KR20050058158A - The preform of graded-index plastic optical fiber improved flexibleness and manufacturing method thereof - Google Patents

The preform of graded-index plastic optical fiber improved flexibleness and manufacturing method thereof Download PDF

Info

Publication number
KR20050058158A
KR20050058158A KR1020030090415A KR20030090415A KR20050058158A KR 20050058158 A KR20050058158 A KR 20050058158A KR 1020030090415 A KR1020030090415 A KR 1020030090415A KR 20030090415 A KR20030090415 A KR 20030090415A KR 20050058158 A KR20050058158 A KR 20050058158A
Authority
KR
South Korea
Prior art keywords
optical fiber
base material
plastic optical
protective layer
fiber base
Prior art date
Application number
KR1020030090415A
Other languages
Korean (ko)
Inventor
조재춘
홍현진
김정선
조영준
김범준
Original Assignee
주식회사 효성
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 효성 filed Critical 주식회사 효성
Priority to KR1020030090415A priority Critical patent/KR20050058158A/en
Publication of KR20050058158A publication Critical patent/KR20050058158A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00663Production of light guides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00663Production of light guides
    • B29D11/00721Production of light guides involving preforms for the manufacture of light guides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/045Light guides

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ophthalmology & Optometry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

본 발명은 유연성이 향상된 그레이디드 인덱스(Graded-Index)형 플라스틱 광섬유 및 이의 제조방법에 관한 것으로서, 본 발명의 제조방법은 플라스틱 광섬유 모재를 제조함에 있어서, 클래딩 층의 전체 또는 일부에 유연성이 뛰어난 첨가제를 첨가하여 보호층을 형성한 후, 그 안쪽에 중합개시제 0.02 ~ 0.2mol%, 연쇄전달제로 알칸티올 0.05 ~ 0.5mol%를 함유한 모노머 혼합용액을 중합시켜 코어부를 형성시키는 것을 특징으로 한다.The present invention relates to a graded index (Graded-Index) plastic optical fiber and improved manufacturing method of the flexibility, the manufacturing method of the present invention, in manufacturing a plastic optical fiber base material, an additive having excellent flexibility to all or part of the cladding layer After the addition of the protective layer to form a polymer, it is characterized in that the core portion is formed by polymerizing a monomer mixture solution containing 0.02 to 0.2 mol% of a polymerization initiator and 0.05 to 0.5 mol% of an alkane thiol as a chain transfer agent.

Description

유연성이 향상된 그레이디드 인덱스형 플라스틱 광섬유 모재 및 그 제조방법{The preform of Graded-index plastic optical fiber improved flexibleness and manufacturing method thereof}Graded-index plastic optical fiber improved flexibility and manufacturing method etc.

본 발명은 유연성이 향상된 그레이디드 인덱스(Graded-Index)형 플라스틱 광섬유 모재 및 그 제조방법에 관한 것으로서, 그레이디드 인덱스(Graded-Index)형 플라스틱 광섬유 모재의 클래딩의 전체 또는 일부에 폴리(비니리덴플루오라이드-테트라플루오로에틸렌) 코폴리머{Poly(vinylidenefluoride-tetrafluoroethylene)copolymer}, 폴리(비니리덴플루오라이드-헥사플루오르프로필렌)코폴리머{Poly(vinylidenefluoride-hexafluoropropylene)copolymer}, 폴리(비니리덴플루오라이드-테트라플루오로에틸렌-헥사플루오로프로필렌)트라이블록 코폴리머{Poly(vinylidenefluoride-tetraf{Poly(vinylidenefluoride-tetrafluoroethylene-hexafluoropropylene)triblock copolymer} 등의 첨가제를 첨가하여, 적정의 분자량을 갖는 광섬유를 제조하여 유연성이 뛰어나고 외압에 장시간동안 견딜 수 있는 플라스틱 광섬유 모재 및 그 제조방법에 관한 것이다. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a graded-index plastic optical fiber base material having improved flexibility, and a method of manufacturing the same, wherein the poly (vinylidene fluoride) is applied to all or part of the cladding of the graded-index plastic fiber base material. Poly (vinylidenefluoride-hexafluoropropylene) copolymer} Poly (vinylidenefluoride-tetrafluoroethylene) copolymer} Poly (vinylidenefluoride-hexafluoropropylene) copolymer} Poly (vinylidenefluoride-hexafluoropropylene) copolymer} Poly (vinylidenefluoride-tetra) By adding an additive such as poly (vinylidenefluoride-tetraf {Poly (vinylidenefluoride-tetrafluoroethylene-hexafluoropropylene) triblock copolymer} by adding a fluoroethylene-hexafluoropropylene) triblock copolymer, it has excellent flexibility by producing an optical fiber having an appropriate molecular weight. Plastic optical fiber base material that can withstand external pressure for a long time and its manufacturing method It relates.

