰%를 투입한 후 회전수 3,000rpm으로 회전하면서 중합온도 90℃에서 중합하여 보호층을 제조하였다. 여기에 메틸 메타크릴레이트 90중량%, 트리플루오로에틸메타크릴레이트 10중량%에 개시제, 연쇄이동제를 상기와 동일한 양으로 첨가하여 혼합액을 만들고 상기 보호층이 제조되어 있는 유리 튜브에 투입하여 클래드를 동일조건에서 중합하였다. 다시 메틸메타크릴레이트에 개시제, 연쇄이동제를 상기의 양과 동일한 양을 첨가한 혼합액을 수단계에 걸쳐 회전하는 유리관에 투입하여 동일조건에서 중합하여 프리폼을 제조하였다. 제조된 프리폼을 드로잉하여 플라스틱 광섬유를 제조하였다. 이때의 물리적 특성과 광 특성을 표 1에 나타냈다.30 wt% of tetrafluoroethylene / vinylidene fluoride / hexafluoropropene having a polymerization ratio of 18 mol% / 72 mol% / 10 mol% in a glass tube rotating by centrifugal force, 70 weight of methyl methacrylate 0.06 mol% of AIBN as an initiator and 0.3 mol% of n-butyl mercaptan as a chain transfer agent were added to a dispersion composed of%, followed by polymerization at a polymerization temperature of 90 ° C. while rotating at a rotational speed of 3,000 rpm to prepare a protective layer. 90% by weight of methyl methacrylate and 10% by weight of trifluoroethyl methacrylate were added an initiator and a chain transfer agent in the same amounts to form a mixed solution, and the clad was added to a glass tube in which the protective layer was prepared. The polymerization was carried out under the same conditions. In addition, a mixture obtained by adding an initiator and a chain transfer agent to methyl methacrylate in an amount equal to the above amount was added to a rotating glass tube over several steps to polymerize under the same conditions, thereby preparing a preform. The prepared preform was drawn to prepare a plastic optical fiber. The physical characteristics and optical characteristics at this time are shown in Table 1.

비교예 1Comparative Example 1

원심력에 의해 회전하는 유리 튜브에 보호층을 제조하지 않고 메틸 메타크릴레이트 90중량%, 트리플루오로에틸메타크릴레이트 10중량%의 혼합액에 개시제로 AIBN 0.06몰%와 연쇄이동제로 n-부틸머캅탄 0.3몰%를 투입한 후 회전수 3,000rpm으로 회전하면서 중합온도 90℃에서 중합하여 클래드를 제조하였다. 다시 메틸메타크릴레이트에 개시제, 연쇄이동제를 상기의 양과 동일한 양을 첨가한 혼합액을 수단계에 걸쳐 회전하는 유리관에 투입하여 동일 조건에서 중합하여 프리폼을 제조하였다. 제조된 프리폼을 드로잉하여 플라스틱 광섬유를 제조하였다. 이때의 물리적 특성과 광 특성을 표 1에 정리하였다.N-butyl mercaptan as a initiator and 0.06 mol% of AIBN as a initiator and a chain transfer agent in a mixed solution of 90% by weight of methyl methacrylate and 10% by weight of trifluoroethyl methacrylate without preparing a protective layer in a glass tube rotated by centrifugal force After the addition of 0.3 mol% was polymerized at a polymerization temperature of 90 ℃ while rotating at a rotational speed of 3,000rpm to prepare a clad. In addition, a mixture obtained by adding an initiator and a chain transfer agent to methyl methacrylate in the same amount as described above was added to a rotating glass tube over several steps to polymerize under the same conditions to prepare a preform. The prepared preform was drawn to prepare a plastic optical fiber. Physical and optical properties at this time are summarized in Table 1.

굽힘 특성(회)Bend Characteristics (times) 유연성(φ)Flexibility (φ) 전송 손실(dB/km)Transmission loss (dB / km) 실시예 1Example 1 1010 1.51.5 173173 실시예 2Example 2 88 33 175175 실시예 3Example 3 1010 1.51.5 211211 실시예 4Example 4 88 33 228228 비교예 1Comparative Example 1 1One 1515 180180

본 발명의 스텝인덱스형 플라스틱 광섬유는 원심력을 이용하여 중합하면서도 테트라플루오로에틸렌과 비닐리덴 플루오라이드의 공중합체 또는 테트라플루오로에틸렌, 비닐리덴 플루오라이드, 헥사플루오로프로펜의 공중합체들을 메틸메타크릴레이트에 중합하여 제조함으로써 굽힘, 유연성 등의 물리적 특성이 비약적으로 향상된 플라스틱 광섬유를 제공할 수 있다. The step-index plastic optical fiber of the present invention can be polymerized using centrifugal force while copolymerizing tetrafluoroethylene and vinylidene fluoride or copolymers of tetrafluoroethylene, vinylidene fluoride and hexafluoropropene to methylmethacryl. By polymerizing and manufacturing at a rate, it is possible to provide a plastic optical fiber with significantly improved physical properties such as bending and flexibility.