플라스틱 광섬유는 코어부의 높은 굴절률과 클래드부의 낮은 굴절률을 가지는 1) step index형 플라스틱 광섬유(SI-POF)와, 코어부의 굴절률이 중심축에서 외부방향으로 Gaussian 분포를 가지면서 낮아지는 구조를 가지는 2) graded index형 플라스틱 광섬유(GI-POF)로 나뉜다.Plastic optical fiber has 1) step index type plastic optical fiber (SI-POF) which has high refractive index of core part and low refractive index of cladding part, and 2) structure that the refractive index of core part is lowered with Gaussian distribution from the central axis to the outward direction. It is divided into graded index plastic optical fiber (GI-POF).

Step index형 플라스틱 광섬유는 굴절률의 불연속 계면상에서 빛이 전반사하면서 진행하기 때문에 저속의 저용량의 단거리 전송, 조명 및 image guide등에 응용되고 있으며, Graded index형 플라스틱 광섬유는 빛이 높은 굴절률 내에서 진행하는 원리에 따라 광축에 모든 입사광의 모드들이 교차하면서 진행하기 때문에 전송대역폭이 넓고 대용량 고속 전송에 적합하다. Step index type plastic optical fiber is applied to low-speed, low-capacity short-distance transmission, lighting and image guide because light propagates at the discontinuous interface of refractive index, and graded index type plastic optical fiber is based on the principle that light travels at high refractive index. Therefore, since all the incident light modes cross the optical axis, the transmission bandwidth is wide and it is suitable for high-capacity high-speed transmission.

Graded-Index형 플라스틱 광섬유의 제조방법으로는 굴절률이 다른 도판트(dopant)를 사용하여 겔 효과를 이용한 제조법, 고속 원심력을 이용한 제조법 또는 특수한 압출 다이 설계에 의한 굴절률 조절에 의한 제조법이 있다. 도판트를 이용하는 제조법은 도판트가 광섬유 내부에서 가소제의 역할을 하여 도판트의 함량이 증가함에 따라 유리전이온도가 낮아져 내열성이 떨어지게 되며, 특수한 다이 설계에 의한 제조법은 저렴하게 광섬유를 제조할 수 있지만 정밀한 구조의 광섬유를 제조하기 어려운 단점이 있다. 또한 제조된 광섬유는 인장성질, 굽힘 성질이 떨어지고 외부 충격에 의하여 쉽게 파손될 수 있는 단점이 있다. 이는 통신용 플라스틱 광섬유의 경우 외부 자케팅을 하여도 취성을 극복할 수 없게 된다. The manufacturing method of Graded-Index type plastic optical fiber includes a manufacturing method using a gel effect using a dopant having a different refractive index, a manufacturing method using a high-speed centrifugal force, or a manufacturing method by adjusting a refractive index by a special extrusion die design. In the manufacturing method using the dopant, the dopant plays a role as a plasticizer inside the optical fiber, and as the content of the dopant is increased, the glass transition temperature is lowered, which lowers heat resistance. There is a disadvantage that it is difficult to manufacture a precise optical fiber. In addition, the manufactured optical fiber has a disadvantage in that tensile property and bending property are inferior and can be easily broken by external impact. This is because communication plastic optical fiber cannot overcome brittleness even by external jacketing.

그러므로 추가적인 보호층을 코팅해주려는 시도가 있어왔으며, 본 발명에서는 그레이디드 인덱스(Graded-Index)형 플라스틱 광섬유 모재의 클래딩의 전체 또는 일부에 Poly(vinylidenefluoride-tetrafluoroethylene)copolymer, Poly(vinylidenefluoride-hexafluoropropylene)copolymer, Poly(vinylidenefluoride-tetrafluoroethylene-hexafluoropropylene)triblock copolymer 등의 첨가제를 첨가하여, 적정의 분자량을 갖는 광섬유를 제조하여 유연성이 뛰어나고 외압에 장시간동안 견딜 수 있는 플라스틱 광섬유를 제조하고자 하였다.Therefore, an attempt has been made to coat an additional protective layer, and in the present invention, poly (vinylidenefluoride-tetrafluoroethylene) copolymer, Poly (vinylidenefluoride-hexafluoropropylene) copolymer, or all parts of the cladding of a graded-index plastic optical fiber base material By adding an additive such as poly (vinylidenefluoride-tetrafluoroethylene-hexafluoropropylene) triblock copolymer, an optical fiber having an appropriate molecular weight was prepared to produce a plastic optical fiber having excellent flexibility and withstanding external pressure for a long time.

본 발명의 목적은, 그레이디드-인덱스(Graded-Index)형 플라스틱 광섬유 모재와 이를 인발하여 그레이디드-인덱스(Graded-Index)형 플라스틱 광섬유를 제조함에 있어서 유연성을 가지는 첨가제를 클래딩의 일부 또는 전체에 함유하는 모재를 제조하여 이를 인발하여 인발공정시 흐름성이 좋고, 직경변동을 감소시켜 산란에 의한 광손실을 보다 억제하며 또한 유연성을 겸비한 광섬유를 제공하는 것이다. SUMMARY OF THE INVENTION An object of the present invention is to provide a graded-index plastic optical fiber base material and an additive having flexibility in producing a graded-index plastic optical fiber by drawing it to a part or the whole of the cladding. It is to provide a fiber having excellent flexibility in the drawing process by producing a base material containing and drawing it to reduce the fluctuation of the diameter by reducing the fluctuation in diameter.

본 발명에서는 흐름성이 좋고, 인발공정시 섬유의 직경변동을 감소시켜 산란에 의한 광손실을 보다 억제하며 또한 유연성을 겸비한 광섬유 모재 제조와 이 모재를 인발하여 상기의 성질을 갖는 광섬유의 제조를 위해 광섬유 모재 제조시 클래딩의 일부 또는 전체에 첨가제를 첨가한다. In the present invention, the flowability is good, to reduce the diameter variation of the fiber during the drawing process to further suppress the optical loss due to scattering, and also to manufacture the optical fiber base material having the flexibility and to produce the optical fiber having the above properties by drawing this base material Additives are added to some or all of the cladding in the preparation of the optical fiber base material.

좀 더 상세하게는, 모재의 클래딩 영역 중 일부 또는 전체의 영역에 Poly(vinylidenefluoride-tetrafluoroethylene)copolymer, Poly(vinylidene fluoride-hexafluoropropylene)copolymer, Poly(vinylidenefluoride-tetrafluoroethylene-hexafluoropropylene)triblock copolymer 등의 첨가제 중 단일 또는 2종 이상의 조합으로 개시제와 연쇄이동제를 함유한 methyl-methacylate monomer와 혼합하여 이 혼합용액을 유리관 내부에 투입, 약 3000rpm정도의 회전력으로 회전시키면서 70℃에서 2시간 중합하여 모재 전체부피의 1 ∼ 60%만큼 첨가제가 함유된 보호층을 형성시키며, 이 보호층 위에 굴절률 분포를 가지는 코어부를 형성하여 그레이디드-인덱스(Graded-Index)형 플라스틱 광섬유 모재를 제조할 수 있으며, 이를 인발하여 유연성을 우수한 그레이디드-인덱스(Graded-Index)형 플라스틱 광섬유를 제조할 수 있다. More specifically, one or more of additives, such as poly (vinylidenefluoride-tetrafluoroethylene) copolymer, poly (vinylidene fluoride-hexafluoropropylene) copolymer, Poly (vinylidenefluoride-tetrafluoroethylene-hexafluoropropylene) triblock copolymer, in part or all of the cladding region of the base material Mix two or more kinds of methyl-methacylate monomer containing an initiator and a chain transfer agent, and put the mixed solution inside the glass tube and polymerize at 70 ℃ for 2 hours while rotating at a rotational force of about 3000rpm. A protective layer containing an additive by% is formed, and a core part having a refractive index distribution is formed on the protective layer to prepare a graded-index plastic optical fiber base material, which is drawn to have excellent flexibility. Graded-index plastic optical fibers can be produced.

보호층을 함유한 클래딩층이 차지하는 부피가 전체 모재부피의 1% 미만에서는 유연성의 증대효과가 미미하며, 60%이상에서는 광손실 및 첨가제 가격에 의한 경제성에 한계를 가질 수 있다. 또한 보호층 형성을 위하여 사용되는 혼합용액에서 첨가제와 혼합되는 모노머는 methyl-methacylate 이외에도 코어부에 사용되는 모노머의 종류에 따라 BZMA(benzyl-methacrylate), 2,2,2-trifluroethyl-methacrylate, styrene, Tert-butyl methacrylate등도 사용가능하며, 상기 모노머들의 혼합모노머도 가능하다. If the volume of the cladding layer containing the protective layer is less than 1% of the total base material volume, the effect of increasing flexibility is insignificant, and if it is more than 60%, it may have a limit in economic efficiency due to light loss and additive price. In addition, the monomer mixed with the additive in the mixed solution used to form the protective layer is BZMA (benzyl-methacrylate), 2,2,2-trifluroethyl-methacrylate, styrene, Tert-butyl methacrylate may be used, and a mixed monomer of the monomers may be used.

또한 보호층 형성을 위하여 제조되는 혼합용액에서 첨가제가 차지하는 비율은 모노머량의 10 ∼ 50wt%가 바람직하며, 이 범위 미만의 경우에는 그 효과가 미미하며, 이 범위를 초과하는 경우에는 모노머와의 혼합상태가 균일하지 못하고 점도가 너무 높아 투입하기 곤란하다. In addition, the proportion of the additive in the mixed solution prepared for forming the protective layer is preferably from 10 to 50wt% of the amount of the monomer, the effect is less than this range, if it exceeds this range, mixing with the monomer The state is not uniform and the viscosity is too high, making it difficult to add.