도 1은 원심력 하에서 스텝 인덱스형 플라스틱 광섬유용 프리폼을 제조하는 방법에 대한 모식도이다.1 is a schematic diagram of a method for producing a preform for a step index type plastic optical fiber under centrifugal force.

Claims (8)

1) 메틸메타크릴레이트와 테트라플루오로에틸렌/비닐리덴플루오로라이드의 공중합체, 비닐리덴플루오로라이드/헥사플루오로프로펜의 공중합체 및 테트라플루오로에틸렌/비닐리덴플루오로라이드/헥사플루오로프로펜의 공중합체로 이루어진 군으로부터 선택된 1종을 혼합한 혼합물에 개시제 및 연쇄이동제를 첨가하여 원통형의 유리 반응기에 주입하고 이를 회전시킴으로써 원심력하에서 중합하여 보호층을 제조하는 단계;1) Copolymer of methyl methacrylate and tetrafluoroethylene / vinylidene fluoride, copolymer of vinylidene fluoride / hexafluoropropene and tetrafluoroethylene / vinylidene fluoride / hexafluoro Adding an initiator and a chain transfer agent to a mixture of one selected from the group consisting of a copolymer of propene, injecting the same into a cylindrical glass reactor and rotating the polymer to rotate under centrifugal force to prepare a protective layer; 2) 상기 1)단계가 종료된 후, 불소화 알킬 메타크릴레이트와 메틸메타크릴레이트의 혼합액을 상기 반응기에 투입하고 회전하면서 이를 중합하여 클래드를 제조하는 단계; 및2) after the step 1) is completed, adding a mixture of fluorinated alkyl methacrylate and methyl methacrylate to the reactor and rotating to polymerize it while producing a clad; And 3) 상기 2)단계가 종료된 후, 메틸메타크릴레이트, 스타이렌 또는 이들의 공중합체를 상기 반응기에 투입하고 중합시켜 코어를 제조하는 단계를 포함하는 스텝인덱스형 플라스틱 광섬유용 프리폼의 제조방법.3) After the step 2) is completed, the step of preparing a step index-type plastic optical fiber preform comprising the step of adding a methyl methacrylate, styrene or a copolymer thereof to the reactor and polymerized. 제 1항에 있어서, 상기 1)단계의 메틸메타크릴레이트 50 내지 90중량%와 테트라플로로에틸렌과 비닐리덴플루오라이드의 공중합체, 비닐리덴플루오로라이드과 헥사플루오로프로펜의 공중합체, 및 테트라플루오로에틸렌, 비닐리덴플루오로라이드 및 헥사플루오로프로펜의 공중합체로 이루어진 군으로부터 선택된 1종을 10 내지 50중량%로 혼합하는 것을 특징으로 하는 스텝인덱스형 플라스틱 광섬유용 프리폼의 제조방법.According to claim 1, wherein the copolymer of tetrafluoroethylene and vinylidene fluoride with 50 to 90% by weight of methyl methacrylate of step 1), copolymer of vinylidene fluoride and hexafluoropropene, and tetra A method for producing a preindex for a step-index plastic optical fiber, characterized in that 10 to 50% by weight of one selected from the group consisting of a copolymer of fluoroethylene, vinylidene fluoride and hexafluoropropene. 제 2항에 있어서, 상기 테트라플루오로에틸렌과 비닐리덴플루오로라이드 공중합체의 조성은 테트라플루오로에틸렌이 60 내지 90몰%, 비닐리덴플루오로라이드가 10 내지 40몰%인 공중합체인 것을 특징으로 하는 스텝인덱스형 플라스틱 광섬유용 프리폼의 제조방법.According to claim 2, wherein the tetrafluoroethylene and vinylidene fluoride copolymer composition is 60 to 90 mol% of tetrafluoroethylene, 10 to 40 mol% of vinylidene fluoride is characterized in that the copolymer A method of manufacturing a preform for a step index type plastic optical fiber. 제 2항에 있어서, 상기 비닐리덴플루오로라이드와 헥사플루오로프로펜 공중합체의 조성은 비닐리덴플루오로라이드가 70 내지 90몰%, 헥사플루오로프로펜이 10 내지 30몰%인 것을 특징으로 하는 스텝인덱스형 플라스틱 광섬유용 프리폼의 제조방법.The composition of the vinylidene fluoride and hexafluoropropene copolymer is 70 to 90 mol% of vinylidene fluoride, and 10 to 30 mol% of hexafluoropropene. A method of manufacturing a preform for a step index type plastic optical fiber. 제 2항에 있어서, 상기 테트라플루오로에틸렌, 비닐리덴플루오로라이드 및 헥사플루오로프로펜 공중합체의 조성은 테트라플루오로에틸렌이 60 내지 90몰%, 비닐리덴플루오로라이드가 5 내지 30몰%, 헥사플루오로프로렌이 1 내지 20몰%인 것을 특징으로 하는 스텝인덱스형 플라스틱 광섬유용 프리폼의 제조방법.According to claim 2, wherein the composition of the tetrafluoroethylene, vinylidene fluoride and hexafluoropropene copolymer is 60 to 90 mol% of tetrafluoroethylene, 5 to 30 mol% of vinylidene fluoride A method for producing a preindex for a step index type plastic optical fiber, characterized in that 1 to 20 mol% of hexafluoroprolene. 제 1항에 있어서, 상기 2)단계의 불소화 알킬 메타크릴레이트는 트리플루오로에틸메타크릴레이트, 테트라플루오로프로필메타크릴레이트, 펜타플루오로프로필메타크릴레이트, 헥사플루오로이소메타크릴레이트, 옥타플루오로펜틸메타크릴레이트, 도데카플루오로헵틸메타크릴레이트로 이루어진 군중에서 선택된 1종 이상인 것을 특징으로 하는 스텝인덱스형 플라스틱 광섬유용 프리폼의 제조방법.The method of claim 1, wherein the fluorinated alkyl methacrylate of step 2) is trifluoroethyl methacrylate, tetrafluoropropyl methacrylate, pentafluoropropyl methacrylate, hexafluoroisomethacrylate, octa A method for producing a pre-index for a step index type plastic optical fiber, characterized in that at least one member selected from the group consisting of fluoropentyl methacrylate and dodecafluoroheptyl methacrylate. 제 1항 내지 제 6항 중 어느 한 항에 따라 제조된 플라스틱 광섬유용 프리폼.A preform for plastic optical fibers prepared according to any one of claims 1 to 6. 제 7항의 프리폼을 연신하여 제조된 플라스틱 광섬유.Plastic optical fiber produced by stretching the preform of claim 7.
KR1020030097465A 2003-12-26 2003-12-26 Method of preparing preform for step-index optical fiber KR20050066213A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020030097465A KR20050066213A (en) 2003-12-26 2003-12-26 Method of preparing preform for step-index optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030097465A KR20050066213A (en) 2003-12-26 2003-12-26 Method of preparing preform for step-index optical fiber