자세한 제조방법은 다음과 같다. 먼저 methyl-methacylate에 상기된 첨가제 중 한 가지 또는 두 가지 이상을 적당량 혼합하여, 교반시켜주면 어느 정도 흐름성을 가지는 용액이 제조되며, 제조된 용액에 개시제로 AIBN 0.01 ∼ 0.2mol%(바람직하게는 0.06mol%가 적당함), 연쇄이동제로 1-buthanthiol 0.05∼0.5mol%(바람직하게는 0.2mol%가 적당함)을 첨가한 후 직경이 50mm, 길이가 960mm인 유리관에 투입하여 회전속도 1,000∼10,000rpm로 회전하며, 중합온도 60∼150℃에서 중합을 실행한다. Detailed manufacturing method is as follows. First, a suitable amount of one or two or more of the above-mentioned additives is mixed with methyl-methacylate, and stirred to prepare a solution having a certain flowability, and AIBN 0.01 to 0.2 mol% (preferably 0.06mol% is appropriate), 1-buthanthiol 0.05 ~ 0.5mol% (preferably 0.2mol% is suitable) as a chain transfer agent, and then it is put in a glass tube 50mm in diameter and 960mm in length and rotates at 1,000 ~ It rotates at 10,000 rpm and performs superposition | polymerization at 60-150 degreeC of polymerization temperatures.

이때 사용되는 개시제로는 BPO(Benzoyl Peroxide)와 Dimethyl 2,2-azobis (2-methylpropionate)등도 가능하며, 연쇄이동제로는 1-dodecane-thiol도 가능하다. 이렇게 제조된 원통형 보호층의 안쪽에 추가적인 클래딩층을 형성한 후에 코어부를 형성하거나, 아니면 곧바로 통상의 방법으로 개시제와 연쇄이동제의 함량을 조절하며 통상의 도펀트를 이용하여 겔효과를 이용한 방법, 고속원심력을 이용한 방법 또는 특수 압출 다이에 의한 방법 등 통상의 방법을 이용하여 코어부를 형성하여 모재를 제조할 수 있다. In this case, BPO (Benzoyl Peroxide) and Dimethyl 2,2-azobis (2-methylpropionate) may be used as an initiator, and 1-dodecane-thiol may be used as a chain transfer agent. After forming the additional cladding layer on the inner side of the cylindrical protective layer thus prepared to form a core portion, or immediately adjusting the content of the initiator and the chain transfer agent in a conventional manner, using a gel effect using a conventional dopant, high-speed centrifugal force The base material can be manufactured by forming a core part using conventional methods, such as the method using the method or the method by a special extrusion die | dye.

이렇게 제조된 모재를 적당한 온도에서 인발하여, 유연성이 매우 향상된 그레이디드 인덱스(Graded-Index)형 플라스틱 광섬유를 제조할 수 있으며 본 발명에 의하여 제조된 광섬유의 경우, 첨가제를 모재의 클래딩에만 일부 또는 전체에 첨가함으로써 유효한 광신호가 전송되는 코어에는 첨가제에 의한 광손실의 증가가 없는 반면, 유연성이 상당히 향상되는 결과를 얻는다.The prepared base material can be drawn at an appropriate temperature to produce graded index plastic fiber with very high flexibility. In the case of the optical fiber manufactured by the present invention, the additive is partially or entirely added to the cladding of the base material. By adding to the result, the core to which an effective optical signal is transmitted has no increase in optical loss due to the additive, while the flexibility is significantly improved.

본 발명의 실시예는 아래와 같다.An embodiment of the present invention is as follows.

<실시예 1><Example 1>

methyl methacrylate와 Poly(vinylidenefluoride-tetrafluoroethylene)copolymer 무게비가 7:3인 혼합용액 330g을 제조하여 개시제로 AIBN 0.06mol%, 연쇄이동제로 1-butanethiol 0.2mol%를 첨가하였다. 제조된 혼합용액을 직경이 50mm, 길이가 960mm인 유리관에 투입하여, 약 3000rpm으로 회전시키면서 70℃에서 2시간 중합하여 첨가제가 함유된 PMMA 클래딩층(보호층)을 제조하였으며. 이렇게 제조된 보호층의 부피는 전체 모재부피의 약 13%정도가 된다. 보호층에 methyl methacrylate를 수회 추가 투입하여, 전체 모재부피의 약 56%까지 추가적인 클래딩층을 형성한 후 굴절률 분포를 갖는 코어부는 0.06mol%의 AIBN(N,N-azobis-isobutyronitrile)을 개시제로 0.2mol%의 1-butane-thiol을 연쇄이동제로 사용하여 고속원심력에 의한 통상적인 방법으로 굴절률 분포를 조절하여 제조하였다. 330 g of a mixed solution of methyl methacrylate and poly (vinylidenefluoride-tetrafluoroethylene) copolymer having a weight ratio of 7: 3 was prepared, and AIBN 0.06 mol% and 1-butanethiol 0.2mol% were added as a chain transfer agent. The prepared mixed solution was introduced into a glass tube having a diameter of 50 mm and a length of 960 mm, and polymerized at 70 ° C. for 2 hours while rotating at about 3000 rpm to prepare a PMMA cladding layer (protective layer) containing an additive. The volume of the protective layer thus prepared is about 13% of the total base material volume. After several additional methyl methacrylate was added to the protective layer to form an additional cladding layer up to about 56% of the total base material volume, the core part having a refractive index distribution of 0.06 mol% AIBN (N, N-azobis-isobutyronitrile) was used as an initiator 0.2 Using mol-% 1-butane-thiol as a chain transfer agent was prepared by adjusting the refractive index distribution in a conventional method by high-speed centrifugal force.

코어의 중합이 끝나면 프리폼을 유리 튜브에서 분리한 후 70∼120℃ 온도의 진공오븐에 투입하여 24시간정도 잔류 모노머를 제거한다. 이렇게 제조된 프리폼에 열을 가하여 인발하여 그레이디드 인덱스(Graded-Index)형 플라스틱 광섬유를 제조한다. 이렇게 제조된 광섬유의 최소굽힘직경과 최대파단횟수를 측정하여 유연성을 측정하였으며, 그 결과는 표1과 같다(이하 동일).After the polymerization of the core is completed, the preform is separated from the glass tube and put into a vacuum oven at a temperature of 70 to 120 ° C. to remove residual monomer for about 24 hours. Heated to the preform thus prepared to draw it to produce a graded-index plastic optical fiber (Graded-Index). The flexibility was measured by measuring the minimum bending diameter and the maximum number of breaks of the optical fiber thus manufactured, and the results are shown in Table 1 below.

<실시예 2><Example 2>

methyl methacrylate와 Poly(vinylidenefluoride-hexafluoropropylene)copolymer 무게비가 7:3인 혼합용액 330g을 제조하여 실시예 1과 동일한 방법으로 광섬유를 제조하여, 최소굽힘직경과 최대파단횟수를 측정하였다.Methyl methacrylate and poly (vinylidenefluoride-hexafluoropropylene) copolymer 330g of a mixed solution having a weight ratio of 7: 3 was prepared, and optical fibers were prepared in the same manner as in Example 1, and the minimum bending diameter and the maximum number of fractures were measured.

<실시예 3><Example 3>

methylmethacrylate와 Poly(vinylidenefluoride-tetrafluoroethylene-hexafluoropropylene)triblock copolymer 무게비가 7:3인 혼합용액 330g을 제조하여 실시예 1과 동일한 방법으로 광섬유를 제조하여, 최소굽힘직경과 최대파단횟수를 측정하였다.Methylmethacrylate and Poly (vinylidenefluoride-tetrafluoroethylene-hexafluoropropylene) triblock copolymer 330g of a mixed solution having a weight ratio of 7: 3 was prepared to prepare an optical fiber in the same manner as in Example 1, the minimum bending diameter and the maximum number of breaks were measured.

<실시예 4><Example 4>

methyl methacrylate와 Poly(vinylidenefluoride-tetrafluoroethylene)copolymer 무게비가 8:2인 혼합용액 330g을 제조하여 실시예 1과 동일한 방법으로 광섬유를 제조하여, 최소굽힘직경과 최대파단횟수를 측정하였다.Methyl methacrylate and poly (vinylidenefluoride-tetrafluoroethylene) copolymer 330g of a mixed solution having a weight ratio of 8: 2 was prepared to prepare an optical fiber in the same manner as in Example 1, and the minimum bending diameter and the maximum number of fractures were measured.

<실시예 5>Example 5

methyl methacrylate와 Poly(vinylidenefluoride-tetrafluoroethylene)copolymer 무게비가 9:1인 혼합용액 330g을 제조하여 실시예 1과 동일한 방법으로 광섬유를 제조하여, 최소굽힘직경과 최대파단횟수를 측정하였다.Methyl methacrylate and Poly (vinylidenefluoride-tetrafluoroethylene) copolymer 330g of a mixed solution having a weight ratio of 9: 1 was prepared to prepare an optical fiber in the same manner as in Example 1, and the minimum bending diameter and the maximum number of fractures were measured.