Publications (1)

Publication Number Publication Date
KR20050066213A true KR20050066213A (en) 2005-06-30

Family

ID=37257318

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030097465A KR20050066213A (en) 2003-12-26 2003-12-26 Method of preparing preform for step-index optical fiber

Country Status (1)

Country Link
KR (1) KR20050066213A (en)

Similar Documents

Publication Publication Date Title
EP0710855B1 (en) Refractive index distribution type optical resin and production method thereof
CA2249161A1 (en) Graded-refractive-index optical plastic material and method for its production
JP2016021071A (en) Plastic optical fiber comprising circular block copolymer
JP3719733B2 (en) Gradient index type optical resin material and manufacturing method thereof
AU736819B2 (en) Graded Index type optical fibers
JPS5936111A (en) Copolymer for optical fiber
EP0307164B1 (en) Cladding material for plastic optical fiber and plastic optical fiber using the same
KR920001118B1 (en) Optical fiber having plastic cladding and process for preparation thereof
KR20050066213A (en) Method of preparing preform for step-index optical fiber
KR100404889B1 (en) Preparation Method of Plastic Optical Fiber
KR20050058158A (en) The preform of graded-index plastic optical fiber improved flexibleness and manufacturing method thereof
JPH01223104A (en) Polymer for sheath material of optical fiber
KR100291659B1 (en) Method for manufacturing polymer optical waveguide
KR100638435B1 (en) Step index plastic optical fiber and the method of preparing the same
JPH06186442A (en) Distributed refractive index type plastic optical transmission body
KR100638436B1 (en) Graded-index plastic optical fiber and the method of preparing the same
JP3489764B2 (en) Refractive index distribution type optical resin material
AU773707B2 (en) Refractive index profile type optical fiber
JP3486483B2 (en) Plastic optical fiber
KR100327867B1 (en) The preparing method of preform for plastic optical fiber
JPH10221543A (en) Broadband plastic optical fiber
JPH08334601A (en) Optical resin material of distributed refractive index type
JP2006106779A (en) Optical plastic material, graded-refractive-index optical fiber and method for manufacturing graded-refractive-index optical plastic material
KR100539358B1 (en) Method of preparing of Preform of Graded-Index plastic optical fiber having improved Flexibility
JPS63143509A (en) Optical transmission fiber

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application