<실시예 6><Example 6>

methyl methacrylate와 Poly(vinylidenefluoride-tetrafluoroethylene)copolymer 무게비가 7:3인 혼합용액 330g을 제조하여 개시제로 AIBN 0.06mol%, 연쇄이동제로 1-butanethiol 0.2mol%를 첨가하였다. 제조된 혼합용액을 직경 50mm, 길이가 960mm인 유리관에 투입하여, 약 3000rpm으로 회전시키면서 70℃에서 2시간 중합하여 첨가제가 함유된 PMMA 클래딩층을 제조하였으며. 이렇게 제조된 보호층이 차지하는 부피는 전체 모재부피의 약 13%정도가 된다. 온도를 90℃로 승온한 후 앞서 제조된 혼합용액을 보호층위에 수회 추가투입하여, 전체 모재부피의 약 56%까지 추가적인 보호층을 형성한 후 그 위에 굴절률 분포를 갖는 코어부를 0.06mol%의 AIBN(N,N-azobis-isobutyronitrile)을 개시제로 0.2mol%의 1-butane-thiol을 연쇄이동제로 사용하여 고속원심력에 의한 통상적인 방법으로 굴절률 분포를 조절하여 제조하였다. 코어의 중합이 끝나면 광섬유 모재를 유리 튜브에서 분리한 후 70∼120℃ 온도의 진공오븐에 투입하여 24시간정도 잔류 모노머를 제거한다. 이렇게 제조된 모재에 열을 가하여 인발하여 그레이디드 인덱스(Graded-Index)형 플라스틱 광섬유를 제조한다. 이렇게 제조된 광섬유의 최소굽힘직경과 최대파단횟수를 측정하여 유연성을 측정하였다.330 g of a mixed solution of methyl methacrylate and poly (vinylidenefluoride-tetrafluoroethylene) copolymer having a weight ratio of 7: 3 was prepared, and AIBN 0.06 mol% and 1-butanethiol 0.2mol% were added as a chain transfer agent. The prepared mixed solution was placed in a glass tube having a diameter of 50 mm and a length of 960 mm, and polymerized at 70 ° C. for 2 hours while rotating at about 3000 rpm to prepare a PMMA cladding layer containing an additive. The volume occupied by the protective layer thus prepared is about 13% of the total base material volume. After the temperature was raised to 90 ° C., the mixed solution prepared previously was added to the protective layer several times to form an additional protective layer up to about 56% of the total base material volume, and then the core part having a refractive index distribution thereon was 0.06 mol% of AIBN. (N, N-azobis-isobutyronitrile) using 0.2 mol% of 1-butane-thiol as a chain transfer agent as an initiator was prepared by adjusting the refractive index distribution in a conventional method by high-speed centrifugal force. After the polymerization of the core is completed, the optical fiber base material is separated from the glass tube and put into a vacuum oven at a temperature of 70 to 120 ° C. to remove residual monomer for about 24 hours. Heated to the base material thus prepared is drawn to produce a graded-index plastic optical fiber. The flexibility was measured by measuring the minimum bending diameter and the maximum number of breaks of the optical fiber thus manufactured.

<비교예 1>Comparative Example 1

첨가제의 첨가 없이 실시예 1과 동일한 방법으로 광섬유를 제조하여, 최소굽힘직경과 최대파단횟수를 측정하였다.The optical fiber was manufactured in the same manner as in Example 1 without the addition of additives, and the minimum bending diameter and the maximum number of fractures were measured.

상기 실시예의 유연성 측정은 최소굽힘직경(Ø)과 최대파단횟수(Number of flexings to break)의 두 가지 방법으로 테스트하였다. 최소굽힘직경은 다양한 직경의 봉에 POF를 동일한 힘으로 감아 파단되지 않고 100회 이상 감길 때의 봉의 직경으로 측정하였으며, 최대파단횟수는 POF를 ±90°만큼 왕복운동 시켜 끊어질 때의 왕복횟수를 측정하였다.The flexibility of the example was tested by two methods, the minimum bending diameter (Ø) and the maximum number of breaks (Number of flexings to break). The minimum bending diameter was measured by the diameter of the rod when it was wound 100 times or more without breaking POF with the same force on various diameter rods, and the maximum breaking frequency was the reciprocating frequency when breaking by reciprocating the POF by ± 90 °. Measured.

표 1에 나타낸 바와 같이 첨가제의 첨가로 인하여 유연성의 향상이 현저하였으며, 첨가제를 첨가하지 않았거나 혼합용액에서의 첨가제의 비율이 10wt%이하일 경우에는 최대파단회수가 10,000번 정도로 유연성이 떨어지는 결과를 나타내었다. As shown in Table 1, the improvement of flexibility was remarkable due to the addition of the additive, and when the additive was not added or the ratio of the additive in the mixed solution was 10wt% or less, the maximum breakage frequency was 10,000, indicating a decrease in flexibility. It was.

<표 1>TABLE 1

구 분division 첨가제additive 첨가제 비율(wt%)Additive Ratio (wt%) 보호층부피분율Protective layer volume fraction 최소굽힘직경(mm)Bending diameter (mm) 최대파단횟수(회)Maximum number of breaks (times) 실시예 1Example 1 Poly(VDF-TFE)Poly (VDF-TFE) 3030 0.130.13 1One 20,000번 이상More than 20,000 실시예 2Example 2 Poly(VDF-HFP)Poly (VDF-HFP) 3030 0.130.13 1One 20,000번 이상More than 20,000 실시예 3Example 3 Poly(VDF-TFE-HFP)Poly (VDF-TFE-HFP) 3030 0.130.13 1One 20,000번 이상More than 20,000 실시예 4Example 4 Poly(VDF-TFE)Poly (VDF-TFE) 2020 0.130.13 22 20,000번 이상More than 20,000 실시예 5Example 5 Poly(VDF-TFE)Poly (VDF-TFE) 1010 0.130.13 33 15,000번 이상More than 15,000 실시예 6Example 6 Poly(VDF-TFE)Poly (VDF-TFE) 3030 0.560.56 1One 20,000번 이상More than 20,000 비교예 1Comparative Example 1 XX 00 00 1010 5,0005,000

- 첨가제 비율 : 보호층 제조시 사용되는 혼합용액에서의 첨가제가 차지하는 무게비(%) -Additive ratio: Weight ratio (%) of additives in mixed solution used in the manufacture of protective layer

- 보호층 부피분율 : 모재에서 보호층(첨가제를 함유한 클래딩층)이 차지하는 부피분율(보호층 부피) / (전체 모재부피)  -Protective layer volume fraction: Volume fraction of protective layer (cladding layer containing additives) in the base material (protective layer volume) / (total base material volume)

본 발명은 그레이디드 인덱스(Graded-Index)형 플라스틱 광섬유 제조시에, 클래딩의 일부 또는 전체에 유연성이 뛰어난 첨가제를 함유한 보호층을 형성하여 광섬유의 유연성을 향상시켜줌으로써 기존의 플라스틱 광섬유에 비하여 외압에 의한 충격에 강하며, 전송률도 우수한 플라스틱 광섬유의 모재 와 이를 이용한 플라스틱 광섬유를 제공한다. The present invention is to improve the flexibility of the optical fiber by forming a protective layer containing a flexible additive in part or all of the cladding when manufacturing a graded-index plastic optical fiber, the external pressure compared to the conventional plastic optical fiber It provides the base material of the plastic optical fiber which is strong in the impact by the excellent transmission rate and the plastic optical fiber using the same

Claims (7)

플라스틱 광섬유 모재를 제조함에 있어, 클래딩층의 전체 또는 일부에 유연성이 뛰어난 첨가제를 첨가하여 보호층을 형성한 후, 그 안쪽에 중합개시제 0.02 ~ 0.2mol%, 연쇄전달제로 알칸티올 0.05 ~ 0.5mol%를 함유한 모노머 혼합용액을 중합시켜 코어부를 형성시키는 것을 특징으로 하는 그레이디드 인덱스형 플라스틱 광섬유 모재의 제조방법.In manufacturing the plastic optical fiber base material, after adding a highly flexible additive to all or part of the cladding layer to form a protective layer, the polymerization initiator 0.02 ~ 0.2mol%, the alkane thiol 0.05 ~ 0.5mol% as a chain transfer agent therein A method for producing a graded index type plastic optical fiber base material, characterized in that the polymer portion is polymerized to form a core portion. 제 1항에 있어서, 첨가제는 폴리(비니리덴플루오라이드-테트라플루오로에틸렌)코폴리머, 폴리(비니리덴플루오라이드-헥사플루오르프로필렌)코폴리머, 폴리(비니리덴플루오라이드-테트라플루오로에틸렌-헥사플루오로프로필렌)트라이블록 코폴리머 중 선택된 1종 또는 2종 이상인 것을 특징으로 하는 그레이디드 인덱스형 플라스틱 광섬유 모재의 제조방법.The method of claim 1, wherein the additive is poly (vinylidene fluoride-tetrafluoroethylene) copolymer, poly (vinylidene fluoride-hexafluoropropylene) copolymer, poly (vinylidene fluoride-tetrafluoroethylene-hexa Method for producing a graded index type plastic optical fiber base material, characterized in that at least one selected from fluoropropylene) triblock copolymer. 제 1항에 있어서, 보호층 또는 코어부 제조시 사용되는 단량체는 메틸메타크릴레이트, 벤질메타크릴레이트, 2,2,2-트라이플루로에틸-메타크릴레이트, 스티렌, 터트-부틸메타크릴레이트 중 하나이며, 중합개시제는 N,N-아조비스-이소부티로니트릴, 벤조일 퍼옥사이드 또는 디메틸2,2-아조비스(2-메틸프로피오네이트)중 하나인 것을 특징으로 하는 그레이디드 인덱스형 플라스틱 광섬유 모재의 제조방법.The method of claim 1, wherein the monomer used in the preparation of the protective layer or core portion is methyl methacrylate, benzyl methacrylate, 2,2,2-trifluoroethyl-methacrylate, styrene, tert-butyl methacrylate. Wherein the polymerization initiator is one of N, N-azobis-isobutyronitrile, benzoyl peroxide or dimethyl2,2-azobis (2-methylpropionate). Method for manufacturing an optical fiber base material. 제 1항에 있어서, 연쇄 전달제는 1-부탄-티올, 1-도데칸-티올 중 하나인 것을 특징으로 하는 그레이디드 인덱스형 플라스틱 광섬유 모재의 제조방법.The method of claim 1, wherein the chain transfer agent is one of 1-butane-thiol and 1-dodecane-thiol. 제 1항 내지 제 4항 중의 어느 한 항의 방법에 의하여 제조된 것을 특징으로 하는 그레이디드 인덱스형 플라스틱 광섬유 모재.A graded index type plastic optical fiber base material produced by the method of any one of claims 1 to 4. 제 5항에 있어서, 전체 모재에서 보호층이 차지하는 부피비율이 1 ~ 60vol%이며, 보호층 형성시 사용되는 혼합용액에서 모노머 대비 첨가제가 차지하는 비율이 10 ~ 50wt%인 것을 특징으로 하는 그레이디드 인덱스형 플라스틱 광섬유 모재.6. The graded index according to claim 5, wherein the volume ratio of the protective layer in the entire base material is 1 to 60 vol%, and the ratio of the additive to the monomer in the mixed solution used for forming the protective layer is 10 to 50 wt%. Type plastic optical fiber base material. 제 5항 또는 제 6항 중 어느 한 항의 플라스틱 광섬유 모재를 이용하여 통상의 방법으로 인발하여 제조한 그레이디드 인덱스형 플라스틱 광섬유.A graded index type plastic optical fiber manufactured by drawing by a conventional method using the plastic optical fiber base material according to any one of claims 5 and 6.
KR1020030090415A 2003-12-11 2003-12-11 The preform of graded-index plastic optical fiber improved flexibleness and manufacturing method thereof KR20050058158A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020030090415A KR20050058158A (en) 2003-12-11 2003-12-11 The preform of graded-index plastic optical fiber improved flexibleness and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030090415A KR20050058158A (en) 2003-12-11 2003-12-11 The preform of graded-index plastic optical fiber improved flexibleness and manufacturing method thereof

Publications (1)

Publication Number Publication Date
KR20050058158A true KR20050058158A (en) 2005-06-16

Family

ID=37251828

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030090415A KR20050058158A (en) 2003-12-11 2003-12-11 The preform of graded-index plastic optical fiber improved flexibleness and manufacturing method thereof

Country Status (1)

Country Link
KR (1) KR20050058158A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100638436B1 (en) * 2004-11-04 2006-10-24 주식회사 효성 Graded-index plastic optical fiber and the method of preparing the same
KR100662931B1 (en) * 2004-06-30 2006-12-28 에스케이씨 주식회사 Low refractive index cladding compositions with excellent interfacial adhesion property for plastic optical fiber or plastic image fiber

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100662931B1 (en) * 2004-06-30 2006-12-28 에스케이씨 주식회사 Low refractive index cladding compositions with excellent interfacial adhesion property for plastic optical fiber or plastic image fiber
KR100638436B1 (en) * 2004-11-04 2006-10-24 주식회사 효성 Graded-index plastic optical fiber and the method of preparing the same

Similar Documents

Publication Publication Date Title
EP1607778B1 (en) Graded index type optical fibres and method of making the same
US4557562A (en) Copolymers for optical fibers
JPH0250442B2 (en)
TWI805615B (en) fiber optic cable
EP0103761B1 (en) Copolymers for optical fibers
KR860009311A (en) Index distribution type optical transmission medium and method for manufacturing same
EP0988567A1 (en) Polymeric optical articles
AU736819B2 (en) Graded Index type optical fibers
KR20050058158A (en) The preform of graded-index plastic optical fiber improved flexibleness and manufacturing method thereof
CN109669234B (en) Light guide strip capable of emitting light on whole body and preparation method thereof
KR100638435B1 (en) Step index plastic optical fiber and the method of preparing the same
KR100638436B1 (en) Graded-index plastic optical fiber and the method of preparing the same
KR100404889B1 (en) Preparation Method of Plastic Optical Fiber
KR100539358B1 (en) Method of preparing of Preform of Graded-Index plastic optical fiber having improved Flexibility
KR20050066213A (en) Method of preparing preform for step-index optical fiber
JP3981355B2 (en) Manufacturing method of plastic optical member
JPH01223104A (en) Polymer for sheath material of optical fiber
JPH09243835A (en) Distributed refractive index plastic optical fiber and its production
KR100327867B1 (en) The preparing method of preform for plastic optical fiber
KR100442765B1 (en) Manufacturing Method of Graded Index Plastic Optical Fiber with High Thermal Stability
JPH09189813A (en) Plastic optical fiber
JPH10186157A (en) Plastic optical fiber and its production
JPH09258042A (en) Refractive index distributed plastic optical fiber and its production
JPH09281347A (en) Plastic optical fiber and its production
JP2000347055A (en) Multi-mode optical fiber and its manufacturing method

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application